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1. INTRODUCTION

This paper deals with various implicit and inverse function theorems for
nondifferentiable maps, with constructive homeomorphism results for non-
linear and semilinear not necessarily differentiable maps, and with error
estimates of approximate solutions.

Let X and Y be Banach spaces and T : X ª Y be continuously Frechet´
XŽ .Ž .differentiable at x and satisfy the Lyusternik condition T x X s Y,0 0

Žand thus right-invertible. Then the classical inverse function open map-
. w x Ž . Ž Ž ..ping theorem of Graves G states that T x g Int T B x for all0 h 0

h ) 0. Recently, there have been extensions of this result in many direc-
tions based on various iterative processes, topological degrees, and Eke-
land’s variational principle, depending on the structure andror differentia-
bility properties of T. For example, if T has either a strong Frechet and a´

XŽ .Hadamard derivative at x and T x has an approximate right or other0 0
inverse, then some implicit function theorems, based on a generalized
Newton]Kantorovich iterative process, have been obtained by Craven and

Ž w x .Nashed and others see CN and the references therein . In applications,
many boundary value problems for differential equations or many control
theory and optimization problems may not be locally linearized and may
require results where the linear structure is not present. Motivated by this,
a number of authors have obtained various generalization of the classical
inverse and implicit function theorems to nondifferentiable maps having
either some type of a multivalued derivative in a Banach space or a
suitable variation in a complete metric space, which describes the infinites-
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imal behavior of a map at a given point. Various extensions, based on
w x w x w xiterative processes, can be found in E , K , and DMO and the references

therein. Inverse function theorems for set-valued maps having contingent
or Clark’s type of multivalued derivative, and the range in a finite- or
infinite-dimensional space, have been proved by many authors and we

w x w xrefer to Aubin and Ekeland AE and Aubin and Frankowska AF-1, AF-2
w xand the references therein. Recently, Frankowska F has obtained several

first- and higher-order inverse mapping theorems for set-valued maps from
a complete metric space to a Banach space by studying the corresponding
open mapping principle using a variation of the map at a point and
Ekeland’s variational principle. Another type of implicit function theorem
for compact maps, requiring a more special type of a multivalued deriva-

w xtive, has been obtained by Chow and Lasota CL using the Leray]Schauder
degree theory.

New extensions of the classical implicitrinverse function theorem are
given in Section 2. We prove some implicit and inverse function theorems
for maps having a multivalued derivative at an initial solution x . The first0
few results involve pseudo A-proper and f-condensing maps of the form
Ž . Ž .T x, ¨ s Nx q M x, ¨ and are based on the crucial new assumption that

the isolated solution x of Nx s 0 has a nontrivial index, i.e., the corre-0
sponding degree is nontrivial. This assumption is shown to hold for
potential A-proper maps, as well as for some types N having a multival-
ued derivative. These results are proved using topological degree methods

w xand extend considerably the work of Chow and Lasota CL . The last
neighborhood open mapping]inverse function theorem involves nonlinear
maps on closed subsets that have a special type of a multivalued derivative,
and is proved by using an iterative process. It is an extension of Ehrmann’s

w ximplicit function theorem E and of the open mapping theorem of
w x Ž w xKachurovskii K cf. also DMO for other results for nondifferentiable

.maps . It also extends an inverse function theorem of Aubin and
w xFrankowska AF to nondifferentiable maps having an infinite-dimensional

image space but defined on less general domains. However, we refer to
w xAF-2 for a constrained inverse function theorem for differentiable maps
between two Banach spaces satisfying a transversality condition. The
results of this section are applicable to boundary value problems for

Ž w xdifferential equations which may not be locally linearized cf. CL for
.some such applications . They are also applicable to such BVP’s in Banach

spaces assuming some monotonicity or contractive-type condition on the
w xnonlinear part, and to optimal control problems. As in SS , Corollary 2.1

can be used to study various semilinear BVP’s not in resonance involving
nonlinearities depending also on the highest-order derivatives in such a
way as to make the induced map A-proper.
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Ž .Section 3 contains a basic approximation solvability result Theorem 3.1
for nonlinear maps having a multivalued derivative and the error estimates
for the approximate solutions. This result has many applications. For

w xexample, in Mi-9 , we have applied it to the constructive solvability of
Ž .nonlinear Hammerstein operator and integral equations. It is also used

extensively in the rest of the paper. In Section 4, we have established
various constructive homeomorphism results for A-proper maps. First, we
show that a continuous coercive and locally invertible A-proper map is a
homeomorphism. Then, using this and Theorem 3.1, we show that a
continuous locally injective A-proper map T : X ª Y with closed range

Ž .and which has a multivalued derivative A x on X, with coercive finite-di-
mensional approximations, is a homeomorphism, the equation Tx s f is
approximation-solvable, and the corresponding error estimates hold. In
particular, these assertions hold if T is a locally injective Frechet differen-´
tiable A-proper map on X with closed range and the injective A-proper

XŽ .derivative T x on X. When T s I y C, with C a compact map, is
XŽ .coercive, continuously Frechet differentiable and T x is injective on X,´

the homeomorphism assertion only for T has been proved by Krasnosel’skii
w xand Zabreiko KZ . Applications to some special classes of nondifferen-

� 4tiable maps and to Frechet differentiable asymptotically B , B -quasilin-´ 1 2
ear maps are also given. The final result of the section asserts that the
equation Tx s f has the same finite or infinite number of solutions for
each f g Y, and each is obtained constructively. The nonconstructive part

w xof the result is due to Ehrmann E . The results of Section 4 are applicable
to BVP’s for ordinary and partial differential equations with nonlinearities
depending on the highest-order derivatives in such a way that the induced

Ž w x.map is A-proper see also Mi-8 .
In Section 5, using Theorem 3.1, we prove a number of results dealing

with the unique approximation solvability and error estimates for nonreso-
nant semilinear equations Ax y Nx s f in a Hilbert space, where A is a

Ž .closed linear densely defined map with dim ker A F ` and N is a
suitable nonlinear map such that A y N is an A-proper map. For exam-
ple, N can be a Lipschitz or a strongly monotone map or such that in a
suitable reformulation the corresponding nonlinearity is contractive or

w xmonotone. These results are improvements of Mi-6 and extend construc-
w xtively some recent results of Fonda and Mawhin FM and its many special

Ž w x w x . w xcases Amann A , Dancer D , etc. and of Ben-Naoum and Mawhin BM .
They are applicable to BVP’s for semilinear elliptic equations and peri-
odic-BVP’s for semilinear hyperbolic equations in several space variables.

w xWe refer to Mi-10 for some such applications. Section 6 is devoted to
constructive homeomorphism theorems and error estimates for approxima-
tion-stable A-proper maps.
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2. IMPLICIT FUNCTION THEOREMS

� 4 � 4Let X and Y be finite-dimensional subspaces of Banach spaces Xn n
Ž .and Y, respectively, such that dim X s dim Y for each n and dist x, Xn n n

ª 0 as n ª ` for each x g X. Let P : X ª X and Q : Y ª Y be linearn n n n
projections onto X and Y , respectively, such that P x ª x for eachn n n

5 5 � 4x g X and d s sup Q - `. Then G s X , P ; Y , Q is a projection0 n n n n n
Ž .scheme for X, Y .

Y Žw x.Let T : D ; X ª 2 be a multivalued map. We recall Mi y 1

DEFINITION 2.1. T is said to be approximation-proper with respect to G
Ž . Ž . YnA-proper w.r.t. G, for short if i Q T : D l X ª 2 is upper semicon-n n

Ž . Ž . � 4tinuous u.s.c. for short for each n and ii whenever x g D l X isn nk k
5 5bounded and Q y y Q f ª 0 for some y g Tx and f g Y, then an n n n nk k k k k

subsequence x ª x and f g Tx. T is said to be pseudo A-proper w.r.t. Gnk Ž i.
Ž . � 4if in ii we do not require that a subsequence of x converges to x fornk

which f g Tx.

For many examples of single-valued and multivalued A-proper and
w xpseudo A-proper maps, we refer to Mi-1]Mi-6 . For example, ball-con-

densing and, in particular, compact and k-contractive, perturbations of
Ž .Fredholm maps of index zero, maps of type S , sums of ball-condensing,q

and strongly monotone maps are all A-proper maps. Monotone-like maps
and such perturbations of closed linear maps A with finite- or infinite-di-
mensional null space are pseudo A-proper maps.

A multivalued map A: X ª 2Y is said to be m-bounded if there is a
5 5 5 5positive constant m such that y F m x for all x g X, y g Ax. It is

5 5 5 5c-coercive if u G c x for x g X and u g Ax.
Next, we introduce a class of maps having a multivalued derivative.

DEFINITION 2.2. Let U be open in X and T : U ª Y. A positively
Y Ž .homogeneous map A: X ª 2 , with A x convex and closed for each

x g X, is said to be a multï alued derï atï e of T at x g U if there exists a0
YŽ . Ž . Ž5 5.map R s R x : U y x ª 2 such that R x y x s o x y x , i.e., if0 0 0 0

Ž . Ž . Ž . Ž .r x y x : U y x ª Y is a selection of R x y x : r x y x g R x y x ,0 0 0 0 0
5 Ž .5 5 5then r x y x r x y x ª 0 as x ª x and0 0 0

Tx y Tx g A x y x q R x y x for x near x .Ž . Ž .0 0 0 0

The basic assumption in our first implicit function theorem is that a known
initial solution has a nonvanishing degree.

THEOREM 2.1. Let U be an open subset of X, N: U ª Y be an A-proper
map, and x be an isolated solution to Nx s 0, M: U = B ª Y be continu-0 r

Ž .ous with M x, ¨ ª 0 uniformly in x as ¨ ª 0, and, for each fixed ¨ g B ,r
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Ž . Ž .N q M ?, ¨ be pseudo A-proper on each ball B x ; U. Suppose that eitherk 0
Ž Ž . .deg Q N, B x l X , 0 / 0 for all large n and a small r ) 0, or N hasn r 0 n

an u.s.c. A-proper homogeneous derï atï e A: X ª 2Y at x such that x s 00
Ž xif 0 g Ax. Then there is an r g 0, r such that0

Ž . Ž .a for e¨ery ¨ g B there exists a solution x g B x ofr ¨ r 00

Nx q M x , ¨ s 0. 2.1Ž . Ž .

Ž . 5 5 5 5b x y x ª 0 as ¨ ª 0 pro¨ided also A is c -coercï e.¨ 0 1

LEMMA 2.1. Let A: X ª 2Y be a positï ely homogeneous map. Then

Ž .a If A is u.s.c. and has closed and bounded ¨alues, then it is
m-bounded.

Ž .b If A is A-proper w.r.t. G and x s 0 if 0 g Ax, then Q A isn
c-coercï e on X for all n G n G 1 and some c ) 0 independent of n.n 0

Ž .Proof. a If such an m does not exist, then there are x g X andk
5 5 5 5y g Ax such that y ) k x for each k ) 0. Since A is positivelyk k k k

homogeneous, we have that

5 5 5 5y r k x g A x r k x for all k G 1.Ž . Ž .Ž .k k k k

Ž 5 5. 5 Ž 5 5.5But x r k x ª 0 and y r k x ) 1, in contradiction to the upperk k k k
semicontinuity of A at 0.

Ž . w xb This is Lemma 2.1 in Mi-3 .

Proof of Theorem 2.1. Suppose first that x is an isolated solution and0
the above degree is nonzero. Then there is a small r ) 0 such that Nx / 0

Ž . � 4for all x g B x _ x . Arguing by contradiction and using the A-proper-r 0 0
ness of N, it follows that there are a g ) 0 and an n G 1 such that0

5 5Q Nx G g for all x g ­ B x l X , n G n . 2.2Ž . Ž .n r 0 n 0

Ž . Ž .Hence, since M x, ¨ ª 0 uniformly in x g B x as ¨ ª 0, there is anr 0
r F r such that0

w xQ Nx y tQ M x , ¨ ) 0 for x g ­ B x , ¨ g B , t g 0, 1 .Ž . Ž .n n r 0 r0

Thus, for each n G n and ¨ g B ,0 r0

deg Q N y Q M ?, ¨ , B x l X , 0Ž . Ž .Ž .n n r 0 n

s deg Q N , B x l X , 0 / 0Ž .Ž .n r 0 n
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Ž Ž .. Ž .and, consequently, Q Nx q M x , ¨ s 0 for some x g B x l X .n n n n r 0 n
Ž . Ž .Since N q M ?, ¨ is pseudo A-proper on B x , it follows that there is anr 0

Ž . Ž .x g B x such that Nx q M x, ¨ s 0.r 0
Ž Ž .Next, let A be odd. Then it suffices to show that deg Q N, B x ln l 0

.X , 0 / 0 for some l F r and all large n. Let c ) 0 and n G 1 be as inn 0
5 5Lemma 2.1 and d s sup Q . Let e ) 0 be such that0 n

5 5 5 5 5 5y r x y x - cr 2d for all x y x - e , y g R x y x .Ž . Ž .0 0 0 0

Ž . Ž . � 4Define T x s N x q x and let l F min r, e . Define a homotopy H:0
w x Ž . Ž . Ž . Ž .0, 1 = B ª Y by H t, x s 1r 1 q t Tx y tr 1 q t T yx . Thenl

w xQ H t , x / 0 for t g 0, 1 , x g ­ B l X , n G n . 2.3Ž . Ž .n l n 0

w xIf not, then there are an n G n , x g ­ B l X , and t g 0, 1 such that0 l n
Ž .Q H t, x s 0, and thereforen

1r 1 q t Q T x y tr 1 q t Q T yx s 0.Ž . Ž . Ž . Ž .n n

Ž . Ž Ž . . Ž .But yT yx s y N x y x y Nx g Ax y R yx , and therefore, by0 0
Žthe convexity of Ax, we have that 0 g Q Ax q Q R x, where R x s 1r 1n n 1 1

. Ž . Ž . Ž . Ž .q t R x y tr 1 q t R yx . Hence, yQ y g Q Ax for some y g R x ,n n 1
Ž . Ž . Ž .where y s 1r 1 q t y y tr 1 q t y with y g Rx and y g R yx . By1 2 1 2

Lemma 2.1,

5 5 5 5 5 5 5 5c x F d y q y - c x ,Ž .0 1 2

Ž .a contradiction. Thus, 2.3 holds and the Brouwer degree

deg Q N , B x l X , 0 s deg Q T , B l X , 0Ž . Ž .Ž .n l 0 n n l n

s deg Q H 1, ? , B l X , 0 / 0Ž .Ž .n l n

Ž .for each n G n since Q H 1, ? is an odd map.0 n

Ž . Ž . 5 5b Let x be a solution of Eq. 2.1 and x y x - e . The assump-¨ ¨
tions on M imply that we may assume that there is a monotone function
Ž . Ž .d s G 0 such that d s ª 0 as s ª 0 and

5 5 5 5M x , ¨ - d ¨ for all x y x - e .Ž . Ž . 0

Then, since we may assume that c s c and1

Nx y Nx q M x , ¨ g A x y x q R x y x q M x , ¨ ,Ž . Ž . Ž . Ž .¨ 0 ¨ ¨ 0 ¨ 0 ¨
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Ž .we get that, for some u g R x y x ,¨ 0

5 5 5 5 5 5 5 5 5 5c x y x F u q d ¨ F cr 2d x y x q d ¨ .Ž . Ž . Ž .¨ 0 0 ¨ 0

5 5 Ž5 5. Ž Ž .. Ž .Hence, x y x F d ¨ r c y cr 2d , which implies b .¨ 0 0

Remark 2.1. Analyzing the proof, we see that instead of x being an0
Ž .isolated solution, it is enough to require that Nx / 0 for x g ­ B x , orr 0

Ž .even that 2.2 holds, for some r ) 0. If A is homogeneous, then Theorem
Ž .2.1 a is valid without requiring that x is an isolated solution. Indeed, one0

needs only to use the homotopy H with Tx s N x q M x, where N x s1 1 1
Ž . Ž .N x q x and M x s M x q x, ¨ for ¨ g B . However, the c -coercivity0 1 0 r 1

Ž .of A in b implies that x is an isolated solution.0

To state a related result for f-condensing maps, we recall that the set
Ž .measure of noncompactness of a bounded set D ; X is defined as g D s

� 4inf d ) 0: D has a finite covering by sets of diameter less than d . The
Ž . �ball-measure of noncompactness of D is defined as x D s inf r ) 0 ¬ D ;

n Ž . 4D B x , x g X, n g N . Let f denote either the set or the ball-mea-is1 r i
sure of noncompactness. Then a map T : D ; X ª 2 X is said to be

Ž Ž .. Ž . Ž .f-condensing if f T Q - f Q whenever Q ; D and f Q / 0.

THEOREM 2.2. Let U be an open subset of X, N: U ª X be a continuous
and f-condensing map with Nx s x , and M: U = B ª X be continuous0 0 r

Ž .and f-condensing with M x, ¨ ª 0 uniformly in x as ¨ ª 0. Suppose that
Ž Ž . .either deg I y N, B x , 0 / 0 for a small r ) 0, or N has a homogeneousr 0

f-condensing derï atï e A such that x s 0 if x g Ax. Then there exist r g0
Ž x0, r and r ) 0 such that

Ž . Ž .a for e¨ery ¨ g B there exists a solution x g B x ofr ¨ r 00

x s Nx q M x , ¨ . 2.4Ž . Ž .

Ž . 5 5 5 5b x y x ª 0 as ¨ ª 0.¨ 0

5 5Proof. Since x y Nx / 0 for x s r, arguing by contradiction and
5using the f-measure of noncompactness, we get a g ) 0 such that x y

5 5 5Nx G g for all x s r. This inequality also holds in the second case,
w xsince I y A is c-coercive by Lemma 1.1 in Mi-2 for some c ) 0, and

Ž .therefore x is an isolated solution of x y Nx s 0. Let e ) 0 and d s be0
Ž .as in the proof of Theorem 2.1. Then, using the homotopy H t, x s x y

Ž . Ž Ž . Ž . .Nx y tM x, ¨ , we get that deg I y N y M ?, ¨ , B x , 0 / 0 for eachr 0
Ž .fixed ¨ g B . This implies a under the degree assumption. If A isr0

Ž .homogeneous, set Tx s N x q x y Nx and consider the homotopy0 0
Ž . Ž . Ž . Ž .H t, x s x y 1r 1 q t Tx y tr 1 q t T yx . Then, using the arguments

Žsimilar to those in the proof of Theorem 2.1, we get that deg I y



IMPLICIT FUNCTION THEOREMS 431

Ž . . Ž .N, B x , 0 / 0 and a follows. The second part is proved as in Theoremr 0
2.1.

Remark 2.2. The condition x g Ax implies x s 0 replaces the condi-
tion that the Jacobian is not zero, or the invertibility of the derivative at 0
in the classical implicit function theorem.

Due to the generality of the maps involved, Theorems 2.1 and 2.2 are
suitable, for example, for studying boundary value problems for ordinary
differential equations in Banach spaces. When N and A are compact,

w xTheorem 2.2 is due to Chow and Lasota CL , where applications to BVP’s
for systems of ordinary differential equations are given.

The degree assumption in Theorems 2.1 and 2.2 holds if N is an odd
map. Next, we shall show that it holds for gradient maps at an isolated
critical point. We need the following result

1Ž w x.THEOREM 2.3 cf. Mi-7 . Let U ; X be a neighborhood of 0, f : U ª R
be continuous and Gateaux differentiable on U, 0 be its isolated critical point,ˆ

Ž .and f 0 be a local minimum at 0. Let

Ž . Ž . Ž . � Ž . 4i f 0 - m r s inf f x ¬ x g ­ B for each 0 - r F r, wherer
Ž . Ž . � 4f 0 - f x for x g B _ 0 and some r ) 0.r

Ž . XŽ . � Ž . 4ii f x / 0 for x g x g B , f x G k for a suitable k ) 0.r

X U � 4If N s f : X ª X is A-proper w.r.t. G s X , Y , Q at 0, thenn n n
Ž 4deg Q N, B l X , 0 / 0 for all large n.n r n

1 Ž .Remark 2.3. If f is C on some B and satisfies the Palais]Smale PSR
Ž .condition, then condition i of Theorem 2.3 holds by Proposition 4 in

w x Ž .Brezis and Nirenberg BN as well as condition ii if in addition f is
Ž . Ž .bounded on B . Conditions i and ii hold also if f is continuous in ar

Hilbert space and Gateaux differentiable with f X being a bounded demi-ˆ
Ž . Žcontinuous map of type S i.e., x ª x whenever x © x andq n n

Ž XŽ . . . Ž w x.lim sup f x , x y x F 0 cf. K . It is well known that such maps aren n
Ž . Ž . XA-proper. We note also that i and ii hold if N s f is continuous and

A-proper at 0 since such maps are proper on bounded and closed subsets.
In particular, this is so if f X s I y C with C compact.

Ž Ž . .Remark 2.4. The degree deg Q N, B x l X , 0 / 0 for all large nn r 0 n

under other conditions. For example, if f X s I y C with C compact and x0
is an isolated critical point of f of mountain-pass type, then some suffi-

Ž X . Ž Xcient conditions for deg f , B , 0 s y1, and therefore deg Q f , B lr n r

. w xX , 0 s y1 for large n, have been given by Hofer H .n

Theorems 2.1 and 2.3 imply the following result.
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THEOREM 2.4. Let U and N be as in Theorem 2.3. Suppose that M:
U Ž .U = B ª X is continuous with M x, ¨ ª 0 uniformly in x as ¨ ª 0 and,r

Ž .for each ¨ g B , N q M ?, ¨ is pseudo A-proper w.r.t. G on each ballr
Ž xB ; U. Then there is an r g 0, r such that the conclusions of Theorem 2.1k 0

hold with x s 0.0

The next result does not require oddness of the multivalued derivative.
A similar result holds also for f-condensing maps, and includes a result in
w xSS for compact maps.

YCOROLLARY 2.1. Let L, K : U ; X ª Y and F: U ª 2 be such that L is
Ž .homogeneous, F is positï ely homogeneous with F x starlike with respect to 0

for each x g U, L q F is A-proper at 0 w.r.t. G, x s 0 if 0 g Lx q Fx, and
5 5either F is a multï alued derï atï e of K at 0 or Kx g Fx q Rx for all x

< < 5 5 5 5large with R s lim sup Rx r x sufficiently small. Suppose that M:5 x 5 ª`

Ž .U = B ª Y is continuous with M x, ¨ ª 0 uniformly for x in boundedr
Ž .subsets as ¨ ª 0 and, for each ¨ g B , L q K q M ?, ¨ is pseudo A-properr

Ž xw.r.t. G on each ball B ; U. Then there are r ) 0 and r g 0, r such thatk 0
for each ¨ g B ,r0

Ž . Ž .a Lx q Kx q M x, ¨ s 0 has a solution x g B .¨ r

Ž . 5 5b x y x ª 0 as ¨ ª 0 pro¨ided L q F is c -coercï e.¨ 1

Ž . Ž . < <c If U s X, R ' 0, and M x, ¨ s M x for all ¨ , with M suffi-1 1
ciently small, then L q K q M is onto.1

Ž .Proof. Since x s 0 if 0 g Lx q Fx, Lemma 2.1 b implies that there are
constants c ) 0 and n G 1 such that0

5 5 5 5Q Lx q Q y G c x for x g X , y g Fx , n G n . 2.5Ž .n n n 0

Then, in the first case, there is a r ) 0 sufficiently small such that

w xQ L q tK x / 0 for x g ­ B l X , t g 0, 1 , n G n . 2.6Ž . Ž .n r n 0

Ž .If not, then 0 g Q L q t F q t R x for some x g X , x ª 0, x / 0,n n n n n n n n
5 5and t . Set u s x r x . Then since Fx is starlike with respect to 0 forn n n n

Ž . Ž . 5 5 Žeach x, it follows that 0 g Q L q F u q t Q R x r x and Q Lun n n n n n n n
5 5. Ž .q y q t z r x s 0 for some y g Fu and z g Rx . By 2.5 , we get an n n n n n n n

contradiction

5 5 5 5 5 5c F Q Lu q y F Q z r x ª 0 as n ª `.Ž .n n n n n n

Ž . Ž Ž . . ŽHence, 2.6 holds and deg Q L q K , B l X , 0 s deg Q L, B ln r n n r

.X , 0 / 0 for each n G n . In the second case, using similar arguments,n 0
Ž .we find a r large such that the last degree is again nonzero. Therefore, a
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Ž .and b follow from Theorem 2.1 and Remark 2.1 with N s L q K. For
Ž . Ž .part c it is enough to observe that 2.6 holds for L q tK q tM y tf for1

each f g Y, using a similar reasoning.

For our next result, we introduce an V-neighborhood of a map T with0
Ž . Ž .respect to B x . Here D S is the domain of S.r 0

Ž .DEFINITION 2.3. A map T is said to be in an V s x , r, a, b -0
Ž . Ž . Ž .neighborhood of a map T if B x ; D T l D T and DT s T y T0 r 0 0 0

satisfies

Ž . 5 5a DTx - a.0

Ž . 5 5 5 5 Ž .b DTx y DTy F b x y y for all x, y g B x .r 0

Now, we give a neighborhood open mapping]inverse function theorem.

THEOREM 2.5. Let C ; X be a closed con¨ex subset, x g C, and T :0 0
Ž .B s B x l C ª Y with T x s y . Suppose that K : X ª Y is a linear0 r 0 0 0 00

Ž . y1map with K C s Y and, for some positï e m and c with mc - 1,

Ž . 5 Ž .5 5 5i T x y T y y K x y y F m x y y for x, y g B .0 0 0

Ž . y1 y1Ž . � 4ii K , defined by K y s x g C ¬ Kx s y , is c-Lipschitz, i.e.,

y1 y1 5 5K y ; K y q c y y y B for all y , y g Y . 2.7Ž . Ž . Ž .2 1 1 2 1 1 2

Ž . Ž . � 4iii Let, in addition, T be continuous if N K s ker K / 0 .

Ž .Let V s x , r, a, b -neighborhood of T with 0 - r F r and a, b G 0 be0 0 0
Ž y1 .such that a s c y b y m r ) 0. Then there is a k ) 0 such that, for all
Ž . Ž Ž . . Ž . w .T g V, B Tx ; T B x l C for each x g B x and h g 0, r . Ifh r k h r 0 00

Ž . � 4N K s 0 and y s 0, then the equation Tx s 0 has a unique solution0
Ž .x s x T which is continuous in T at T s T in the sense that0

5 5x T y x ª 0 as Tx ª 0. 2.8Ž . Ž .0 0

Moreo¨er, if Tu s ¨ , then T has a local in¨erse defined in a neighborhood0 0
of ¨ with the range in a neighborhood of u and the corresponding solution0 0
Ž . Ž .x y of Tx s y is continuous in y, i.e., x y ª u as y ª ¨ .0 0

Proof. Let T g V with r F r and DT s T y T . Then, for each x, y0 0
Ž .g B x l C,r 0

5 5Ty y Tx y K y y x F DT y y DTx q T y y T x y K y y xŽ . Ž .0 0

5 5F b q m y y x . 2.9Ž . Ž .

Ž . Ž .y1Now, q s b q m c - 1 and pr - r for p s 1 y q c an some r .0 0 0
Then, for each h F r , h s sr and kr s r for some s and k. Moreover,0 0 0 0
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since pr s pr rk - r , we have that phrk s psr rk s pr s - sr s h.0 0 0 0 0 0
Ž .Hence, for each h F r , pr - h with r s hrk. Let x g B x l C be0 r 00

Ž .fixed and h F r . Let y g B Tx and define successive approximations0 h r k
Ž .as follows. Given x g B x l C, there is an x g C such that Kxn h nq1 nq1

Ž . Ž . Ž . Ž .s Kx y Tx y y since K C s Y. By ii , 2.7 holds for Kx and Kx .n n n nq1
y1Ž .Hence, there are an x g K Kx and w g B such that x s xnq1 nq1 1 n nq1

5 5 Ž .q c Kx y Kx w. Then Kx s Kx y Tx y y andnq1 n nq1 n n

5 5 5 5x y x F c Kx y Kx . 2.10Ž .nq1 n nq1 n

Ž .Hence, starting with x s x g B x l C, we get1 h

5 5 5 5 5 5x y x F c Tx y y s c Tx y Tx y K x y xŽ .nq1 n n n ny1 n ny1

5 5F b q m c x y x 2.11Ž . Ž .n ny1

and

ny1
i5 5 5 5x y x F q x y x ,Ýn 1 2 1

is0

with

5 5 5 5x y x F c Tx y y F chrk s cr .2 1 1

� 4 Ž .Thus, by our choice of q and r, the sequence x ; B x is Cauchy withn pr

Ž . Ž . Ž .the limit x g B x l C ; B x l C. Let iii hold. Then, Tx y y ª 0pr h n

Ž . Ž Ž . .by 2.11 and the continuity of T implies that y s Tx g T B x l C .h
Ž . Ž Ž . . Ž .Hence, we have shown that B Tx ; T B x l C ; TB x for each1r k h h h

Ž . w .x g B x and each h g 0, r .r 0 00 y1 5 y1 5y1Next, let the inverse K exist. Then c s K and the map V s
y1 y1Ž . Ž .5 5 Ž .K K y T is l-contractive with l s b q m K - 1 in B x andr 0

y1Ž .therefore x s K Kx y Tx q y implies that Tx s y. Next, let y snq1 n n 0
5 5 5 y1 5 Ž .0. Since T g V, then Vx y x s K Tx - 1 y l r and V maps0 0 0

Ž .B x into itself. Hence, there exists a unique solution of Vx s x. Sincer 0
the unique solvability of Vx s x is equivalent to the unique solvability of

Ž . Ž .Tx s 0, there is a unique solution x T of Tx s 0 in B x satisfyingr 0

y1 y1y1 y15 5 5 5 5 5x T y x F 1 y k K Tx F 1 y k K Tx .Ž . Ž . Ž .0 0 0

Ž .Thus, 2.8 holds. Next, let Tu s ¨ and T x s Tx y y for some y g0 0 1
Ž . y1Ž .B ¨ . Define V s K K y T and note that T x s 0 if and only ifr 0 1 1 1

Ž .V x s x. Then, for some r ) 0, it is easy to see that, for x g B u ,1 r 0

5 5 5 5 5 y1 5 5 5V x y u F l x y u q K ¨ y y .1 0 0 0
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y1y15 5 Ž . Ž .Taking r - K 1 y l r, we see that V maps B u into itself and is1 r 0
Ž .an l-contraction. Hence, the equation Tx s y has a unique solution x y

y1Ž . Ž . 5 Ž . 5 5 Ž .g B u for each y g B ¨ . Moreover, x y y u s K K y T xr 0 r 0 0 1

5 5 5 5 y1 5 5 5yu F l x y u q K ¨ y y and therefore0 0 0

y1 y15 5 5 5x y y u F 1 y l K ¨ y y ª 0 as y ª ¨ .Ž . Ž .0 0 0

Remark 2.5. If K is continuous and C ; X is a closed convex cone
Ž . y1 Ž w x.with K C s Y, then K is a Lipschitz set-valued map cf. AE . If

Ž . � 4 Ž . y1 Ž .N K s 0 , K C s Y, and K is continuous, then 2.7 holds. More-
Ž .over, if C s X, then each T g V is an open map at each x g B x , i.e.,r 00

Ž . Ž . w xB Tx ; TB x and, as noted in DMO , this open mapping property1r k h h
is equivalent to the following distance estimate:

5 y1 5 5 5x y T y F k Tx y y

for all x in a neighborhood of x and all y in a neighborhood of Tx in Y.0 0
XŽ .If T has a strong Frechet derivative T x at x , then we can take K to´0 0 0 0

be any map near it in Theorem 2.5, or, if T is as in Corollary 2.2 below,0
XŽ .take K s T x .0 0

Remark 2.6. Even if T is defined on all of X, Theorem 2.5 does not
imply the solvability of Tx s y for each y g Y. For example, consider the
map Tx s arctan x for x g X s R1. Then all conditions of Theorem 2.5
hold but the equation Tx s y is not solvable for all y g R1. For some

Ž .additional conditions that imply R T s Y, see Theorem 4.4.
Recall that a map T is said to be weakly Gateaux differentiable at x ifˆ 0

XŽ . Ž .there is T x g L X, Y such that0

X Uy1t T x q th y T x y T x h , y ª 0Ž . Ž . Ž .Ž .0 0 0

as t ª 0 for all h g X , yU g Y .

We have the following special case of Theorem 2.5.

COROLLARY 2.2. Let C ; X be closed and con¨ex, x g C, T : B s0 0 0
Ž .B x l C ª Y be continuous and weakly Gateaux differentiable in a neigh-ˆr 00 XŽ .Ž . 5 XŽ . XŽ .5borhood of x , T x C s Y, and T x y T x F m in B for m ) 00 0 0 0 0 0 0

sufficiently small. Then the conclusions of Theorem 2.5 hold true with
XŽ .K s T x . Moreo¨er, if C s X, then, for some r - r , r , and l,0 0 1 2 1

dist Ty1 y l B x , Ty1 y l B xŽ . Ž . Ž . Ž .Ž .0 1 r 0 0 2 r 01 2

5 5F l y y y for y , y g B T x . 2.12Ž . Ž .1 2 1 2 r 0 01
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Ž . XŽ .Proof. We shall first show that condition i holds with K s T x for0 0
each x, y g B . Let x, y g B and yU g Y U. Then0 0

yU T x y T y y T X x x y yŽ . Ž .Ž .0 0 0 0

1 X X Us T y q t x y y y T x x y y , y dtŽ . Ž . Ž .Ž .Ž .H 0 0 0
0

U 5 U 5and choosing y with y s 1 such that the left-hand side is equal to
5 XŽ .Ž .5T x y T y y T x x y y , we obtain that0 0 0 0

X 5 5T x y T y y T x x y y F m x y y for all x , y g B .Ž . Ž .0 0 0 0 0

Ž .Since ii holds by Remark 2.5, then Theorem 2.5 is applicable.
Ž . Ž .It remains to show 2.12 . Let U ; B x be a closed neighborhood ofr 00XŽ .x . Since T x is surjective, there is a c ) 0 such that, for all y g Y,0 0 0

XŽ . 5 5 5 5there is a solution u of the equation T x u s y satisfying u F c y .0 0
Ž . XŽ . Ž XŽ .Let r ) 0 be such that B x ; U. Then y s T x u q z for z s T xr 0 0 0

XŽ .. 5 5 5 5 5 5 5 5 Ž .y T x y where u F c y and z F m y . Hence, 2.12 holds as in0 0
w xthe proof of Theorem 7.5.4 in AE .

w xIf C s X, then Theorem 2.5 generalizes a result of Ehrmann E when
Ž . � 4 w xN K s 0 , and the open mapping theorem of Kachurovskii K when K

Ž . � 4 Ž w x.is continuous and N K / 0 cf. also DMO . It also extends the inverse
w xfunction theorem of Aubin and Frankowska AF to nondifferentiable

maps with dim Y s ` but defined on a less general domain. We refer to
w xAubin and Frankowska AF for a constrained inverse mapping theorem

with dim Y s ` involving a transversality condition. Corollary 2.2 extends
w x Ž .an open mapping theorem of Browder B but without the estimate 2.12 .

3. ERROR ESTIMATES FOR NONLINEAR
OPERATOR EQUATIONS

In this section, we shall establish a constructive solvability and error
estimates for the approximate solutions of nonlinear equations of the form

Tx s f , x g X , f g Y , 3.1Ž .
involving A-proper maps which have a multivalued derivative at a solution.

w xOur basic result, announced in Mi-4, Mi-6 , is

THEOREM 3.1. Let T : U ; X ª Y be A-proper w.r.t. G and x be a0
Ž .solution of Eq. 3.1 . Suppose that A is an odd multï alued derï atï e of T at

x and there exist constants c ) 0 and n G 1 such that0 0 0

5 5 5 5Q u G c x for x g X , u g Ax , n G n . 3.2Ž .n 0 n 0
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Ž . Ž .a If x is an isolated solution, then Eq. 3.1 is strongly approximation0
Ž . Ž Ž .sol̈ able in B x for some r ) 0 i.e., Q Tx s Q f for some x g B xr 0 n n n n r 0

.l X and all large n and x ª x .n n 0

Ž .b If , in addition, A is c -coercï e for some c ) 0, then x is an1 1 0
Ž . Ž .isolated solution, the conclusion of a holds, and for any e g 0, c approxi-0

Ž .mate solutions x g B x l X satisfyn r 0 n

y15 5 5 5x y x F c y e Tx y f for n G n G n . 3.3Ž . Ž .n 0 0 n 1 0

Ž . Ž .c If x is an isolated solution in B x , A is c -bounded for some c0 r 0 2 2
and

Tx y Ty g A x y y q R x y y whene¨er x y y g B , 3.4Ž . Ž . Ž .r

5 Ž .5 5 5and r x y y r x y y ª 0 as x ª x and y ª x for each selection0 0
Ž . Ž . Ž .function r x y y of R x y y , then Eq. 3.1 is uniquely approximation

Ž . Ž .sol̈ able in B x and the unique solutions x g B x l X of Q Tx s Q fr 0 n r 0 n n n
satisfy

5 5 5 5x y x F k P x y x F c dist x , X , 3.5Ž . Ž .n 0 n 0 0 0 n

5 5where k depends on c , c , e , and d and c s 2kd , d s sup P .0 2 1 1 n

Ž .Proof. a If T x s Tx y f , then T has the same properties as T andf f
T x s 0. Therefore, we may assume that f s 0. Let r ) 0 be such thatf 0
Ž .B x ; U andr 0

5 5 5 51 y t z c0q -
5 5 5 51 q t x 1 q t x d

5 5w xfor t g 0, 1 , x s r , y g R x , z g R yx .Ž . Ž .
Ž . 5 5 w xLet T x s T x q x for x F r and define a homotopy H: 0, 1 = B ª Y1 0 r

Ž . Ž . Ž . Ž .by H t, x s 1r 1 q t T x y tr 1 q t T yx . Then, as in the proof of1 1
Theorem 2.1, we have that

w xQ H t , x / 0 for t g 0, 1 , x g ­ B l X , n G n . 3.6Ž . Ž .n r n 0

Ž . Ž Ž . .Thus, deg Q T , B l X , 0 s deg Q H 1, ? , B l X , 0 / 0 for each nn 1 r n n r n
Ž . Ž Ž . .G n since Q H 1, ? is an odd map. Hence, deg Q T , B x l X , 0 s0 n n r 0 n

Ž .deg Q T , B l X , 0 / 0 for each n G n and, consequently, Q Tx s 0n 1 r n 0 n n
Ž .for some x g B x l X . Since T is A-proper and x is an isolatedn r 0 n 0

solution, it follows easily that x ª x .n 0

Ž .b Let us first show that x is an isolated solution. Choose r ) 00
5 5 5 5 5 5 Ž .such that y r x - c for 0 - x F r and y g R x . Then, for each such1

Ž . Ž .x, there are u g Ax and ¨ g Rx such that T x q x y T x s u q ¨ and0 0

5 5 5 5 5 5 5 5 5 5T x q x y f G u y ¨ G x c y ¨ r x ) 0.Ž . Ž .0 1
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Ž .Next, for any x g B x l X such that Q Tx s Q f , we have thatn r 0 n n n n
Ž . Ž .Tx y Tx g A x y x q R x y x and therefore Tx y f s u q ¨n 0 n 0 n 0 n n n
Ž . Ž .for some u g A x y x and ¨ g R x y x . Hence, for each large n,n n 0 n n 0

5 5 5 5 5 5 5 5 5 5c x y x F Tx y f q ¨ F Tx y f q e x y x for any e g1 n 0 n n n n 0
Ž . Ž .0, c and therefore 3.3 holds.1

Ž . Ž . Ž .c By part a , for each n G n there is an x g B x l X such1 n r 0 n
that Q Tx s Q f and x ª x . If the equation Q Tx s Q f had anothern n n n 0 n n

Ž . Ž .solution y g B x l X for each n G n , then 0 g Q A y y x qn r 0 n 1 n n n
Ž . Ž .Q R y y x , and therefore, for some u g R y y x ,n n n n n n

5 5 5 5c F d u r x y y ª 0 as n ª `0 n n n

in contradiction to c ) 0. Hence, the equation Q Tx s Q f is uniquely0 n n
Ž .solvable in B x l X for each n G n .r 0 n 1

� 4Now, let x be the corresponding unique solutions and observe thatn
Ž . Ž .Q TP x y Q Tx g Q A P x y x q Q R P x y x for each n G n .n n 0 n n n n 0 n n n 0 n 1

Ž . Ž .Choose u g A P x y x and ¨ g R P x y x such that Q TP x yn n 0 n n n 0 n n n 0
Ž .Q Tx s u q ¨ . It follows from 3.2 thatn n n n

5 5 5 5 5 5c x y P x F d Tx y TP x q d ¨0 n n 0 0 n 0 n

5 5 5 5F d Tx y TP x q e x y P x0 n 0 n n 0

Ž .for any e g 0, c and each n G n large. Hence, for such n,0 1

5 5 5 5c y e x y P x F d Tx y TP x .Ž .0 n n 0 0 n 0

Ž . Ž .But, since Tx y TP x g A x y P x q R x y P x , it follows that0 n 0 0 n 0 0 n 0

5 5 5 5 5 5Tx y TP x F c x y P x q e x y P x0 n 0 2 0 n 0 1 0 n 0

for any given e ) 0 and each n G n G n large. Combining the last two1 2 1
inequalities, it follows that, for each n G n ,2

5 5 5 5 5 5x y x F x y P x q x y P xn 0 n n 0 0 n 0

5 5 5 5F d c q e r c y e q 1 P x y x s k P x y x .Ž . Ž .Ž .2 1 0 n 0 0 n 0 0

Next, for each z g X and x g X, we have thatn n

5 5 5 5 5 5P x y x s P x y z y x y z F 1 q P x y z .Ž . Ž . Ž .n n n n n n

Hence, for each x g X,

5 5 5 5 5 5P x y x F 1 q P dist x , X F 2 P dist x , XŽ . Ž .Ž .n n n n n
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and therefore

5 5x y x F c dist x , X with c s 2kd .Ž .n 0 0 n 1

Remark 3.1. Analyzing the above proof, we see that the oddness of A
Ž . Žcan be replaced by deg Q T , B l X , 0 / 0 for all large n cf. alson r n

. Ž .Theorem 2.3 and Corollary 2.1 . Regarding 3.2 , we refer to Lemma 2.1.

Ž . 5 5Inequality 3.5 shows that the problem of estimating the error x y x0 n
is reduced to a problem in approximation theory, i.e., to evaluate the

Ž . 5 5distance dist x , X s inf x y u between a vector x g X and a0 n u g X 0 n 0n n

subspace X ; X. Often one is able to show that there exist constantsn
Ž . Ž . Ž . ybc x ) 0 and b ) 0 such that the distance dist x , X F c x n and0 0 n 0

therefore the following error estimate holds:

5 5 ybx y x F c x n . 3.7Ž . Ž .0 n 0

In this case we say that the order of con¨ergence is b. In applications there
� 4are numerous ways of constructing suitable subspaces X which wouldn

lead to the order of convergence of approximate solutions and we refer to
w x � 4the books Ci, SF and so on. We note also that when X are finiten

Ž .element subspaces of a Hilbert space, inequality 3.5 is an extension of
w xCea’s lemma C to nondifferentiable nonlinear maps. Theorem 3.1 with´

w xT s I y C, C-compact, contains a result of Schmitt S .
When T is Frechet differentiable, Theorem 3.1 reduces to the following´

w x w xresult of the author Mi-1 , which extends a result of Krasnosel’skii Kr
w xand Vainikko V when T s I y C with C compact.

Ž w x.THEOREM 3.2 cf. Mi-1 . Let T : U ; X ª Y be A-proper w.r.t. G, x be0
Ž . XŽ .a solution of Eq. 3.1 , and T be Frechet differentiable at x with T x´ 0 0

A-proper w.r.t. G and injectï e. Then

Ž . Ž .a x is an isolated solution, Eq. 3.1 is strongly approximation0
Ž . Ž . 5Ž XŽ ..y1 5sol̈ able in B x for some r ) 0, and 3.3 holds with c s T x .r 0 0 0

Ž .b If , in addition, T is continuously Frechet differentiable at x , then´ 0
Ž . Ž .Eq. 3.1 is uniquely approximation sol̈ able in B x and the uniquer 0

Ž . Ž .solutions x g B x l X of Q Tx s Q f satisfy 3.5 where k depends onn r 0 n n n
5 XŽ .5 5 5c , T x , e , and d and c s 2kd , d s sup P .0 0 1 1 n

Let us now give a version of Theorem 3.1 which is useful for proving
Ž .error estimates of the form 3.7 in applications to differential equations.

Let Z be a Banach space densely and continuously embedded in X and
� 4 Ž .X be finite-dimensional subspaces of Z such that dist z, X ª 0 asn n

Ž .n ª ` for each z g Z. Then dist x, X ª 0 as n ª ` for each x g X byn
the continuity of the embedding. If P : X ª X are linear projections onton n
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5 5 � 4X such that d s sup P - `, then G s X , P , Y , Q is a projectionn 1 n n n n n
Ž .scheme for X, Y . We also assume that

Ž . Ž .3.8 There are positive and monotonically decreasing functions g n1
Ž .and g n such that for each z g Z there exists a u g X such that2 n n

5 5 5 5z y u F g n and z y u F g n .Ž . Ž .Z Xn 1 n 2

Ž . Ž .3.9 There is a positive monotonically increasing function g n such3
that

5 5 5 5u F g n u for each u g X .Ž .Z Xn 3 n n n

Ž . Ž .THEOREM 3.3. Suppose that 3.8 and 3.9 and all conditions of Theo-
Ž . � 4rem 3.1 c hold with G s X , P , Y , Q as constructed abo¨e. Then Eq.n n n n

Ž . Ž .3.1 is uniquely approximation sol̈ able in some ball B x , and if x g Zr 0 0
Ž .the unique approximate solutions x g B x l X satisfyn r 0 n

5 5x y x F c max g n , g n ? g n . 3.10� 4Ž . Ž . Ž . Ž .Zn 0 1 2 3

Ž .Proof. By Theorem 3.1 c we have that, for each large n,

5 5 5 5x y x F k P x y x F c dist x , X .Ž .n 0 n 0 0 0 n

Ž .For x g Z choose u g X such that 3.8 holds. Then0 n n

5 5 5 5x y x F g n q g n x y uŽ . Ž .Zn 0 1 3 n n

5 5F g n q g n k P x y x q g n ,Ž . Ž . Ž .Ž .1 3 n 0 0 2

Ž .which implies 3.10 for some constant c.

Ž . r iIn particular, if g h s h for some r - 0, i s 1, 2, r ) 0, and thei i 3
Ž .inequalities in 3.8 are replaced by

5 5 r1 5 5 5 5 r2 5 5z y u F n z and z y u F n z ,Z Z X Zn n

Ž .then the error estimate 3.10 becomes

5 5 r1 r2qr 3 5 5� 4x y x F c max n , n x . 3.11Ž .Z Zn 0 0

Estimates of the above type appear in approximations by the finite
Želement method where each subspace X consists of splines i.e., piece-n

. Žwise-polynomial functions of fixed degree defined over a mesh usually of
.triangles laid out to approximately cover the spatial domain V of the

problem. One of the principal assets of the finite element method is that,
no matter how irregular the shape of the boundary ­ V of V, such meshes
can be fitted very closely. A normalized mesh parameter h, 0 - h F 1, is
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assigned to each mesh so that the mesh is refined as h ª 0 and the
dimension of X increases indefinitely. When T s I y C, with C compactn
and continuously Frechet differentiable at x . Theorems 3.3 is due to´ 0

w xShaposhnikova Sh .

4. CONSTRUCTIVE HOMEOMORPHISM THEOREMS

The existence of a local inverse of T has been studied in Section 2. In
Ž .this section, we shall give some constructive homeomorphism theorems

for nonlinear maps.
Ž .We say that T satisfies condition q if whenever Tx ª f in Y, thenn

� 4 Ž .x is bounded in X. It relates to the closedness of R T as follows:n

PROPOSITION 4.1. Let T : X ª Y be continuous.

Ž . Ž . Ž .a If T is A-proper and condition q holds, then R T is closed in Y.
Ž . Ž . Ž .b If R T is closed and T is an open map, then condition q holds.

Ž . Ž .Proof. a Let y g T X be such that y ª y in Y and x g X suchk k k
� 4that Tx s y . Then there is an r ) 0 such that x ; B by conditionk k k r

Ž . � 4q . Since T restricted to B is proper, it follows that x is precompactn
and therefore some subsequence x ª x. Since T is continuous, we havenk

Tx s y.
Ž . � 4b Assume that x ; X is such that Tx ª f. Let x g X be suchn n

Ž .that Tx s f. For r ) 0, TB x is open and contains f and thereforer
Ž . Ž .Tx g TB x for all large n. Moreover, x g B x for all large n since Tn r n r

� 4 Ž .is an open map. Hence, x is bounded and condition q holds.n

THEOREM 4.1. Let T : X ª Y be continuous, A-proper w.r.t. G, satisfy
Ž .condition q , and be locally in¨ertible on X. Then T is a homeomorphism

onto Y.

Ž .Proof. We know that R T is closed by Proposition 4.1. Since T is
Ž .locally invertible, each point of T X possesses a neighborhood consisting

Ž . Ž . Ž .of points of T X . Hence, R T is open and therefore T X s Y.
y1Ž .It remains to show that T is injective. First, we shall show that T y is

y1Ž .a finite set for each y g Y. Suppose that S s T y is infinite for some
� 4 Ž .y g Y. Then any sequence x ; S is bounded by condition q and, sincen

T is a proper map when restricted to a bounded set, there is a subse-
quence converging to some z with Tz s y. Hence, each neighborhood of z
contains a solution of Tx s y in contradiction to the local invertibility of

w xT. Next, let x / x and Tx s Tx s y and I s y, 0 be a segment in Y.1 2 1 2
w x Ž .Let t g 0, 1 be fixed. Since S y is finite and T is locally invertible, there

Ž .is an e ) 0 such that T is invertible on B s B ty, e whatever thet t t
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U � Ž U . w x4preimage of ty is fixed. Let e - e . Then the family B ty, e ¬ t g 0, 1t t t
w xis an open cover for the compact set I. Hence, there are t , . . . , t in 0, 11 k

� Ž U . 4such that B s B t y, e ¬ 1 F i F k covers I.i i t i

Next, we shall construct two continuous curves g and g with the1 2
y1Ž .initial points at x and x and the end points in T 0 and having no1 2

common points. We may assume that y g B . Since T is locally invertible1
on B , a part of I is in a one-to-one correspondence with an arc of the1
curve with the initial point at x . Repeat the process for B , . . . , B . Since1 2 k

Ž .T is locally invertible on all larger spheres B t y, e , we get a continuousi t i y1Ž .curve g starting at x and ending at a point of T 0 such that1 1
Ž .T g s I. Similarly, we construct the above-mentioned continuous curve1

Ž .g with T g s I. These curves have no points in common. If not, let z2 2
be a common point, and, for simplicity, we may assume that z s 0. Using
the local invertibility of T , we see that the two curves coincide in a part
lying in a neighborhood of 0, and therefore g s g , a contradiction.1 2

w xNow, the segment J s x , x induces a closed curve C passing through1 2
y. Consider the central homothety and let C be the image of C att

w xt g 0, 1 . Clearly, each C is a closed curve. Using the compactness of eacht
C and the above reasoning, we can construct a continuous curve CX in Xt t

Ž X.for each t with T C s C and having the end points on g and g . Sincet t 1 2
T is locally invertible, there is a neighborhood U of 0 where T is bijective.
Let t be sufficiently small such that C ; U. Then the corresponding curvet
CX is closed, in contradiction to it being open. Hence, T is injective andt
therefore it is a homeomorphism.

Ž w x.THEOREM 4.2 cf. Mi-4 . Let T : X ª Y be continuous, locally injectï e,
Ž . Ž .A-proper w.r.t. G for X, Y , and satisfy condition t . Suppose that T has an

Ž . Yodd multï alued derï atï e A x : X ª 2 at each x g X and there exist an0 0
Ž . Ž .n s n x G 1 and c s c x ) 0 such that0 0 0 0 0 0

5 5 5 5Q u G c x for x g X , u g A x x , n G n . 4.1Ž . Ž .n 0 n 0 0

Ž . Ž . Ž . Ž .Assume that T and each A x satisfy 3.4 and A x is c x -bounded for0 0 2 0
Ž . Ž .some c x ) 0. Then T is onto Y and Eq. 3.1 is uniquely approximation2 0

Ž . Ž .sol̈ able for each f g Y and 3.5 holds. If , in addition, A x is c -coercï e0 1
Ž . Ž .for some c s c x ) 0, then the estimate 3.3 holds.1 1 0

Ž .Proof. In view of Theorems 3.1 and 4.1 and the closedness of R T , it
Ž .suffices to show that R T is open in Y and that T is locally invertible. Let

Ž .x g X be fixed and e ) 0 such that T is injective on B x . We need to0 e 0
Ž Ž .. Ž .show that T B x is open in Y. Define a map T : B ª Y by T y se 0 1 e 1

Ž . Ž . Ž . Ž .T x y T x , where y s x y x with x g B x . Then T 0 s 0 and0 0 e 0 1
Ž Ž .. Ž . Ž . Ž .T B x s T B q T x is open if such is T B . In view of thee 0 1 e 0 1 e
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Ž w x.invariance of domain theorem for A-proper maps cf. Mi-3 , it suffices to
Ž .show that, for each y g B and some small r ) 0 such that B y ; B ,0 e 0 r 0 e0

Ž Ž . Ž . .we have that deg Q T y Q T y , B y l X , 0 / 0 for each n G n .n 1 n 1 0 r 0 n 00

Let n G n be fixed and define a map T : B s B l X ª Y by0 n n r n n0
Ž . Ž . Ž . Ž .T u s Q T y y Q T y , where u s y y y with y g B y l X .n n 1 n 1 0 0 r 0 n0

w xLet H : 0, 1 = B ª Y be given byn n n

u ytu
H t , u s T y TŽ .n n nž / ž /1 q t 1 q t

y q ty y q ty0 0s Q T y Q T 2 y y .n 1 n 1 0ž / ž /1 q t 1 q t

Ž .Then there exists an n G n such that H t, u / 0 for all u g ­ B ,1 0 n n
w x w xt g 0, 1 , and n G n . If not, there exist t g 0, 1 , t ª t, and u g ­ B1 n n n nk k k k

Ž . Ž .such that H t , u s 0 for each k. Therefore, by 3.4 , 0 gn n nk k k

Ž .Ž . Ž . Ž .Ž . ŽQ A x y y y q Q R x ; y y y s Q A x u q Q R x ;n 0 n 0 n 0 n 0 n 0 n n 0k k k k k k k

. 5 5u , or, setting ¨ s u r u ,n n n nk k k k

5 50 g Q A x ¨ q Q R x ; u r u for each k .Ž . Ž . Ž .n 0 n n 0 n nk k k k k

Ž .Ž . Ž .Let w g A x ¨ and z g R x ; u be such that Q w q Q z rn 0 n n 0 n n n n nk k k k k k k k
5 5u s 0. Since r is sufficiently small we arrive at the contradictionn 0k

5 5 5 5 5 5 5 5c s c ¨ F Q w F d z r u - c .0 0 n n n n n 0k k k k k

Ž . w xHence, H t, u / 0 on 0, 1 = ­ B for n G n and, consequently,n n 1

deg Q T y Q T y , B y l X , 0Ž . Ž .Ž .n 1 n 1 0 r 0 n0

s deg H 1, ? , B y l X , 0 / 0Ž . Ž .Ž .n r 0 n0

Ž .for each n G n since H 1, ? is an odd map on B .1 n n
Finally, we claim that T is locally invertible. Since T is locally injective,

Ž .for each x g X, there is an e ) 0 such that T : B x ª Y is injective.0 e 0
Ž .Let Tx s f . As shown above, TB x is open and therefore there is a0 0 e 0

Ž . Ž . Ž .d ) 0 such that B f ; TB x . Hence, for each f g B f , there is ad 0 e 0 d 0
Ž .unique x g B x such that Tx s f , i.e., T is locally invertible.e 0

Next, we shall look at T having a uniform multivalued derivative A in
Ž .the sense that Tx y Ty g A x y y whenever x y y g U.
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Ž .THEOREM 4.3. a Let T : X ª Y be A-proper w.r.t. G satisfy condition
Ž . Y Ž .q . Suppose that U ; X is a neighborhood of 0, A: U ª 2 satisfies 3.2
on U l X , andn

Tx y Ty g A x y y whene¨er x y y g U. 4.2Ž . Ž .

Ž .Then T X s Y.
Ž .b If , in addition, U s X, A is positï ely homogeneous, and A is

c -coercï e and c -bounded for some constants c , c ) 0, then T is a homeo-1 2 1 2
Ž .morphism and Eq. 3.1 is uniquely approximation sol̈ able for each f in Y and

Ž . Ž .the estimates 3.3 and 3.5 hold.

Ž .Proof. We have that T X s Y and Q T : X ª Y is a homeomor-n n n
w xphism for each large n by Theorem 2.5 in Mi-3 . Moreover, if 0 g Ax,

then x s 0 by the c -coercivity and T is locally injective. Indeed, let x g X1
Ž .be fixed and e ) 0 such that B ; U. Then, if for some x , x g B x4e 1 2 2 e

Ž . Žwe have that Tx s Tx , then, by condition 4.2 , 0 s Tx y Tx g A y y1 2 1 2 1
. Ž . Ž .y for some y y y g U since x , x g B x ; U x s U q x and, con-2 1 2 1 2 2 e

5 5sequently, x y x s y y y for some y , y g U with y y y F 4e .1 1 1 2 1 2 1 2
Ž .Hence, y s y and therefore x s x . The conclusions in b now follow1 2 1 2

Ž . Ž .from Theorems 4.2 and 3.1 b and c and Remark 3.1.

Ž .THEOREM 4.4. a Let T : X ª Y be continuous, A-proper w.r.t. G, and
ha¨e the closed range. Suppose that for each u g X there exist a ball
Ž . Ž .B u ; X, a linear map K : X ª Y with K X s Y, and positï e constantsr

m and c such that mc - 1 and
Ž . 5 Ž .5 5 5 Ž .i Tx y Ty y K x y y F m x y y for x, y g B u .r

Ž . y1ii K is a multï alued c-Lipschitz map.

Ž .Then T is surjectï e, i.e., T X s Y.
Ž . Ž . y1b Let, in addition, T satisfy condition t . K exist, d mc - 1, and
Ž . 5 5 y1 5 5iii Q Kx G c x on X for all large n.n n

Ž .Then T is a homeomorphism and, for each f g Y, Eq. 3.1 is strongly
Ž .approximation sol̈ able and the estimate 3.3 holds. If each K is also

Ž . Ž .continuous, then Eq. 3.1 is uniquely approximation sol̈ able and 3.5 holds.

Ž .Proof. a T is an open map at each x g X by Theorem 2.5 and
Ž . Ž . Ž .therefore R T is open. Hence, R T s Y since R T is closed.

Ž .b T is locally invertible by Remark 2.5 and is therefore a homeo-
morphism by Theorem 4.1. Let f g Y be fixed, x be the solution of0 0

Ž . Ž .Tx s f , and r such that conditions i and iii hold with u replaced by x .0 0
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� 5 5 5 54 Ž .Then the map A defined by Ax s y ¬ y y Kx F m x for x g B x isr 0
Ž .a multivalued derivative of T at x since, by condition i ,0

5 5Tx y Ty g A x y y s z ¬ z y K x y y F m x y y� 4Ž . Ž .
for x , y g B x .Ž .r 0

Ž .Next, we claim that 3.2 holds. Indeed, if x g B l X and y g Ax, thenr n

5 5 5 5 5 5 y1 5 5Q y G Q Kx y d y y Kx G c y d m x ,Ž .n n

Ž .and therefore 3.2 holds by the homogeneity of A. Moreover, for y g Ax
5 5with x F r,

5 5 5 5 5 5 5 5 5 5 y1 5 5y G Kx y y y Kx G Kx y m x G c y m x .Ž .

Ž . Ž . Ž .Hence, the first conclusion in b follows from Theorem 3.1 a and b .
Next, suppose that each K is continuous. Then, for each y g Ax with
x g B ,r

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5y F y y Kx q Kx F m x q K x s m q K x .Ž .

Ž .Hence, the second conclusion follows from Theorem 3.1 c .

Ž . YTHEOREM 4.5. a Let U ; X be a neighborhood of 0 and A: U ª 2 ,
Ž .with A x compact, be u.s.c., f-condensing, and x s 0 if x g Ax. Suppose

Ž .that N: X ª Y is continuous and Nx y Ny g A x y y whene¨er x y y g U.
Then I y N is bijectï e.

Ž .b If , in addition, A and N are ball-condensing on X and A is
positï ely homogeneous, then the equation x y Nx s f is uniquely approxima-

� 4tion sol̈ able w.r.t. G s X , P for each f g X and the approximate solu-n n
Ž . Ž .tions x g X of x y P Nx s P f satisfy 3.3 and 3.5 .n n n n

w xProof. I y N is bijective by Corollary 1.4 in Mi-2 . Moreover, I y N is
w xc -coercive by Lemma 1.1 in Mi-2 , for some c ) 0, while I y A satisfies1 1

Ž . w x3.2 by Lemma 2.1 in Mi-3 and is c -coercive by Lemma 2.1. Finally,2
I y P N: X ª X is a homeomorphism for each n G n by Theorem 2.5n n n 0

w xin Mi-3 . Next, we claim that for each f g X there are an r ) 0 and
Ž . Ž .n G 1 such that deg I y P N, B l X , P f s deg I y N, B , f / 0 for0 n r n n r

Žeach n G n . Indeed, for a given f g X, select an r ) 0 such that f g I0
.Ž . Ž .y N B . Since I y N is a homeomorphism, deg I y N, B , f / 0. Thenr r

Ž . Ž . w xthe homotopy H t, x s tP Nx q 1 y t Nx on 0, 1 = B is admissiblen r
Ž . Ž . Žand deg I y N, B , f s deg I y P N, B , P f s deg I y P N, B lr n r n n r

.X , P f . Hence, the claim is valid and x y P Nx s P f is solvable inn n n n
B l X . Thus, the conclusions of the theorem follow from Theorem 3.1r n
and Remark 3.1.
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Ž .When A and N are compact maps, Theorem 4.5 a is due to Lasota and
w xOpial LO . For an application of this theorem to linear boundary value

w xproblems for ordinary differential equations, we refer to Mi-8 .
In the case of differentiable maps, we have

Ž .THEOREM 4.6. a Let T : X ª Y be Frechet differentiable, A-proper´
XŽ .w.r.t. G, and ha¨e the closed range in Y. Then, if T x is injectï e and

Ž .A-proper w.r.t. G for each x g X, Eq. 3.1 is strongly approximation sol̈ able
Ž . Ž .in a neighborhood B x of each of its solution x for f g Y and 3.3 holds.r 0 0

Ž .b If , in addition, T is continuously Frechet differentiable in X, then T´
Ž .is a homeomorphism and Eq. 3.1 is uniquely approximation sol̈ able for

Ž .each f g Y and 3.5 holds.

XŽ .Proof. Let x g X be fixed. Since T x is an A-proper injection,0 0
Ž .there are a c s c x ) 0 and n G 1 such that, for each n G n ,0 0 0 0 0

X 5 5Q T x x G c x for x g X .Ž .n 0 0 n

XŽ . w xSince T x is a bijection, by Krasnosel’skii and Zabreiko’s result KZ , T0
is surjective. Hence, the conclusion follows from Theorem 3.2. If T is

Ž .continuously Frechet differentiable, then the assertions of b follow by´
Theorem 4.2.

Remark 4.1. If T s I y C, C compact and continuously Frechet differ-´
entiable, the homeomorphism assertion only is due to Krasnosel’skii and

w xZabreiko KZ .

Next, we shall give an application of Theorem 3.1 to asymptotically
� 4B , B -quasilinear maps of the form T s I y N in a Hilbert space H. Let1 2

Ž .B , B : H ª H be self-adjoint maps and write B F B if B x, x F1 2 1 2 1
Ž . Ž .B x, x for all x g H. Let s B be the spectrum of B , i s 1, 2, 1 f2 i i
Ž . Ž . Ž . Ž . � 4 Ž . Ž .s B j s B , s B l 1, ` s l , . . . , l and s B l 1, ` s1 2 1 1 k 2

� 4m , . . . , m , where the l ’s and m ’s are the eigenvalues of B and B ,1 l i j 1 2
respectively, of finite multiplicities. Suppose that the sum of the multiplici-
ties of the l ’s is equal to the sum of the multiplicities of the m ’s. Then wei j

say that B and B form a regular pair.1 2
w x Ž .Following Krasnosel’skii and Zabreiko KZ , a nonlinear map A:

� 4H ª H is said to be B , B -quasilinear on a set M ; H if for each1 2
x g M there exists a linear self-adjoint map C: H ª H such that B F C1
F B and Cx s Ax. A map N: H ª H is said to be asymptotically2
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� 4 � 4B , B -quasilinear if there is a B , B -quasilinear outside some ball map1 2 1 2
A such that

5 5Nx y Ax
< <N y A s lim sup - `.

5 5x5 5x ª`

For such maps we have

Ž .THEOREM 4.7. a Let N: N ª H be Frechet differentiable and such that´
XŽ . XŽ . � 4N x is self-adjoint, B F N x F B for some regular pair B , B , and1 2 1 2

XŽ . � 4I y N x is A-proper w.r.t. G s X , P for each x g H. Suppose thatn n
Ž . w xH s I y tN y 1 y t B is A-proper w.r.t. G for each t g 0, 1 and somet 0 0

self-adjoint map B with B F B F B . Then, for each f g H, the equation0 1 0 2
Ž .Tx s x y Nx s f is strongly approximation sol̈ able in a neighborhood B xr 0

Ž .of each of its solutions x and the estimate 3.2 holds.0

Ž .b If , in addition, N is continuously Frechet differentiable in H, then´
I y N is a homeomorphism and the equation x y Nx s f is uniquely approxi-

Ž .mation sol̈ able for each f g H and the estimate 3.5 holds.

Ž . ŽProof. For each x, y, h g H and some t g 0, 1 , we have that Nx y
. Ž XŽ Ž ..Ž . .Ny, h s N y q t x y y x y y , h , and therefore

X5 5 5 5Nx y Ny F sup N y q t x y y x y yŽ .Ž .
0FtF1

5 5 5 5 5 5F max B , B x y y .� 41 2

Hence, N is bounded and, consequently, H is an A-proper homotopyt
Ž . Ž . Ž . 1 XŽ .w.r.t. G. Since Nx s C x x q N 0 , where C x s H N tx dt, it follows0
� 4 < <that N is asymptotically B , B -quasilinear with N y A s 0 and Ax s1 2

Ž . w xC x x. Thus, I y N is surjective by Theorem 3.4 in Mi-4 . Moreover,
XŽ . w xsince 1 is not an eigenvalue of N x for each x g H as shown in Mi-4 ,

the conclusions of the theorem follow from Theorems 3.1 and 4.2 as above.

Ž .THEOREM 4.8. a Let T : U ; X ª Y be such that for each u g U there
Ž .is a ball B u ; U, a linear map K, and a constant m such thatr

Ž . 5 Ž .5 5 5 Ž .i Tx y Ty y K x y y F m x y y for x, y g B u .r

Ž . y1 Ž . Ž5 y1 5y1 .ii K has a bounded in¨erse K on TB u and K y m rr
G c ) 0 for some constant c independent of u g U.

Then T is surjectï e and locally in¨ertible.
Ž .b Let, in addition, T be A-proper w.r.t. G, and, for all large n,
Ž . 5 5 5 5iii Q Kx G c x for x g X and some c with d mc - 1.n 0 n 0 0
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Ž .Then, for each f g Y, Eq. 3.1 is strongly approximation sol̈ able in a
Ž .neighborhood of each its solution x and the estimate 3.3 holds. Moreo¨er, if0

Ž .each K is also continuous, then Eq. 3.1 is uniquely approximation sol̈ able in
Ž .a neighborhood of each its solution x and 3.5 holds.0

Ž . w xProof. The assertions in part a follow by Theorem 4.1 in E , while
Ž . Ž .those in part b can be proved as in the proof of Theorem 4.4 b .

Ž . w x Ž5 y1 5y1Remark 4.2. In view of Theorem 4.1 a in E , the condition K
.y m r G c ) 0 can be replaced by: for each R ) 0 there exists a constant
Ž . Ž5 y1 5y1 . 5 5 5 5c s c R ) 0 such that K y m r G c for u F R, and Tx ª `

5 5as x ª ` with x g U.

Remark 4.3. Taking X s Y s R1 and Tx s tan x, it can be shown that
Ž w x.all conditions of Theorem 4.8 are satisfied see E . Hence, Theorem 4.8

does not ensure that T has an inverse defined on all of Y.

When T is also continuous, we have the following result dealing with the
invertibility of T and the number of solutions of Tx s f.

THEOREM 4.9. Let all conditions of Theorem 4.8 hold and T be continu-
ous on U. Then there exists a finite or infinite number L of open connected
domains U ; U such thatl

Ž .i U s D U and the sets U are mutually disjoint.lg L l l

Ž .ii For each l g L, the restriction T of T to U is a homeomorphisml l

of U onto Y.l

Ž .iii If U s X, then T is a homeomorphism of X onto Y.
Ž . Ž .iv If , in addition, T is an A-proper map w.r.t. G and iii of Theorem

Ž .4.8 holds, then the conclusion of Theorem 4.8 b hold.

Ž . Ž . w x Ž .Proof. Assertions i ] iii are Theorem 6.1 in E and iv follows from
Theorem 4.8.

5. APPLICATIONS TO SEMILINEAR EQUATIONS

In this section, we shall consider semilinear maps of the form T s A y N
with A linear and not necessarily continuous. We have the following
constructive inverse function theorem.

Ž w x. Ž .THEOREM 5.1 cf. Mi-6 . Let A: D A ; X ª Y be a closed linear
Ž .densely defined map and C: X ª Y be linear and such that A y C: D A ;

5Ž .y1 5y1X ª Y is a bijection and d s A y C . Suppose that N: X ª Y is
nonlinear and continuous.

Ž . Ž .a Let, for some k g 0, d ,
5 5N y C x y N y C y F k x y y for all x , y g X . 5.1Ž . Ž . Ž .
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Ž .Then Eq. 3.1 is uniquely sol̈ able for each f g Y and the solution is the limit
of the iteratï e process

Ax y Cx s Nx y Cx q f . 5.2Ž .n n ny1 ny1

Ž . Ž .b Equation 3.1 is uniquely approximation sol̈ able w.r.t. G s
� 4 Ž . Ž . 5 5X , P , Y , Q with Q A y C x s A y C x on Y and d s max Q sn n n n n n n

� 41 for each f g Y and the approximate solutions x g X satisfyn n

5 5x y x F c A q N x y f for some c and all large n. 5.3Ž . Ž .n n

Ž .If A is defined on all of X, then the approximate solutions also satisfy 3.5 .
Ž .c If k s d, X is uniformly con¨ex, d s 1, and

5 5 5 5Nx y Cx F a x q b for some a - k , b ) 0, 5.4Ž .

Ž .then Eq. 3.1 is sol̈ able for each f g X.

Let us now discuss some special cases in the Hilbert space H setting.
Ž . Ž x y Ž Ž . Ž ..For c g s A l y`, 0 , define d s dist c, s A l y`, c . The fol-c

w xlowing result with c s 0 was proved by the author Mi-6 Proposition 2.7 .

Ž .THEOREM 5.2. Let A: D A ; H ª H be a self-adjoint map and N:
H ª H satisfy

Ž . Ž . 5 5 2i Nx y Ny, x y y G a x y y for all x, y g H.
Ž . 5 5 5 5ii Nx y Ny F b x y y for all x, y g H.
Ž . Ž . Ž . 2 y Ž y .a If i and ii hold and b - a d q c d y c y 2a for somec c

Ž .c F 0, then Eq. 3.1 is uniquely sol̈ able and the solution is the limit of the
Ž . Ž .iteratï e process 5.2 . Moreo¨er, Eq. 3.1 is uniquely approximation sol̈ able

� 4 5 5 Ž .w.r.t. G s H , P with d s max P s 1 for each f g H and 5.3 holds.n n n
Ž .If A is defined on all of H, then the approximation solutions also satisfy 3.5 .

Ž . 2 y Ž y . yb If b F a d q c d y c y 2a and, for some a - l s c y d r2c c c
and b ) 0,

5 5 5 5Nx y l x F a x q b for all x g H ,

Ž .then Eq. 3.1 is sol̈ able for each f g H.

w xProof. We follow the arguments of Proposition 2.7 in Mi-6 . Let
y Ž . Ž Ž ..l s c y d r2 and Cx s l x. Then l f s A and d s dist l, s A ) 0c
5Ž .y1 5y1 Ž . Ž .with d s A y lI . Using conditions i and ii , we get

1r22 2 5 5Nx q l x y Ny q l y F b q l q 2al x y y .Ž . Ž .
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By our choice of l and the condition on b , we get

22 2 2 y y yb q l q 2al s b q a d q c d y c y 2a q d r2Ž . Ž .c c c

2y 2- d r2 s d .Ž .c

Hence, the conclusions follow from Theorem 5.1.

Remark 5.1. Since a F b , the conditions imposed on a and b require
Ž < < < < y.that they belong to c , c q d . Hence, c F 0 is chosen so that this factc

holds.

w xRemark 5.2. Theorem 5.2 extends a result of Smiley Sm in various
ways, whose proof is based on the Liapunov]Schmidt alternative method,
and the obtained error estimate is of a different type.

Ž .THEOREM 5.3. Let A: D A ; H ª H be self-adjoint, N: H ª H be a
gradient map, and C, B": H ª H be self-adjoint maps such that

Ž . Ž yŽ . . Ž . Ž qŽ . .i B x y y , x y y F Nx y Ny, x y y F B x y y , x y y
for all x, y g H.

Ž . 5 " 5 � < < < Ž .4ii B y C F d s min l l g s A y C .
Ž . Ž . Ž .a If the inequality is strict in ii , then Eq. 3.1 is uniquely sol̈ able

Ž . Ž .and the solution is the limit of the iteratï e process 5.2 . Moreo¨er, Eq. 3.1
� 4 5 5is uniquely approximation sol̈ able w.r.t. G s H , P with max P s 1 forn n n

Ž .H for each f g H and the approximate solutions satisfy 5.3 . If A is defined
Ž .on all of H, then the approximate solutions also satisfy 3.5 .

Ž .b If , in addition, there are 0 - a - d and b G 0 such that

5 5 5 5Nx y Cx F a x q b for all x g H ,

Ž .then Eq. 3.1 is sol̈ able for each f g H.

Ž .Proof. Since C is a gradient of the functional x ª Cx, x r2, N y C is
a gradient map and

5 y 5 5 5 2y B y C x y y

F Byy C x y y , x y y , Bqy C x y y , x y yŽ . Ž . Ž . Ž .Ž . Ž .
5 q 5 5 5 2F B y C x y y .

w xHence, by Lemma 1 in M ,

5 5N y C x y N y C y F k x y y for all x , y g H ,Ž . Ž .

Ž5 y 5 5 q 5. 5Ž .y1 5y1where k s max B y C , B y C . Since d s A y C , the con-
clusions follow from Theorem 5.1.
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y q w xRemark 5.3. If B s a I and B s bI and a , b is contained in the
Ž . Ž .resolvent set r A of A, then we can take C s lI for some l g a , b in

Ž . Ž w x.part a of Theorem 5.3 cf. Mi-6 . In this case the unique solvability of
Ž . w xEq. 3.1 was proved by Amann A and a different proof of it was given in

w x Ž .Mawhin M . Part b allows a bigger value of b as the following result
Ž . Ž . q Ž Ž . Ž ..shows. For c g s A l 0, ` , define d s dist c, s A l c, ` .c

Ž .THEOREM 5.4. Let A: D A ; H ª H be self-adjoint, N: H ª H be a
gradient map, and a , b g R be such that

5 5 2 5 5 2a x y y F Nx y Ny , x y y F b x y y for x , y g H .Ž .

Ž . Ž . Ž x ya If either c g s A l y`, 0 and yc - a F b - yc q d , orc
Ž . Ž . q Ž .c g s A l 0, ` and yc y d - a F b - yc, then Eq. 3.1 is uniquelyc

Ž .sol̈ able and the solution is the limit of the iteratï e process 5.2 . Moreo¨er,
Ž . � 4Eq. 3.1 is uniquely approximation sol̈ able w.r.t. G s H , P withn n

5 5 Ž .max P s 1 for each f g H and 5.3 holds. If A is defined on all of H,n
Ž .then the approximate solutions also satisfy 3.5 .

Ž . Ž .b If the conditions in a hold with each ‘‘- ’’ sign replaced by ‘‘F ’’
and, for some a - l with l s c y dyr2 if c F 0 and l s c q dqr2 ifc c
c ) 0, and b ) 0,

5 5 5 5Nx y l x F a x q b for all x g H ,

Ž .then Eq. 3.1 is sol̈ able for each f g H.

Proof. As above, we have that

5 5 < < < < 5 5Nx q l x y Ny y l y F max a q l , b q l x y y .Ž .

Ž . < <By our choice of l as given in b , we conclude that a q l F d s
Ž Ž .. " < <dist l, s A s d r2 and b q l F d with the inequalities being strict inc
Ž .part a . Hence, Theorem 5.1 is applicable.

When N is also Gateaux differentiable, Theorem 5.4 was proved inˆ
w xMi-6 . Without the constructive solvability assertions and the error esti-

w xmates, it is due to Ben-Naoum and Mawhin BM when c s 0.
The next result deals with conditions which imply the contractivity

Ž .property of the nonlinear map in a suitable reformulation of Eq. 3.1 .

Ž .THEOREM 5.5. Let A: D A ; H ª H be self-adjoint, N: H ª H be a
gradient map, and C, B": H ª H be self-adjoint maps such that

Ž . y qi N y B and B y N are monotone

and either one of the following conditions holds:
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Ž . y q "ii H s H [ H for some closed subspaces H and the projections
" " "Ž Ž .. Ž .P : H ª H are such that P D A ; D A and, for some g ) 0,

y 5 5 2 yA y B x , x F yg x , x g D A l H , 5.5Ž . Ž . Ž .Ž .
q 5 5 2 qA y B x , x G g x , x g D A l H . 5.6Ž . Ž . Ž .Ž .

Ž . ŽŽ y. . Ž . y ŽŽ q. .iii A y B x, x - 0 for x g D A l H and A y B x, x )
Ž . q0 for x g D A l H

Ž . y qand either A y 1 y t B y tB has a closed range or A has a compact
resol̈ ent.

Ž . Ž . y q w xiv A y 1 y t B y tB has a bounded in¨erse for each t g 0, 1 .

Ž . Ž .Then, for each f g H, Eq. 3.1 is uniquely sol̈ able, 5.2 holds, and, if
Ž . � 4ii holds, it is uniquely approximation sol̈ able w.r.t. G s P , H withn n

Ž .P Ax s Ax on H and the approximate solutions satisfy 5.3 . If A is definedn n
Ž .on all of H, then the approximation solutions also satisfy 3.5 .

w xThe following lemma from Mi-6 is needed for the proof.

Ž .LEMMA 5.1. Let condition ii of Theorem 5.5 hold. Then there are e ) 0
Ž .and c ) 0 such that, for any self-adjoint maps B , B , C g L H with1 2

ByF B , B F Bq, and B y e I F C F B q e I, we ha¨e that1 2 1 2

5 5 5 5Ax y Cx G c x for all x g D A . 5.7Ž . Ž .

Proof of Theorem 5.5. Lemma 5.1 implies that A y C has a continuous
Ž .inverse since it is self-adjoint and has a closed range. Hence, condition ii

Ž . y q Ž . Ž .with C s 1 y t B q tB implies iv . Moreover, condition iii also im-
Ž . Ž . y qplies iv . To see this, it is enough to show that A y 1 y t B y tB is

Ž . yone-to-one. If not, then there is an x / 0 such that Ax y 1 y t B x y
tBqx s 0. Then x s x q x g Hyq Hq and, by the symmetry of the1 2
operators,

0 s Ax y 1 y t Byx y tBqx , x y xŽ .Ž .2 1

s Ax q Ax y 1 y t Byx q Byx y t Bqx q Bqx , x y xŽ . Ž . Ž .Ž .2 1 2 1 2 1 2 1

s A y 1 y t Byy tBq x , x y A y 1 y t Byq tBq x , xŽ . Ž .Ž . Ž .Ž . Ž .2 2 1 1

G A y Bq x , x y A y By x , x ) 0,Ž . Ž .Ž . Ž .2 2 1 1

Ž . Ž .a contradiction. Now, if iv holds, then Eq. 3.1 is uniquely solvable for
w x Ž .each f g H by a result of Fonda and Mawhin FM . When ii holds,

A y N is known to be A-proper and gr2-strongly K-monotone and
therefore the second assertion follows.
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Ž .Remark 5.4. Theorem 5.5 ii gives a constructive proof of a result of
w x Ž . w xTersian T and part iv is due to Fonda and Mawhin FM . Our proof of

Ž .the unique solvability in ii is new. This result also extends many other
Ž w x w x .earlier ones Amann A , Dancer D , etc. . For various applications to

ordinary, elliptic, and hyperbolic equations, we refer to the above-cited
w xworks and to Mi-10 .

Ž .COROLLARY 5.1. Let A: D A ; H ª H be self-adjoint and N: H ª H
be a gradient map such that, for some self-adjoint maps B": H ª H,

Ž . y qi N y B and B y N are monotone.
Ž . q m " " " Ž "ii b s Ý l P commute with A, where P : H ª ker B yis1 i i i

". y q " "l are orthogonal projections with P s P for 1 F i F m, l F ??? F l ,i i i 1 m
and l" are pairwise distinct.i

Ž . m w y qx Ž .iii D l , l ; r A }the resol̈ ent set of A.is1 i i

Ž .Then Eq. 3.1 is uniquely approximation sol̈ able w.r.t. G for each f g H
Ž . Ž .and 5.2 and 5.3 hold. If A is defined on all of H, then the approximate

Ž .solutions also satisfy 3.5 .

w x "Proof. By Lemma 2.4 in Mi-6 , there are orthogonal subspaces H
y q Ž . Ž .such that H s H [ H and conditions 5.5 and 5.6 hold. Hence, the

result follows from Theorem 5.5.
" Ž .When B are not of the form ii , we need to assume more on the

linear part A.

Ž .COROLLARY 5.2. Let A: D A ; H ª H be self-adjoint, N: H ª H be
a gradient map, and C , C , B" be continuous self-adjoint maps such that1 2
C F By, BqF C , and1 2

Ž . y qi N y B and B y N are monotone maps.
Ž . Ž .ii The spectrum s A is countable, consists of eigen¨alues, and the

corresponding eigen¨ectors form a complete orthonormal system in H.
Ž .iii There are two consecutï e finite multiplicity eigen¨alues l - lk kq1

of A such that

5 5 2 5 5 2 � 4l x - C x , x F C x , x - l x for x g H _ 0 .Ž . Ž .k 1 2 kq1

Ž .Then Eq. 3.1 is uniquely approximation sol̈ able w.r.t. G for each f g H
Ž . Ž .and 5.2 and 5.3 hold. If A is defined on all of H, then the approximate

Ž .solutions also satisfy 3.5 .
y Ž q.Proof. Let H resp. H be the subspaces of H spanned by the

Žeigenvectors of A corresponding to the eigenvalues l F l resp. l Gi k i
. w x Ž . Ž .l . By Lemma 2.5 in Mi-6 , there is a g ) 0 such that 5.5 and 5.6kq1

hold. Hence, the conclusion follows from Theorem 5.5.
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Ž .Remark 5.5. If l resp. l is of infinite multiplicity, then Corollaryk kq1
Ž .5.2 is still valid if we assume in iii

5 5 2 5 5 2l q e x F C x , x resp. C x , x F l y e xŽ . Ž . Ž . Ž .žk 1 2 kq1

for 0 / x g H .

Ž .Regarding 5.7 , we also have the following useful result.

Ž . Ž .LEMMA 5.2. Let A: D A ; H ª H be self-adjoint. Then 5.7 holds for
each continuous self-adjoint map C with B F C F B if there is an a ) 01 2
such that either

Ž . � < < < Ž .4i 0 - a - min l l g s A y C , or
Ž . Ž Ž . Ž ..ii each C commutes with A and dist s A , s C ) a.

y q w xFor a discussion of the case when H [ H / H, we refer to A, Mi-6 .

6. CONSTRUCTIVE HOMEOMORPHISM THEOREMS FOR
A-STABLE MAPS

Ž .In this section, we continue our study of Eq. 3.1 with T neither
differentiable nor having a multivalued derivative. We shall show that
similar error estimates hold provided that T is locally Lipschitz and

Ž .approximation stable, i.e., an inequality of type 6.1 below holds. We say
that T : X ª Y is locally p-Lipschitz for some p ) 0 if for each x g X

Ž .there are positive numbers r and M depending on x such that

p5 5 5 5Ty y Tz F M y y z for all y , z g B x .Ž .r

Define the function

1, 0 - q F 1,
m q sŽ . qy1½ 2 , q ) 1.

w xFor such maps, the following result was announced in Mi-4 .

Ž w x.THEOREM 6.1 cf. Mi-4 . Let T : X ª Y be surjectï e and locally
p-Lipschitz and there are a function c: Rqª Rq and numbers q ) 0 and

Ž . qn G 1 such that c r r ª ` as r ª ` and, for each r ) 0,0

q5 5 5 5Q Tx y Q Ty G c r x y y for x , y g B l X , n G n . 6.1Ž . Ž .n n r n 0
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Ž .Then T is a homeomorphism and, for each f g Y, Eq. 3.1 is uniquely
approximation sol̈ able w.r.t. G, the approximate solutions x g B l X forn r n
some r, and, for n G n ,0

5 5 q 5 5 p 5 5 qx y x F k P x y x q k P x y xn 0 1 n 0 0 2 n 0 0

p qF c d x , X q c d x , X , 6.2Ž . Ž . Ž .1 0 n 2 0 n

where d is the distance, the constants k and k depend on r, d , q, and x ,1 2 0
5 5and c s 2k d , i s 1, 2, d s sup P .i i 1 1 n

Proof. Let r ) 0 and x, y g B . Then, since G is projectionally com-r
5 5 5 5 5 5 5 5plete, there are x , y g X with x s x and y s y and x ª x,n n n n n n

y ª y. Moreover, for each n G n ,n 0

5 5 5 5 qQ Tx y Q Ty G c r x y y ,Ž .n n n n n n

and passing to the limit we obtain that

q5 5 5 5Tx y Ty G c r x y y , x , y g B . 6.3Ž . Ž .r

5 5In particular, for x s r we get

5 5 5 5 5 5 5 5 q 5 5Tx G Tx y T 0 y T 0 G c r x y T 0Ž .

5 5 5 5and therefore Tx ª ` as x ª `. Next, let y g Y be fixed, Tx s y ,0 0 0
Ž . y1Ž Ž .. Ž .r, R, and e ) 0 such that B x ; T B y ; B . Then, if u g B y ,e 0 R 0 r R 0

Ž .u s Tx for some x g B x andr 0

y1rq 1r qy1 y15 5 5 5T u y T y F c r u y y ,Ž .0 0

which implies the continuity of Ty1 at y . Hence, T is a homeomorphism.0
Let us now prove the second part of the theorem. Since Q T : X ª Yn n n

Ž . Ž .is continuous and injective by 6.1 , Q T X is open in Y by the Brouwern n n
Ž .invariance of domain theorem. Moreover, Q T X is closed in Y for, ifn n n

� 4 � 4Q Tx ª y for some x ; X , then x is a Cauchy sequence andn k k n k
therefore Q Tx ª Q Tx for some x g X . Hence, Q T : X ª Y isn k n n n n n
bijective for each n G n . Next, let f g Y be fixed and x and x g X be0 0 n n

Ž .the unique solutions of Eq. 3.1 and Q Tx s Q f with n G n , respec-n n 0
5 5 5 5 5 5 Ž . q 5 5tively. Set x s r . Then Q f s Q Tx G c r r y Q T 0 and,n n n n n n n n

� 4 � 4consequently, x is bounded. Let r ) 0 be such that x and x aren 0 n
5 5contained in B . Set d s sup Q . Then, for all large n,r n

5 5 q 5 5c r x y P x F Q Tx y Q TP xŽ . n n 0 n n n n 0

5 5 5 5 pF d Tx y TP x F dM x x y P xŽ .0 n 0 0 0 n 0
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and

qq5 5 5 5 5 5x y x F x y P x q P x y xŽ .n 0 n n 0 n 0 0

5 5 q 5 5 qF m q x y P x q P x y xŽ . Ž .n n 0 n 0 0

y1 5 5 p 5 5 qF m q dM x c r P x y x q P x y x .Ž . Ž . Ž .Ž .0 n 0 0 n 0 0

Ž .Hence, 6.2 holds as in Theorem 3.1

Ž .Remark 6.1. If, for example, p s q s 1 and c r ' constant in Theo-
5 5 5 5rem 6.1, then we have that Tx y Ty G c x y y for all x, y g X and one

Ž .easily sees that the approximate solutions also satisfy 3.3 .

COROLLARY 6.1. Let T : X ª Y be surjectï e, weakly Gateaux differen-ˆ
Ž .tiable on X, and satisfy 6.1 . Suppose that for each x g X there are positï e

Ž . 5 XŽ .5constants r and M depending only on x such that T y F M for all
Ž .y g B x . Then the conclusions of Theorem 6.1 hold with p s 1.r

Proof. It suffices to show that T is locally Lipschitz on X. But this
follows easily by the mean value theorem.

Ž .Strengthening condition 6.1 to the strong-monotonicity condition for
T : X ª X U , we shall now derive a simpler formula for the rate of
convergence of approximate solutions. A similar result has been proven

w xearlier by Ciarlet, Schultz, and Varga CSV using different arguments,
where one can also find a number of applications to quasilinear elliptic
partial differential equations.

Ž w x. UTHEOREM 6.2 cf. Mi-4 . Let T : X ª X be surjectï e and locally
Ž . Ž . qLipschitz and, for some 1 - q ) p and c r with c r r ª ` as r ª ` and

r ) 0,

q5 5Tx y Ty , x y y G c r x y y for x , y g B . 6.4Ž . Ž . Ž .r

Ž .Then T is a homeomorphism and, for each f g Y, Eq. 3.1 is uniquely
� Ž U . U4approximation sol̈ able w.r.t. G s X , P ; Y s R P , P , the approximaten n n n n

solutions x g B l X for some r and for each nn r n

Ž .1r qyp1rŽqyp.5 5 5 5x y x F k P x y x F c dist x , X ,Ž .n 0 n 0 0 0 n

Ž . Ž . 5 5where k depends on M x and c r , and c s 2kd , d s sup P .0 1 1 n

Ž . Ž . Ž .Proof. It is easy to see that 6.4 implies 6.1 with c r replaced by
y1 5 U 5d cr, where d s sup P . Hence, as in the proof of Theorem 6.1, we seen

that T is a homeomorphism and PUT : X ª Y is bijective for each n.n n n
Moreover, for each f g X U fixed, the solution x of Tx s f and the0
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U Uapproximate solutions x of P Tx s P f belong to a ball B for somen n n r
r ) 0. Hence,

5 5 qc r x y x F Tx y Tx , x y xŽ . Ž .n 0 n 0 n 0

s Tx y Tx , P x y xŽ .n 0 n 0 0

q Tx y Tx , x y P xŽ .n 0 n n 0

s Tx y Tx , P x y xŽ .n 0 n 0 0

5 5 5 5F Tx y Tx P x y xn 0 n 0 0

5 5 p 5 5F M x x y x P x y x .Ž .0 n 0 n 0 0

Ž y1Ž . Ž ..1rŽqyp.Set k s c r M x . Then, for each n, we have that0

Ž .1r qyp1rŽqyp.5 5 5 5x y x F k P x y x F c dist x , X .Ž .n 0 n 0 0 0 n
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