Paths in k-Edge-Connected Graphs

Haruko Okamura
Faculty of Engineering, Osaka City University, Osaka 558, Japan
Communicated by the Managing Editors
Received December 15, 1986

Abstract

We prove (i) if G is a $2 k$-edge-connected graph $(k \geqslant 2), s, t$ are vertices, and f_{1}, f_{2}, g are edges with $f_{i} \neq g(i=1,2)$, then there exists a cycle C passing through f_{1} and f_{2} (a path P between s and t passing through f_{1}) but not passing through g such that $G-E(C)(G-E(P))$ is ($2 k-2$)-edge-connected, where C and P are not necessarily simple and $E(C)$ is the set of edges of C. (ii) Every $3 k$-edge-connected graph ($k \geqslant 1$) is weakly $(2 k+1)$-linked and every ($3 k-1$)-edge-connected graph ($k \geqslant 2$) is weakly $2 k$-linked. (C) 1988 Academic Press, Inc.

1. Introduction

We consider finite undirected graphs possibly with multiple edges but without loops. Let G be a graph and let $V(G)$ and $E(G)$ be the set of vertices and edges of G, respectively. We allow repetition of vertices (but not edges) in a path and cycle. Mader [3] conjectured,

If G is a k-edge-connected graph ($k \geqslant 4$) and s, t are vertices of G, then there exists a cycle C passing through s and t such that $G-E(C)$ is ($k-2$)-edge-connected,
and proved this conjecture (in fact Theorem 1(1)) for $k=4$. We prove this when k is even.

Thforem 1. Suppose that $k \geqslant 4$ is an even integer, G is a k-edgeconnected graph, $\{s, t\} \subset V(G),\left\{f_{1}, f_{2}, g\right\} \subset E(G)$, and $f_{i} \neq g(i=1,2)$. Then
(1) There exists a cycle C passing through f_{1} and f_{2} but not passing through g such that $G-E(C)$ is $(k-2)$-edge-connected.
(2) There exists a path P between s and t passing through f_{1} but not passing through g such that $G-E(P)$ is ($k-2$)-edge-connected.

For odd k, the conjecture of Mader is still open, but the result of Theorem 1(1) does not always hold; Fig. 1 gives a counterexample.

Figure 1

We call a graph G weakly k-linked, if for every k pairs of vertices $\left(s_{i}, t_{i}\right)$, there exist edge-disjoint paths P_{1}, \ldots, P_{k} such that P_{i} joins s_{i} and t_{i} $(1 \leqslant i \leqslant k)$. Let
$g(k):=\min \{m \mid$ if G is m-edge-connected, then G is weakly k-linked $\}$.
Thomassen [6] conjectured

$$
g(2 k+1)=g(2 k)=2 k+1 \quad(k \geqslant 1) .
$$

The author [4] proved $g(3)=3$ and Hirata, Kubota, and Saito [1] and Mader [3] proved $g(4)=5$ and $g(k) \leqslant 2 k-3(k \geqslant 5)$. We prove

Theorem 2. $g(2 k+1) \leqslant 3 k(k \geqslant 1)$ and $g(2 k) \leqslant 3 k-1(k \geqslant 2)$.

Notations and Definitions

$\lambda(G)$ denotes the edge-connectivity of G. Let $X, Y,\{x, y\} \subset V(G)$, $f \in E(G)$, and $X \cap Y=\varnothing$. We often denote $\{x\}$ by x. $V(f)$ denotes the set of end vertices of f. We denote by $\partial(X, Y ; G)$ the set of edges with one end in X and the other in Y, and set $\partial(X ; G):=\partial(X, V(G)-X ; G)$, $e(X, Y ; G):=|\partial(X, Y ; G)|$, and $e(X ; G):=|\partial(X, V(G)-X ; G)| . \lambda(X, Y ; G)$ denotes the maximal number of edge-disjoint paths between X and Y. We set $\quad \bar{X}:=V(G)-X, \quad N(x ; G):=\{a \in V(G)-x \mid e(a, x)>0\}, \quad N(X ; G):=$ $\bigcup_{x \in X} N(x: G)$, and $\Gamma(G, k):=\{Z \subset V(G) \mid$ for each $a, b \in Z, \lambda(a, b ; G) \geqslant k\}$. In all notations, we often omit $G . G / X$ denotes the graph obtained from G by contracting X, and for $a \in X$, we denote the corresponding vertex in G / X by \tilde{a}. A path $P=P[x, y]$ denotes a path between x and y. For $a, b \in N(x)$ with $a \neq b, f \in \partial(x, a)$, and $g \in \partial(x, b), G_{x}^{a, b}$ denotes the graph $(V(G)$, $(E(G) \cup h)-\{f, g\}$), where h is a new edge between a and b and is called a lifting of G at x arising from the lifting of f and g at x. We call $G_{x}^{a, b}$ admissible if for each $y, z \in V(G)-x$ with $y \neq z, \lambda\left(y, z ; G_{x}^{a, b}\right)=\lambda(y, z ; G)$.

Throughout the paper we shall make use of the following observation:
If $a, b \in X \subset V(G)$, then $\lambda(a, b ; G) \geqslant \lambda(a, b ; G / \bar{X})$ and it is easy to give examples for which the inequality is strict. However, the inequality is an equality if \bar{X} has a vertex z and a collection of $e(X)$ edge-disjoint paths from z to X.

2. Proof of Theorem 1

Lemma 1 (Okamura [5]). Suppose that $k \geqslant 4, G$ is a 2 -edge-connected graph, and $\{s, t\} \subset T \in \Gamma(G, k)$. Then
(1) If $a \in T-\{s, t\}$ and $e(a)<2 k$, then there exists a path $P[s, t]$ such that $a \notin V(P), \quad T \in \Gamma(G-E(P), k-2)$, and $\{s, t, a\} \in \Gamma(G-E(P)$, $k-1$).
(2) If $a \in V(G)$ and $\lambda(a, s)<k$, then there exists a path $P[s, t]$ such that $a \notin V(P), T \in \Gamma(G-E(P), k-2)$, and $\lambda(a, s ; G-E(P))=\lambda(a, s ; G)$.
(3) If $f_{1}, f_{2} \in \partial(s)$, then there exists a cycle C such that $\left\{f_{1}, f_{2}\right\} \subset$ $E(C)$ and $T \in \Gamma(G-E(C), k-2)$.

Lemma 2 (Mader [2]). If G is a graph, $x \in V(G), e(x) \geqslant 4,|N(x)| \geqslant 2$, and x is not a cut-vertex, then there exists an admissible lifting of G at x.

Lemma 3. If $k \geqslant 3$ is an integer, G is a graph, $V(G)=W_{1} \cup W_{2}$, $W_{1} \cap W_{2}=\varnothing, W_{1} \in \Gamma(G, k)$, and each $x \in W_{2}$ has even degree, then we can obtain a k-edge-connected graph $G\left(W_{1}, k\right)$ from G such that $W_{1} \subset V\left(G\left(W_{1}, k\right)\right)$ by sequences of vertex-deletions and edge-liftings.

Proof. We may assume G is connected. We can obtain $G\left(W_{1}, k\right)$ from G as follows.

Step 1. If $W_{2}=\varnothing$, then let $G\left(W_{1}, k\right):=G$, and stop.
Step 2. If for an $x \in W_{2},|N(x)|=1$, then reset $G:=G-x$ and go to Step 1.

Step 3. If for each $x \in W_{2}, e(x)=2$, then let $G\left(W_{1}, k\right)$ be the k-edgeconnected graph homeomorphic to G (that is at each $x \in W_{2}$, we lift $\partial(x)$ and then delete x), and stop. Otherwise let $x \in W_{2}$ and $e(x) \geqslant 4$.

Step 4. If x is a cut-vertex and each component of $G-x$ has a vertex of W_{1}, then reset $W_{1}:=W_{1} \cup\{x\}, W_{2}:=W_{2}-x$ (note that $W_{1} \cup\{x\} \in$ $\Gamma(G, k)$), and go to Step 1. If x is a cut-vertex and C is a component of $G-x$ such that $V(C) \cap W_{1}=\varnothing$, then reset $G:=G-V(C)$, and go to Step 1. Otherwise let G_{x} be an admissible lifting of G at x (see Lemma 2), reset $G:=G_{x}$, and go to Step 1.

In what follows $G \rightarrow G\left(W_{1}, k\right)$ denotes this operation.

Lemma 4. Suppose that $k \geqslant 4$ is an even integer, G is a k-edge-connected graph, and for each $x \in V(G), e(x) \leqslant k+1$. If $f \neq g \in E(G)$, then there exists a cycle C such that $f \in E(C), g \notin E(C)$, and $\lambda(G-E(C)) \geqslant k-2$.

Proof. It is easy to see that G is 2 -connected. We proceed by induction on $|E(G)|$. If there is an $x \in V(f) \cap V(g)$, then for any $h \in \partial(x)-\{f, g\}$, by Lemma $1(3) \quad G$ has a cycle C such that $\{f, h\} \subset E(C)$ and $\lambda(G-E(C)) \geqslant k-2$. Then $g \notin E(C)$. Thus let $V(f) \cap V(g)=\varnothing$. Let $V(g)=\{x, y\}$. If $e(x)=k$, then let G_{x} be an admissible lifting at x (see Lemma 2) and let $G_{1}:=G_{x}(V(G)-x, k)$ (see Lemma 3). In $G_{1} f \neq g$, and by induction G_{1} has a cycle C such that $f \in E(C), g \notin E(C)$, and $\lambda\left(G_{1}-E(C)\right) \geqslant k-2$. Let C_{1} be the corresponding cycle in G and let C_{2} be the simple subcycle of C_{1} containing f, then C_{2} is a required cycle. Thus let $e(x)=e(y)=k+1$. If $\lambda(G-g) \geqslant k$, then the result holds in $G-g$. Thus for some $X \subset V(G)-y, x \in X$ and $e(X)=k$. Let $V(f)=\{a, b\}$, we may let $X \cap V(f)=\varnothing$ or $\{a\}$. If $X \cap V(f)=\varnothing$, then G / X has a required cycle C. If $\tilde{x} \notin V(C)$, then C is a required cycle for G. If $\tilde{x} \in V(C)$, then let $\partial(\tilde{x} ; G / X) \cap E(C)=\left\{h_{1}, h_{2}\right\}$. By Lemma $1(3) G / \bar{X}$ has a cycle C_{1} such that $\left\{h_{1}, h_{2}\right\} \subset E\left(C_{1}\right)$ and $\lambda\left(G / \bar{X}-E\left(C_{1}\right)\right) \geqslant k-2$. Then $g \notin E\left(C_{1}\right)$. By combining C and C_{1} in G we have a required cycle. Therefore $X \cap V(f)=\{a\}$. Let $h \in \partial(X)-\{f, g\}, G_{1}:=G / X$, and $G_{2}:=G / \bar{X}$. By Lemma $1(3)$ for $i=1,2$, G_{i} has a cycle C_{i} such that $\{f, h\} \subset E\left(C_{i}\right)$ and $\lambda\left(G_{i}-E\left(C_{i}\right)\right) \geqslant k-2$. By combining C_{1} and C_{2} in G we have a required cycle.

The proof of Lemma 5 will be given later.
Lemma 5. Suppose that $k \geqslant 4$ is an even integer and G is a graph. If
(i) $V(G)=\{u\} \cup A \cup W_{1} \cup W_{2}$ (disjoint union), $A \neq \varnothing$, and either $W_{2}=\varnothing$ or $W_{2}=\{b\}$ and b has even degree,
(ii) $V(G)-W_{2} \in \Gamma(G, k-2)$, and for each $X \subset W_{1} \cup W_{2}$ with $X \cap W_{1} \neq \varnothing, e(X) \geqslant k$,
(iii) for each $x \in W_{1}, e(x) \leqslant k+1$, and for each $x \in V(G)-W_{1}$, $e(x) \leqslant k-1$.
(iv) $f \in \partial(u), g \in E(G)-f$, and $\{f, g\} \neq \partial(b)$,
then for some $a \in A$, there exists a path $P[u, a]$ such that $f \in E(P), g \notin E(P)$, and $V(G)-W_{2} \in \Gamma(G * P, k-2)$. Here $G * P$ denotes the graph $(V(G)$, $(E(G) \cup h)-E(P))$ and h is a new edge between u and a.

Proof of Theorem 1

First we prove that Theorem 1(1) implies Theorem 1(2). Let h be a new edge between s and t and let $G_{1}:=(V(G), E(G) \cup h)$. Then by (1), G_{1} has a cycle C such that $\left\{h, f_{1}\right\} \subset E(C), g \notin E(C)$, and $\lambda\left(G_{1}-E(C)\right) \geqslant k-2 . C-h$ is a required path of G.

Now we prove Theorem 1(1) by induction on $|E(G)|$. If G is not 2-connected, then we can deduce the result by using induction on some blocks. Thus we may assume that G is 2 -connected. If for an $x \in V(G), e(x) \geqslant k+2$, then by Lemma 2 for some $a, b \in N(x)$ with $a \neq b, G_{x}^{a, b}=: G_{1}$ is admissible. If $f_{i} \neq g(i=1,2)$ in G_{1}, then by induction the result holds in G_{1}. Thus let $\partial(a, x ; G)=\left\{f_{1}\right\}$ and $\partial(b, x ; G)=\{g\} .\left|N\left(x ; G_{1}\right)\right| \geqslant 2$, otherwise for each $h_{1}, h_{2} \in \partial\left(x ; G_{1}\right)-f_{2}$, the result holds in $G-\left\{h_{1}, h_{2}\right\}$. Thus for some $y, z \in N\left(x ; G_{1}\right)$ with $y \neq z,\left(G_{1}\right)_{x}^{y, z}$ is admissible, $f_{i} \neq g(i=1,2)$ in $G_{x}^{y, z}$, and the result holds in $G_{x}^{\nu, z}$. Thus we may assume that for each $x \in V(G)$, $e(x) \leqslant k+1$. Let

$$
\begin{gathered}
F:=\left\{h \in E(G) \mid \text { there is a cycle } C \text { such that }\left\{h, f_{1}\right\} \subset E(C),\right. \\
\\
\\
g \notin E(P), \text { and } \lambda(G-E(C)) \geqslant k-2\} .
\end{gathered}
$$

Assume $F \neq E(G) \quad$ g. By Lemma $4 \quad F \neq \varnothing$. For some $h \in F$ and $f \in E(G)-F-g, h$ and f have a common end vertex, say u. Let C be a cycie such that $\left\{h, f_{1}\right\} \subset E(C), g \notin E(C)$, and $\lambda\left(G-E\left(P_{1}\right)\right) \geqslant k-2$. Let $A:=V(C)-u, W_{1}:=V(G)-V(C)$, and $W_{2}=\varnothing$. Then by Lemma 5 for some $a \in A, G-E(C)$ has a path $P[u, a]$ such that $f \in E(P), g \notin E(P)$, and $(G-E(C)) * P$ is $(k-2)$-edge-connected. In C there are two disjoint paths joining u and a. Let P_{1} be one of them containing f_{1}, and let $C_{1}:=P \cup P_{1}$, then $\lambda\left(G-E\left(C_{1}\right)\right) \geqslant k-2$. Thus $F=E(G)-g$.

To prove Lemma 5 we need some lemmas.
Lemma 6. Suppose that $k \geqslant 2$ is an even integer, G is a graph, $V(G)=$ $W_{1} \cup W_{2}, W_{1} \cap W_{2}=\varnothing$, and each $v \in W_{2}$ has even degree. Then
(1) If $W_{1} \in \Gamma(G, k), x \in V(G)$, and $e(x)$ is odd, then for some $y \in W_{1}$, $\lambda(x, y) \geqslant k+1$.
(2) If $X \subset V(G), e(X) \leqslant k+1, x \in X \cap W_{1}, y \in \bar{X} \cap W_{1},\left(X \cap W_{1}\right) \cup$ $\{\tilde{y}\} \in \Gamma(G / \bar{X}, k)$, and $\left(\bar{X} \cap W_{1}\right) \cup\{\tilde{x}\} \in \Gamma(G / X, k)$, then $W_{1} \in \Gamma(G, k)$.
Proof. (1) Since $x \notin W_{2}, e(x) \geqslant k+1$. If for some $X \subset V(G)$ with $x \in X$, $e(X)=k$, then choose X with this property such that $|X|$ is minimal, if not, then let $X:=V(G)$. For some $y \in X-x, e(y)$ is odd. Then $y \in W_{1}$, $e(y) \geqslant k+1$, and $\lambda(y, x) \geqslant k+1$.
(2) Clearly we may let $e(X)=k+1$. By (1) for some $a \in X, \lambda(a, \bar{X})=$ $k+1$ and for some $b \in \bar{X}, \lambda(b, X)=k+1$, and so $W_{1} \in \Gamma(G, k)$.

Lemma 7. Suppose that G is a graph and $X, Y \subset V(G)$. Then
(1)

$$
\begin{aligned}
& e(X-Y)+e(Y-X)=e(X)+e(Y)-2 e(X \cap Y, \overline{X \cup Y}), \\
& e(X \cap Y)+e(X \cup Y)=e(X)+e(Y)-2 e(X-Y, Y-X) .
\end{aligned}
$$

(2) If $\lambda(G) \geqslant k, X-Y, Y-X, X \cap Y$, and $\overline{X \cup Y}$ are not empty and $e(X)=e(Y)=k$, then k is even and $e(X-Y)=e(X \cap Y)=k$.

Proof. (1) Simple counting.
(2) By (1) $e(X-Y)=e(X \cap Y)=k$. Thus $k=e(X) \equiv e(X-Y)+$ $e(X \cap Y) \equiv 0(\bmod 2)$.

Proof of Lemma 5

We proceed by induction on $|E(G)|$. Let $\mathscr{P}\left(G, f, A, W_{1}\right)$ be the set of required paths of G and assume $\mathscr{P}\left(G, f, A, W_{1}\right)=\varnothing$. Note that $e(b) \geqslant 4$ if $W_{2} \neq \varnothing$. Let $V(f)=\{u, v\}$. Then $v \notin A$.
(2.1) If $X \subset W_{1} \cup W_{2}$ and $|X| \geqslant 2$, then $e(X) \geqslant k+2$.

Proof. Assume $e(X) \leqslant k+1$. Let $x \in X$ and let $P[u, a] \in \mathscr{P}(G / X, f, A$, $\left.\left(W_{1}-X\right) \cup \tilde{x}\right)(g$ might not be in $E(G / X)$). If $\tilde{x} \notin V(P)$, then we may let $e(X)=k+1$ and by Lemma $6(1)$ for some $y \in X, \lambda(y, \bar{X})=k+1$ and for some $z \in \bar{X}-W_{2}, \quad \lambda(z, X ; G * P) \geqslant k-1$, and so $V(G)-W_{2} \in \Gamma(G * P$, $k-2$). Thus let $\tilde{x} \in V(P)$ and $h_{1}, h_{2} \in \partial(\tilde{x} ; G / X) \cap E(P)$. If $X \subset W_{1}$, then let $G_{1}:=G / \bar{X}$, and if $b \in X$, then for $Y:=V(G / \bar{X})-b$, let $G_{1}:=(G / \bar{X})(Y, k)$ (see Lemma 3). By induction for each graph H such that $|E(H)|<|E(G)|$, Lemma 5 holds, and so in G_{1} Theorem1(1) holds (see the proof of Theorem 1). Thus G_{1} has a cycle C such that $\left\{h_{1}, h_{2}\right\} \subset E(C), g \notin E(C)$, and $\lambda\left(G_{1}-E(C)\right) \geqslant k-2$. Let C_{1} be the corresponding cycle in G / \bar{X}. Let $P_{1}[u, a]$ be the path in G obtained by combining P and C_{1}. Then by Lemma $6 P_{1}$ is a required path.
(2.2) If $X \subset V(G),|X| \geqslant 2$, and $|\bar{X}| \geqslant 2$, then $e(X) \geqslant k$.

Proof. Assume $e(X)=k-2$ or $k-1$ and $v \notin X$. If $u \in X$, then by (ii) $A-X \neq \varnothing$ and $\varnothing \neq \mathscr{P}\left(G / X, f, A-X, W_{1}-X\right) \subset \mathscr{P}\left(G, f, A, W_{1}\right)$ by induction and by Lemma 6. If $u \notin X$, then $A \cap X \neq \varnothing$. I et $x \in X$ and $P_{1}[u, a] \in$ $\mathscr{P}\left(G / X, f,(A-X) \cup \tilde{x}, W_{1}-X\right)$. If $a \neq \tilde{x}$, then P_{1} is a required path, thus let $a=\tilde{x}$ and $h \in \partial(\tilde{x} ; G / X) \cap E\left(P_{1}\right)$. Let $P_{2} \in \mathscr{P}\left(G / \bar{X}, h, A \cap X, W_{1} \cap X\right)$. By combining P_{1} and P_{2} in G we can get a required path.
(2.3) Let $x=b$ if $W_{2} \neq \varnothing$ and $x \in W_{1}$ if $W_{2}=\varnothing$. If $|N(x)|=n$ and $N(x)=\left\{y_{1}, \ldots, y_{n}\right\}$, then $n \geqslant 2$ and $V(G)-x \in \Gamma\left(G_{x}^{y_{1}, y_{i}}, k-2\right)(2 \leqslant i \leqslant n)$. Moreover if $e\left(x, y_{1}\right)=1$, then $n \geqslant 3$.

Proof. If $n=1$, then $\lambda(G-x) \geqslant k-2$ and $e\left(y_{1} ; G-x\right) \leqslant k+1-4$, a contradiction. Thus $n \geqslant 2$. By (2.2) for each $2 \leqslant i \leqslant n, V(G)-x \in$ $\Gamma\left(G_{x}^{y_{1}, y_{i}}, k-2\right)$. Assume $e\left(x, y_{n}\right)=1$ and $n=2$. Then $e\left(\left\{x, y_{1}\right\}\right) \leqslant e\left(y_{1}\right)-2$, contrary to (ii) or (iii).

$$
\begin{equation*}
W_{2}=\varnothing \text { and for each } x \in W_{1}, e(x)=k+1 \tag{2.4}
\end{equation*}
$$

Proof. Let $x=b$ if $W_{2} \neq \varnothing$, and let $x \in W_{1}$ and $e(x)=k$ if $W_{2}=\varnothing$. By (2.3) we can obtain a lifting G_{x} of G at x such that $V(G)-x \in \Gamma\left(G_{x}, k-2\right)$, $f \neq g$ in G_{x}, and $\{f, g\} \neq \partial\left(x ; G_{x}\right)$. By (2.1) for each $X \subset W_{1} \cup W_{2}$ with $X \neq\{x\}, e\left(X ; G_{x}\right) \geqslant k$, and so there is a $P \in \mathscr{P}\left(G_{x}, f, A, W_{1}-x\right)$. If $x=b$, then $P \in \mathscr{P}\left(G, f, A, W_{1}\right)$. If $x \in W_{1}$, then let P_{1} be the corresponding path in G. If P_{1} is not simple, then let P_{2} be the simple subpath of P_{1} between u and a, then $P_{2} \in \mathscr{P}\left(G, f, A, W_{1}\right)$.

Since $v \in W_{1}$, if for some $x \in W_{1}$ there is an $h \in \partial(v, x)$, then by (2.1), (2.2), and (2.4) the result holds in $G-h$. Thus $\{u\} \neq N(v) \subset\{u\} \cup A$. By (2.3) for some $a \in N(v)-u$, there is a lifting $G_{v}^{u, a}$ such that $\lambda\left(G_{v}^{u, a}\right) \geqslant k-2$ and $f \neq g$ in $G_{v}^{u, a}$.

3. Proof of Theorem 2

The proof of Lemma 8 will be given later.
Lemma 8. Suppose that $k \geqslant 4$ and $n \geqslant 2$ are integers, G is a 2 -connected graph, $V(G)=T \cup W_{1} \cup W_{2} \quad$ (disjoint union), $T=\left\{s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n}\right\}$, $|T|=2 n, T \cup W_{1} \in \Gamma(G, k),\left|W_{2}\right| \leqslant 2$, for each $x \in W_{2}, e(x) \leqslant k-1$ is even, and
(i) if k is odd, then for each $x \in T \cup W_{1}, e(x)=k$,
(ii) if k is even, then $e\left(s_{i}\right)-e\left(t_{t}\right)=k(1 \leqslant i \leqslant n)$ and for each $x \in W_{1}$, $e(x)=k$ or $k+1$.

Then there is a subgraph $G^{*} \subset G$ such that
(a) for some $1 \leqslant i<j \leqslant n, G-E\left(G^{*}\right)$ has edge-disjoint paths $P_{1}\left[s_{i}, t_{i}\right]$ and $P_{2}\left[s_{j}, t_{j}\right]$,
(b) $V\left(G^{*}\right)=K_{1} \cup K_{2}$ and $K_{1} \cap K_{2}=\varnothing$,
(c) $T-\left\{s_{i}, t_{i}, s_{j}, t_{j}\right\} \subset K_{1} \in \Gamma\left(G^{*}, k-3\right)$,
(d) for each $x \in K_{2}, e\left(x ; G^{*}\right)$ is even.

Proof of Theorem 2

Let $\alpha=0$ or $1, m \geqslant 1$ be an integer, $k:=3 m-\alpha \geqslant 3$, and $n:=2 m+1-\alpha$. Assume that G is a k-edge-connected graph and $\left\{s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n}\right\}:=T$ are vertices of G (not necessarily distinct). We prove that there are edgedisjoint paths P_{1}, \ldots, P_{n} such that P_{i} joins s_{i} and $t_{i}(1 \leqslant i \leqslant n)$. We may assume that G is 2 -connected. If k is odd and $e(x)=: a^{l}>k$ for some $x \in V(G)$, then we replace x by d vertices of degree k (Fig. 2 gives an

Figure 2
example with $d=8$ and $k=5$) and assign x on one of new vertices, producing a new graph G_{1}. If the result holds in G_{1}, then it also holds for G. Thus we may assume
(3.1) If k is odd, then G is k-regular.

If k is even and $e\left(s_{1}\right)$ is odd, then we replace s_{1} by two vertices of degree $e\left(s_{1}\right)-1$ and $e\left(s_{1}\right)$, and assign s_{1} on the new vertex of degree $e\left(s_{1}\right)-1$, producing a new graph G_{1} (see Fig. 3). If the result holds in G_{1}, then it also holds for G. Thus we may assume that $e\left(s_{i}\right)$ and $e\left(t_{i}\right)(1 \leqslant i \leqslant n)$ are even. We proceed by induction on $|E(G)|$. If k is even, $x \in V(G)$, and $e(x) \geqslant$ $k+2$, then an admissible lifting G_{x} of G at x is k-edge-connected and the result holds in G_{x}. Thus
(3.2) If k is even, then $e\left(s_{i}\right)=e\left(t_{i}\right)=k(1 \leqslant i \leqslant n)$ and for each $x \in V(G)$, $e(x)=k$ or $k+1$.

By $[4,1,3] g(3)=3$ and $g(4)=5$, and so we may let $k \geqslant 6, n \geqslant 5$, and $m \geqslant 2$. If $s_{1}=s_{2}$, then by Theorem 1 there is a path $P\left[t_{1}, t_{2}\right]$ such that $s_{1} \in V(P)$ and $\lambda(G-E(P)) \geqslant k-3$. By induction $G-E(P)$ has edge-disjoint

Figure 3
paths $P_{3}\left[s_{3}, t_{3}\right], \ldots, P_{n}\left[s_{n}, t_{n}\right]$. Thus let $|T|=2 n$. By Lemma 8 there is a subgraph $G^{*} \subset G$ such that (a), (b), (c), and (d) hold. By Lemma 3 $G^{*}\left(K_{1}, k-3\right)$ is ($k-3$)-edge-connected, and by induction $G^{*}\left(K_{1}, k-3\right)$ has ($n-2$) edge-disjoint paths joining $\left(s_{i}, t_{i}\right)(1 \leqslant l \leqslant n, l \neq i, j)$. Thus the result holds in G.

Proof of Lemma 8

Suppose that G satisfies the hypothesis of I.emma 8, but the result does not hold. Choose G with this property such that $|E(G)|$ is minimal.
(3.3) $W_{2}=\varnothing$.

Proof. Assume $x \in W_{2}$. Then $e(x) \geqslant 4$. By Lemma 2 we have an admissible lifting G_{x} of G at x. The result holds in G_{x} and so in G.

Case 1. k is odd.
(3.4) If $x, y \in W_{1}$ and $f \in \partial(x, y)$, then $V(G)-\{x, y\} \notin \Gamma(G-f, k)$.

Proof. Otherwise the result holds in $G-f$ with $V(G-f)=$ $T \cup\left(W_{1}-\{x, y\}\right) \cup\{x, y\}$.
(3.5) If $a, b \in T$, then $e(a, b)=0$.

Proof. If $f \in \partial\left(s_{1}, t_{1}\right)$, then by Lemma 1(1) G has a path $P\left[s_{2}, t_{2}\right]$ such that $s_{1} \notin V(P)$ and $\lambda(G-E(P)) \geqslant k-2 . G^{*}:=G-E(P)-f$ is a required graph. If $f \in \partial\left(s_{1}, s_{2}\right)$, then by Theorem $1 G-f$ has a path $P\left[t_{1}, t_{2}\right]$ such that $s_{1} \in V(P)$ and $\lambda(G-f-E(P)) \geqslant k-3$.
(3.6) If $x \in W_{1}, f \in \partial\left(x, s_{1}\right)$, and $h \in \partial\left(x, t_{1}\right)$, then $V(G)-\left\{x, s_{1}\right\} \notin$ $\Gamma(G-f, k)$.

Proof. Assume $V(G)-\left\{x, s_{1}\right\} \in \Gamma(G-f, k)$. Then $V(G)-x \in \Gamma(G-$ $\{f, h\}, k-1)$. By Lemma $1(2) G-\{f, h\}$ has a path $P\left[s_{2}, t_{2}\right]$ such that $x \notin V(P)$ and $\lambda(G-\{f, h\}-E(P)) \geqslant k-3$.
(3.7) If $x \in W_{1}$ and $f_{i} \in \partial\left(x, s_{i}\right)(i=1,2)$, then $V(G)-\left\{x, s_{1}, s_{2}\right\} \notin$ $\Gamma\left(G-\left\{f_{1}, f_{2}\right\}, k\right)$.

Proof. Assume $V(G)-\left\{x, s_{1}, s_{2}\right\} \in \Gamma\left(G-\left\{f_{1}, f_{2}\right\}, k\right)$. Let $y \in N(x)-$ $\left\{s_{1}, s_{2}\right\}, h \in \hat{\partial}(x, y)$, and $G_{1}:=G-\left\{f_{1}, f_{2}, h\right\}$. Then $V(G)-x \in \Gamma\left(G_{1}\right.$, $k-1)$ and $e\left(x ; G_{1}\right)$ is even. By Lemma 3 and Theorem $1 G_{1}$ has a path $P\left[t_{1}, t_{2}\right]$ such that $s_{1} \in V(P)$ and $V\left(G_{1}\right)-x \in \Gamma\left(G_{1}-E(P), k-3\right)$. Let $G^{*}:=G-E(P)-\left\{f_{1}, f_{2}, h\right\}$.

$$
\begin{equation*}
\text { If } X \subset V(G),|X| \geqslant 2 \text {, and }|\bar{X}| \geqslant 2, \text { then } e(X) \geqslant k+1 \text {. } \tag{3.8}
\end{equation*}
$$

Proof. Assume $e(X)=k$ and for each $Y \subsetneq X$ with $|Y| \geqslant 2, e(Y) \geqslant k+1$. Let $u \in \bar{X}$ and $G_{1}:=G / \bar{X}$. If $Z \subset V(G), \quad|Z| \geqslant 2, \quad|\bar{Z}| \geqslant 2$, and $X \cap Z \neq \varnothing \neq X-Z$, then $e(Z) \geqslant k+1$. For if not, then $Z-X \neq \varnothing \neq \overline{X \cup Z}$, contrary to Lemma 7(2). Thus if $x, y \in X$ and $f \in \partial(x, y)$, then $V(G)-\{x, y\} \in \Gamma(G-f, k)$, and so by (3.4) $N\left(X \cap W_{1}: G_{1}\right) \subset T \cup\{\tilde{u}\}$. By (3.5) $N\left(X \cap T ; G_{1}\right) \subset W_{1} \cup\{\tilde{u}\}$. Thus G_{1} is a bipartite graph with the partition $\left(X \cap T,\left(X \cap W_{1}\right) \cup\{\tilde{u}\}\right)$ or $\left((X \cap T) \cup\{\tilde{u}\}, X \cap W_{1}\right)$ (note that G_{1} is k-regular and k is odd) and $\left|V\left(G_{1}\right)\right| \geqslant 6$. Thus for some $x \in X \cap W_{1}$, $e\left(x, \tilde{u} ; G_{1}\right)=e(x, \bar{X} ; G)<(k-1) / 2$. Then by Lemma 2 for some $a, b \in X \cap T, G_{x}^{a, b}$ is admissible, contrary to (3.6) or (3.7).

By (3.3), (3.4), (3.5), and (3.8) G is a bipartite graph with the partition $\left(T, W_{1}\right)$. Let $x \in W_{1}$. By Lemma 2 for some $a, b \in N(x) \subset T, G_{x}^{a, b}$ is admissible, contrary to (3.6) or (3.7).

Case 2. k is even.
(3.9) If $x \in W_{1}$, then $e(x)=k+1$.

Proof. Assume $e(x)=k$. By Lemma 2 there is an admissible lifting G_{x} of G at x. The result holds in G_{x} with $V\left(G_{x}\right)=T \cup\left(W_{1}-x\right) \cup\{x\}$, and it also holds for G.
(3.10) If $x, y \in W_{1}$ and $f \in \partial(x, y)$, then $\lambda(G-f) \leqslant k-1$.
(3.11) If $a, b \in T$, then $e(a, b)=0$.

Proof. We can prove $e\left(s_{i}, t_{i}\right)=0(1 \leqslant i \leqslant n)$ in the same way as (3.5). If $g \in \partial\left(s_{1}, s_{2}\right)$, then let $f \in \partial\left(s_{1}\right)-g$. By Theorem $1 G$ has a path $P\left[t_{1}, t_{2}\right]$ such that $f \in E(P), \quad g \notin E(P)$, and $\lambda(G-E(P)) \geqslant k-2$. Let $G^{*}:=G-$ $E(P)-g$.
(3.12) If $x_{1}, x_{2} \in W_{1}, a_{1}, a_{2} \in T, f_{i} \in \partial\left(x_{i}, a_{1}\right)(i=1,2)$, and $g \in \partial\left(x_{2}, a_{2}\right)$, then $V(G)-a_{1} \notin \Gamma\left(G-\left\{f_{1}, f_{2}\right\}, k\right)$.

Proof. Assume $V(G)-a_{1} \in \Gamma\left(G-\left\{f_{1}, f_{2}\right\}, k\right)$. If $a_{1}=s_{1}$ and $a_{2}=t_{1}$, then by Lemma $1 G--\left\{f_{1}, f_{2}\right\}$ has a path $P\left[s_{2}, t_{2}\right]$ such that $t_{1} \notin V(P)$ and $V(G)-s_{1} \in \Gamma\left(G-\left\{f_{1}, f_{2}\right\}-E(P), k-2\right)$. Let $\quad G^{*}:=G-E(P)-$ $\left\{f_{1}, f_{2}, g\right\}$. If $a_{1}=s_{1}$ and $a_{2}=s_{2}$, then let $h \in \partial\left(a_{2}\right)-g$. By Theorem 1 and Lemma $3 G-\left\{f_{1}, f_{2}\right\}$ has a path $P\left[t_{1}, t_{2}\right]$ such that $h \in E(P), g \notin E(P)$, and $\quad V(G)-s_{1} \in \Gamma\left(G-\left\{f_{1}, f_{2}\right\}-E(P), k-2\right)$. Let $\quad G^{*}:=G-E(P)-$ $\left\{f_{1}, f_{2}, g\right\}$.
(3.13) If $X \subset V(G),|X| \geqslant 2$, and $|\bar{X}| \geqslant 2$, then $e(X) \geqslant k+1$.

Proof. Assume $e(X)=k$ and for each $Y \subsetneq X$ with $|Y| \geqslant 2, e(Y) \geqslant k+1$.

Let $u \in \bar{X}$. If $x, y \in X$ and $f \in \partial(x, y)$, then $V(G)-\{x, y\} \in \Gamma(G-f, k)$. For if not, then for some $Z \subset V(G)-x, y \in X, e(Z)=k,|Z| \geqslant 2$, and $|\bar{Z}| \geqslant 2$, and so $Z-X \neq \varnothing \neq \overline{X \cup Z}$ and by Lemma 7(2) $e(X-Z)=e(X \cap Z)=k$. Thus $|X|=2$ and $e(x)=e(y)=k$. Then by (3.9) $\{x, y\} \subset T$, contrary to (3.11). Thus by (3.10) $N\left(X \cap W_{1} ; G / \bar{X}\right) \subset T \cup\{\tilde{u}\}$, and by (3.11) $X \cap W_{1} \neq \varnothing \neq X \cap T$. By (3.9) $\left|X \cap W_{1}\right| \geqslant 2$, and so $|X \cap T| \geqslant 2$. Let $a \in X \cap T$. Since $e(a, \bar{X})<k / 2$ (otherwise $e(X-a)=k$), by Lemma 2 for some $x, y \in N(a) \cap X, G_{a}^{x, y}$ is admissible. By (3.11) $\{x, y\} \subset W_{1}$. Let $f_{1} \in \partial(a, x)$ and $f_{2} \in \partial(a, y)$, then $V(G)-a \in \Gamma\left(G-\left\{f_{1}, f_{2}\right\}, k\right)$. Let $b \in((N(x) \cup N(y)) \cap X)-a$, then $b \in T$, contrary to (3.12).

By (3.3), (3.10), (3.11), and (3.13) G is a bipartite graph with the partition (T, W_{1}). Let $a \in T$. By Lemma 2 for some $x, y \in N(a) \subset W_{1}, G_{a}^{x, y}$ is admissible and we can deduce a contradiction (see the proof of (3.13)).

References

1. T. Hirata, K. Kubota, and O. Saito, A sufficient condition for a graph to be weakly k-linked, J. Combin. Theory Ser. B 36 (1984), 85-94.
2. W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math. 3 (1978), 145-164.
3. W. Mader, Paths in graphs, reducing the edge-connectivity only by two, Graphs Combin. 1 (1985), 81-89.
4. H. Okamura, Multicommodity flows in graphs IT, Japan. J. Math. (N.S.) 10 (1984), 99-116.
5. H. Okamura, Paths and edge-connectivity in graphs, J. Combin. Theory Ser. B 37 (1984), 151-172.
6. C. Thomassen, 2-linked graphs, European J. Combin. 1 (1980), 371-378.
