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We prove (i) if G is a 2k-edge-connected graph (ka Z), s, t are vertices, and 
f,, fi, g are edges with f,  # g (i = 1, 2), then there exists a cycle C passing through 
f, and f? (a path P between s and t passing through fr) but not passing through g 
such that G -E(C)(G- E(P)) is (2k-2)-edge-connected, where C and P are not 
necessarily simple and E(C) is the set of edges of C. (ii) Every 3k-edge-connected 
graph (k? 1) is weakly (2k+ l)-linked and every (3X-- l)-edge-connected graph 
(k > 2) is weakly Zk-linked. Q 1988 Academic PWSS, IX. 

1. INTRODUCTION 

We consider finite undirected graphs possibly with multiple edges but 
without loops. Let G be a graph and let V(G) and E(G) be the set of 
vertices and edges of G, respectively. We allow repetition of vertices (but 
not edges) in a path and cycle. Mader [3] conjectured, 

If G is a k-edge-connected graph (k>4) and s, t are vertices of 
G, then there exists a cycle C passing through s and t such that 
G - E(C) is (k - 2)-edge-connected, 

and proved this conjecture (in fact Theorem l(1)) for k = 4. We prove this 
when k is even. 

THEOREM 1. Suppose that k > 4 is an etien integer, G is a k-edge- 
connected graph, {s, t> = VW, {fl,f2, g} =E(G), and .L+g (i= L2). 
Then 

(1) There exists a cycle C passing through fi and f2 but not passing 
through g such that G - E(C) is (k - 2)-edge-connected. 

(2) There exists a path P between s and t passing through fi but not 
passing through g such that G - E(P) is (k - 2)-edge-connected. 

For odd k, the conjecture of Mader is still open, but the result of 
Theorem l( 1) does not always hold; Fig. 1 gives a counterexample. 
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FIGURE 1 

We call a graph G weakly k-linked, if for every k pairs of vertices (si, ti), 
there exist edge-disjoint paths PI, . . . . Pk such that Pi joins si and ti 
(1 d i < k). Let 

g(k) := min(m ) if G is m-edge-connected, then G is weakly k-linked >. 

Thomassen [6] conjectured 

g(2k+l)=g(2k)=2k+ 1 (k3 1). 

The author [4] proved g(3) = 3 and Hirata, Kubota, and Saito [I] and 
Mader [3] proved g(4) = 5 and g(k) < 2k - 3 (k > 5). We prove 

THEOREM 2. g(2k + 1) < 3k (k> 1) and g(2k) < 3k - 1 (k > 2). 

Notations and Definitions 

A(G) denotes the edge-connectivity of G. Let X, Y, {x, y ) t V(G), 
f E E(G), and X n Y = 0. We often denote {x} by x. V(f) denotes the set 
of end vertices off We denote by 8(X, Y; G) the set of edges with one end 
in X and the other in Y, and set a(X; G) := a(X, V(G)- X; G), 
e(X, Y; G) := [8(X, Y, G)(, and e(X; G) := [a”(X, V(G) -X, G)I. A(X, Y; G) 
denotes the maximal number of edge-disjoint paths between X and Y. We 
set X:=V(G)-X, N(~;G):={uEV(G)-xle(a,x)>O}, N(X;G):= 
UJEX N(x:G), and T(G, k) := {Zc V(G) ( for each a, bEZ, A(a, b; G)>,k}. 
In all notations, we often omit G. G/X denotes the graph obtained from G 
by contracting X, and for a E X, we denote the corresponding vertex in GjX 
by a”. A path P = P[x, y] denotes a path between x and y. For a, b E N(x) 
with a # b, f~ 3(x, a), and gEa(x, b), G”;b denotes the graph (V(G), 
(E(G)uh)- {f, g>,> h w  ere h is a new edge between a and b and is called a 
lifting of G at x arising from the lifting of f and g at x. We call G2b 
admissible if for each y, z E V(G) -x with y # z, A( y, z; G:b) = A( y, z; G). 
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Throughout the paper we shall make use of the following observation: 
If a, b E Xc V(G), then n(a, b; G) 2 A(a, b; G/8) and it is easy to give 

examples for which the inequality is strict. However, the inequality is an 
equality if x has a vertex z and a collection of e(X) edge-disjoint paths 
from z to X. 

2. PROOF OF THEOREM 1 

LEMMA 1 (Okamura [5]). Suppose that k 3 4, G is a 2-edge-connected 
graph, and {s, t } c T E r( G, k). Then 

(1) If aE T- {s, t> and e(a) < 2k, then there exists a path PCs, t] 
such that a$ V(P), TET(G-E(P), k-2), and {s, t, u)ET(G-E(P), 
k- 1). 

(2) Zf aE V(G) and A(a, s) < k, then there exists a path PCs, t] such 
that a # V(P), TE T(G - E(P), k - 2), and L(a, s; G-E(P)) = A(a, s; G). 

(3) Zf fi, fi E a(s), then there exists a cycle C such that (fi, f,} c 
E(C) and TET(G-E(C),k-2). 

LEMMA 2 (Mader [2]). IfG is a graph, XE V(G), e(x) 34, IN(x)/ 22, 
and x is not a cut-vertex, then there exists an admissible listing of G at x. 

LEMMA 3. Zf k 2 3 is an integer, G is a graph, V(G) = W, u kt;, 
W, n W, = a, W, E T(G, k), and each x E W, has even degree, then we can 
obtain a k-edge-connected graph G( W,, k) from G such that 
WI c V(G( W, , k)) by sequences of vertex-deletions and edge-liftings. 

ProoJ We may assume G is connected. We can obtain G( W,, k) from 
G as follows. 

Step 1. If W, = 0, then let G( WI, k) := G, and stop. 

Step 2. If for an XE W,, IN(x)1 = 1, then reset G := G-x and go to 
Step 1. 

Step 3. If for each x E W,, e(x) = 2, then let G( W, , k) be the k-edge- 
connected graph homeomorphic to G (that is at each XE W,, we lift a(x) 
and then delete x), and stop. Otherwise let x E Wz and e(x) > 4. 

Step 4. If x is a cut-vertex and each component of G - x has a vertex of 
W,, then reset WI := W, u (x}, W, := W, --x (note that W, u (x} E 
T(G, k)), and go to Step 1. If x is a cut-vertex and C is a component of 
G-x such that V(C) n W, = 0, then reset G := G- V(C), and go to 
Step 1. Otherwise let G, be an admissible lifting of G at x (see Lemma 2), 
reset G := G,, and go to Step 1. 

In what follows G -+ G( W,, k) denotes this operation. 
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LEMMA 4. Suppose that k 3 4 is an even integer, G is a k-edge-connected 
graph, and for each x E V(G), e(x) 6 k + 1. Iff # g E E(G), then there exists 
a cycle C such that f E E(C), g $ E(C), and ,I( G - E(C)) > k - 2. 

Proof It is easy to see that G is 2-connected. We proceed by induction 
on IE(G)I. If there is an XE V(f) n V(g), then for any h Ed(x) - (f, g}, 
by Lemma l(3) G has a cycle C such that {f, h} c E(C) and 
A(G- E(C)) 3 k-2. Then g$E(C). Thus let V(f) n V(g) = @. Let 
V(g) = {x, y}. If e(x) = k, then let G, be an admissible lifting at x (see 
Lemma 2) and let G, := G,(V(G)-x, k) (see Lemma 3). In G, f# g, and 
by induction G, has a cycle C such that f E E(C), g 6 E(C), and 
A(G, - E(C)) > k - 2. Let C, be the corresponding cycle in G and let C, be 
the simple subcycle of Cr containing f, then C, is a required cycle. Thus let 
e(x) = e(y) = k + 1. If %(G - g) 2 k, then the result holds in G - g. Thus for 
some Xc V(G) - y, x E X and e(X) = k. Let V(f) = {a, b), we may let 
X n V(f) = @ or (u}. If Xn V(f) = @,, then G/X has a required cycle C. 
If 2 $ V(C), then C is a required cycle for G. If X E V(C), then let 
a($ G/X) n E(C) = {h,, h2). By Lemma l(3) G/X has a cycle C, such that 
{h,, h,)cE(C,) and i.(G/X-E(C,))>k-2. Then g$E(C,). By combin- 
ing C and C, in G we have a required cycle. Therefore Xn V(f) = {u>. Let 
hEd(X)-{f,g), G,:=G/X, and G,:=G/X. By Lemmal(3) for i=l,2, 
Gi has a cycle Ci such that {h h} c E(Ci) and I(Gi- E(C,)) 3 k - 2. By 
combining Cr and C2 in G we have a required cycle. 

The proof of Lemma 5 will be given later. 

LEMMA 5. Suppose that k > 4 is an even integer and G is a graph. If 

(i) V(G)= {u}uAu IV, u W, (disjoint union), A# @, and either 
W, = Iz( or W, = {b} and b has even degree, 

(ii) V(G) - Wz E T(G, k- 2), and for each Xc W, u W, with 
Xn W,#!Z, e(X)>,k, 

(iii) for each XE W,, e(x)<k+l, and for each XE V(G)- W,, 
e(x)<k-1. 

(iv) f Ed(u), gEE(G)-L and (A g> #a(b), 

then for some a E A, there exists a path P[u, a] such that f E E(P), g 4 E(P), 
and V(G) - W, E T(G * P, k - 2). Here G * P denotes the graph (V(G), 
(E(G) u h) -E(P)) and h is a new edge between u and a. 

Proof of Theorem 1 

First we prove that Theorem l( 1) implies Theorem l(2). Let h be a new 
edge between s and t and let G 1 := (V(G), E(G) u h). Then by (l), G, has a 
cyclecsuchthat (h,f,}cE(C),g$E(C),andA(G,-E(C))&k-2.C-h 
is a required path of G. 
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Now we prove Theorem l(1) by induction on IE(G)I. If G is not 2-con- 
netted, then we can deduce the result by using induction on some blocks. 
Thus we may assume that G is 2-connected. If for an x E V(G), e(x) > k + 2, 
then by Lemma 2 for some a, b E N(x) with a # b, G2b = : G, is admissible. 
If fi# g (i= 1, 2) in G,, then by induction the result holds in G,. Thus let 
@a, x; G) = (fi} and a(b, x; G) = {g}. IN(x; G,)l 3 2, otherwise for each 
h,, h,~a(x;G,)-f,, the result holds in G- (h,,h,). Thus for some 
y, z E N(x; G,) with y #z, (G,);’ is admissible, fi # g (i = 1,2) in GcZ, and 
the result holds in G;‘. Thus we may assume that for each x E V(G), 
e(x) <k + 1. Let 

F := {h E E(G) ( there is a cycle C such that {h, fi 1 c E(C), 
g$E(P),andA(G-E(C))>k-2). 

Assume F# E(G) - g. By Lemma 4 F# @. For some h E F and 
f E E(G) - F - g, h and f have a common end vertex, say u. Let C be a 
cycle such that (h,f,) cE(C), g$E(C), and A.(G-E(P,))>, k-2. Let 
A := V(C)--U, W, := I’(G)- V(C), and W,=@. Then by Lemma5 for 
some SEA, G-E(C) has a path P[u, a] such that feE(P), g$ E(P), and 
(G - E(C)) * P is (k - 2)-edge-connected. In C there are two disjoint paths 
joining u and a. Let P, be one of them containing fi, and let C, := Pu P,, 
then A(G-E(C,))>k-2. Thus F=E(G)-g. 

To prove Lemma 5 we need some lemmas. 

LEMMA 6. Suppose that k 3 2 is an even integer, G is a graph, V(G) = 
WI u W,, W, n W, = 0, and each v E W, has even degree. Then 

(1) If W, ET(G, k), XE V(G), and e(x) is odd, then for some y E W,, 
A(x, y)Bk+ 1. 

(2) If Xc V(G), e(X)<k+l, x~Xn W,, y~Xn W,, (Xn W,)u 
{ J> E W&K k), and (Xn W,) u {a> ET(G/X, k), then W, E T(G, k). 

Proof: (1) Since x$ W,, e(x)ak+ 1. If for some Xc V(G) with x~X, 
e(X) = k, then choose X with this property such that IX/ is minimal, if not, 
then let X := V(G). For some y E X-x, e( JJ) is odd. Then YE W,, 
e(v) 3 k + 1, and A(y, x) 3 k + 1. 

(2) Clearly we may let e(X) = k-t 1. By (1) for some VEX, A(a, X) = 
k + 1 and for some b E X, A(b, X) = k + 1, and so W, E T(G, k). 

LEMMA 7. Suppose that G is a graph and X, Yc V(G). Then 

(1) 

e(X- Y)+e(Y-X)=e(X)+e(Y)-2e(Xn Y,Xu Y), 

e(Xn Y) + e(Xu Y) = e(X) + e( Y) - 2e(X- Y, Y-X). 
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(2) rfi(G)>k, X- Y, Y-X, Xn Y, and Xu Y are not empty and 
e(X) = e( Y) = k, then k is euen and e(X- Y) = e(Xn Y) = k. 

ProoJ: ( 1) Simple counting. 
(2) By (1) e(X - Y) = e(X A Y) = k. Thus k = e(X) z e(X - Y) + 

e(Xn Y) c 0 (mod 2). 

Proof of Lemma 5 

We proceed by induction on IE(G)I. Let P(G, f, A, W,) be the set of 
required paths of G and assume P(G, f,‘A, IV,) = 0. Note that e(b) 2 4 if 
W, # 0. Let V(f) = {u, u}. Then u #A. 

(2.1) Zf Xc W, u W, and IX/ b2, then e(X)> k+ 2. 

ProoJ Assume e(X) <k + 1. Let x E X and let P[u, a] E p(G/X, J A, 
( W, - X) u 2) (g might not be in E(G/X)). If R 4 V(P), then we may let 
e(X)=k+l and by Lemma6(1) for some VEX, n(y,X)=k+l and for 
some zE8- W,, A(z,X;G*P)ak-1, and so V(G)- W,ET(G*P, 
k-2). Thus let ZE V(P) and h,, h,Ei?(K; G/X) nE(P). If Xc W,, then let 
G, := G/X, and if b E X, then for Y := V(G/X) - b, let G1 := (G/X)( Y, k) 
(see Lemma 3). By induction for each graph H such that jE(H)J -=c JE(G)I, 
Lemma 5 holds, and so in G, Theorem l(1) holds (see the proof of 
Theorem 1). Thus G, has a cycle C such that {hi, h,} c E(C), g 4 E(C), 
and l(G1 - E(C)) 3 k - 2. Let C, be the corresponding cycle in G/X. Let 
P, [u, a] be the path in G obtained by combining P and Ci. Then by 
Lemma 6 P, is a required path. 

(2.2) Zf Xc V(G), IX\> 2, and Ii!?\ 3 2, then e(X) 2 k. 

Proof Assume e(X) = k-2 or k- 1 and u$X. If UEX, then by (ii) 
A-X#@ and @#P(G/X,f, A-X, WI-X)ciF(G,f, A, W,) by induc- 
tion and by Lemma 6. If u $ X, then A n X# 0. Let x E X and P, [u, a] E 
9(G/X .L (A -xl u 2, W, - X). If a # X, then P, is a required path, thus let 
a = 2 and h E a(Z; G/X) n E(P,). Let P2 E 9(G/T, h, A n X, WI n X). By 
combining P, and P, in G we can get a required path. 

(2.3) Let x = h if W, # 0 and XE WI ij” W, = a. If IN(x)1 =n and 
N(~)=(y~,...,y,), then n>,2 and V(G)-XET(GB’,~~,~-~) (2<iQn). 
Moreover if e(x, yl) = 1, then n B 3. 

ProoJ If n=l, then l”(G-x)>k-2 and e(y,;G-x)dk+l-4, a 
contradiction. Thus n 3 2. By (2.2) for each 2 < i,< n, V(G) - x E 
T(G;l,“, k - 2). Assume e(x, y,) = 1 and n = 2. Then e( {x, y,}) < e( yl) - 2, 
contrary to (ii) or (iii). 
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(2.4) W, = 12, and for each x E W,, e(x) = k + 1 

ProoJ: Let x = b if W, # 0, and let x E WI and e(x) = k if W, = 0. By 
(2.3) we can obtain a lifting G, of G at x such that V(G) - x E Z-( G,, k - 2), 
f f g in G,, and {f, g} #d(x; G,). By (2.1) for each Xc: W, u W, with 
Xf {x}, e(X; G,) 3 k, and so there is a P E B(G,, J; A, W, -x). If x = b, 
then P E CP(G, J A, W,). If x E W,, then let PI be the corresponding path in 
G. If P, is not simple, then let P, be the simple subpath of P, between u 
and a, then P, E Y(G, f, A, W, ). 

Since u E W,, if for some XE W, there is an h E a(~, x), then by (2.1) 
(2.2), and (2.4) the result holds in G-h. Thus {u} #N(v) c {u} u A. By 
(2.3) for some a E N(v) - U, there is a lifting G;” such that J.(G:“) 3 k - 2 
and f # g in G;“. 

3. PROOF OF THEOREM 2 

The proof of Lemma 8 will be given later. 

LEMMA 8. Suppose that k > 4 and n > 2 are integers, G is a 2-connected 
graph, V(G) = TV W, v W, (disjoint union), T= (~1, s.., s,, tl, . . . . t,>, 
I TI = 2n, T v WI E T(G, k), 1 W, 1 6 2, for each x E W,, e(x) ,< k - 1 is even, 
and 

(i) if k is odd, then for each x E Tu W,, e(x) = k, 

(ii) if k is even, then e(s,) = e(t,) = k (1 < i < n) andfor each x E W,, 
e(x) = k or k + 1. 

Then there is a subgraph G* c G such that 

(a) for some 1 d i < j < n, G - E(G*) has edge-disjoint paths P, [sj, ti] 
and Pz CSj, tjl, 

(b) V(G*)=K,uK, andKInK,=@, 

(C) T- {Si, t;, Sj, tj} c K, E T(G*, k - 3), 

(d) for each XE Kz, e(x; G*) is even. 

Proof of Theorem 2 

Leta=Oor1,m~Ibeaninteger,k:=3m-cr~3,andn:=2m+1-cl. 
Assume that G is a k-edge-connected graph and {si, . . . . s,, t,, . . . . t,,} := T 
are vertices of G (not necessarily distinct). We prove that t.here are edge- 
disjoint paths PI, . . . . P, such that Pi joins si and ti (1 d i,< n). We may 
assume that G is 2-connected. If k is odd and e(x) =: a’> k for some 
x E V(G), then we replace x by d vertices of degree k (Fig. 2 gives an 
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FIGURE 2 

example with d = 8 and k = 5) and assign x on one of the new vertices, 
producing a new graph G,. If the result holds in G,, then it also holds for 
G. Thus we may assume 

(3.1) If k is odd, then G is k-regular. 

If k is even and e(sl) is odd, then we replace s1 by two vertices of degree 
e(sr) - 1 and e(s,), and assign si on the new vertex of degree e(sl)- 1, 
producing a new graph G, (see Fig. 3). If the result holds in G,,then it also 
holds for G. Thus we may assume that e(s,) and e(ti) (1 < i < n) are even. 
We proceed by induction on IE(G)I. If k is even, x E V(G), and e(x) 3 
k + 2, then an admissible lifting G, of G at x is k-edge-connected and the 
result holds in G,. Thus 

(3.2) If k is even, then e(s,) = e(ti) = k (1 < i < n) and for each x E V(G), 
e(x)=k or k+ 1. 

By [4, 1,3] g(3) = 3 and g(4) = 5, and so we may let k> 6, n > 5, and 
m32. If s1=s2, then by Theorem 1 there is a path P[tI, f2] such that 
s1 E V(P) and A(G -E(P)) b k - 3. By induction G-E(P) has edge-disjoint 

FIGURE 3 



PATHS IN k-EDGE-CONNECTED GRAPHS 353 

paths f’, Cs3, t31, . . . . P, [s,, t,]. Thus let ITI = 2n. By Lemma 8 there is a 
subgraph G* cG such that (a), (b), (c), and (d) hold. By Lemma 3 
G*(K1, k - 3) is (k - 3)-edge-connected, and by induction G*(K1, k - 3) 
has (n - 2) edge-disjoint paths joining (s[, t,) (1 < 1 <n, if i, j). Thus the 
result holds in G. 

Proof of Lemma 8 

Suppose that G satisfies the hypothesis of Lemma 8, but the result does 
not hold. Choose G with this property such that JE(G)J is minimal. 

(3.3) w, = a. 

ProoJ: Assume x E W,. Then e(x) 2 4. By Lemma 2 we have an 
admissible lifting G, of G at x. The result holds in G, and so in G. 

Case 1. k is odd. 

(3.4) rfx, YEWS andfEd(x, y), then V(G)-{x,y)$flG--f,k). 

ProoJ: Otherwise the result holds in G-f with V(G- f) = 
Tu (WI - {X? Y>bJ {XT Yb 

(3.5) If a, by T, then e(a, b) = 0. 

Proof. If f E a(s 1, fl), then by Lemma l( 1) G has a path PCs,, t2] such 
that s1 $ V(P) and 1(G - E(P)) > k - 2. G* := G-E(P) - f is a required 
graph. If f E d(s,, sz), then by Theorem 1 G-f has a path P[tl, t2] such 
that SUE V(P) and A(G-f-E(P))>k-3. 

(3.6) If XE W,, f Ea(x, sl), and hEiJ(x, tl), then V(G)- (x, s,> $ 
f(G -f, k). 

ProoJ: Assume V(G)- { x, sl) E~(G--f, k). Then V(G)-xeT(G- 
(f, h), k- 1). By Lemma l(2) G- (f, h) has a path P[s,, t2] such that 
x$ V(P) and I(G- {f, h}-E(P))ak-3. 

(3.7) If xeW1 and J;:~a(x,s~) (i=1,2), then V(G)-(x,s,,s,)$ 
r(G - {fi 9 fi >, k). 

Proo$ Assume V(G) - { x,~~,~~)~r(G--f~,f~),k). Let YEN(X)- 
{sl,sz), hEd(x, y), and G1 :=G- {fl, f2, h). Then V(G)-XET(G,, 
k- 1) and e(x; G,) is even. By Lemma 3 and Theorem 1 G, has a path 
P[tl, t2] such that s1 E V(P) and V(G,)-x~f(G, -E(P), k-3). Let 
G* :=G-E(P)- (fi, f2, h}. 

(3.8) Ifxc v(G), 1x1 3 2, and 1x1 > 2, then e(x) > k + 1. 

582b/45/3-7 
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ProoJ Assume e(X) = k and for each Y F X with / YI > 2, e(Y) > k + 1. 
Let UEX and Gi := G/x If ZC V(G), IZI >2, IZI 22, and 
XnZ#@#X-Z, thene(Z)>k+l. Forifnot, thenZ-X#@#XuZ, 
contrary to Lemma 7(2). Thus if x, YEX and f~ 3(x, y), then 
V(G)- {x, Y> ~r(G--f, k), and so by (3.4) N(Xn W,: Gr)c Tu {ii}. By 
(3.5) N(Xn T; G,) c W, u {ii}. Th us G, is a bipartite graph with the 
partition (Xn T, (Xn W,) u (ii}) or ((Xn T) u {z?}, Xn IV,) (note that 
G, is k-regular and k is odd) and I V(G,)I 2 6. Thus for some x~Xn W,, 
e(x, z?; G,) = e(x, x, G) -=z (k - 1)/2. Then by Lemma 2 for some 
a, b E X n T, Gzb is admissible, contrary to (3.6) or (3.7). 

By (3.3), (3.4), (3.5), and (3.8) G is a bipartite graph with the partition 
(T, W,). Let x E WI. By Lemma 2 for some a, b E N(x) c T, G$b is 
admissible, contrary to (3.6) or (3.7). 

Case 2. k is even. 

(3.9) Zfxe W,, then e(x)=k+ 1. 

ProojI Assume e(x) = k. By Lemma 2 there is an admissible lifting G, of 
G at x. The result holds in G, with V(G,) = Tu ( W, -x) u {x}, and it also 
holds for G. 

(3.10) rfx, YE W, andfEi?(x, y), then L(G-f)<k- 1. 

(3.11) Zfa, bE T, then e(a, b)=O. 

Proof We can prove e(si, ri) = 0 (16 id n) in the same way as (3.5). If 
gE a(,~,, sz), then let f~ a(~,) - g. By Theorem 1 G has a path P[tl, t2] 
such that f~ E(P), g$E(P), and 1+(G - E(P)) 2 k - 2. Let G* := G - 
E(P) - g. 

(3.12) Ifx,, X~E W,, a,, aaE T, fiea(xi, a,) (i= 1, 2), and gEi?(x*, a,), 
hen I/(G)-a,4T(G-{f,,fi),k). 

Prooj Assume V(G)-a,Ef’(G- {fi,f*}, k). If a,=s, and a2=tl, 
then by Lemma 1 G- - {fi,f*} h as a path PCs,, t,] such that t, $ V(P) 
and V(G)-s,ET(G- {fi,f2}-E(P), k-2). Let G* :=G-E(P)- 
(fl,fi, g}. If a,=s, and a2=s2, then let hEa(g. By Theorem 1 and 
Lemma3 G- (fi,f2} h as a path P[ t, , t2] such that h E E(P), g 4 E(P), 
and V(G)-s,EZJG-{f,,f,}-E(P),k-2). Let G*:=G-E(P)- 

Lfl>f25 g>. 

(3.13) Zf Xc V(G), 1x1 >, 2, and 1x1 2 2, then e(X) 3 k + 1. 

ProoJ Assume e(X) = k and for each Y 5 X with I YI 3 2, e(Y) B k + 1. 
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Let UEX. If x, y~Xand f~a(x, y), then V(G)- (x, 4’) E~(G--f, k). For 
if not, then for some ZC V(G) - x, y E X, e(Z) = k, IZI 2 2, and 121 2 2, 
and so Z-J/#@ #XuZ and by Lemma 7(2) e(X-Z)=e(XnZ)=k. 
Thus IX/ =2 and e(n)= e(y)= k. Then by (3.9) {x, v} c T, contrary to 
(3.11). Thus by (3.10) N(Xn Wl;G/x)c Tu (ii}, and by (3.11) 
Xn W,#@#XnT. By (3.9) IXn W,l32, and so lXnT/>2. Let 
a~Xn T. Since e(a, x) < k/2 (otherwise e(X-a) = k), by Lemma 2 for 
some x, y E N(a) n X, G: Y is admissible. By (3.11) {x, y) c W,. Let 
f1 E a(a, x) and fi E 13(a, y), then V(G) - a E T(G- {fl, f2}, k). Let 
b~((N(x)uN(y))nX)-a, then bET, contrary to (3.12). 

By (3.3), (3.10), (3.11), and (3.13) G is a bipartite graph with the 
partition (T, W,). Let a E T. By Lenima 2 for some x, y E N(u) c W,, G:Y 
is admissible and we can deduce a contradiction (see the proof of (3.13)). 
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