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We prove (i) if G is a 2k-edge-connected graph (k>2), s, ¢ are vertices, and
f1, f>, g are edges with f;# g (i=1, 2), then there exists a cycle C passing through
Jiand f, (a path P between s and 7 passing through f)) but not passing through g
such that G — E(C)(G — E(P)} is (2k — 2)-edge-connected, where C and P are not
necessarily simple and E(C) is the set of edges of C. (i) Every 3k-edge-connected
graph (k= 1) is weakly (2k + 1)-linked and every (3k— 1)-edge-connected graph
(k =2) is weakly 2k-linked.  © 1988 Academic Press, Inc.

1. INTRODUCTION

We consider finite undirected graphs possibly with multiple edges but
without loops. Let G be a graph and let V(G) and E(G) be the set of
vertices and edges of G, respectively. We allow repetition of vertices (but
not edges) in a path and cycle. Mader [3] conjectured,

If G is a k-edge-connected graph (k>4) and s, ¢ are vertices of
G, then there exists a cycle C passing through s and ¢ such that
G~ E(C) is (k — 2)-edge-connected,

and proved this conjecture (in fact Theorem 1(1)) for £k =4. We prove this
when £ is even.

THEOREM 1. Suppose that k>4 is an even integer, G is a k-edge-
connected graph, {s,t} < V(G), {f1, />, g} <E(G), and f;#g (i=1,2).
Then

(1) There exists a cycle C passing through f, and f, but not passing
through g such that G — E(C) is (k — 2)-edge-connected.

(2) There exists a path P between s and t passing through f, but not
passing through g such that G — E(P) is (k —2)-edge-connected.

For odd %, the conjecture of Mader is still open, but the result of
Theorem 1(1) does not always hold; Fig. 1 gives a counterexample.
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FIGURE !

We cail a graph G weakly &-linked, if for every & pairs of vertices (s, ¢;),
there exist edge-disjoint paths P,,.., P, such that P, joins s, and ¢,
(1<i<gk) Let

g(k) :=min{m|if G is m-edge-connected, then G is weakly k-linked }.
Thomassen [6] conjectured
g2k +1)=g(2k)=2k+1 (k=1).

The author [4] proved g(3)=3 and Hirata, Kubota, and Saito [1] and
Mader [3] proved g(4)=5 and g(k)<2k—3 (k=5). We prove

THEOREM 2. g(2k +1)<3k (k>1) and g(2k)<3k—1 (k22).

Notations and Definitions

M(G) denotes the edge-connectivity of G. Let X, Y, {x, y}<V(G),
feE(G), and X n Y= . We often denote {x} by x. V(f) denotes the set
of end vertices of f. We denote by J(X, Y; G) the set of edges with one end
in X and the other in Y, and set 4(X;G):=d(X, V(G)—-X;G),
e(X, Y, G):=[0(X, Y; G)|, and e(X;G):=[0(X, V(G)—-X;G)|. AX,TY;G)
denotes the maximal number of edge-disjoint paths between X and Y. We
set X :=V(G)—X, N(x;G):={aeV(G)—x|e(a,x)>0}, N(X;G):=
Usex N(x:G), and I'(G, k) := {Z = V(G) | for each a, be Z, Ma, b; G) = k}.
In all notations, we often omit G. G/X denotes the graph obtained from G
by contracting X, and for a € X, we denote the corresponding vertex in G/X
by @. A path P = P[x, y] denotes a path between x and y. For a, be N(x)
with a#b, fed(x,a), and ged(x,b), G%* denotes the graph (V(G),
(E(G)wh)— {f, g}), where h is a new edge between g and b and is called a
lifting of G at x arising from the lifting of f and g at x. We call G%*°
admissible if for each y, ze V(G)—x with y#z, A(y, z; G%%) = A(y, z; G).
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Throughout the paper we shall make use of the following observation:

If a,be X = V(G), then i(a, b; G)= ila, b; G/X) and it is easy to give
examples for which the inequality is strict. However, the inequality is an
equality if X has a vertex z and a collection of e(X) edge-disjoint paths
from z to X.

2. PrROOF OF THEOREM 1

LemMa 1 (Okamura [5]). Suppose that k>4, G is a 2-edge-connected
graph, and {s, 1} = Te I'(G, k). Then

(1) If aeT—{s,t} and e(a)<2k, then there exists a path P[s,t]
such that a¢ V(P), TeI(G—E(P), k—2), and {s,t,a}el(G— E(P),
k—1).

(2) If ae V(G) and Ma, s) <k, then there exists a path P[s,t] such
that a¢ V(P), Te I'(G— E(P), k—2), and Ma, s; G— E(P)) = AMa, s; G).

(3) If 11, f>€0(s), then there exists a cycle C such that {f,, f,} <
E(C) and Te I'(G— E(C), k—2).

LemMMA 2 (Mader [2]). If G is a graph, xe V(G), e(x) =24, [N(x)| =2,
and X is not a cut-vertex, then there exists an admissible lifting of G at x.

LemMma 3. If k=3 is an integer, G is a graph, V(G)= W, U W,,
W.nW,=@, W,el(G, k), and each xe W, has even degree, then we can
obtain a k-edge-connected graph G(W,,k) from G such that
W, V(G(W,, k)) by sequences of vertex-deletions and edge-liftings.

Proof. We may assume G is connected. We can obtain G(W,, k) from
G as follows.

Step 1. If W, =7, then let G(W, k} :=G, and stop.

Step 2. If for an xe W,, |N(x)| =1, then reset G := G —x and go to
Step 1.

Step 3. If for each xe W,, e(x)=2, then let G(W, k) be the k-edge-
connected graph homeomorphic to G (that is at each xe W,, we lift d(x)
and then delete x), and stop. Otherwise let x € W, and e(x)>4.

Step 4. If x is a cut-vertex and each component of G — x has a vertex of
W,, then reset W, =W, u{x}, W,:=W,—x (note that W, u {x}e
I'(G, k)), and go to Step 1. If x is a cut-vertex and C is a component of
G —x such that V(C)n W, =, then reset G:=G— V(C), and go to
Step 1. Otherwise let G, be an admissible lifting of G at x (see Lemma 2),
reset G :=G,, and go to Step 1.

In what follows G — G(W |, k) denotes this operation.



348 HARUKO OKAMURA

LEMMA 4. Suppose that k>4 is an even integer, G is a k-edge-connected
graph, and for each x e V(G), e(x) <k + L. If f# ge E(G), then there exists
a cycle C such that fe E(C), g¢ E(C), and M(G—E(C))=zk—2.

Proof. 1t is easy to see that G is 2-connected. We proceed by induction
on |E(G)). If there is an xe V(f)n V(g), then for any hed(x)— {f, g},
by Lemma(3) G has a cycle C such that {f,h}<cE(C) and
MG—E(C))=2k—2. Then g¢FE(C). Thus let V(f)nV(g)=. Let
V(g)={x, y}. If e(x)=k, then let G, be an admissible lifting at x (see
Lemma 2) and let G, :=G(V(G)—x, k) (see Lemma 3). In G, f# g, and
by induction G, has a cycle C such that feE(C), g¢E(C), and
MG, - E(C)yzk —2. Let C, be the corresponding cycle in G and let C, be
the simple subcycle of C; containing f, then C, is a required cycle. Thus let
e(x)y=e(y)=k+ 1. If (G- g) =k, then the result holds in G — g. Thus for
some X< V(G)—y, xeX and e(X)=k. Let V(f)={a, b}, we may let
XnV(f)=g or {a}. f X V(f)=, then G/X has a required cycle C.
If X¢V(C), then C is a required cycle for G. If Xe V(C), then let
0(%; G/X) " E(C)= {hy, h,}. By Lemma 1(3) G/X has a cycle C, such that
{hy, hy} < E(C,) and A(G/X—E(C,))=k~?2. Then g¢ E(C,). By combin-
ing C and C, in G we have a required cycle. Therefore X n V(f) = {a}. Let
hed(X)~{f, g}, G,:=G/X, and G,:=G/X. By Lemma 1(3) for i=1,2,
G, has a cycle C,; such that {f, h} < E(C,) and A(G,~ E(C,))=k—2. By
combining C; and C, in G we have a required cycle.

The proof of Lemma 5 will be given later.

LEMMA 5. Suppose that k =4 is an even integer and G is a graph. If .

(i) V(G)={u}vdAdu W, uW, (disjoint union), A+, and either
W,= or Wy={b} and b has even degree,

(i) V(G)—W,el(G,k—2), and for each X< W, u W, with
XnW #J, elX) 2k,

(iil} for each xeW,, e(x)<k+1, and for each xeV{(G)—W,,
e(x)sk—1.

(iv) fed(u), ge E(G)— £, and {f, g} #3(b),
then for some ac A, there exists a path P[u, a] such that f e E(P), g ¢ E(P),
and V(G)—W,eI(G* P, k—2). Here G« P denotes the graph (V(G),
(E(GYw h)— E(P)) and h is a new edge between u and a.
Proof of Theorem 1

First we prove that Theorem 1(1) implies Theorem 1(2). Let 4 be a new
edge between s and ¢ and let G, ;= (V(G), E(G)u h). Then by (1), G, has a
cycle C such that {h, f,} < E(C), g¢ E(C), and A(G, —E(C))=2k—2.C—h
is a required path of G.
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Now we prove Theorem 1(1) by induction on |E(G}|. If G is not 2-con-
nected, then we can deduce the result by using induction on some blocks.
Thus we may assume that G is 2-connected. If for an x e V(G), e(x) 2k + 2,
then by Lemma 2 for some a, be N(x) with a#b, G%*=: G, is admissible.
If /,# g (i=1,2) in G, then by induction the result holds in G,. Thus let
da, x;G)={f,} and d(b, x; G)={g}. |N(x;G,)| =2, otherwise for each
hy, hy€0(x; G,)—f5, the result holds in G— {h, h,}. Thus for some
¥, ze N(x; G,) with y #z, (G,)>° is admissible, f;# g (i=1,2) in G, and
the result holds in G2 Thus we may assume that for each xe V(G),
e(x)<k+1. Let

F:={he E(G) | there is a cycle C such that {A, f,} < E(C),
g¢ E(P), and A(G— E(C)) =k —2).

Assume F#E(G)—g. By Lemmad F# . For some heF and
fe E(GY—F—g, h and f have a common end vertex, say u. Let C be a
cycle such that {4, f1} < E(C), g¢ E(C), and A(G—E(P))=k—2. Let
A=V(C)—u, W, :=V(G)—V(C), and W,=¢F. Then by Lemma 5 for
some ae A, G— E(C) has a path P[u, a] such that fe E(P), g¢ E(P), and
(G—E(C)) * Pis (k—2)-edge-connected. In C there are two disjoint paths
joining # and a. Let P, be one of them containing f;, and let C, := PU P;,
then A(G — E(C,)) >k —2. Thus F=E(G)—g.

To prove Lemma 5 we need some lemmas.

LemMmA 6. Suppose that k=2 is an even integer, G is a graph, V(G)=
W, uW,, Wi,nW,=, and each ve W, has even degree. Then

(1) If W, elI(G, k), xe V(G), and e(x) is odd, then for some ye W,
Ax, yyzk+1.

(2) If XcV(G), e(X)<k+1, xeXnW,, yeXnW,, ( XaW)u
{7}e(G/X, k), and (X~ W) {X} e [(G/X, k), then W, e I'(G, k).

Proof. (1) Since x¢ W,, e(x)=k + 1. If for some X = V(G) with x€ X,
e(X) =k, then choose X with this property such that |X] is minimal, if not,
then let X :=V(G). For some yeX—ux, e(y) is odd. Then ye W,
e(y)=k+1,and Ay, x)zk+1.

(2) Clearly we may l_et e(X)=k+ 1. By (1) for some acX, A(a, X)=
k+1 and for some be X, A(b, X)=k+1, and so W,eI(G, k).
LemMA 7. Suppose that G is a graph and X, Y < V(G). Then
(1)
e(X—Y)+e(Y—Xy=e(X)+e(Y)=2e(XnY,XUT),
e(Xn+e(XuY)=e(X)+e(Y)—2e(X—7Y, Y—X).
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2) If MG)zk, X—Y, Y—X, XY, and XU'Y are not empty and
e(X)=e(Y)=k, then k is even and e(X — Y)=e(X n Y)=k.

Proof. (1) Simple counting.
2)By (1) e(X—Y)=e(XnY) =k Thus k=e(X)=e(X-Y)+
e(XnY)=0 (mod 2).

Proof of Lemma 5

We proceed by induction on |E(G)|. Let 2(G, f, A, W,) be the set of
required paths of G and assume (G, f, A, W,) = . Note that e(b) >4 if
W,# . Let V(f)={u,v}. Then v¢ A.

QD IfXcW, oW, and |X| =2, then e(X) 2k + 2.

Proof. Assume e(X)<k+1 Let xeX and let P[u, ale P(G/X, f, A,
(W, —X)uX) (g might not be in E(G/X)). If £¢ V(P), then we may let
e(X)=k+1 and by Lemma 6(1) for some yeX, A(y, X)=k+1 and for
some zeX—W,, Mz, X;GxP)=k—1, and so V(G)— W,eI(G * P,
k—2). Thus let ¥e V(P) and h,, h,€ d(%; G/X)n E(P). If X< W, then let
G,:=G/X, and if be X, then for Y:=V(G/X)—b, let G, :=(G/X)Y, k)
(see Lemma 3). By induction for each graph H such that |E(H)| <|E(G)|,
Lemma 5 holds, and so in G, Theorem1(1) holds (see the proof of
Theorem 1). Thus G, has a cycle C such that {h,, h,} < E(C), g¢ E(C),
and A(G,— E(C))=k—2. Let C, be the corresponding cycle in G/X. Let
P,[u, a] be the path in G obtained by combining P and C;. Then by
Lemma 6 P, is a required path.

(22) If X< V(G), | X| =22, and \X| =2, then e(X) = k.

Proof. Assume e(X)=k—2 or k—1 and v¢ X. If ue X, then by (ii)
A—X# @ and F#P(G/X, L, A-X, W,—X)= 2(G, f, 4, W) by induc-
tion and by Lemma 6. If u ¢ X, then AnX# ¢J. Let xe X and P, [u,a]e
P(G/X, f,(A—-X)U X, W, — X). If a# %, then P, is a required path, thus let
a=% and hed(%;G/X)n E(P,). Let P,e?(G/X,h, AnX, W, nX). By
combining P, and P, in G we can get a required path.

(23) Let x=b if Wy, and xe W, if Wo=@. If |[N(x)|=n and
N(x)={p1, s Y}, then n22 and V(G)—xeI (G2, k—-2) (2<i<n).
Moreover if e(x, y,)=1, then nz3.

Proof. If n=1, then A(G—x)=2k—2 and e(y,;G—x)<k+1—-4, a
contradiction. Thus n>2. By (22) for each 2<i<n, V(G)—xe
I(G2v7, k—2). Assume e(x, y,)=1and n=2. Then e({x, y,})<e(y;) -2,
contrary to (il) or (ii1).
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(24) W,= and for each xe W,, e(x)=k + 1.

Proof. Letx=bif W,+# (¥, and let xe W, and e(x)=k if W,= . By
(2.3) we can obtain a lifting G, of G at x such that V(G) —xe I'(G,, k—2),
f#gin G,, and {f, g} #38(x;G,). By (2.1) for each X< W, u W, with
X+#{x}, e(X;G,) >k, and so there is a PeP(G,, f, A, W, —x). If x=0,
then Pe (G, f, A, W,). If xe W, then let P, be the corresponding path in
G. If P, is not simple, then let P, be the simple subpath of P, between u
and a, then P,e Z(G, 1, A, W;).

Since ve W, if for some xe W, there is an ke d(v, x), then by (2.1),
(2.2), and (2.4) the result holds in G—A. Thus {u}# N(v)< {u}u 4. By
(2.3) for some ae N(v)—u, there is a lifting G such that A(G*»*) >k —2
and f# gin G»°

3. PROOF OF THEOREM 2
The proof of Lemma 8 will be given later.

LeMMA 8. Suppose that k =24 and n 22 are integers, G is a 2-connected
graph, V(G)=Tu W, OW, (disjoint union), T=/{S{, .Sy, t1senlnt,
[T\ =2n, TOW, el(G, k), |W,|<2, for each xe W,, e(x)<k—1 is even,
and

(i) if k is odd, then for each xe T W, e(x) =k,
(i1} if k is even, then e{s;)=e(t)=k (1<i<n) and for each xe W,,
e(x)=k or k+1.

Then there is a subgraph G* = G such that

(a) for some 1 <i<j<n, G— E(G*) has edge-disjoint paths P,[s,, t,]
and P, [s;, 1,1,

(b) V(G¥*)=K,uK,and K,nK,=,

() T—{sit,s, tj} c K, eI'(G* k—3),

(d} for each xe K,, e(x; G¥*} is even.

Proof of Theorem 2

Let x=0o0r 1, m>1 be an integer, k :=3m—az3, and n:=2m+1—a.
Assume that G is a k-edge-connected graph and {s,, .., s,, f;, ., t,} ;=T
are vertices of G (not necessarily distinct). We prove that there are edge-
disjoint paths P, .., P, such that P, joins s, and ¢, (1 <i<n). We may
assume that G is 2-connected. If k is odd and e(x)=:d>k for some
xe V(G), then we replace x by d vertices of degree k (Fig. 2 gives an
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example with d=8 and k=35) and assign x on one of the new vertices,
producing a new graph G,. If the result holds in G,, then it also holds for
G. Thus we may assume

(3.1) If k is odd, then G is k-regular.

If k is even and e(s,) is odd, then we replace s; by two vertices of degree
e(s;)—1 and e(s;), and assign s, on the new vertex of degree e(s;)—1,
producing a new graph G, (see Fig. 3). If the result holds in G,then it also
holds for G. Thus we may assume that e(s;) and e(¢;) (1 <i<n) are even.
We proceed by induction on |E(G)|. If k is even, xe V(G), and e(x)=
k+ 2, then an admissible lifting G, of G at x is k~edge-connected and the
result holds in G,. Thus

(3.2) If k is even, then e(s;))=e(t;)=k (1 <i<n) and for each x € V(G),
e(x)=k or k+ 1.

By [4,1,3] g(3)=3 and g(4)=5, and so we may let k=6, n=3, and
m=2. If s,=s,, then by Theorem 1 there is a path P[¢,, f,] such that
s, € V(P)and A(G — E(P)) 2k — 3. By induction G — E(P) has edge-disjoint

FIGURE 3



PATHS IN K-EDGE-CONNECTED GRAPHS 353

paths P;[ss, 23], ., P,[S,, t,]. Thus let |T]=2n. By Lemma 8 there is a
subgraph G* <G such that (a), {b), (c), and (d) hold. By Lemma 3
G*(K,, k—3) is (k—3)-edge-connected, and by induction G*(K,, k—3)
has (n—2) edge-disjoint paths joining (s, £,) (1<I<n, [#1i, j). Thus the
result holds in G.

Proof of Lemma 8

Suppose that G satisfies the hypothesis of Lemma 8, but the result does
not hold. Choose G with this property such that |E(G)| is minimal.

(33) W,=.
Proof. Assume xeW,. Then e(x)>4. By Lemma2 we have an
admissible lifting G, of G at x. The result holds in G, and so in G.

Case 1. k is odd.

(3.4) If x, ye W, and f e d(x, p), then V(G)— {x, y} ¢ (G — f, k).

Proof. Otherwise the result holds in G—f with V(G—-f)=
ToW,—{x, y})uix y}

(3.5) If a, be T, then e(a, b)=0.

Proof. If fed(s,, t,), then by Lemma 1(1) G has a path P[s,, #,] such
that s, ¢ V(P) and A(G—E(P))=k~2. G*:=G—E(P)—f is a required
graph. If fe€d(s,, s,), then by Theorem | G — f has a path P[¢,, z,] such
that s, € V(P) and A(G—f— E(P))>k—3.

(3.6) If xeW,, fed(x,s,), and hed(x,t,), then V(G)—{x,5,}¢
G- f k).

Proof. Assume V(G)—{x,s,}el(G—f k). Then V(G)—xel(G—

{fh}, k—1). By Lemma 1(2) G— {f, h} has a path P[s,,r,] such that
x¢ V(P)and M(G—{f, h} —E(P))=2k-3.

BN If xeW, and fed(x,s) (i=1,2), then V(G)—{x,s,,5,}¢
F(G_"{fl’fZ}’ k)

Proof. Assume V(G)—{x,s,,s5,}€I(G—{f, >}, k). Let yeN(x)—
{51,582}, hed(x,y), and G,:=G—{f}, f>,h}. Then V(G)—xel(Gy,
k—1) and e(x; G,) is even. By Lemma 3 and Theorem 1| G, has a path
Plt,t,] such that s, e V(P) and V(G,)—xel(G,— E(P),k—3). Let
G* . =G—E(P)—{f1, f2, h}.

(3.8) If X< V(G), IX|>2, and (£ 22, then e(X) = k+ 1.

582b/45/3-7
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Proof. Assume e(X)=k and for each Y ¢ X with Y] >2, e(Y) >k + 1.
Let ueX and G,:=G/X. If Z<W(G), |Z>2 |Z|>2 and
XnZ#F#X—~Z,thene(Z)zk+ 1. Forifnot,then Z—X#J#XUZ,
contrary to Lemma 7(2). Thus if x, yeX and fed(x, y), then
V(G)—{x, y} e I(G— f, k), and so by (3.4) N(XnW,:G,)=Tu {a}. By
(3.5) N(XNT;G,)cW,u {ii}. Thus G, is a bipartite graph with the
partition (XN T, (XnW)u {a}) or (XnT)u{d}, X W,) (note that
G, is k-regular and k is odd) and |V(G,)| = 6. Thus for some xe X n W,
e(x,i;G)=e(x, X;G)<(k—1)/2. Then by Lemma2 for some
a,be X n T, G** is admissible, contrary to (3.6) or (3.7).

By (3.3}, (34), (3.5), and (3.8) G is a bipartite graph with the partition
(T, W). Let xeW,. By Lemma2 for some a,beN(x)cT, G*° is
admissible, contrary to (3.6) or (3.7).

Case 2. k is even.

(3.9) If xe W,, then e(x)=k + L.

Proof. Assume e(x)=k. By Lemma 2 there is an admissible lifting G, of
G at x. The result holds in G, with V(G,)=Tu (W, —x)u {x}, and it also
holds for G.

(3.10) If x, ye W, and fed(x, y), then A(G—f)<k—1.

(3.11) If a,be T, then e{a, b)=0.

Proof. We can prove e(s;, {;)=0 (1 <i<n) in the same way as (3.5). If
ged(s, s,), then let fed(s,)— g By Theorem | G has a path P[¢,1,]
such that feE(P), g¢E(P), and A(G—E(P))zk—2. Let G*:=G—
E(P)—g.

(312) If-x15 X3 € Wla a;, 4, € Ts fiea(xia al) (l= 17 2)’ and gea(xb (12):
then V(G)—a, ¢ [(G— {1, f2}. k).

Proof. Assume V(G)—a, e (G—{f1, fr}, k). If a;=s, and a,=1,,
then by Lemma 1 G— — {f;, f>} has a path P[s,, t,] such that ¢, ¢ V(P)
and  V(G)—s,e (G~ {f,, fr} —E(P),k—2). Let G*:=G—E(P)—
{fi, f2, g} f a, =5, and a,=s,, then let he d(a,) — g By Theorem 1 and
Lemma 3 G- {f,, f>} has a path P[t,,t,] such that he E(P), g¢ E(P),
and WV(G)—s,e(G—{/fy, 2} —EP)k—2). Let G*:=G—E(P)—
{f19f2a g}

(B13) If X< V(G), |X| =22, and |X| =2, then e(X) 2k + 1.
Proof. Assume e(X)=k and foreach ¥ ¢ X with |Y| 22, e(Y) 2k + 1.



PATHS IN k-EDGE-CONNECTED GRAPHS 355

Let ue X. If x, ye X and f€d(x, y), then V(G)— {x, y} e [(G— f, k). For
if not, then for some Z< V(G)—x, yeX, e(Z)=k, |Z| 22, and |Z| >2,
and so Z—X##XuZ and by Lemma 7(2) e(X—Z)=e(XnZ)=k.
Thus |X] =2 and e(x)=e(y)=k. Then by (3.9) {x, y} =T, contrary to
(3.11). Thus by (3.10) N(XnW,;G/X)cTu{i}, and by (3.11)
XnW,#@#XnT. By (39) | Xn W, |=2, and so [XnT|=2 Let
ae X T. Since e(a, X)<k/2 (otherwise e(X —a)=k), by Lemma2 for
some x, ye N(a)nX, G** is admissible. By (3.11) {x, y} < W,. Let
fied(a,x) and f,ed(a, y), then W(G)—aecl(G—{f\,f>},k). Let
be ((N(x)u N(y)yn X)—a, then be T, contrary to (3.12).

By (3.3), (3.10), (3.11), and (3.13) G is a bipartite graph with the
partition (7, W,). Let ae T. By Lemma 2 for some x, ye N{a)c W, G
is admissible and we can deduce a contradiction (see the proof of (3.13)).
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