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1. INTRODUCTION

This paper deals with various implicit and inverse function theorems for
nondifferentiable maps, with constructive homeomorphism results for non-
linear and semilinear not necessarily differentiable maps, and with error
estimates of approximate solutions.

Let X and Y be Banach spaces and 7T: X — Y be continuously Fréchet
differentiable at x, and satisfy the Lyusternik condition T'(x,)(X) =Y,
and thus right-invertible. Then the classical inverse function (open map-
ping) theorem of Graves [G] states that 7(x,) € Int T(B,(x,)) for all
h > 0. Recently, there have been extensions of this result in many direc-
tions based on various iterative processes, topological degrees, and Eke-
land’s variational principle, depending on the structure and /or differentia-
bility properties of T. For example, if T has either a strong Fréchet and a
Hadamard derivative at x, and 7'(x,) has an approximate right or other
inverse, then some implicit function theorems, based on a generalized
Newton—Kantorovich iterative process, have been obtained by Craven and
Nashed and others (see [CN] and the references therein). In applications,
many boundary value problems for differential equations or many control
theory and optimization problems may not be locally linearized and may
require results where the linear structure is not present. Motivated by this,
a number of authors have obtained various generalization of the classical
inverse and implicit function theorems to nondifferentiable maps having
either some type of a multivalued derivative in a Banach space or a
suitable variation in a complete metric space, which describes the infinites-
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imal behavior of a map at a given point. Various extensions, based on
iterative processes, can be found in [E], [K], and [DMO] and the references
therein. Inverse function theorems for set-valued maps having contingent
or Clark’s type of multivalued derivative, and the range in a finite- or
infinite-dimensional space, have been proved by many authors and we
refer to Aubin and Ekeland [AE] and Aubin and Frankowska [AF-1, AF-2]
and the references therein. Recently, Frankowska [F] has obtained several
first- and higher-order inverse mapping theorems for set-valued maps from
a complete metric space to a Banach space by studying the corresponding
open mapping principle using a variation of the map at a point and
Ekeland’s variational principle. Another type of implicit function theorem
for compact maps, requiring a more special type of a multivalued deriva-
tive, has been obtained by Chow and Lasota [CL] using the Leray—Schauder
degree theory.

New extensions of the classical implicit/inverse function theorem are
given in Section 2. We prove some implicit and inverse function theorems
for maps having a multivalued derivative at an initial solution x,. The first
few results involve pseudo A-proper and ¢-condensing maps of the form
T(x,v) = Nx + M(x,v) and are based on the crucial new assumption that
the isolated solution x, of Nx = 0 has a nontrivial index, i.e., the corre-
sponding degree is nontrivial. This assumption is shown to hold for
potential A-proper maps, as well as for some types N having a multival-
ued derivative. These results are proved using topological degree methods
and extend considerably the work of Chow and Lasota [CL]. The last
neighborhood open mapping—inverse function theorem involves nonlinear
maps on closed subsets that have a special type of a multivalued derivative,
and is proved by using an iterative process. It is an extension of Ehrmann’s
implicit function theorem [E] and of the open mapping theorem of
Kachurovskii [K] (cf. also [DMO] for other results for nondifferentiable
maps). It also extends an inverse function theorem of Aubin and
Frankowska [AF] to nondifferentiable maps having an infinite-dimensional
image space but defined on less general domains. However, we refer to
[AF-2] for a constrained inverse function theorem for differentiable maps
between two Banach spaces satisfying a transversality condition. The
results of this section are applicable to boundary value problems for
differential equations which may not be locally linearized (cf. [CL] for
some such applications). They are also applicable to such BVP’s in Banach
spaces assuming some monotonicity or contractive-type condition on the
nonlinear part, and to optimal control problems. As in [SS], Corollary 2.1
can be used to study various semilinear BVP’s not in resonance involving
nonlinearities depending also on the highest-order derivatives in such a
way as to make the induced map A-proper.
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Section 3 contains a basic approximation solvability result (Theorem 3.1)
for nonlinear maps having a multivalued derivative and the error estimates
for the approximate solutions. This result has many applications. For
example, in [Mi-9], we have applied it to the constructive solvability of
nonlinear Hammerstein (operator and integral) equations. It is also used
extensively in the rest of the paper. In Section 4, we have established
various constructive homeomorphism results for A-proper maps. First, we
show that a continuous coercive and locally invertible A-proper map is a
homeomorphism. Then, using this and Theorem 3.1, we show that a
continuous locally injective A-proper map 7: X — Y with closed range
and which has a multivalued derivative A(x) on X, with coercive finite-di-
mensional approximations, is a homeomorphism, the equation Tx = f is
approximation-solvable, and the corresponding error estimates hold. In
particular, these assertions hold if T is a locally injective Fréchet differen-
tiable A-proper map on X with closed range and the injective A-proper
derivative T'(x) on X. When T =1 — C, with C a compact map, is
coercive, continuously Fréchet differentiable and T'(x) is injective on X,
the homeomorphism assertion only for T has been proved by Krasnosel’skii
and Zabreiko [KZ]. Applications to some special classes of nondifferen-
tiable maps and to Fréchet differentiable asymptotically { B;, B,}-quasilin-
ear maps are also given. The final result of the section asserts that the
equation Tx = f has the same finite or infinite humber of solutions for
each f €Y, and each is obtained constructively. The nonconstructive part
of the result is due to Ehrmann [E]. The results of Section 4 are applicable
to BVP’s for ordinary and partial differential equations with nonlinearities
depending on the highest-order derivatives in such a way that the induced
map is A-proper (see also [Mi-8]).

In Section 5, using Theorem 3.1, we prove a number of results dealing
with the unique approximation solvability and error estimates for nonreso-
nant semilinear equations Ax — Nx = f in a Hilbert space, where A is a
closed linear densely defined map with dimker(4) <~ and N is a
suitable nonlinear map such that 4 — N is an A-proper map. For exam-
ple, N can be a Lipschitz or a strongly monotone map or such that in a
suitable reformulation the corresponding nonlinearity is contractive or
monotone. These results are improvements of [Mi-6] and extend construc-
tively some recent results of Fonda and Mawhin [FM] and its many special
cases (Amann [A], Dancer [D], etc.) and of Ben-Naoum and Mawhin [BM].
They are applicable to BVP’s for semilinear elliptic equations and peri-
odic-BVP’s for semilinear hyperbolic equations in several space variables.
We refer to [Mi-10] for some such applications. Section 6 is devoted to
constructive homeomorphism theorems and error estimates for approxima-
tion-stable A-proper maps.
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2. IMPLICIT FUNCTION THEOREMS

Let {X,} and {Y,} be finite-dimensional subspaces of Banach spaces X
and Y, respectively, such that dim X, = dimY, for each »n and dist(x, X,)
—>0asn —» xforeach x e X.Let P: X - X, and Q,: Y — Y, be linear
projections onto X, and Y,, respectively, such that P,x — x for each
x€ X and §, =supllQ,ll <. Then T ={X,,P;Y,, 0, } is a projection
scheme for (X,Y).

Let T: D c X — 2Y be a multivalued map. We recall ((Mi — 1])

DeriniTioN 2.1, T is said to be approximation-proper with respect to I'
(A-proper w.r.t. T, for short) if (i) Q,T: D N X, — 2" is upper semicon-
tinuous (u.s.c. for short) for each n and (ii) whenever {x, eDNX,}is
bounded and lQ, v, — Q, fll - 0forsomey, € Tx, and fevy, then a

subsequence x,, ey X and f e Tx. T is said to be pseudoA -proper W.r.t. I’
if in (ii) we do not require that a subsequence of {x, } converges to x for
which f e Tx.

For many examples of single-valued and multivalued A-proper and
pseudo A-proper maps, we refer to [Mi-1-Mi-6]. For example, ball-con-
densing and, in particular, compact and k-contractive, perturbations of
Fredholm maps of index zero, maps of type (S, ), sums of ball-condensing,
and strongly monotone maps are all A-proper maps. Monotone-like maps
and such perturbations of closed linear maps A with finite- or infinite-di-
mensional null space are pseudo A-proper maps.

A multivalued map A4: X — 27 is said to be m-bounded if there is a
positive constant m such that [|yll < mllx|| for all x € X, y € Ax. It is
c-coercive if |lull = ¢|lx|| for x € X and u € Ax.

Next, we introduce a class of maps having a multivalued derivative.

DEFINITION 2.2. Let U be open in X and T: U — Y. A positively
homogeneous map A: X — 2Y, with A(x) convex and closed for each
x € X, is said to be a multivalued derivative of T at x, € U if there exists a
map R = R(x,): U — x, = 2¥ such that R(x — x,) = o(llx — x,), i.e., if
r(x —x,): U — x, = Y is a selection of R(x — x,): r(x — x,) € R(x — x,),
then [[r(x — xyIl/Ilx — x,ll = 0 as x — x, and

Tx — Txy € A(x — x4) + R(x — x¢) for x near x,.
The basic assumption in our first implicit function theorem is that a known
initial solution has a nonvanishing degree.

THEOREM 2.1. Let U be an open subset of X, N: U — Y be an A-proper
map, and x, be an isolated solution to Nx = 0, M: U X B, — Y be continu-
ous with M(x,v) — 0 uniformly in x as v = 0, and, for each fixed v € B,,
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N + M(-,v) be pseudo A-proper on each ball B,(x,) € U. Suppose that either
deg(Q, N, Bp(xo) N X,,0) #= 0 for all large n and a small p > 0, or N has
an u.s.c. A-proper homogeneous derivative A: X — 2V at x, such that x = 0
if 0 € Ax. Then there is an ry € (0, r] such that

(@) forevery v € B, there exists a solution x,, € B,(x,) of
Nx + M(x,v) =0. (2.1)

(b) llx, —x,ll = 0 as llvll = 0 provided also A is c,-coercive.
LEMMA 2.1. Let A: X — 2Y be a positively homogeneous map. Then

(@ If A is u.s.c. and has closed and bounded values, then it is
m-bounded.

(b) If A is A-proper w.rt. T and x =0 if 0€ Ax, then Q,A is
c-coercive on X, foralln > ny > 1 and some ¢ > 0 independent of n.

Proof. (@) If such an m does not exist, then there are x, € X and
Vi € Ax; such that ||y.|l > kllx,|| for each k > 0. Since A is positively
homogeneous, we have that

yi/ (kllx,ll) € A(x,/(kllx,ll))  forall k > 1.

But x,/(kllx,I) — 0 and ||y, /(kllx,IDIl > 1, in contradiction to the upper
semicontinuity of A at 0.

(b) Thisis Lemma 2.1 in [Mi-3]. 1

Proof of Theorem 2.1. Suppose first that x, is an isolated solution and
the above degree is nonzero. Then there is a small p > 0 such that Nx # 0

forall x Ep(xo)\{xo}. Arguing by contradiction and using the A-proper-
ness of N, it follows that there are a y > 0 and an n, > 1 such that

O, Nxll > vy forall x € dB,(x,) N X, n > ny. (2.2)

Hence, since M(x,v) — 0 uniformly in x € B.(x,) as v — 0, there is an
ro < r such that

|0, Nx —tQ,M(x,v)|| >0  forxe dB,(x,),v€EB,, te[01]
Thus, for each n > ny and v € B, ,
deg(QnN - 0,M(-,v),B,(x,) NX,,0)
= deg(Q,N., B,(x,) N X,,0) # 0
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and, consequently, Q,(Nx, + M(x,,v)) = 0 for some x, € B,(x,) N X,,.
Since N + M(-,v) is pseudo A-proper on B, (X)), it foIIows that there is an
x €B (xo) such that Nx + M(x,v) = 0.

Next let A4 be odd. Then it suffices to show that deg(Q, N, B(x,) N
X,,0) #+ 0 for some / < p and all large n. Let ¢ > 0 and n, > 1 be as in
Lemma 2.1 and §, = supllQ, |l. Let € > 0 be such that

Iyll/llx — xoll < c/(284) forall lx — x,ll <€,y € R(x —x).

Define T(x) = N(x, +x) and let / < min{p, €}. Define a homotopy H:
[0,1] X B, =Y by H(¢,x) =1/ + )Tx — t /(1 + t)T(—x). Then

Q,H(t,x)#0 forte[0,1], x € dB,NX,,n>n,. (2.3)

If not, then there are an n > n,, x € dB, N X, and ¢ € [0, 1] such that
Q,H(t, x) = 0, and therefore

1/(1+1)Q,T(x) — t/(1 +1)Q,T(~x) = 0.
But —7(—x) = —(N(x, —x) — Nx,) € Ax — R(—x), and therefore, by
the convexity of Ax, we have that 0 € Q, Ax + Q, R, x, where R;x = 1/(1
+ t)R(x) —t/(1 + )R(—x). Hence, —Q,y € O, Ax for some y € R,(x),
where y =1/(1 + )y, —t/(1 + t)y, with y, € Rx and y, € R(—x). By
Lemma 2.1,
cllxll < 8o(lly.ll + lly,ll) < cllxll,

a contradiction. Thus, (2.3) holds and the Brouwer degree

deg(Q,N, B/(x,) N X,,0) =deg(Q,T, B,N X,,0)

= deg(Q,H(1,"), B,N X,,0) # 0

for each n > n, since Q,H(1,-) is an odd map.
(b) Let x, be a solution of Eq. (2.1) and ||x, — x|| < e. The assump-

tions on M imply that we may assume that there is a monotone function
8(s) = 0 such that 8(s) - 0as s —» 0 and
[M(x,0)|| < &(llvll)  forall lx — x,ll < e.

Then, since we may assume that ¢ = c¢; and

qu - NxO + M(XL,,U) EA(XU _XO) + R(xl' _xO) + M(xz:’U)'
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we get that, for some u € R(x, — x,),
cllx, = xoll < llull + 8(llvll) < c/(28,)llx, — xoll + 8(llvll).

Hence, [Ix, — x,ll < 8(llvlD /(c — ¢/(28,)), which implies (b). |

Remark 2.1. Analyzing the proof, we see that instead of x, being an
isolated solution, it is enough to require that Nx # 0 for x € dB,(x,), or
even that (2.2) holds, for some p > 0. If 4 is homogeneous, then Theorem
2.1(a) is valid without requiring that x, is an isolated solution. Indeed, one
needs only to use the homotopy H with Tx = N,x + M,x, where N,x =
N(x, +x)and M, x = M(x, + x,v) for v € B,. However, the ¢,-coercivity
of A in (b) implies that x, is an isolated solution.

To state a related result for ¢-condensing maps, we recall that the set
measure of noncompactness of a bounded set D c X is defined as y(D) =
inf{ld > 0. D has a finite covering by sets of diameter less than d}. The
ball-measure of noncompactness of D is defined as y(D) = inf{r > 0|D c

" B.(x;), x € X, n € N}. Let ¢ denote either the set or the ball-mea-
sure of noncompactness. Then a map 7: D c X — 2% is said to be
¢-condensing if $(T(Q)) < $(Q) whenever Q € D and ¢#(Q) # 0.

THEOREM 2.2. Let U be an open subset of X, N: U — X be a continuous
and ¢-condensing map with Nx, = x,, and M: U X B, = X be continuous
and ¢-condensing with M(x,v) — 0 uniformly in x as v — 0. Suppose that
either deg(I — N, Bp(xo), 0) # 0 for a small p > 0, or N has a homogeneous
¢-condensing derivative A such that x = 0 if x € Ax. Then there exist ry €
(0,r] and p > 0 such that

(@) for every v € B, there exists a solution x,, € B,(x,) of
x=Nx+ M(x,v). (2.4)

() llx, —x,ll = 0 as llv]l = 0.

Proof. Since x — Nx # 0 for ||x|| = p, arguing by contradiction and
using the ¢-measure of noncompactness, we get a y > 0 such that ||x —
Nxl|| = y for all ||x|| = p. This inequality also holds in the second case,
since I — A is c-coercive by Lemma 1.1 in [Mi-2] for some ¢ > 0, and
therefore x, is an isolated solution of x — Nx = 0. Let € > 0 and &(s) be
as in the proof of Theorem 2.1. Then, using the homotopy H(¢, x) = x —
Nx — tM(x,v), we get that deg(/ — N — M(-,v), B,(x,),0) # 0 for each
fixed v el?,o. This implies (a) under the degree assumption. If A is
homogeneous, set Tx = N(x, + x) — Nx, and consider the homotopy
H(t,x)=x—1/Q + t)Tx — t/(1 + t)T(—x). Then, using the arguments
similar to those in the proof of Theorem 2.1, we get that deg(/ —



IMPLICIT FUNCTION THEOREMS 431

N, B,(xy),0) # 0 and (a) follows. The second part is proved as in Theorem
21. 1

Remark 2.2. The condition x € Ax implies x = 0 replaces the condi-
tion that the Jacobian is not zero, or the invertibility of the derivative at 0
in the classical implicit function theorem.

Due to the generality of the maps involved, Theorems 2.1 and 2.2 are
suitable, for example, for studying boundary value problems for ordinary
differential equations in Banach spaces. When N and A are compact,
Theorem 2.2 is due to Chow and Lasota [CL], where applications to BVP’s
for systems of ordinary differential equations are given.

The degree assumption in Theorems 2.1 and 2.2 holds if N is an odd
map. Next, we shall show that it holds for gradient maps at an isolated
critical point. We need the following result

THEOREM 2.3 (cf. [Mi-7]). Let U C X be a neighborhood of 0, f- U — R
be continuous and Gateaux differentiable on U, 0 be its isolated critical point,
and f(0) be a local minimum at 0. Let

) fO) <m(r) =inf{f(x) |x € dB,} for each 0 <r < p, where
f0) < f(x) for x € B,\{0} and some p > 0.

(i) f'(x)#0 forx €{x €B,, f(x) =k} for a suitable k > 0.

If N=f" X—>X* is Aproper wrt. T ={X,,Y,, 0} at 0, then
deg(Q,N, B, N X,,,0} # O for all large n.

Remark 2.3. If f is C* on some B, and satisfies the Palais—Smale (PS)
condition, then condition (i) of Theorem 2.3 holds by Proposition 4 in
Brezis and Nirenberg [BN] as well as condition (ii) if in addition f is
bounded on Ep. Conditions (i) and (ii) hold also if f is continuous in a
Hilbert space and Gateaux differentiable with f' being a bounded demi-
continuous map of type (S,) (i.e, x, »x whenever x, —x and
limsup(f'(x,), x, —x) < 0) (cf. [K]. It is well known that such maps are
A-proper. We note also that (i) and (ii) hold if N =f’ is continuous and
A-proper at 0 since such maps are proper on bounded and closed subsets.

In particular, this is so if f' =1 — C with C compact.

Remark 2.4. The degree deg(Q, N, B,(x,) N X,,0) = 0 for all large n
under other conditions. For example, if f' = I — C with C compact and x,
is an isolated critical point of f of mountain-pass type, then some suffi-
cient conditions for deg(f’, B,,0) = —1, and therefore deg(Q,f’, B, N
X,,0) = —1 for large n, have been given by Hofer [H].

Theorems 2.1 and 2.3 imply the following result.
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THEOREM 2.4. Let U and N be as in Theorem 2.3. Suppose that M:
U X B, = X* is continuous with M(x,v) — 0 uniformly in x as v — 0 and,
for each v € B,, N + M(-,v) is pseudo A-proper w.r.t. I' on each ball
B, C U. Then there is an o € (0, r] such that the conclusions of Theorem 2.1
hold with x, = 0.

The next result does not require oddness of the multivalued derivative.
A similar result holds also for ¢-condensing maps, and includes a result in
[SS] for compact maps.

COROLLARY 2.1. LetL,K:UCX — Yand F: U — 2" be such that L is
homogeneous, F is positively homogeneous with F(x) starlike with respect to 0
foreachx € U, L + F is A-properat 0 w.r.t. T, x = 0 if 0 € Lx + Fx, and
either F is a multivalued derivative of K at 0 or Kx € Fx + Rx for all ||x||
large with |R| = lim sup”xuﬁx,llell/llxll sufficiently small. Suppose that M.
U X B, = Y is continuous with M(x,v) — 0 uniformly for x in bounded
subsets as v — 0 and, for eachv € B,, L + K + M(-,v) is pseudo A-proper
w.r.t. T on each ball B, € U. Then there are p > 0 and ry € (0, r] such that
for each v € B,O,

(@ Lx+ Kx + M(x,v) =0 has a solution x, € B,.

() llx, —xll = 0 as v = 0 provided L + F is c,-coercive.

(© IfU=X, R=0, and M(x,v) = M,x for all v, with |M,| suffi-
ciently small, then L + K + M, is onto.

Proof. Since x = 0if 0 € Lx + Fx, Lemma 2.1(b) implies that there are
constants ¢ > 0 and n, > 1 such that
10, Lx + Q,yll = cllxl forxe X,,y € Fx, n > n,. (2.5)
Then, in the first case, there is a p > 0 sufficiently small such that

Q(L+tK)x+0 forxedB,NX, te[0,1],n=n, (2.6)

If not, then 0 € Q,(L + t,F + t,R)x,, for some x, € X,,, x, = 0, x,, # 0,
and ¢,. Set u, = x,/llx,|l. Then since Fx is starlike with respect to 0 for
each x, it follows that 0 € Q (L + F)u, + ¢,0,R(x,)/llx, |l and Q (Lu,
+y, +t,z,/llx,I) =0forsome y, € Fu, and z, € Rx,. By (2.5), we get a
contradiction

¢ <[|Q.(Lu, +y,) | <O, llz,l/llx,Il >0  asn— .

Hence, (2.6) holds and deg(Q,(L + K), B, N X,,0) = deg(Q, L, B, N
X,,0) # 0 for each n > n,. In the second case, using similar arguments,
we find a p large such that the last degree is again nonzero. Therefore, (a)
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and (b) follow from Theorem 2.1 and Remark 2.1 with N =L + K. For
part (c) it is enough to observe that (2.6) holds for L + K + tM, — tf for
each f €Y, using a similar reasoning. I

For our next result, we introduce an ()-neighborhood of a map T, with
respect to B,(x,). Here D(S) is the domain of .

DeriNITION 23. A map T is said to be in an Q = (x,,r,a,b)-
neighborhood of a map T, if B,(x,) € D(T) N D(T,) and AT =T — T,
satisfies

@ [ATx,ll < a.
(b) [[ATx — ATyl < bllx — yll for all x,y € B,(x,).

Now, we give a neighborhood open mapping—inverse function theorem.

THEOREM 2.5. Let C C X be a closed convex subset, x, € C, and Ty:
By = B,(xo) N C = Y with Tyx, = y,. Suppose that K: X — Y is a linear
map with K(C) =Y and, for some positive m and c with mc™* < 1,

) Tox — Toy — K(x = )l < mllx — yll forx,y € B,.
(i) K*, defined by K" (y) = {x € C|Kx =y}, is c-Lipschitz, i.e.,

K ' (y,) CK Y(yy) +clly, = y,lIBy  forally,,y, €Y. (2.7)

(iii)  Let, in addition, T be continuous if N(K) = ker K # {0}.

Let Q = (x,, r, a, b)-neighborhood of T, with 0 <r <r, and a,b > 0 be
such that a = (¢c™* — b — m)r > 0. Then there is a k > 0 such that, for all
T €Q, B, ,(Tx) ¢ T(B,(x) N C) for each x € B,(x,) and h € [0, ry). If
N(K) = {0} and y, = 0, then the equation Tx = 0 has a unique solution
x = x(T) which is continuous in T at T = T, in the sense that

[e(T) — xo|| = 0 as || Tx,ll = 0. (2.8)

Moreover, if Tuy, = vy, then T has a local inverse defined in a neighborhood
of v, with the range in a neighborhood of u, and the corresponding solution
x(y) of Tx =y is continuous in y, i.e., x(y) = uy asy — v,.

Proof. Let T € Q) with r <r, and AT =T — T,. Then, for each x,y
€ B.(xy)) N C,

1Ty — Tx = K(y = x) || < ATy = ATxl| + [ Toy = Tox — K(y —x)||
<(b+m)ly —xll. (2.9)

Now, g = (b + m)c <1 and pp, <r, for p = (1 — g)"'c an some p,.
Then, for each & < ry, h = sry and kp, = r, for some s and k. Moreover,
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since pp, = pro/k <r,, we have that ph/k = psro/k = ppys < sr, = h.
Hence, for each h <r,, pp <h with p=h/k. Let x € B, (x,) N C be
fixed and h <r,. Let y € B, ,,(Tx) and define successive approximations
as follows. Given x, € B,(x) N C, there is an X, , € C such that Kx, , ;
= Kx, — (Tx, — y) since K(C) =Y. By (ii), (2.7) holds for Kx, and Kx,, ;.
Hence there are an x,,, € K~ 1(K>'cn+1) and w € B, such that X, =X, 41
+ cl|Kx,,, — Kx,llw. Then Kx, ., = — (Tx, —y) and

lx, .1 —x,ll <cllKx, ., — Kx,||. (2.10)
Hence, starting with x; = x € B,(x) N C, we get

||xn+1 _xn” < C”Txn _y” = C”Txn - Txn—l - K(xn _xn—l)”

< (b+m)cllx, —x,_4ll (2.11)
and
n—1 .
llx, —xll < Y q'llx, —x,
i=0
with

lx, —x,ll < cllTx; —yll < ch/k =cp.

Thus, by our choice of g and p, the sequence {x,} B, (x) is Cauchy with
the limit x € B ,(x) N C cB,(x) N C. Let (iii) hold. Then Ix, —y -0
by (2.11) and the continuity of 7 implies that y = Tx € T(B,(x) N C).
Hence, we have shown that B, ,,(Tx) € T(B,(x) N C) c TB,(x) for each
x € B, (x,) and each h € [0 ro)-

Next let the inverse K~ exist. Then ¢ = |[K~*|"* and the map V =

K YK —T) is I-contractive with [ = (b + m)|K | <1 in B/(x,) and
therefore x,., = K *(Kx, — Tx, + y) implies that Tx = y. Next, let y, =
0. Since T € Q, then [[Vx, — x,ll = IK 'Tx,ll < (1 — Dr and V maps
B,(x,) into itself. Hence, there exists a unique solution of Vx = x. Since
the unique solvability of Vx = x is equivalent to the unique solvability of
Tx = 0, there is a unique solution x(7') of Tx = 0 in B,(x,) satisfying

[x(T) = x|l < (1 = k) "HIK *Txoll < (1 — k) KM I Tl

Thus, (2.8) holds. Next, let Tu, = v, and T,x = Tx —y for some y €
B (v,). Define V; = K"*(K — T,) and note that T,x = 0 if and only if
V,x = x. Then, for some r > 0, it is easy to see that, for x € B,(u,),

IVix = uoll < llx — ugl + 1K~ [ vy = yll.
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Taking p < |K~YI7*(1 — I)r, we see that ¥, maps B,(u,) into itself and is
an [-contraction. Hence, the equation Tx =y has a unique solution x(y)
€ B,(u,) for each y € B,(v,). Moreover, [x(y) — uoll = |[K~*(K — T))x
—ugll < lllx — upll + IK I llvy — yll and therefore

Ix(y) —uol < (1 =) K Hllog =yl >0 asy—>uvo. 1

Remark 2.5. If K is continuous and C € X is a closed convex cone
with K(C) =Y, then K™ ! is a Lipschitz set-valued map (cf. [AE]. If
N(K) = {0}, K(C) =Y, and K™ ! is continuous, then (2.7) holds. More-
over, if C = X, then each T € Q is an open map at each x € B,O(xo), ie.,
By ,1,(Tx) C TB,(x) and, as noted in [DMO], this open mapping property
is equivalent to the following distance estimate:

lx — Tyl < klTx — yll

for all x in a neighborhood of x, and all y in a neighborhood of Tx, in Y.
If T, has a strong Fréchet derivative T}(x,) at x,, then we can take K to
be any map near it in Theorem 2.5, or, if 7 is as in Corollary 2.2 below,
take K = Ty(x).

Remark 2.6. Even if T is defined on all of X, Theorem 2.5 does not
imply the solvability of Tx = y for each y € Y. For example, consider the
map Tx = arctan x for x € X = RY. Then all conditions of Theorem 2.5
hold but the equation Tx =y is not solvable for all y € R'. For some
additional conditions that imply R(T) = Y, see Theorem 4.4.

Recall that a map T is said to be weakly Gateaux differentiable at x, if
there is T'(x,) € L(X,Y) such that

(fl[T(xO +1th) — T(x,)] — T’(xo)h,y*) -0
ast—Oforall h e X, y* €Y.

We have the following special case of Theorem 2.5.

COROLLARY 2.2. Let C C X be closed and convex, x, € C, T,: B, =
B, (xy) N C = Y be continuous and weakly Gateaux differentiable in a neigh-
borhood of x,, Ty(x )NC) =Y, and ||Ty(x) — Ti(x )l < m in B, form > 0
sufficiently small. Then the conclusions of Theorem 2.5 hold true with
K = T{(x,). Moreover, if C = X, then, for some r; <r,, p;, and l,

diSt(Tc?l(Y1) N B,(x,), Ty ' (yy) N BrZ(XO))
<llly; = y,ll foryi,y, € B,(Tox,). (2.12)
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Proof.  We shall first show that condition (i) holds with K = T}(x,) for
each x,y € B,. Let x,y € B, and y* € Y*. Then

¥ (Tox — Toy — To(x0)(x — y))
= [Ty +1(x =) = Ty(xo) ] (x = 3). %) di

and choosing y* with [[y*|| = 1 such that the left-hand side is equal to
ITyx — Tyy — Ti(xo)(x — y)ll, we obtain that

[Tox — Toy — Ty(xo)(x —y)|| <mlx —yll  forall x,y € B,.

Since (ii) holds by Remark 2.5, then Theorem 2.5 is applicable.

It remains to show (2.12). Let U B, (x,) be a closed neighborhood of
Xy Since T{(x,) is surjective, there is a ¢ > 0 such that, for all y €Y,
there is a solution u of the equation Tj(xy)u =y satisfying lull < cllyll.
Let r > 0 be such that B,(x,) € U. Then y = Ty(x)u + z for z = (Ty(x)
— Ty(x¢))y where |lull < cllyll and [|z]l < mllyll. Hence, (2.12) holds as in
the proof of Theorem 7.5.4 in [AE]. |

If C =X, then Theorem 2.5 generalizes a result of Ehrmann [E] when
N(K) = {0}, and the open mapping theorem of Kachurovskii [K] when K
is continuous and N(K) # {0} (cf. also [DMO]). It also extends the inverse
function theorem of Aubin and Frankowska [AF] to nondifferentiable
maps with dimY = « but defined on a less general domain. We refer to
Aubin and Frankowska [AF] for a constrained inverse mapping theorem
with dimY = o involving a transversality condition. Corollary 2.2 extends
an open mapping theorem of Browder [B] but without the estimate (2.12).

3. ERROR ESTIMATES FOR NONLINEAR
OPERATOR EQUATIONS

In this section, we shall establish a constructive solvability and error
estimates for the approximate solutions of nonlinear equations of the form

Ix = f, xe€X, fey, (3.1)

involving A-proper maps which have a multivalued derivative at a solution.
Our basic result, announced in [Mi-4, Mi-6], is

THEOREM 3.1. Let T: UC X — Y be A-proper w.r.t. I and X, be a
solution of Eq. (3.1). Suppose that A is an odd multivalued derivative of T at
X, and there exist constants ¢, > 0 and ny > 1 such that

1Q,ull = collxll forx e X,,u € Ax, n > n,,. (3.2)
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(@) Ifx, is an isolated solution, then Eq. (3.1) is strongly approximation
solvable in B(x,) for some r > 0 (i.e., Q,Tx, = Q, f for some x,, € B,(x,)
N X, and all large n and x,, — x).

(b) If, in addition, A is c,-coercive for some c, > 0, then x, is an
isolated solution, the conclusion of (2) holds, and for any € € (0, ¢,) approxi-
mate solutions x, € B.(x,) N X, satisfy

llx, — xll < (co — €) *lITx, — fI forn>=n,>n,.  (3.3)

(©) Ifx, is an isolated solution in B (x,), A is c,-bounded for some c,
and

Ix —Ty€A(x —y) + R(x —y) wheneverx —y € B,, (3.4)

and |lr(x —yll/Ilx —yll = 0 as x > x, and y > x, for each selection
function r(x —y) of R(x —y), then Eq. (3.1) is uniquely approximation
solvable in B,(x,) and the unique solutions x,, € B,(x,) N X, of 0, Tx = O, f
satisfy

llx, — xoll < kllP,xy — x,ll < cdist(x,, X,), (3.5)
where k depends on c, c,, €, and & and ¢ = 2k5,, 8, = supl|P,|l.

Proof. (@) If T;x = Tx — f, then T, has the same properties as 7 and
T;xy = 0. Therefore, we may assume that f = 0. Let r > 0 be such that
B/(x,) c U and

1oyl lzl e

—_— <
1+t xll  1+¢x] 8
fort € [0,1],llxll=r,y € R(x), z € R(—x).

Let T,x = T(x + x,) for || x|| < r and define a homotopy H:[0,1] X B, > Y
by H(t,x) =1/(1 + )T, x — t/(L + )T(—x). Then, as in the proof of
Theorem 2.1, we have that

Q,H(t,x)+#0 forte[0,1],x€dB,NX,, n>ny, (3.6)

Thus, deg(Q,T,, B, N X,,,0) = deg(Q,H(1,-), B, N X,,,0) # 0 for each n
> n, since Q,H(1,-) is an odd map. Hence, deg(Q,T, B,(x,) N X,,0) =
deg(Q,T,, B, N X,,0) # 0 for each n > n, and, consequently, Q,Tx, = 0
for some x, € B,(x,) N X,. Since T is A-proper and x, is an isolated
solution, it follows easily that x, — x,.

(b) Let us first show that x, is an isolated solution. Choose r > 0
such that || yll/llx|l < ¢, for 0 < ||x|l < r and y € R(x). Then, for each such
x, there are u € Ax and v € Rx such that T(x + x,) — T(x,) = u + v and

IT(x +x0) = FI| = lull = lloll = llxli(c;, = Noll/xll) > o.
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Next, for any x, € B(x,) N X, such that Q,Tx, = Q,f, we have that
Tx, — Tx, € A(x, — x,) + R(x,, —x,) and therefore Tx, —f=u, +v,
for some u, € A(x, — x,) and v, € R(x, — x,). Hence, for each large n,
cillx, = xoll < 1Tx, = fll + llo, Il < ITx,, — fIl + €llx, — x|l for any €€
(0, ¢,) and therefore (3.3) holds.

(c) By part (a), for each n > n, there is an x, € B,(x,) N X, such
that Q,Tx, = Q, f and x, — x,. If the equation Q,Tx = Q, f had another
solution y, € B,(xy) N X, for each n >n,, then 0 € 0, A(y, —x,) +
0, R(y, — x,), and therefore, for some u, € R(y, — x,),

co < Ollu,ll/llx, =y, =0 asn — o

in contradiction to ¢, > 0. Hence, the equation Q,Tx = Q, f is uniquely
solvable in B,(x,) N X, for each n > n,.

Now, let {x,} be the corresponding unique solutions and observe that
0,TP,x, — Q,Tx, € Q, A(P,x, — x,) + Q,R(P,x, — x,) for each n > n,.
Choose u, € A(P,x, — x,) and v, € R(P,x, — x,) such that Q, TP, x, —
Q,Tx, = u, + v,. It follows from (3.2) that

collx, — Pxoll < 8lITxy — TP, x,ll + &llv,,|l
< 8l|Txy — TP, x,ll + €llx, — P, x,l

for any € € (0, ¢,) and each n > n, large. Hence, for such n,
(co — €)llx, = P,x,ll < 8lITxq — TP, x,ll.
But, since Tx, — TP, x, € A(x, — P,x,) + R(x, — P,x,), it follows that
ITx, — TP, x,ll < c,llxy — P,xoll + €llxg — P,x,ll

for any given €, > 0 and each n > n, > n, large. Combining the last two
inequalities, it follows that, for each n > n,,

llx, = xoll < llx, = Pxoll + llxg — P, x,ll
< (8(cy + €)/(co—€) + DIIP,xy — xoll = klIP,xy — x,]l.
Next, for each z, € X, and x € X, we have that
1P, x —xll =[|P(x = z,) = (x = z,) | < (L + IR, )llx = z,]I
Hence, for each x € X,

I1P,x — xll < (1 + 1P, l)dist(x, X,) < 2IIP,ldist(x, X,)
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and therefore
llx, — x,ll < cdist(xg, X,) with ¢ = 2k68;. |

Remark 3.1. Analyzing the above proof, we see that the oddness of A4
can be replaced by deg(Q,T,B, N X,,0) # 0 for all large n (cf. also
Theorem 2.3 and Corollary 2.1). Regarding (3.2), we refer to Lemma 2.1.

Inequality (3.5) shows that the problem of estimating the error [|x, — x,,I
is reduced to a problem in approximation theory, i.e., to evaluate the
distance dist(x,, X,,) = inf, y llx, — u,ll between a vector x, € X and a
subspace X, € X. Often one is able to show that there exist constants
c(xy) > 0 and B > 0 such that the distance dist(x,, X,) < c(x,)n"# and
therefore the following error estimate holds:

lxg — x,ll < c(xg)n". (3.7)

In this case we say that the order of convergence is B. In applications there
are numerous ways of constructing suitable subspaces {X,} which would
lead to the order of convergence of approximate solutions and we refer to
the books [Ci, SF] and so on. We note also that when {X,} are finite
element subspaces of a Hilbert space, inequality (3.5) is an extension of
Céa’s lemma [C] to nondifferentiable nonlinear maps. Theorem 3.1 with
T =1 — C, C-compact, contains a result of Schmitt [S].

When T is Fréchet differentiable, Theorem 3.1 reduces to the following
result of the author [Mi-1], which extends a result of Krasnosel’skii [Kr]
and Vainikko [V] when T =TI — C with C compact.

THEOREM 3.2 (cf. [Mi-1]). LetT:U C X — Y be A-properw.r.t. I, x, be
a solution of Eq. (3.1), and T be Frechet differentiable at x, with T'(x,)
A-proper w.r.t. I and injective. Then

(@ x, is an isolated solution, Eq. (3.1) is strongly approximation
solvable in B,(x,) for some r > 0, and (3.3) holds with ¢, = [(T"(x,)) .

(b) If, in addition, T is continuously Frechet differentiable at x,, then
Eq. (3.1) is uniquely approximation solvable in B/(x,) and the unique
solutions x,, € B(x,) N X, of Q,Tx = Q, f satisfy (3.5) where k depends on
co» IT"(xll, €, and & and ¢ = 2k8;, §; = supl|P,ll.

Let us now give a version of Theorem 3.1 which is useful for proving
error estimates of the form (3.7) in applications to differential equations.
Let Z be a Banach space densely and continuously embedded in X and
{X,} be finite-dimensional subspaces of Z such that dist(z, X,) = 0 as
n — o for each z € Z. Then dist(x, X,,) = 0as n — o for each x € X by
the continuity of the embedding. If P,: X — X, are linear projections onto
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X, such that 8 = supl|P,|| < «, then T'={X,, P,,Y,,Q,} is a projection
scheme for (X,Y). We also assume that

(3.8) There are positive and monotonically decreasing functions g,(n)
and g,(n) such that for each z € Z there exists a u,, € X, such that

Iz = w,llz <gy(n)  and iz = u,llx < g(n).

(3.9) There is a positive monotonically increasing function g,(n) such
that

llu,llz < gs(n)llu,llx  foreach u, € X,.

THEOREM 3.3. Suppose that (3.8) and (3.9) and all conditions of Theo-
rem 3.1(c) hold with T ={X,, P,,Y,,Q,} as constructed above. Then Eq.

(3.1) is uniquely approximation solvable in some ball B(x,), and if x, € Z

the unique approximate solutions x,, € B,(x,) N X,, satisfy

llx, = xollz < e max{g,(n), g-(n) - g5(n)}- (3.10)

Proof. By Theorem 3.1(c) we have that, for each large n,

llx, — xoll < kllP,xy — x,ll < cdist(x,, X,).

For x, € Z choose u, € X, such that (3.8) holds. Then
1%, = Xollz < g1(n) + ga(n)llx, —u,l
< gi(n) + g3(n)(klIP,xo — xoll + g2(n)),

which implies (3.10) for some constant ¢. |

In particular, if g,(h) = h'" for some r,; <0, i =1,2, r; > 0, and the
inequalities in (3.8) are replaced by

lz —u,llz <n"lzll;  and lz = u,llx <n"lzllz,
then the error estimate (3.10) becomes
lx, — xollz < ¢ max{n", n"2""3}||x,ll 7. (3.11)

Estimates of the above type appear in approximations by the finite
element method where each subspace X, consists of splines (i.e., piece-
wise-polynomial functions) of fixed degree defined over a mesh (usually of
triangles) laid out to approximately cover the spatial domain Q of the
problem. One of the principal assets of the finite element method is that,
no matter how irregular the shape of the boundary ¢Q of ), such meshes
can be fitted very closely. A normalized mesh parameter 4, 0 < h < 1, is
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assigned to each mesh so that the mesh is refined as 2 — 0 and the
dimension of X, increases indefinitely. When T = I — C, with C compact
and continuously Fréchet differentiable at x,. Theorems 3.3 is due to
Shaposhnikova [Sh].

4. CONSTRUCTIVE HOMEOMORPHISM THEOREMS

The existence of a local inverse of 7' has been studied in Section 2. In
this section, we shall give some (constructive) homeomorphism theorems
for nonlinear maps.

We say that T satisfies condition (+) if whenever Tx, — f in Y, then
{x,} is bounded in X. It relates to the closedness of R(T) as follows:

ProrosiTiON 4.1. Let T: X — Y be continuous.

(@) If T is A-proper and condition (+) holds, then R(T) is closed in Y.
(b) IfR(T) is closed and T is an open map, then condition (+) holds.

Proof. (@) Let y, € T(X) be such that y, =y in Y and x, € X such
that Tx, = y,. Then there is an r > 0 such that {x,} c B, by condition
(+). Since T restricted to B is proper, it follows that {x,} is precompact
and therefore some subsequence x, — x. Since 7' is continuous, we have
Tx = y.

(b) Assume that {x,} € X is such that Tx, — f. Let x € X be such
that Tx = f. For r > 0, TB,(x) is open and contains f and therefore
Tx, € TB,(x) for all large n. Moreover, x, € B,(x) for all large n since T
is an open map. Hence, {x,} is bounded and condition (+) holds. |

THEOREM 4.1. Let T: X — Y be continuous, A-proper w.r.t. I, satisfy
condition (+), and be locally invertible on X. Then T is a homeomorphism
ontoY.

Proof. We know that R(T) is closed by Proposition 4.1. Since T is
locally invertible, each point of T(X) possesses a neighborhood consisting
of points of T(X). Hence, R(T) is open and therefore T(X) =Y.

It remains to show that T is injective. First, we shall show that 77(y) is
a finite set for each y € Y. Suppose that S = T-(y) is infinite for some
y € Y. Then any sequence {x,} < S is bounded by condition (+) and, since
T is a proper map when restricted to a bounded set, there is a subse-
guence converging to some z with 7z = y. Hence, each neighborhood of z
contains a solution of Tx =y in contradiction to the local invertibility of
T. Next, let x, # x, and Tx, = Tx, =y and I = [y,0] be a segment in Y.
Let ¢ € [0, 1] be fixed. Since S(y) is finite and T is locally invertible, there
is an € > 0 such that T is invertible on B, = B(#y, ¢,) whatever the
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preimage of #y is fixed. Let €* < ¢, Then the family {B(zy, ¢*) |t [0, 1]}
is an open cover for the compact set 1. Hence, there are ¢,,...,, in [0,1]
such that {B, = B(t;y, €") |1 < i < k} covers I.

Next, we shall construct two continuous curves v, and vy, with the
initial points at x, and x, and the end points in 7-!(0) and having no
common points. We may assume that y € B;. Since T is locally invertible
on B,, a part of I is in a one-to-one correspondence with an arc of the
curve with the initial point at x,. Repeat the process for B,, ..., B,. Since
T is locally invertible on all larger spheres B(t;y, fri)' we get a continuous
curve vy, starting at x, and ending at a point of 7-%(0) such that
T(y,) = I. Similarly, we construct the above-mentioned continuous curve
v, with T(y,) = I. These curves have no points in common. If not, let z
be a common point, and, for simplicity, we may assume that z = 0. Using
the local invertibility of 7, we see that the two curves coincide in a part
lying in a neighborhood of 0, and therefore y, = v,, a contradiction.

Now, the segment J = [x,, x,] induces a closed curve C passing through
y. Consider the central homothety and let C, be the image of C at
t € [0, 1]. Clearly, each C, is a closed curve. Using the compactness of each
C, and the above reasoning, we can construct a continuous curve C; in X
for each ¢ with T(C}) = C, and having the end points on vy, and v,. Since
T is locally invertible, there is a neighborhood U of 0 where T is bijective.
Let ¢ be sufficiently small such that C, ¢ U. Then the corresponding curve
C; is closed, in contradiction to it being open. Hence, T is injective and
therefore it is a homeomorphism. |

THEOREM 4.2 (cf. [Mi-4]). Let T: X — Y be continuous, locally injective,
A-proper w.r.t. T for (X,Y), and satisfy condition (t). Suppose that T has an
odd multivalued derivative A(x,): X — 2" at each x, € X and there exist an
ng =ny(xy) = 1 and ¢y, = co(xy) > 0 such that

10, ull = c,llxll forx e X,,u € A(xy)x, n > ny. (4.1)

Assume that T and each A(x,) satisfy (3.4) and A(x,) is c,(xy)-bounded for
some c,(x,) > 0. Then T is onto Y and Eq. (3.1) is uniquely approximation
solvable for each f € Y and (3.5) holds. If, in addition, A(x,) is c,-coercive
for some ¢, = c(x,) > 0, then the estimate (3.3) holds.

Proof. In view of Theorems 3.1 and 4.1 and the closedness of R(T), it
suffices to show that R(T) is open in Y and that T is locally invertible. Let
X, € X be fixed and € > 0 such that T is injective on B_(x,). We need to
show that T(B.(x,)) is open in Y. Define a map 7;: B, - Y by Ty(y) =
T(x) — T(x,), where y =x —x, with x € B.(x,). Then 7,(0) = 0 and
T(B.(xy) = T(B,) + T(x,) is open if such is T(B,). In view of the
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invariance of domain theorem for A4-proper maps (cf. [Mi-3]), it suffices to

show that, for each y, € B, and some small r, > 0 such that l_?,o(yo) C B,

we have that deg(Q,T; — Q T(yo), B,(yo) N X,,0) # 0 for each n > n,.
Let n >n, be flxed and define a map T, E =B, NX,—>Y, by

T(uw) = Q,T(y) — O, T\(y,), where u =y —y, with y c'B (yo) mX.
Let H,:[0,1] X B, — Y, be given by

u —tu
e -1 ) - 22
1+t 1+t
Y+ 1y,
1+t

YO"‘ty)

= QnTl( ) - QnTl(ZJ’o T 11

Then there exists an n; > n, such that H,(t,u) # 0 for all u € B,
t €[0,1], and n > n,. If not, there exist ¢, €[0,1],¢, —t,and u, € JB,
such that H, (¢, ,u,) =0 for each k. Therefore, by (3.4), 0 €
0, Ax )y, = yo) + Q, R(xo; y,, — yo) = Q, AlxNu, ) + O, Rlxy;
u, ), or, setting v, =u, /lu, |

0€Q,A(x)(v,) + O, R(xq5u,)/llu, | for each k.

Let w, € A(xXv, ) and z, € R(xy;u, ) be such that O, w, +Q, z,
llu,, Il = 0. Since r, is sufficiently small we arrive at the contradiction

co = collv, Il <110, w, || < 8liz, I/l Il < c,.
Hence, H,(t,u) #+ 0 on [0, 1] X B, for n > n, and, consequently,

deg(QnTl - QnTl(yO)’ Bro(yO) an'O)

= deg(Hn(l, ), B, () N X,,,O) #0

for each n > n, since H,(1,+) is an odd map on B,.

Finally, we claim that T is locally invertible. Since T is locally injective,
for each x, € X, there is an e > 0 such that T: B.(x,) — Y is injective.
Let Tx, = f,. As shown above, TB.(x,) is open and therefore there is a
& > 0 such that B,(f,) < TB.(x,). Hence, for each f € B,(f,), there is a
unique x € B_(x,) such that Tx = f, i.e., T is locally invertible. 1

Next, we shall look at 7' having a uniform multivalued derivative A in
the sense that Tx — Ty € A(x — y) whenever x —y € U.
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THEOREM 4.3. (@) Let T: X — Y be A-proper w.r.t. T satisfy condition
(+). Suppose that U C X is a neighborhood of 0, A: U — 2V satisfies (3.2)
onUNX,, and

Ix — Ty € A(x —y) wheneverx —y € U. (4.2)

Then T(X) =Y.

(b) If, in addition, U = X, A is positively homogeneous, and A is
c¢,-coercive and c,-bounded for some constants c, c, > 0, then T is a homeo-
morphism and Eq. (3.1) is uniquely approximation solvable for each f in Y and
the estimates (3.3) and (3.5) hold.

Proof. We have that T(X) =Y and Q,T: X, = Y, is a homeomor-
phism for each large n by Theorem 2.5 in [Mi-3]. Moreover, if 0 € Ax,
then x = 0 by the c,-coercivity and T is locally injective. Indeed, let x € X
be fixed and e > 0 such that B,. C U. Then, if for some x,, x, € B, (x)
we have that Tx, = Tx,, then, by condition (4.2), 0 = Tx;, — Tx, € A(y, —
y,) for some y, — y, € U since x,, x, € B, (x) c U(x) = U + x and, con-
sequently, x, —x, =y, —y, for some y,,y, € U with [y, — y,|l < 4e.
Hence, y, =y, and therefore x, = x,. The conclusions in (b) now follow
from Theorems 4.2 and 3.1 (b) and (¢) and Remark 3.1. 1

THEOREM 4.4. (@) Let T: X — Y be continuous, A-proper w.r.t. I', and
have the closed range. Suppose that for each u € X there exist a ball
B.(u) C X, a linear map K: X — Y with K(X) =Y, and positive constants
m and c such that mc < 1 and

) ITx —Ty —K(x =yl <mllx —yll forx,y e E,(u).

(i) K ' is a multivalued c-Lipschitz map.

Then T is surjective, i.e., T(X) =Y.
(b) Let, in addition, T satisfy condition (t). K™ exist, dmc < 1, and
(i) 110, Kxll = ¢ x|l on X, for all large n.

Then T is a homeomorphism and, for each f<€Y, Eq. (3.1) is strongly
approximation solvable and the estimate (3.3) holds. If each K is also
continuous, then Eq. (3.1) is uniquely approximation solvable and (3.5) holds.

Proof. (a) T is an open map at each x € X by Theorem 2.5 and
therefore R(T) is open. Hence, R(T) =Y since R(T) is closed.

(b) T is locally invertible by Remark 2.5 and is therefore a homeo-
morphism by Theorem 4.1. Let f, € Y be fixed, x, be the solution of
Tx = f,, and r such that conditions (i) and (iii) hold with u replaced by x,.
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Then the map A defined by Ax = {y | ly — Kxl| < mllx|l} for x € B,(x,) is
a multivalued derivative of T at x, since, by condition (i),

Tx — Ty € A(x —y) = {z|llz = K(x = y) | < mllx — yl}
for x,y € B,(x,).
Next, we claim that (3.2) holds. Indeed, if x € B, N X, and y € Ax, then
10,91 = 110, Kxll — 8lly — Kxll > (¢™* — 6m)lIxll,

and therefore (3.2) holds by the homogeneity of 4. Moreover, for y € Ax
with [|x]| < r,

Iyl = 1Kl = lly = Kxll > | Kxll = mllxll = (¢™* = m)llxll.

Hence, the first conclusion in (b) follows from Theorem 3.1(a) and (b).
Next, suppose that each K is continuous. Then, for each y € Ax with
x €B,,

Iyl <lly = Kxll + 1 Kxll < mllxll + I KN [l = (m + 1K)l

Hence, the second conclusion follows from Theorem 3.1(c). |

THEOREM 4.5. (@) Let U C X be a neighborhood of 0 and A: U — 2Y,
with A(x) compact, be u.s.c., ¢-condensing, and x = 0 if x € Ax. Suppose
that N: X — Y is continuous and Nx — Ny € A(x — y) wheneverx —y € U.
Then I — N is bijective.

(b) If, in addition, A and N are ball-condensing on X and A is
positively homogeneous, then the equation x — Nx = f is uniquely approxima-
tion solvable w.rt. T = {X,, P} for each f € X and the approximate solu-
tions x,, € X, of x — P,Nx = P, f satisfy (3.3) and (3.5).

Proof. I — N is bijective by Corollary 1.4 in [Mi-2]. Moreover, I — N is
c,-coercive by Lemma 1.1 in [Mi-2], for some ¢, > 0, while I — A satisfies
(3.2) by Lemma 2.1 in [Mi-3] and is c,-coercive by Lemma 2.1. Finally,
I —-P/N: X, — X, is a homeomorphism for each n > n, by Theorem 2.5
in [Mi-3]. Next, we claim that for each f & X there are an r > 0 and
ny > 1 such that deg( — P,N,B, N X,,, P,f) = deg({ — N, B,, f) # 0 for
each n > n,. Indeed, for a given f € X, select an r > 0 such that fe (I
— NXB,). Since I — N is a homeomorphism, deg(/ — N, B,, f) # 0. Then
the homotopy H(t,x) = tP,Nx + (1 — t)Nx on [0,1] X B, is admissible
and deg(/ — N, B,, f) = deg(I — P,N, B,, P,f) = deg(I — P,N, B, N
X,, P,f). Hence, the claim is valid and x — P,Nx = P,f is solvable in
B, N X,. Thus, the conclusions of the theorem follow from Theorem 3.1
and Remark 3.1. |
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When A and N are compact maps, Theorem 4.5(a) is due to Lasota and
Opial [LO]. For an application of this theorem to linear boundary value
problems for ordinary differential equations, we refer to [Mi-8].

In the case of differentiable maps, we have

THEOREM 4.6. (@) Let T: X — Y be Frechet differentiable, A-proper
w.r.t. T, and have the closed range in Y. Then, if T'(x) is injective and
A-proper w.r.t. T for each x € X, Eq. (3.1) is strongly approximation solvable
in a neighborhood B,(x,) of each of its solution x, for f € Y and (3.3) holds.

(b) If, in addition, T is continuously Frechet differentiable in X, then T
is a homeomorphism and Eq. (3.1) is uniquely approximation solvable for
each f € Y and (3.5) holds.

Proof. Let x, € X be fixed. Since T'(x,) is an A-proper injection,
there are a ¢, = co(x,) > 0 and n, > 1 such that, for each n > n,,

0. T (x0) x| = collxll  forx € X,,.

Since T'(x,) is a bijection, by Krasnosel’skii and Zabreiko’s result [KZ], T
is surjective. Hence, the conclusion follows from Theorem 3.2. If T is
continuously Fréchet differentiable, then the assertions of (b) follow by
Theorem 4.2. |

Remark 4.1. 1f T =1 — C, C compact and continuously Fréchet differ-
entiable, the homeomorphism assertion only is due to Krasnosel’'skii and
Zabreiko [KZ].

Next, we shall give an application of Theorem 3.1 to asymptotically
{B,, B,}-quasilinear maps of the form T'=I — N in a Hilbert space H. Let
B,,B,; H— H be self-adjoint maps and write B, < B, if (B;x,x) <
(B,x,x) for all x € H. Let o(B,) be the spectrum of B, i=1,2, 1 &
o(B) U a(By),c(B) N A wo ={A,..., 70} and o(B,) N (1, ) =
{pq, .-, m}, where the A’s and w’s are the eigenvalues of B, and B,,
respectively, of finite multiplicities. Suppose that the sum of the multiplici-
ties of the A;’s is equal to the sum of the multiplicities of the w,’s. Then we
say that B, and B, form a regular pair.

Following Krasnosel’skii and Zabreiko [KZ], a (nonlinear) map A4:
H — H is said to be {B,, B,}-quasilinear on a set M c H if for each
x € M there exists a linear self-adjoint map C: H — H such that B, < C
<B, and Cx=Ax. A map N: H— H is said to be asymptotically
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{B,, B,}-quasilinear if there is a { B, B,}-quasilinear outside some ball map
A such that

[ Nx — Ax||

IN — A| = limsup
llx]l

llxl| =

For such maps we have

THEOREM 4.7. (a) Let N: N — H be Frechet differentiable and such that
N'(x) is self-adjoint, B; < N'(x) < B, for some regular pair {B,, B,}, and
I — N'(x) is A-proper w.rt. I' ={X,, P,} for each x € H. Suppose that
H,=1—tN— Q1 —1t)B, is A-proper w.r.t. Ty for each t € [0, 1] and some
self-adjoint map B, with B, < B, < B,. Then, for each f € H, the equation
Tx = x — Nx = [ is strongly approximation solvable in a neighborhood B,(x)
of each of its solutions x, and the estimate (3.2) holds.

(b) If, in addition, N is continuously Frechet differentiable in H, then
I — N is a homeomorphism and the equation x — Nx = f is uniquely approxi-
mation solvable for each f € H and the estimate (3.5) holds.

Proof. For each x,y,h € H and some ¢ € (0,1), we have that (Nx —
Ny, h) = (N'(y + t(x — y))(x — y), h), and therefore

N = Nyll < sup [|N'(y + t(x = ) [[lx =yl

O0<r<1

< max{llB,Il, 1 B,I}llx — yll.

Hence, N is bounded and, consequently, H, is an A-proper homotopy
w.r.t. T. Since Nx = C(x)x + N(0), where C(x) = [yN'(zx) dt, it follows
that N is asymptotically {B;, B,}-quasilinear with |[N — A| = 0 and Ax =
C(x)x. Thus, I — N is surjective by Theorem 3.4 in [Mi-4]. Moreover,
since 1 is not an eigenvalue of N'(x) for each x € H as shown in [Mi-4],
the conclusions of the theorem follow from Theorems 3.1 and 4.2 as above.

THEOREM 4.8. (a) Let T: U € X — Y be such that for each u € U there
is a ball B(u) C U, a linear map K, and a constant m such that
) ITx - Ty — K(x =yl < mllx = yll forx,y € Er(u).
(ii) K has a bounded inverse K~* on TB,(u) and WKt = m)r
> ¢ > 0 for some constant ¢ independent of u € U.
Then T is surjective and locally invertible.
(b) Let, in addition, T be A-proper w.r.t. T, and, for all large n,
(i) 1Q,Kxll = cyllxll forx € X, and some c, with 8mc, < 1.



448 P. S. MILOJEVIC

Then, for each f€Y, Eq. (3.1) is strongly approximation solvable in a
neighborhood of each its solution x, and the estimate (3.3) holds. Moreover, if
each K is also continuous, then Eq. (3.1) is uniquely approximation solvable in
a neighborhood of each its solution x, and (3.5) holds.

Proof. The assertions in part (a) follow by Theorem 4.1 in [E], while
those in part (b) can be proved as in the proof of Theorem 4.4(b). |

Remark 4.2. In view of Theorem 4.1(a) in [E], the condition (|[K~*|*
— m)r > ¢ > 0 can be replaced by: for each R > 0 there exists a constant
¢ =c(R) > 0 such that (|K ™" = m)r > ¢ for |lull < R, and || Tx|| = o
as ||x|| - o« with x € U.

Remark 4.3. Taking X =Y = R! and Tx = tan x, it can be shown that

all conditions of Theorem 4.8 are satisfied (see [E]). Hence, Theorem 4.8
does not ensure that 7' has an inverse defined on all of Y.

When T is also continuous, we have the following result dealing with the
invertibility of 7 and the number of solutions of Tx = f.

THEOREM 4.9.  Let all conditions of Theorem 4.8 hold and T be continu-
ous on U. Then there exists a finite or infinite number A of open connected
domains U, C U such that

() U= U,c,\U, and the sets U, are mutually disjoint.

(i) Foreach A € A, the restriction T, of T to U, is a homeomorphism
of U, onto Y.

(iii)y If U =X, then T is a homeomorphism of X onto Y.
(iv) If, in addition, T is an A-proper map w.r.t. T and (iii) of Theorem
4.8 holds, then the conclusion of Theorem 4.8(b) hold.

Proof.  Assertions (i)—(iii) are Theorem 6.1 in [E] and (iv) follows from
Theorem 4.8. |

5. APPLICATIONS TO SEMILINEAR EQUATIONS

In this section, we shall consider semilinear maps of the form 7T =4 — N
with A linear and not necessarily continuous. We have the following
constructive inverse function theorem.

THeoOREM 5.1 (cf. [Mi-6]). Let A: D(A) c X - Y be a closed linear
densely defined map and C: X — Y be linear and such that A — C: D(A) C
X — Y is a bijection and d = |(A — oY Suppose that N: X - Y is
nonlinear and continuous.

(@ Let, for some k € (0, d),

[(N—=C)x—(N-C)yl| <kllx -yl forallx,y € X. (5.1)



IMPLICIT FUNCTION THEOREMS 449

Then Eq. (3.1) is uniquely solvable for each € Y and the solution is the limit
of the iterative process

Ax, — Cx, =Nx,_, — Cx,_, + f. (5.2)

(b) Equation (3.1) is uniquely approximation solvable w.r.t. T =
{(X,,P,Y, 0,} with Q(A— C)x = (A — C)xonY, and 6 = max||Q,|l =

n!' -n

1 for each f € Y and the approximate solutions {x, € X,} satisfy
llx, —xll <c|[(A +N)x, —f|  forsomecandalllargen. (5.3)

If A is defined on all of X, then the approximate solutions also satisfy (3.5).
(©) Ifk =d, X is uniformly convex, § = 1, and

INx — Cx|l < allxl| + b forsomea <k, b > 0, (5.4)

then Eq. (3.1) is solvable for each f € X.

Let us now discuss some special cases in the Hilbert space H setting.
For ¢ € 0(A) N (—»,0], define d. = dist(c, 0(A) N (=, ¢)). The fol-
lowing result with ¢ = 0 was proved by the author [Mi-6 Proposition 2.7].

THEOREM 5.2. Let A: D(A) € H — H be a self-adjoint map and N-:
H — H satisfy

D (Nx—Ny,x—y) = allx —y||2 forallx,y € H.

(i) INx — Nyl < Bllx = yll forallx,y € H.

@ If () and (i) hold and B* < ad_+ c(d. — c — 2a) for some
¢ <0, then Eq. (3.1) is uniquely solvable and the solution is the limit of the
iterative process (5.2). Moreover, Eq. (3.1) is uniquely approximation solvable
wrt. T ={H, P} with § = max||P,|l = 1 for each f € H and (5.3) holds.
If A is defined on all of H, then the approximation solutions also satisfy (3.5).

() IfB*<ad;+c(d;—c—2a)and, forsomea <\ =c —d /2
and b > 0,

INx — Ax|l < allx|| + b forallx € H,

then Eq. (3.1) is solvable for each f € H.

Proof. We follow the arguments of Proposition 2.7 in [Mi-6]. Let
A=c—d;/2 and Cx = Ax. Then A & o(A4) and d = dist()A, 6(A4)) > 0
with d = [((4 — AI)~Y||"*. Using conditions (i) and (ii), we get

[Nx +Ax — (Ny + Ay) | < (B? + A° + Za)\)l/zllx —yll.
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By our choice of A and the condition on 3, we get
B2+ A+ 2aA = B2+ ad; + c(d; — c — 2a) + (d; /2)*
< (d;/2)* =d?.
Hence, the conclusions follow from Theorem 5.1. |

Remark 5.1. Since a < 3, the conditions imposed on « and B require
that they belong to (|c|, lc| + d.). Hence, ¢ < 0 is chosen so that this fact
holds.

Remark 5.2. Theorem 5.2 extends a result of Smiley [Sm] in various
ways, whose proof is based on the Liapunov—-Schmidt alternative method,
and the obtained error estimate is of a different type.

THEOREM 5.3. Let A: D(A) € H — H be self-adjoint, N: H — H be a
gradient map, and C, B*: H — H be self-adjoint maps such that

D B x—px—y<Nx—Ny,x—y)<B'(x-y),x—y)
forallx,y € H.

(i) [|BE=Cll<d=min{|Al|x € o(A4 — C)}.

(@) If the inequality is strict in (ii), then Eq. (3.1) is uniquely solvable
and the solution is the limit of the iterative process (5.2). Moreover, Eq. (3.1)
is uniquely approximation solvable w.r.t. T' = {H,, P} with max||P,|| = 1 for
H for each f € H and the approximate solutions satisfy (5.3). If A is defined
on all of H, then the approximate solutions also satisfy (3.5).

(b) If, in addition, there are 0 < a < d and b > 0 such that
INx — Cx|l < allx|| + b forallx € H,

then Eq. (3.1) is solvable for each f € H.

Proof. Since C is a gradient of the functional x — (Cx,x)/2, N — C is
a gradient map and

—IB~— Cllllx — ylI®
<((B=C)(x=y)x=y),((B"=C)(x —y),x —y)
<|B*=Clllx -yl

Hence, by Lemma 1 in [M],
[(N—=C)x —(N-C)yl| <klx -yl forall x,y € H,

where k = max(|B-— C||,|IB*— CI). Since d = [(4 — C)~!||"*, the con-
clusions follow from Theorem 5.1. |
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Remark 53. If B~= ol and B*= BI and [«, B] is contained in the
resolvent set p(A) of A, then we can take C = AI for some A € (a, 8) in
part (a) of Theorem 5.3 (cf. [Mi-6]). In this case the unique solvability of
Eq. (3.1) was proved by Amann [A] and a different proof of it was given in
Mawhin [M]. Part (b) allows a bigger value of B as the following result
shows. For ¢ € a(A4) N (0,%), define d; = dist(c, o (A) N (c,»)).

THEOREM 5.4. Let A: D(A) € H — H be self-adjoint, N: H — H be a
gradient map, and «, B € R be such that

allx—yllzs(Nx—Ny,x—y) sﬁllx—yll2 forx,y € H.

@ Ifeither c € o(A) N (=0l and —c<a<B< —cH+d], or
ceog(A) N0, and —c —d}< a < B < —c, then Eq. (3.1) is uniquely
solvable and the solution is the limit of the iterative process (5.2). Moreover,
Eq. (8.1) is uniquely approximation solvable w.rt. T'={H, P} with
max||P,|l = 1 for each f € H and (5.3) holds. If A is defined on all of H,
then the approximate solutions also satisfy (3.5).

(b)  If the conditions in (a) hold with each * < " sign replaced by *“ < "
and, for some a < A with A\ =c —d;/2 ifc <0 and A =c +d/2 if
¢c>0,and b > 0,

INx — Ax|| < allx]|+b  forall x € H,

then Eq. (3.1) is solvable for each f € H.

Proof. As above, we have that
INx + Ax — Ny — Ayl < max(la + Al B+ Al)llx — yll.

By our choice of A as given in (b), we conclude that |a + Al <d =
dist(A, 0(A)) = dX/2and | B + Al < d with the inequalities being strict in
part (a). Hence, Theorem 5.1 is applicable. |

When N is also Gateaux differentiable, Theorem 5.4 was proved in
[Mi-6]. Without the constructive solvability assertions and the error esti-
mates, it is due to Ben-Naoum and Mawhin [BM] when ¢ = 0.

The next result deals with conditions which imply the contractivity
property of the nonlinear map in a suitable reformulation of Eq. (3.1).

THEOREM 5.5. Let A: D(A) c H — H be self-adjoint, N: H — H be a
gradient map, and C, B*: H — H be self-adjoint maps such that

(i) N — B~ and B*— N are monotone

and either one of the following conditions holds:
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(il H=H & H" for some closed subspaces H* and the projections
P*: H— H* are such that P*(D(A)) c D(A) and, for some y > 0,

((A—-B7)x,x) < —yllxl’>, xeD(A)nH", (5.5)
((A —B")x,x) = yllxll?, xeD(A) NH". (5.6)

(iii) (A—-B)x,x)<0forxeD(A)NH and (A —B"x, x) >
0 forx e D(A)NH*

and either A — (1 — t)B™— tB* has a closed range or A has a compact
resolvent.

(ivi. A —@Q —t)B™— tB* has a bounded inverse for each t € [0, 1].

Then, for each f € H, Eq. (3.1) is uniquely solvable, (5.2) holds, and, if
(i) holds, it is uniquely approximation solvable w.r.t. T ={P,, H} with
P, Ax = Ax on H, and the approximate solutions satisfy (5.3). If A is defined
on all of H, then the approximation solutions also satisfy (3.5).

The following lemma from [Mi-6] is needed for the proof.

LEMMA 5.1.  Let condition (ii) of Theorem 5.5 hold. Then there are € > 0
and ¢ > 0 such that, for any self-adjoint maps By, B,,C € L(H) with
B <B,, B, <B", and B, — €l < C < B, + €l, we have that

|Ax — Cx|| = cllx|| forallx € D(A). (5.7)

Proof of Theorem 5.5. Lemma 5.1 implies that A — C has a continuous
inverse since it is self-adjoint and has a closed range. Hence, condition (ii)
with C = (1 — t)B~+ tB™ implies (iv). Moreover, condition (iii) also im-
plies (iv). To see this, it is enough to show that 4 — (1 — H)B~—tB" is
one-to-one. If not, then there is an x # 0 such that Ax — (1 — 1)B x —
tB*x =0. Then x =x, +x, € H + H" and, by the symmetry of the
operators,

0=(Ax— (1 —1t)Bx —tB'x,x, — X;)
= (Axy, + Ax; — (1 —t)(B™x,; + B'x;) — (B x, + B'x;), x, — x)
=((A—-(1—-1t)B " —tB")x,,x,) = ((A— (1 —t)B + B )xy, x)
> ((A—=B")x,,x) — ((A— B )xy,x,) >0,

a contradiction. Now, if (iv) holds, then Eq. (3.1) is uniquely solvable for
each f€ H by a result of Fonda and Mawhin [FM]. When (ii) holds,
A — N is known to be A-proper and vy/2-strongly K-monotone and
therefore the second assertion follows. |
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Remark 5.4. Theorem 5.5(ii) gives a constructive proof of a result of
Tersian [T] and part (iv) is due to Fonda and Mawhin [FM]. Our proof of
the unique solvability in (ii) is new. This result also extends many other
earlier ones (Amann [A], Dancer [D], etc.). For various applications to
ordinary, elliptic, and hyperbolic equations, we refer to the above-cited
works and to [Mi-10].

COROLLARY 5.1. Let A: D(A) € H — H be self-adjoint and N: H - H
be a gradient map such that, for some self-adjoint maps B*: H — H,

(i) N — B~ and B*— N are monotone.
(i) B*= X", AFP* commute with A, where P*: H — ker(B*—

l

ML) are orthogonal projections with P = P for 1 <i <m, A\{f< -+ < A%,
and \E are pairwise distinct.

(i) U™ [A7, AT ] € p(A)—the resolvent set of A.

Then Eq. (3.1) is uniquely approximation solvable w.r.t. T for each f € H
and (5.2) and (5.3) hold. If A is defined on all of H, then the approximate
solutions also satisfy (3.5).

Proof. By Lemma 2.4 in [Mi-6], there are orthogonal subspaces H *
such that H = H-® H* and conditions (5.5) and (5.6) hold. Hence, the
result follows from Theorem 5.5. ||

When BZ* are not of the form (ii), we need to assume more on the
linear part A.

COROLLARY 5.2. Let A: D(A) c H — H be self-adjoint, N: H — H be
a gradient map, and C,,C,, B* be continuous self-adjoint maps such that
C,<B7,B"<(,, and

(i) N — B~ and B*— N are monotone maps.
(i) The spectrum o(A) is countable, consists of eigenvalues, and the
corresponding eigenvectors form a complete orthonormal system in H.

(iii)  There are two consecutive finite multiplicity eigenvalues A, < Ay, ;
of A such that

)\kllxll2 <(Cix,x) < (Cyx,x) < /\kﬂllxll2 forx € H\{0}.

Then Eq. (3.1) is uniquely approximation solvable w.r.t. T for each f € H
and (5.2) and (5.3) hold. If A is defined on all of H, then the approximate
solutions also satisfy (3.5).

Proof. Let H™ (resp. H") be the subspaces of H spanned by the
eigenvectors of A corresponding to the eigenvalues A; < A, (resp. A; >
Ars1)- By Lemma 2.5 in [Mi-6], there is a y > 0 such that (5.5) and (5.6)
hold. Hence, the conclusion follows from Theorem 5.5. |}
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Remark 5.5. If A, (resp. A,, ;) is of infinite multiplicity, then Corollary
5.2 is still valid if we assume in (iii)

(A + Ollxl® < (Cypx, x) (resp. (Cox, x) < (Agyy — ellxl?)
for0 #x € H.

Regarding (5.7), we also have the following useful result.

LEMMA 5.2. Let A: D(A) € H — H be self-adjoint. Then (5.7) holds for
each continuous self-adjoint map C with B, < C < B, if there is an a > 0
such that either

i 0<a<min{MIre a4 -C) or
(ii) each C commutes with A and dist(a(A), o(C)) > a.
For a discussion of the case when H-® H"# H, we refer to [A, Mi-6].

6. CONSTRUCTIVE HOMEOMORPHISM THEOREMS FOR
A-STABLE MAPS

In this section, we continue our study of Eq. (3.1) with T neither
differentiable nor having a multivalued derivative. We shall show that
similar error estimates hold provided that T is locally Lipschitz and
approximation stable, i.e., an inequality of type (6.1) below holds. We say
that 7: X — Y is locally p-Lipschitz for some p > 0 if for each x € X
there are positive numbers r and M (depending on x) such that

Ty — Tzl < Mlly — z|I” for all y,zeEr(x).
Define the function

1, 0<gqg=<1,

m(q) = 591 g> 1.

For such maps, the following result was announced in [Mi-4].

THEOREM 6.1 (cf. [Mi-4]). Let T: X — Y be surjective and locally
p-Lipschitz and there are a function c: R*— R* and numbers q > 0 and
ny > 1 such that ¢(r)r4 — % as r — < and, for each r > 0,

10, Tx — Q, Tyl = c(r)llx — yll? forx,y € E, NX, n=n, (6.1)
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Then T is a homeomorphism and, for each f €Y, Eq. (3.1) is uniquely
approximation solvable w.r.t. I, the approximate solutions x,, € B, N X, for
some r, and, for n = ng,

lx, — xoll? < kP, xq — xoll” + k,llP,xy — x,ll7
< cd(xy, X)) + cpd(x0, X,) ", (6.2)
where d is the distance, the constants k, and k, depend on r, &, q, and x,,
and ¢; = 2k;8,,i = 1,2, 8, = supl|lP,ll.

Proof. Let r>0and x,y € Er. Then, since T' is projectionally com-
plete, there are x,, y, € X, with |lx,|l = |lx]l and ||yl = llylland x, — x,
v, — y. Moreover, for each n > n,,

10,Tx, — O, Ty,ll = c(r)llx, — y,II%
and passing to the limit we obtain that
ITx — Tyll = c(r)llx — yll, X,y € Er. (6.3)
In particular, for ||x|| = r we get
ITx|l = ITx — TOll — [ITOll = ¢(r)llx||” — IOl

and therefore [|7x|| — « as [[x|| — . Next, let y, € Y be fixed, Tx, = y,,
r, R,and € > Osuch that B.(x,) € T~ *(Bg(y,)) C B,. Then, if u € By(y,),
u = Tx for some x € B(x,) and

1T~ u — T Yyl < e(r) ™ Nu — oI,

which implies the continuity of 7-* at y,. Hence, T is a homeomorphism.

Let us now prove the second part of the theorem. Since Q,7: X, — Y,
is continuous and injective by (6.1), Q,T(X,) is open in Y, by the Brouwer
invariance of domain theorem. Moreover, Q,T(X,) is closed in Y, for, if
Q,Tx, —y for some {x,} € X,, then {x,} is a Cauchy sequence and
therefore Q,7x, — Q,Tx for some x € X,. Hence, O,T: X, =Y, is
bijective for each n > n,. Next, let f € Y be fixed and x, and x, € X, be
the unique solutions of Eq. (3.1) and Q,Tx = Q,f with n > n,, respec-
tively. Set |lx,ll=r,. Then [IQ,fll=10,Tx,ll = c¢(r)rf —1IQ,T0Ol and,
consequently, {x,} is bounded. Let r > 0 be such that x, and {x,} are
contained in B,. Set & = supl|Q,|l. Then, for all large n,

c(r)lix, = P,xoll* <11Q0,Tx, — Q,TP,x,ll
< 6lITxy — TP, x,ll < SM(x4)llxy — P, x,ll”
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and

lx, = xoll” < (llx, = P,xoll + 1P, x4 — xoll)”
< m(q)(llx, = Bxoll” + 1P, x0 — xoll")
< m(q)(8M(xo)c H(r)IP,xo — x,lI” + 1P, xo — x,ll).

Hence, (6.2) holds as in Theorem 3.1 |

Remark 6.1. If, for example, p = ¢ = 1 and ¢(r) = constant in Theo-
rem 6.1, then we have that [|Tx — Tyll > c|lx — yl| for all x, y € X and one
easily sees that the approximate solutions also satisfy (3.3).

COROLLARY 6.1. Let T: X — Y be surjective, weakly Gateaux differen-
tiable on X, and satisfy (6.1). Suppose that for each x € X there are positive
constants r and M (depending only on x) such that |T'(VDIl < M for all
y € B.(x). Then the conclusions of Theorem 6.1 hold with p = 1.

Proof. It suffices to show that T is locally Lipschitz on X. But this
follows easily by the mean value theorem. |

Strengthening condition (6.1) to the strong-monotonicity condition for
T: X —» X*, we shall now derive a simpler formula for the rate of
convergence of approximate solutions. A similar result has been proven
earlier by Ciarlet, Schultz, and Varga [CSV] using different arguments,
where one can also find a number of applications to quasilinear elliptic
partial differential equations.

THEOREM 6.2 (cf. [Mi-4]). Let T: X —» X* be surjective and locally
Lipschitz and, for some 1 < q > p and c(r) with ¢(r)r? — © as r - « and
r>0,

(Tx — Ty, x —y) = c(r)llx — yll forx,y € B,. (6.4)

Then T is a homeomorphism and, for each f <Y, Eq. (3.1) is uniquely
approximation solvable w.r.t. I' = {X,, P, Y, = R(P}), P,"}, the approximate
solutions x,, € B, N X, for some r and for each n

1/(q— . 1/(g—p)
lx, — xoll < kllP,xq — xol["“™" < cdist(x,, X)),

where k depends on M(xy) and c(r), and ¢ = 2k§,, 8, = supl|P,|I.

Proof. It is easy to see that (6.4) implies (6.1) with ¢(r) replaced by
8 ter, where & = sup|| P¥|l. Hence, as in the proof of Theorem 6.1, we see
that T is a homeomorphism and P*T: X, — Y, is bijective for each n.
Moreover, for each fe X* fixed, the solution x, of Tx = f and the
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approximate solutions x, of P*Tx = P*f belong to a ball B, for some
r > 0. Hence,

e(r)llx, = xoll” < (Tx, = Txo, x, = o)
= (Tx, — Txq, P,xo — X;)
+(Tx, — Txqy, x, — P,xy)
= (Tx, — Txq, Pyxy — X,)
< |Tx, — Tx,ll | P,xy — x,ll

< M(x)llx, — xolI”1P, x4 — x,ll.
Set k = (¢ *(r)M(x,))/@~P), Then, for each n, we have that

e - 1/(q—p)
llx, — xoll < kllP,xy — x,]l /a=pr) c dist(x,, X,,) /a=-p) I
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