JOURNAL OF COMBINATORIAL THEORY, Series B 45, 345-355 (1988)

Paths in *k*-Edge-Connected Graphs

HARUKO OKAMURA

Faculty of Engineering, Osaka City University, Osaka 558, Japan Communicated by the Managing Editors

Received December 15, 1986

We prove (i) if G is a 2k-edge-connected graph $(k \ge 2)$, s, t are vertices, and f_1, f_2, g are edges with $f_i \ne g$ (i = 1, 2), then there exists a cycle C passing through f_1 and f_2 (a path P between s and t passing through f_1) but not passing through g such that G - E(C)(G - E(P)) is (2k-2)-edge-connected, where C and P are not necessarily simple and E(C) is the set of edges of C. (ii) Every 3k-edge-connected graph $(k \ge 1)$ is weakly (2k+1)-linked and every (3k-1)-edge-connected graph $(k \ge 2)$ is weakly 2k-linked. \bigcirc 1988 Academic Press, Inc.

1. INTRODUCTION

We consider finite undirected graphs possibly with multiple edges but without loops. Let G be a graph and let V(G) and E(G) be the set of vertices and edges of G, respectively. We allow repetition of vertices (but not edges) in a path and cycle. Mader [3] conjectured,

If G is a k-edge-connected graph $(k \ge 4)$ and s, t are vertices of G, then there exists a cycle C passing through s and t such that G - E(C) is (k-2)-edge-connected,

and proved this conjecture (in fact Theorem 1(1)) for k = 4. We prove this when k is even.

THEOREM 1. Suppose that $k \ge 4$ is an even integer, G is a k-edgeconnected graph, $\{s, t\} \subset V(G)$, $\{f_1, f_2, g\} \subset E(G)$, and $f_i \ne g$ (i=1, 2). Then

(1) There exists a cycle C passing through f_1 and f_2 but not passing through g such that G - E(C) is (k-2)-edge-connected.

(2) There exists a path P between s and t passing through f_1 but not passing through g such that G - E(P) is (k-2)-edge-connected.

For odd k, the conjecture of Mader is still open, but the result of Theorem 1(1) does not always hold; Fig. 1 gives a counterexample.

345

FIGURE 1

We call a graph G weakly k-linked, if for every k pairs of vertices (s_i, t_i) , there exist edge-disjoint paths $P_1, ..., P_k$ such that P_i joins s_i and t_i $(1 \le i \le k)$. Let

 $g(k) := \min\{m \mid \text{if } G \text{ is } m \text{-edge-connected, then } G \text{ is weakly } k \text{-linked}\}.$

Thomassen [6] conjectured

$$g(2k+1) = g(2k) = 2k+1 \qquad (k \ge 1).$$

The author [4] proved g(3) = 3 and Hirata, Kubota, and Saito [1] and Mader [3] proved g(4) = 5 and $g(k) \le 2k - 3$ ($k \ge 5$). We prove

THEOREM 2. $g(2k+1) \leq 3k \ (k \geq 1)$ and $g(2k) \leq 3k-1 \ (k \geq 2)$.

Notations and Definitions

 $\lambda(G)$ denotes the edge-connectivity of G. Let X, Y, $\{x, y\} \subset V(G)$, $f \in E(G)$, and $X \cap Y = \emptyset$. We often denote $\{x\}$ by x. V(f) denotes the set of end vertices of f. We denote by $\partial(X, Y; G)$ the set of edges with one end in X and the other in Y, and set $\partial(X; G) := \partial(X, V(G) - X; G)$, $e(X, Y; G) := |\partial(X, Y; G)|$, and $e(X; G) := |\partial(X, V(G) - X; G)|$. $\lambda(X, Y; G)$ denotes the maximal number of edge-disjoint paths between X and Y. We set $\overline{X} := V(G) - X$, $N(x; G) := \{a \in V(G) - x | e(a, x) > 0\}$, $N(X; G) := \bigcup_{x \in X} N(x; G)$, and $\Gamma(G, k) := \{Z \subset V(G) | \text{ for each } a, b \in Z, \lambda(a, b; G) \ge k\}$. In all notations, we often omit G. G/X denotes the graph obtained from G by contracting X, and for $a \in X$, we denote the corresponding vertex in G/X by \tilde{a} . A path P = P[x, y] denotes a path between x and y. For a, $b \in N(x)$ with $a \neq b$, $f \in \partial(x, a)$, and $g \in \partial(x, b)$, $G_x^{a,b}$ denotes the graph $(V(G), (E(G) \cup h) - \{f, g\})$, where h is a new edge between a and b and is called a lifting of G at x arising from the lifting of f and g at x. We call $G_x^{a,b}$ admissible if for each $y, z \in V(G) - x$ with $y \neq z$, $\lambda(y, z; G_x^{a,b}) = \lambda(y, z; G)$.

Throughout the paper we shall make use of the following observation:

If $a, b \in X \subset V(G)$, then $\lambda(a, b; G) \ge \lambda(a, b; G/\overline{X})$ and it is easy to give examples for which the inequality is strict. However, the inequality is an equality if \overline{X} has a vertex z and a collection of e(X) edge-disjoint paths from z to X.

2. Proof of Theorem 1

LEMMA 1 (Okamura [5]). Suppose that $k \ge 4$, G is a 2-edge-connected graph, and $\{s, t\} \subset T \in \Gamma(G, k)$. Then

(1) If $a \in T - \{s, t\}$ and e(a) < 2k, then there exists a path P[s, t] such that $a \notin V(P)$, $T \in \Gamma(G - E(P), k - 2)$, and $\{s, t, a\} \in \Gamma(G - E(P), k - 1)$.

(2) If $a \in V(G)$ and $\lambda(a, s) < k$, then there exists a path P[s, t] such that $a \notin V(P)$, $T \in \Gamma(G - E(P), k - 2)$, and $\lambda(a, s; G - E(P)) = \lambda(a, s; G)$.

(3) If $f_1, f_2 \in \partial(s)$, then there exists a cycle C such that $\{f_1, f_2\} \subset E(C)$ and $T \in \Gamma(G - E(C), k - 2)$.

LEMMA 2 (Mader [2]). If G is a graph, $x \in V(G)$, $e(x) \ge 4$, $|N(x)| \ge 2$, and x is not a cut-vertex, then there exists an admissible lifting of G at x.

LEMMA 3. If $k \ge 3$ is an integer, G is a graph, $V(G) = W_1 \cup W_2$, $W_1 \cap W_2 = \emptyset$, $W_1 \in \Gamma(G, k)$, and each $x \in W_2$ has even degree, then we can obtain a k-edge-connected graph $G(W_1, k)$ from G such that $W_1 \subset V(G(W_1, k))$ by sequences of vertex-deletions and edge-liftings.

Proof. We may assume G is connected. We can obtain $G(W_1, k)$ from G as follows.

Step 1. If $W_2 = \emptyset$, then let $G(W_1, k) := G$, and stop.

Step 2. If for an $x \in W_2$, |N(x)| = 1, then reset G := G - x and go to Step 1.

Step 3. If for each $x \in W_2$, e(x) = 2, then let $G(W_1, k)$ be the k-edgeconnected graph homeomorphic to G (that is at each $x \in W_2$, we lift $\partial(x)$ and then delete x), and stop. Otherwise let $x \in W_2$ and $e(x) \ge 4$.

Step 4. If x is a cut-vertex and each component of G-x has a vertex of W_1 , then reset $W_1 := W_1 \cup \{x\}$, $W_2 := W_2 - x$ (note that $W_1 \cup \{x\} \in \Gamma(G, k)$), and go to Step 1. If x is a cut-vertex and C is a component of G-x such that $V(C) \cap W_1 = \emptyset$, then reset G := G - V(C), and go to Step 1. Otherwise let G_x be an admissible lifting of G at x (see Lemma 2), reset $G := G_x$, and go to Step 1.

In what follows $G \rightarrow G(W_1, k)$ denotes this operation.

LEMMA 4. Suppose that $k \ge 4$ is an even integer, G is a k-edge-connected graph, and for each $x \in V(G)$, $e(x) \le k + 1$. If $f \ne g \in E(G)$, then there exists a cycle C such that $f \in E(C)$, $g \notin E(C)$, and $\lambda(G - E(C)) \ge k - 2$.

Proof. It is easy to see that G is 2-connected. We proceed by induction on |E(G)|. If there is an $x \in V(f) \cap V(g)$, then for any $h \in \partial(x) - \{f, g\}$, by Lemma 1(3) G has a cycle C such that $\{f, h\} \subset E(C)$ and $\lambda(G - E(C)) \ge k - 2$. Then $g \notin E(C)$. Thus let $V(f) \cap V(g) = \emptyset$. Let $V(g) = \{x, y\}$. If e(x) = k, then let G_x be an admissible lifting at x (see Lemma 2) and let $G_1 := G_x(V(G) - x, k)$ (see Lemma 3). In $G_1 f \neq g$, and by induction G_1 has a cycle C such that $f \in E(C)$, $g \notin E(C)$, and $\lambda(G_1 - E(C)) \ge k - 2$. Let C_1 be the corresponding cycle in G and let C_2 be the simple subcycle of C_1 containing f, then C_2 is a required cycle. Thus let e(x) = e(y) = k + 1. If $\lambda(G - g) \ge k$, then the result holds in G - g. Thus for some $X \subset V(G) - y$, $x \in X$ and e(X) = k. Let $V(f) = \{a, b\}$, we may let $X \cap V(f) = \emptyset$ or $\{a\}$. If $X \cap V(f) = \emptyset$, then G/X has a required cycle C. If $\tilde{x} \notin V(C)$, then C is a required cycle for G. If $\tilde{x} \in V(C)$, then let $\partial(\tilde{x}; G/X) \cap E(C) = \{h_1, h_2\}$. By Lemma 1(3) G/\overline{X} has a cycle C_1 such that ${h_1, h_2} \subset E(C_1)$ and $\lambda(G/\overline{X} - E(C_1)) \ge k - 2$. Then $g \notin E(C_1)$. By combining C and C₁ in G we have a required cycle. Therefore $X \cap V(f) = \{a\}$. Let $h \in \partial(X) - \{f, g\}, G_1 := G/X, \text{ and } G_2 := G/\overline{X}$. By Lemma 1(3) for i = 1, 2, J G_i has a cycle C_i such that $\{f, h\} \subset E(C_i)$ and $\lambda(G_i - E(C_i)) \ge k - 2$. By combining C_1 and C_2 in G we have a required cycle.

The proof of Lemma 5 will be given later.

LEMMA 5. Suppose that $k \ge 4$ is an even integer and G is a graph. If

(i) $V(G) = \{u\} \cup A \cup W_1 \cup W_2$ (disjoint union), $A \neq \emptyset$, and either $W_2 = \emptyset$ or $W_2 = \{b\}$ and b has even degree,

(ii) $V(G) - W_2 \in \Gamma(G, k-2)$, and for each $X \subset W_1 \cup W_2$ with $X \cap W_1 \neq \emptyset$, $e(X) \ge k$,

(iii) for each $x \in W_1$, $e(x) \leq k+1$, and for each $x \in V(G) - W_1$, $e(x) \leq k-1$.

(iv) $f \in \partial(u), g \in E(G) - f, and \{f, g\} \neq \partial(b),$

then for some $a \in A$, there exists a path P[u, a] such that $f \in E(P)$, $g \notin E(P)$, and $V(G) - W_2 \in \Gamma(G * P, k-2)$. Here G * P denotes the graph $(V(G), (E(G) \cup h) - E(P))$ and h is a new edge between u and a.

Proof of Theorem 1

First we prove that Theorem 1(1) implies Theorem 1(2). Let h be a new edge between s and t and let $G_1 := (V(G), E(G) \cup h)$. Then by (1), G_1 has a cycle C such that $\{h, f_1\} \subset E(C), g \notin E(C)$, and $\lambda(G_1 - E(C)) \ge k - 2$. C - h is a required path of G.

Now we prove Theorem 1(1) by induction on |E(G)|. If G is not 2-connected, then we can deduce the result by using induction on some blocks. Thus we may assume that G is 2-connected. If for an $x \in V(G)$, $e(x) \ge k+2$, then by Lemma 2 for some $a, b \in N(x)$ with $a \ne b$, $G_x^{a,b} =: G_1$ is admissible. If $f_i \ne g$ (i=1,2) in G_1 , then by induction the result holds in G_1 . Thus let $\partial(a, x; G) = \{f_1\}$ and $\partial(b, x; G) = \{g\}$. $|N(x; G_1)| \ge 2$, otherwise for each $h_1, h_2 \in \partial(x; G_1) - f_2$, the result holds in $G - \{h_1, h_2\}$. Thus for some $y, z \in N(x; G_1)$ with $y \ne z$, $(G_1)_x^{y,z}$ is admissible, $f_i \ne g$ (i=1, 2) in $G_x^{y,z}$, and the result holds in $G_x^{y,z}$. Thus we may assume that for each $x \in V(G)$, $e(x) \le k + 1$. Let

$$F := \{h \in E(G) \mid \text{there is a cycle } C \text{ such that } \{h, f_1\} \subset E(C), \\ g \notin E(P), \text{ and } \lambda(G - E(C)) \ge k - 2\}.$$

Assume $F \neq E(G) - g$. By Lemma 4 $F \neq \emptyset$. For some $h \in F$ and $f \in E(G) - F - g$, h and f have a common end vertex, say u. Let C be a cycle such that $\{h, f_1\} \subset E(C), g \notin E(C), and \lambda(G - E(P_1)) \ge k - 2$. Let $A := V(C) - u, W_1 := V(G) - V(C)$, and $W_2 = \emptyset$. Then by Lemma 5 for some $a \in A, G - E(C)$ has a path P[u, a] such that $f \in E(P), g \notin E(P)$, and (G - E(C)) * P is (k - 2)-edge-connected. In C there are two disjoint paths joining u and a. Let P_1 be one of them containing f_1 , and let $C_1 := P \cup P_1$, then $\lambda(G - E(C_1)) \ge k - 2$. Thus F = E(G) - g.

To prove Lemma 5 we need some lemmas.

LEMMA 6. Suppose that $k \ge 2$ is an even integer, G is a graph, $V(G) = W_1 \cup W_2$, $W_1 \cap W_2 = \emptyset$, and each $v \in W_2$ has even degree. Then

(1) If $W_1 \in \Gamma(G, k)$, $x \in V(G)$, and e(x) is odd, then for some $y \in W_1$, $\lambda(x, y) \ge k + 1$.

(2) If $X \subset V(G)$, $e(X) \leq k+1$, $x \in X \cap W_1$, $y \in \overline{X} \cap W_1$, $(X \cap W_1) \cup \{\tilde{y}\} \in \Gamma(G/\overline{X}, k)$, and $(\overline{X} \cap W_1) \cup \{\tilde{x}\} \in \Gamma(G/\overline{X}, k)$, then $W_1 \in \Gamma(G, k)$.

Proof. (1) Since $x \notin W_2$, $e(x) \ge k+1$. If for some $X \subset V(G)$ with $x \in X$, e(X) = k, then choose X with this property such that |X| is minimal, if not, then let X := V(G). For some $y \in X - x$, e(y) is odd. Then $y \in W_1$, $e(y) \ge k+1$, and $\lambda(y, x) \ge k+1$.

(2) Clearly we may let e(X) = k + 1. By (1) for some $a \in X$, $\lambda(a, \overline{X}) = k + 1$ and for some $b \in \overline{X}$, $\lambda(b, X) = k + 1$, and so $W_1 \in \Gamma(G, k)$.

LEMMA 7. Suppose that G is a graph and X, $Y \subset V(G)$. Then

(1)

$$e(X - Y) + e(Y - X) = e(X) + e(Y) - 2e(X \cap Y, \overline{X \cup Y}),$$

$$e(X \cap Y) + e(X \cup Y) = e(X) + e(Y) - 2e(X - Y, Y - X).$$

(2) If $\lambda(G) \ge k$, X - Y, Y - X, $X \cap Y$, and $\overline{X \cup Y}$ are not empty and e(X) = e(Y) = k, then k is even and $e(X - Y) = e(X \cap Y) = k$.

Proof. (1) Simple counting.

(2) By (1) $e(X - Y) = e(X \cap Y) = k$. Thus $k = e(X) \equiv e(X - Y) + e(X \cap Y) \equiv 0 \pmod{2}$.

Proof of Lemma 5

We proceed by induction on |E(G)|. Let $\mathscr{P}(G, f, A, W_1)$ be the set of required paths of G and assume $\mathscr{P}(G, f, A, W_1) = \emptyset$. Note that $e(b) \ge 4$ if $W_2 \ne \emptyset$. Let $V(f) = \{u, v\}$. Then $v \notin A$.

(2.1) If $X \subset W_1 \cup W_2$ and $|X| \ge 2$, then $e(X) \ge k+2$.

Proof. Assume $e(X) \leq k+1$. Let $x \in X$ and let $P[u, a] \in \mathscr{P}(G/X, f, A, (W_1 - X) \cup \tilde{x})$ (g might not be in E(G/X)). If $\tilde{x} \notin V(P)$, then we may let e(X) = k+1 and by Lemma 6(1) for some $y \in X$, $\lambda(y, \overline{X}) = k+1$ and for some $z \in \overline{X} - W_2$, $\lambda(z, X; G * P) \geq k-1$, and so $V(G) - W_2 \in \Gamma(G * P, k-2)$. Thus let $\tilde{x} \in V(P)$ and $h_1, h_2 \in \partial(\tilde{x}; G/X) \cap E(P)$. If $X \subset W_1$, then let $G_1 := G/\overline{X}$, and if $b \in X$, then for $Y := V(G/\overline{X}) - b$, let $G_1 := (G/\overline{X})(Y, k)$ (see Lemma 3). By induction for each graph H such that |E(H)| < |E(G)|, Lemma 5 holds, and so in G_1 Theorem1(1) holds (see the proof of Theorem 1). Thus G_1 has a cycle C such that $\{h_1, h_2\} \subset E(C), g \notin E(C)$, and $\lambda(G_1 - E(C)) \geq k - 2$. Let C_1 be the corresponding cycle in G/\overline{X} . Let $P_1[u, a]$ be the path in G obtained by combining P and C_1 . Then by Lemma 6 P_1 is a required path.

(2.2) If $X \subset V(G)$, $|X| \ge 2$, and $|\overline{X}| \ge 2$, then $e(X) \ge k$.

Proof. Assume e(X) = k-2 or k-1 and $v \notin X$. If $u \in X$, then by (ii) $A - X \neq \emptyset$ and $\emptyset \neq \mathscr{P}(G/X, f, A - X, W_1 - X) \subset \mathscr{P}(G, f, A, W_1)$ by induction and by Lemma 6. If $u \notin X$, then $A \cap X \neq \emptyset$. Let $x \in X$ and $P_1[u, a] \in \mathscr{P}(G/X, f, (A - X) \cup \tilde{x}, W_1 - X)$. If $a \neq \tilde{x}$, then P_1 is a required path, thus let $a = \tilde{x}$ and $h \in \partial(\tilde{x}; G/X) \cap E(P_1)$. Let $P_2 \in \mathscr{P}(G/\overline{X}, h, A \cap X, W_1 \cap X)$. By combining P_1 and P_2 in G we can get a required path.

(2.3) Let x = b if $W_2 \neq \emptyset$ and $x \in W_1$ if $W_2 = \emptyset$. If |N(x)| = n and $N(x) = \{y_1, ..., y_n\}$, then $n \ge 2$ and $V(G) - x \in \Gamma(G_x^{y_1, y_i}, k-2)$ $(2 \le i \le n)$. Moreover if $e(x, y_1) = 1$, then $n \ge 3$.

Proof. If n = 1, then $\lambda(G - x) \ge k - 2$ and $e(y_1; G - x) \le k + 1 - 4$, a contradiction. Thus $n \ge 2$. By (2.2) for each $2 \le i \le n$, $V(G) - x \in \Gamma(G_x^{y_1, y_1}, k - 2)$. Assume $e(x, y_n) = 1$ and n = 2. Then $e(\{x, y_1\}) \le e(y_1) - 2$, contrary to (ii) or (iii).

(2.4) $W_2 = \emptyset$ and for each $x \in W_1$, e(x) = k + 1.

Proof. Let x = b if $W_2 \neq \emptyset$, and let $x \in W_1$ and e(x) = k if $W_2 = \emptyset$. By (2.3) we can obtain a lifting G_x of G at x such that $V(G) - x \in \Gamma(G_x, k-2)$, $f \neq g$ in G_x , and $\{f, g\} \neq \partial(x; G_x)$. By (2.1) for each $X \subset W_1 \cup W_2$ with $X \neq \{x\}, e(X; G_x) \ge k$, and so there is a $P \in \mathscr{P}(G_x, f, A, W_1 - x)$. If x = b, then $P \in \mathscr{P}(G, f, A, W_1)$. If $x \in W_1$, then let P_1 be the corresponding path in G. If P_1 is not simple, then let P_2 be the simple subpath of P_1 between u and a, then $P_2 \in \mathscr{P}(G, f, A, W_1)$.

Since $v \in W_1$, if for some $x \in W_1$ there is an $h \in \partial(v, x)$, then by (2.1), (2.2), and (2.4) the result holds in G-h. Thus $\{u\} \neq N(v) \subset \{u\} \cup A$. By (2.3) for some $a \in N(v) - u$, there is a lifting $G_v^{u,a}$ such that $\lambda(G_v^{u,a}) \ge k-2$ and $f \neq g$ in $G_v^{u,a}$.

3. PROOF OF THEOREM 2

The proof of Lemma 8 will be given later.

LEMMA 8. Suppose that $k \ge 4$ and $n \ge 2$ are integers, G is a 2-connected graph, $V(G) = T \cup W_1 \cup W_2$ (disjoint union), $T = \{s_1, ..., s_n, t_1, ..., t_n\}$, $|T| = 2n, T \cup W_1 \in \Gamma(G, k), |W_2| \le 2$, for each $x \in W_2$, $e(x) \le k - 1$ is even, and

(i) if k is odd, then for each $x \in T \cup W_1$, e(x) = k,

(ii) if k is even, then $e(s_i) = e(t_i) = k$ $(1 \le i \le n)$ and for each $x \in W_1$, e(x) = k or k + 1.

Then there is a subgraph $G^* \subset G$ such that

(a) for some $1 \le i < j \le n$, $G - E(G^*)$ has edge-disjoint paths $P_1[s_i, t_i]$ and $P_2[s_j, t_j]$,

(b) $V(G^*) = K_1 \cup K_2$ and $K_1 \cap K_2 = \emptyset$,

- (c) $T \{s_i, t_i, s_i, t_i\} \subset K_1 \in \Gamma(G^*, k-3),$
- (d) for each $x \in K_2$, $e(x; G^*)$ is even.

Proof of Theorem 2

Let $\alpha = 0$ or 1, $m \ge 1$ be an integer, $k := 3m - \alpha \ge 3$, and $n := 2m + 1 - \alpha$. Assume that G is a k-edge-connected graph and $\{s_1, ..., s_n, t_1, ..., t_n\} := T$ are vertices of G (not necessarily distinct). We prove that there are edgedisjoint paths $P_1, ..., P_n$ such that P_i joins s_i and t_i $(1 \le i \le n)$. We may assume that G is 2-connected. If k is odd and e(x) =: d > k for some $x \in V(G)$, then we replace x by d vertices of degree k (Fig. 2 gives an

example with d=8 and k=5) and assign x on one of the new vertices, producing a new graph G_1 . If the result holds in G_1 , then it also holds for G. Thus we may assume

(3.1) If k is odd, then G is k-regular.

If k is even and $e(s_1)$ is odd, then we replace s_1 by two vertices of degree $e(s_1)-1$ and $e(s_1)$, and assign s_1 on the new vertex of degree $e(s_1)-1$, producing a new graph G_1 (see Fig. 3). If the result holds in G_1 , then it also holds for G. Thus we may assume that $e(s_i)$ and $e(t_i)$ $(1 \le i \le n)$ are even. We proceed by induction on |E(G)|. If k is even, $x \in V(G)$, and $e(x) \ge k+2$, then an admissible lifting G_x of G at x is k-edge-connected and the result holds in G_x . Thus

(3.2) If k is even, then $e(s_i) = e(t_i) = k$ $(1 \le i \le n)$ and for each $x \in V(G)$, e(x) = k or k + 1.

By [4, 1, 3] g(3) = 3 and g(4) = 5, and so we may let $k \ge 6$, $n \ge 5$, and $m \ge 2$. If $s_1 = s_2$, then by Theorem 1 there is a path $P[t_1, t_2]$ such that $s_1 \in V(P)$ and $\lambda(G - E(P)) \ge k - 3$. By induction G - E(P) has edge-disjoint

FIGURE 3

paths $P_3[s_3, t_3], ..., P_n[s_n, t_n]$. Thus let |T| = 2n. By Lemma 8 there is a subgraph $G^* \subset G$ such that (a), (b), (c), and (d) hold. By Lemma 3 $G^*(K_1, k-3)$ is (k-3)-edge-connected, and by induction $G^*(K_1, k-3)$ has (n-2) edge-disjoint paths joining (s_l, t_l) $(1 \le l \le n, l \ne i, j)$. Thus the result holds in G.

Proof of Lemma 8

Suppose that G satisfies the hypothesis of Lemma 8, but the result does not hold. Choose G with this property such that |E(G)| is minimal.

(3.3) $W_2 = \emptyset$.

Proof. Assume $x \in W_2$. Then $e(x) \ge 4$. By Lemma 2 we have an admissible lifting G_x of G at x. The result holds in G_x and so in G.

Case 1. k is odd.

(3.4) If
$$x, y \in W_1$$
 and $f \in \partial(x, y)$, then $V(G) - \{x, y\} \notin \Gamma(G - f, k)$.

Proof. Otherwise the result holds in G-f with $V(G-f) = T \cup (W_1 - \{x, y\}) \cup \{x, y\}.$

(3.5) If $a, b \in T$, then e(a, b) = 0.

Proof. If $f \in \partial(s_1, t_1)$, then by Lemma 1(1) G has a path $P[s_2, t_2]$ such that $s_1 \notin V(P)$ and $\lambda(G - E(P)) \ge k - 2$. $G^* := G - E(P) - f$ is a required graph. If $f \in \partial(s_1, s_2)$, then by Theorem 1 G - f has a path $P[t_1, t_2]$ such that $s_1 \in V(P)$ and $\lambda(G - f - E(P)) \ge k - 3$.

(3.6) If $x \in W_1$, $f \in \partial(x, s_1)$, and $h \in \partial(x, t_1)$, then $V(G) - \{x, s_1\} \notin \Gamma(G - f, k)$.

Proof. Assume $V(G) - \{x, s_1\} \in \Gamma(G - f, k)$. Then $V(G) - x \in \Gamma(G - \{f, h\}, k-1)$. By Lemma 1(2) $G - \{f, h\}$ has a path $P[s_2, t_2]$ such that $x \notin V(P)$ and $\lambda(G - \{f, h\} - E(P)) \ge k - 3$.

(3.7) If $x \in W_1$ and $f_i \in \partial(x, s_i)$ (i = 1, 2), then $V(G) - \{x, s_1, s_2\} \notin \Gamma(G - \{f_1, f_2\}, k)$.

Proof. Assume $V(G) - \{x, s_1, s_2\} \in \Gamma(G - \{f_1, f_2\}, k)$. Let $y \in N(x) - \{s_1, s_2\}$, $h \in \partial(x, y)$, and $G_1 := G - \{f_1, f_2, h\}$. Then $V(G) - x \in \Gamma(G_1, k-1)$ and $e(x; G_1)$ is even. By Lemma 3 and Theorem 1 G_1 has a path $P[t_1, t_2]$ such that $s_1 \in V(P)$ and $V(G_1) - x \in \Gamma(G_1 - E(P), k-3)$. Let $G^* := G - E(P) - \{f_1, f_2, h\}$.

(3.8) If
$$X \subset V(G)$$
, $|X| \ge 2$, and $|\overline{X}| \ge 2$, then $e(X) \ge k+1$.

Proof. Assume e(X) = k and for each $Y \subsetneq X$ with $|Y| \ge 2$, $e(Y) \ge k + 1$. Let $u \in \overline{X}$ and $G_1 := G/\overline{X}$. If $Z \subset V(G)$, $|Z| \ge 2$, $|\overline{Z}| \ge 2$, and $X \cap Z \ne \emptyset \ne X - Z$, then $e(Z) \ge k + 1$. For if not, then $Z - X \ne \emptyset \ne \overline{X \cup Z}$, contrary to Lemma 7(2). Thus if $x, y \in X$ and $f \in \partial(x, y)$, then $V(G) - \{x, y\} \in \Gamma(G - f, k)$, and so by (3.4) $N(X \cap W_1: G_1) \subset T \cup \{\tilde{u}\}$. By (3.5) $N(X \cap T; G_1) \subset W_1 \cup \{\tilde{u}\}$. Thus G_1 is a bipartite graph with the partition $(X \cap T, (X \cap W_1) \cup \{\tilde{u}\})$ or $((X \cap T) \cup \{\tilde{u}\}, X \cap W_1)$ (note that G_1 is k-regular and k is odd) and $|V(G_1)| \ge 6$. Thus for some $x \in X \cap W_1$, $e(x, \tilde{u}; G_1) = e(x, \overline{X}; G) < (k-1)/2$. Then by Lemma 2 for some $a, b \in X \cap T, G_x^{a,b}$ is admissible, contrary to (3.6) or (3.7).

By (3.3), (3.4), (3.5), and (3.8) G is a bipartite graph with the partition (T, W_1) . Let $x \in W_1$. By Lemma 2 for some $a, b \in N(x) \subset T$, $G_x^{a,b}$ is admissible, contrary to (3.6) or (3.7).

Case 2. k is even.

(3.9) If $x \in W_1$, then e(x) = k + 1.

Proof. Assume e(x) = k. By Lemma 2 there is an admissible lifting G_x of G at x. The result holds in G_x with $V(G_x) = T \cup (W_1 - x) \cup \{x\}$, and it also holds for G.

(3.10) If $x, y \in W_1$ and $f \in \partial(x, y)$, then $\lambda(G - f) \leq k - 1$.

(3.11) If $a, b \in T$, then e(a, b) = 0.

Proof. We can prove $e(s_i, t_i) = 0$ $(1 \le i \le n)$ in the same way as (3.5). If $g \in \partial(s_1, s_2)$, then let $f \in \partial(s_1) - g$. By Theorem 1 G has a path $P[t_1, t_2]$ such that $f \in E(P)$, $g \notin E(P)$, and $\lambda(G - E(P)) \ge k - 2$. Let $G^* := G - E(P) - g$.

(3.12) If $x_1, x_2 \in W_1, a_1, a_2 \in T$, $f_i \in \partial(x_i, a_1)$ (i = 1, 2), and $g \in \partial(x_2, a_2)$, then $V(G) - a_1 \notin \Gamma(G - \{f_1, f_2\}, k)$.

Proof. Assume $V(G) - a_1 \in \Gamma(G - \{f_1, f_2\}, k)$. If $a_1 = s_1$ and $a_2 = t_1$, then by Lemma 1 $G - \{f_1, f_2\}$ has a path $P[s_2, t_2]$ such that $t_1 \notin V(P)$ and $V(G) - s_1 \in \Gamma(G - \{f_1, f_2\} - E(P), k - 2)$. Let $G^* := G - E(P) - \{f_1, f_2, g\}$. If $a_1 = s_1$ and $a_2 = s_2$, then let $h \in \partial(a_2) - g$. By Theorem 1 and Lemma 3 $G - \{f_1, f_2\}$ has a path $P[t_1, t_2]$ such that $h \in E(P), g \notin E(P)$, and $V(G) - s_1 \in \Gamma(G - \{f_1, f_2\} - E(P), k - 2)$. Let $G^* := G - E(P) - \{f_1, f_2\}$ has a path $P[t_1, t_2]$ such that $h \in E(P), g \notin E(P), g \notin E(P), g \notin E(P) - \{f_1, f_2, g\}$.

(3.13) If $X \subset V(G)$, $|X| \ge 2$, and $|\overline{X}| \ge 2$, then $e(X) \ge k + 1$. *Proof.* Assume e(X) = k and for each $Y \subsetneq X$ with $|Y| \ge 2$, $e(Y) \ge k + 1$. Let $u \in \overline{X}$. If $x, y \in X$ and $f \in \partial(x, y)$, then $V(G) - \{x, y\} \in \Gamma(G - f, k)$. For if not, then for some $Z \subset V(G) - x$, $y \in X$, e(Z) = k, $|Z| \ge 2$, and $|\overline{Z}| \ge 2$, and so $Z - X \ne \emptyset \ne \overline{X \cup Z}$ and by Lemma 7(2) $e(X - Z) = e(X \cap Z) = k$. Thus |X| = 2 and e(x) = e(y) = k. Then by (3.9) $\{x, y\} \subset T$, contrary to (3.11). Thus by (3.10) $N(X \cap W_1; G/\overline{X}) \subset T \cup \{\widetilde{u}\}$, and by (3.11) $X \cap W_1 \ne \emptyset \ne X \cap T$. By (3.9) $|X \cap W_1| \ge 2$, and so $|X \cap T| \ge 2$. Let $a \in X \cap T$. Since $e(a, \overline{X}) < k/2$ (otherwise e(X - a) = k), by Lemma 2 for some $x, y \in N(a) \cap X$, $G_a^{x, y}$ is admissible. By (3.11) $\{x, y\} \subset W_1$. Let $f_1 \in \partial(a, x)$ and $f_2 \in \partial(a, y)$, then $V(G) - a \in \Gamma(G - \{f_1, f_2\}, k)$. Let $b \in ((N(x) \cup N(y)) \cap X) - a$, then $b \in T$, contrary to (3.12).

By (3.3), (3.10), (3.11), and (3.13) G is a bipartite graph with the partition (T, W_1) . Let $a \in T$. By Lemma 2 for some x, $y \in N(a) \subset W_1$, $G_a^{x,y}$ is admissible and we can deduce a contradiction (see the proof of (3.13)).

REFERENCES

- 1. T. HIRATA, K. KUBOTA, AND O. SAITO, A sufficient condition for a graph to be weakly k-linked, J. Combin. Theory Ser. B 36 (1984), 85-94.
- 2. W. MADER, A reduction method for edge-connectivity in graphs, Ann. Discrete Math. 3 (1978), 145–164.
- 3. W. MADER, Paths in graphs, reducing the edge-connectivity only by two, *Graphs Combin.* 1 (1985), 81–89.
- 4. H. OKAMURA, Multicommodity flows in graphs II, Japan. J. Math. (N.S.) 10 (1984), 99-116.
- 5. H. OKAMURA, Paths and edge-connectivity in graphs, J. Combin. Theory Ser. B 37 (1984), 151–172.
- 6. C. THOMASSEN, 2-linked graphs, European J. Combin. 1 (1980), 371-378.