
Theoretical

ELSEVIER Theoretical Computer Science 207 (1998) 2541

Computer Science

The ancestor width of grammars and languages

Franz J. Brandenburg *

Lehrstuhl fir Informatik, Universittit Passau, 04030 Pussuu, Germany

Abstract

The ancestor width is a new measure for the structure of derivations of arbitrary grammars.
For every production used in a derivation or equivalently for every leaf we consider the strings of
ancestors. The ancestors define a complexity measure with a local flavour. Obviously, context-free

grammars have ancestor width one. We show that languages with ancestor width two are context-
free. However, every recursively enumerable set can be generated by a grammar with ancestor
width three. For I-free grammars the ancestor width is closely related to nondeterministic space

complexity. Then languages such as {wcwclw E {a,b}*}, {a”b”c”ln>l} or {(a”c)“ln>l} can
be generated with ancestor width four. Moreover, any language can be generated with ancestor
width three, if padding is used and the language is represented with tails. @ 1998-Elsevier

Science B.V. All rights reserved

Keywords: Grammars and complexity; Non-context-free languages; Structure of derivations

1. Introduction

The theory of formal languages is one of the fundamental areas of Theoretical Com-

puter Science. It has been investigated since the 1960s. However, most of the research

effort has been directed towards the theory of context-free grammars and languages.

The theory of context-sensitive and phrase structure grammars is not well developed.

These grammars generate highly complex languages, which are more commonly de-

scribed by machines and studied in terms of their computational complexity, such as

time and space.

In his early research work, Professor Ron Book investigated context-sensitive gram-

mars. He transferred the notion of time complexity to grammars [2,3,7] and made

attempts to understand the use of context in derivations of context-sensitive grammars.

His “connectivity lemma” [2,3] sheds some light on the structure of context-sensitive

derivations. Barriers of terminal context impose structural properties of a different type

[4]. Then context-sensitive grammars generate only context-free languages [l]. In [5]

Book writes “The way in which rewriting rules containing context interact to generate

jr E-mail: brandenb@informatik.uni-passau.de.

0304-3975/98/$19.00 @ 1998-Elsevier Science B.V. All rights reserved

PII SO304-3975(98)00054-I

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82278633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26 F. J. Brandenburg I Theoretical Computer Science 207 (1998) 2541

non-context-free languages has not been explained. While it is undecidable whether a
context-sensitive (or arbitrary) grammar generates a context-free language, it is not

unreasonable to ask for a formal description of the mechanism used in derivations of

such grammars in order that non-context-free languages are generated. In many ex-

amples it appears that a capacity for “storing and transmitting information” is coded

into the rewriting rules by choice of context. Several results have used the creation of

“barriers” to “message-sending” in order to show that under certain conditions only

context-free languages are generated. The description of the types of rules used in

showing that a grammar can imitate the actions of a Turing machine does little to
explain the mechanism (or power) of context.”

In this paper we define a new measure on the derivations of grammars. For every

left-hand side of a production or equivalently for every symbol of the generated string

and every derived occurrence of the empty string we consider the strings of ancestors,

which are the predecessors in the derivation. This relation is based on the fact, that the

full left-hand side ~1 of a production u + j3 is the string of ancestors of every symbol

of /?. Obviously, a production is context-free if and only if it has a string of ancestors

of length one. Hence, context-free grammars and languages have ancestor width one.

This can be interpreted by saying that “context-freeness is for free”.
In a derivation of an arbitrary grammar, every substring of a derived string depends

only on its strings of ancestors. The strings of ancestors completely describe the history

in the derivation. Derivations can be rearranged into an initial part on the strings of

ancestors towards the distinguished substring and two independent left and right sub-

derivations. By recursion, every derivation of an arbitrary grammar can be transformed

into a syntactically equivalent derivation with a global tree structure, where the vertices

consist of local subderivations on strings of ancestors, see [9-121.

The ancestor width measures the size of the strings of ancestors of the left-hand sides

of the productions, or equivalently of the leaves of the derivation. It does not suffice

to consider only the symbols of the generated string. This notion has been introduced

in [lo] and has been investigated for context-sensitive grammars and languages in [9].

Here, we consider arbitrary grammars. Now, A-productions generating the empty string

play a crucial role. We show that every recursively enumerable set can be generated

by a grammar with ancestor width three. Thus arbitrary languages can be generated by

spreading out information over strings of length three. However, grammars with ances-

tor width two generate only context-free languages. For A-free grammars, the ancestor

width is closely related to the workspace of grammars, which coincides with the space

complexity of nondeterministic Turing machines. Such grammars can generate e.g. the

languages {a”b”c”lnb 1) and {wcwc~w E {a, b,}*} with ancestor width four. Moreover,

any language L can be generated by a A-free (resp. context-sensitive) grammar with

ancestor width four (resp. three), if padding is used and the language is represented

with tails. The length of the tails is related to the time and space complexity of L.

This research was motivated by Professor Book’s research on grammars [2-5,7]

and was stimulated by his encouragements and useful hints while I was writing my

dissertation [lo].

F.J. Brandenburg I Theoreiical Computer Science 207 (1998) 2541 2-l

2. Preliminaries

We review some basic definitions on strings and grammars. A string w = al..a, is

a finite sequence of symbols from an alphabet C. Its length is denoted by Iw/. The

substring ai..a, of w from the i-th to the j-th symbol is denoted by w(i,j), where

w(i,.j) = &if ,j < i. Here j, denotes the empty string.

Definition 1. A (phrase-structure or Type 0) grammar is a quadruple G = (N, T, P, S),
where N and T are the alphabets of nonterminal and terminal symbols with N n T =

@,S E N is the axiom and P is a finite set of productions of the form a + b with

a E N’ and [I E (N U T)*.

Let u + v denote the derivation relation defined by the application of a production

and -J* its reflexive, transitive closure.

The language generated by G is the set L(G) = {w E T* IS +* w}.

Two grammars are equivalent, if they generate the same language.

Grammars are classified by the form of their productions. A grammar G = (N, r, P, S)

is %-free, if it has no productions of the form r + 1,, where Jb denotes the empty string.

G is Type 1 or context-sensitive, if 1~116 IFi f or every production c(-+ p, Type 2 or

context-free, if CI E N and linear context-free (resp. Type 3), if additionally j E

T*NT* U T* (resp. j E T’N U T*). A language L is of Type 0, if L is generated by

a phrase structure grammar. Accordingly, L is called Type 1, Type 2 or context-free,

linear context-free and Type 3.
Recall that the Type 0 languages coincide with the recursively enumerable sets.

Type 1 grammars generate the context-sensitive languages, which coincide with the

space complexity class NSPACE(n). The Type 2 languages correspond to pushdown

automata and the Type 3 languages are the regular sets. These types define the Chomsky

hierarchy of languages [19,201.

In this paper, %-productions shall play an important role. It is known that

i-productions can be eliminated from arbitrary and from context-free grammars. Up

to the empty string 2, which may be attached by a separate production S + i, every

recursively enumerable set can be generated by a R-free grammar and every context-free

language can be generated by a R-free context-free grammar. For arbitrary grammars,

replace every A-production a ---f J. by productions Act + A and cul -+ A for every

symbol A E N U T, and for context-free grammars contract I-paths.

For our new complexity measure we must take a closer look at derivations.

Definition 2. Let G = (N, T, P,S) be a grammar. A derivation from Q, to Ql is a

sequence of triples D = [(Qi,~ri + pi, pi)li = 1,. . . , t]. Here Ql + . . . =S Ql is the

sequence of derived strings. For 1 <i < t, ri + /I, E P is the production used in the ith

step and pi describes the position of the application, such that pi = Iui I + 1, if Qj =

UiZ,Ui and Ql+l = UifliVi. In the ith derivation step, the symbols from Qi(pi, pi+ Ic$ - 1)

are replaced, whereas all other symbols are copied. The last production a, --i ,& and

28 F J. Brandenburg I Theoretical Computer Science 207 (1998) 2541

A, A,.,. Ar

x
B, E$. . . B,

Fig. 1.

pt are added for convenience of writing. For i = 1,. . . , t - 2, the derived string Qi+,

has two partitions into substrings according to the application of the ith and (i + 1)th

productions, Qi+i = Ui/?iUi = Ui+iCli+lUi+l. Accordingly, the (i + 1)th derivation step

occurs to the left of the ith derivation step, if lui+rai+i I< luil and to the right, if

IuiBil <<Iui+i]. T wo d erivation steps overlap, if]Ui+il < juiflil and IUil < (ui+icli+i].

These cases are mutually exclusive and exhaust all possibilities.

A derivation D has a natural representation in terms of a derivation graph z(D).

7(D) has two types of vertices, one for the symbols of the derived strings and one

for the productions. Every symbol from Qi is represented by a full vertex “or’. These

vertices are organized into t layers, and are labelled from left to right by the symbols

of the Q,. Every production Cxi + pi is represented by a subgraph as shown in Fig. 1.

It has a vertex “0” for the production, which is placed between the layers for Qi and

Qi+i. If Qi = UiCliUi and Qi+, = uibini then the vertices representing the symbols from

Ui and v; in Qi and Qi+i are connected by directed edges, which are drawn dashed.

There is a full edge from every vertex representing a symbol from Cli to the circle

vertex for the production and from there to every vertex from pi.

In graph theoretic terms, a derivation graph r(D) is a directed, acyclic, planar graph

with labelled vertices. Its sources are the symbols from the initial string Qi, its sinks

are the symbols from the final string Qr and the vertices from i-productions. Some of

these sinks from i-productions are interior vertices. Those on the outer face and the

symbols from Qt are the leaves of z(D). These are the real result of D.
Derivation graphs are somewhat redundant. More common are syntactical graphs

[21,22] and derivation trees [19,201. These are more compact and are obtained from

our derivation graphs by shrinking paths along dashed edges. However, syntactical

graphs and derivation trees do not represent a single derivation but a class of derivations

with the leftmost derivation as a unique representative.

We now come to the main notion of this paper.

Definition 3. Let G = (N, T,P,S) be a grammar and let D = [(Qi,ui -+ pi, pt)li =

1 , . . . , t] be a derivation from Qi to Qt. For every nonempty substring y = f&(1, r)

of some Qk and all previous Qi, 1 6 i < k, the string of ancestors of y in Qi is the

F. J. Brandenburg I Theoretical Computer Science 207 (1998) 25-41 29

non-empty substring of Qi, defined as follows. For i = k let anq(k,l,r) = Qk(Zk,rk)
with lk = I and rk = r.

For i < k let utici(k,Z,r) = Qi(li,r;), where

and

1 Pi+1 ifri+l < pi,

6 = rl+r - IPi\ + lclil if pi + lfii\<ri+l,

Pi + [‘%I if piGri+l < pi + j/&l.

Hence, anc;(k, I, r) = anq+~ (k, I, r), if the i-th derivation step does not overlap with
uns+l(k, l,r). Otherwise, if Eli + fii is the actual production, then unci(k, Z,r) is ob-
tained from anc;+r (k, 1, r) by replacing pi or the portion of pi contained in unc;+l(k, I, r)

by a,.
The strings of ancestors fully describe the history of a substring y. y only depends on

its strings of ancestors and can be retrieved from them by applying the productions of
D overlapping with the strings of ancestors. Then y is rewritten in the context of some
strings y and 6, i.e. Qi(li,ri) J* yy6. This property is well known for context-free
grammars, where it is decidable whether or not a grammar generates a substring y.

The ancestor width measures the complexity of derivations and strings by the lengths
of the strings of ancestors of the productions or equivalently of the leaves of D. The
symbols from the derived string do not suffice. Also, the occurrences of the empty
string in ,I-productions must be taken into account. Our results will make this clear.

Definition 4. Let G = (N, T, P,S) be a grammar. The ancestor width of a derivation
D = [(Qi,Mi --+ pi, Pi)li = 1,. . .,t] is defined by

A W(D) = max{ (unci(k,pkrpk + (uk(- l)l(1 bk<t - 1 and 1 <i<k}.

For a terminal string w let

AW(w) = min{AW(D)ID : S +* w is a derivation of w).

Thus, the ancestor width of a string w is taken over all derivations S =+* w and
the best one is chosen. This is important. The ancestor width may vary, if the same
productions are used in a different order. For example, if there are productions S -+
SB,S’ 3 B’S’ and BXB’ -+ X, then applying each production n times yields the
derivation SXS’ J* SXS’. If the productions are applied n times in the given order,
then the strings of ancestors of the occurring X are BXB’,SXB’,SXS’, BXS’ and X.
However, if the productions BXB’ -+ X are applied last, then the last X has B”XB’”

as a string of ancestors.

FI J. Brundenburg! Theoretical Computer Science 207 (1998) 2541

Notice that we would obtain completely different results, if the ancestor width of

a string were defined by the maximal ancestor width of all derivations. This follows

from results in [9, lo].

Definition 5. Let f : N --f N be a total recursive function. A grammar G is f(n)
ancestor width bounded, if A W(W)< f(n) for every w E L(G) with 1~1 = n. A lan-

guage L is f(n) ancestor width bounded, if L = L(G) for some f(n) ancestor width

bounded grammar G. Similarly, L is A-free (resp. context-sensitive) f(n) ancestor

width bounded, if there is a corresponding l-free (resp. context-sensitive) grammar

generating L.

3. Ancestor width of grammars

The ancestor width of derivations and strings has a local flavour. It is a punctual

measure in the sense that it considers the strings of ancestors of single productions. In

this respect it resembles complexity measures for Turing machines, such as crossings,

visits, returns or dual returns, see [18,251 for definitions. On the other hand, time and

space are global complexity measures. They take computations as a whole and do not

consider details of the internal behaviour of computations and derivations.

From the graphical representation of derivations it is clear that the ancestor width

is determined by the leaves of the derivation graph. For a derivation D = [(Qi,~i +

Bi,Pi)li = I,..., t] from Qr to Qt, the leaves of D are the symbols of the derived

string, i.e. Q!(k,k) with 1 <k< let], and those distinguished rewritings of the empty

string ak -+ A, which are not covered by other productions.

Let the ancestor width of the leaves be

where A W(D,l) = max{ (anci(k,pk,pk + /CCkl - I)1 11 bi<k,l fk<t, flk = A, and

there is no Y > k such that a?tck+i(r, pr, p,. + /cI,/ - 1) = Qi+l (I, r) with 1 < pk and

r > pk} is the maximal length of a string of ancestors of a derived occurrences of

the empty string 2.

Then we obtain.

Lemma 6. For every derivation D, A W(D) =A WL(D).

Consider the ancestor width of context-free grammars and languages. The derivation

graphs of context-free grammars are trees. Thus the ancestors of the leaves are sin-

gletons and the ancestor width is one. Conversely, if a non-context-free production is

applied in a derivation, then the ancestor width is greater than one. Hence, the context-

free grammars and languages are the ones with ancestor width one. However, for a

grammar G it is undecidable, whether or not G has an ancestor width greater than

one. To see this, compose G of two grammars G = Gi U Gz, such that L(G1) = C’

F J. Brandenburg I Theoreticul Computer Science 207 (1998j 2541 31

and every derivation of Gi has ancestor width k > 1 and G2 is (linear) context-free.

Then G has ancestor width one if and only if L(G2) = z*, which is an undecidable

problem, see e.g. [20].

Next, consider the ancestor width two. Strings of ancestors of length two cannot

interact and pass information. In the derivation graphs of such derivations the strings

of ancestors surround a face of the underlying planar graph. Now non-context-free

productions can be split and simulated by context-free productions. Hence, grammars

with ancestor width two generate only context-free languages.

Theorem 7. (f’ G is u grammar with ancestor width ,f(n) and f(n) <2, then L(G) is

a context-free language.

Proof. Let G = (N, T, P, S) and suppose that the productions are of the form A + B,

A --j BC,A - a,A + 2 and AB + C, where A, B, C E N and a E T. Non-context-free

productions c(+ ,6 with Ial 33 cannot be used and other productions can directly be

simulated by such productions with the same ancestor width.

If a non-context-free production XY + Z is used in some derivation D with A W(D)

= 2, then XY has a special history. There are an initial production A0 + Xl YI and two

chains of nonterminal symbols from Xl to X and from Yr to Y, which are obtained

by productions of the form X, ---f 11,X~+1 and Xi + ,U;+i and accordingly Y; + Yi+i u;

and Yi + Y,.,, . The strings of ancestors of XY are of the form X;Yj. Neither non-

context-free productions of the form AB 4 C nor %-productions A + i can be used

in these subderivations. They would increase the ancestor width at least to three. The

subderivation A0 =+ Xl Y, J* Uxyz: + uZc with strings u and v is split into A0 +

Xl Y,,X, =s* uX + uZ and Yi J* Yu + r using only context-free productions. The

correctness of this procedure is controlled by additional components at the nonterminals

recording the left-hand sides.

For every left-hand side XY of a non-context-free production XY + Z define their

left and right predecessors by

pre,(X) = {X’ E NI there is a rightmost derivation by context-free productions of G

of the form A + BC and A + B from X’ to UX for some u E N* }.

pre,(Y) = {Y’ E NI there is a leftmost derivation by context-free productions of G

of the form A + BC and A + B from Y’ to Yu for some v E N*}. Let init =

{A,) 4 Xl Y1 E PlX, E prel(X) and Y, E pre,.(Y)} be the set of initial productions for

XY + z.

These sets can be effectively computed, since only context-free productions are in-

volved.

Construct the context-free grammar G’ = (N’, T, P’, S) as follows:

N’ = N u {A.XY),(XY,A),(XY,A, UV)IA,X, Y, U, V E N and XY and UV are left-hand

sides of non-context-free productions}.

The set P’ contains the set of context-free productions of P. Additionally, for every

left-hand side XY of a non-context-free production let P’ contain the following pro-

ductions:

32 F. J. Brandenburg I Theoretical Computer Science 207 (I 998) 2541

for every A + XrYr f init and all A,(A,UV),(UV,A),(U1V,,A,U*y2) E N’ let

P’ contain the productions

For every production A -+ B E P and all (AJY), (XY,A),(XY,A, UV) E N’ let P

contain the productions

(XY,A) --+ (XY,B) and

(XY,A, UV) -+ (XY, B, UV).

For every production A -+ BC E P and all (AJY), (XY,A), (XY,A, UV) E N’ let P’

contain the productions

(&W -+ B(W-Y),

@?‘,A) + (XY,B)C and

(XY,A, UV) -+ W-JUG, UV).

Finally, for every non-context-free production XY + Z let PI contain

(X,xY) + Z and (Xr, Y) + A.

These productions can be effectively computed.

It remains to show that G and G’ are equivalent.

Let w E L(G). If A W(w) = 1, then there is a derivation with only context-free

productions. Hence w E L(G’), since G’ contains all context-free productions of G.

Let AI+‘(w) = 2 and let D = [(Qi,t~i --+ pi,pi)li = l,...,t] be a derivation from S

to w. Let Xy 4 Z be a non-context-free production applied at Qk. Consider the string

of ancestors of XY in Qk-,,Qk_2,...,Qj such that these strings are of length two for

k-l , . . . , j + 1 and of length one for j. Let these strings be &1 Yk-1,. . . ,Xj+i c+l

and Aj respectively. From the form of the productions of G, for i = j + 1,. . . , k,

either Xi = Xi+,, i.e. Xi is copied in the i-th step, or Xi + Xi+, or X; -+ X’Xi+i for

some nonterminal X’. By symmetry, either K = yi+i or Yi + yi+i or & + &+I Y’

for some nonterminal Y’. Moreover there is a production Aj + Xj+l Yj+l. Any other

case, i.e. the application of a A-production or of another non-context-free production

yields an ancestor string of length three. The subderivation on the strings of ancestor

of J3’ between the j-th and k-th steps is simulated by new productions of P’, which

store Xy in the additional components of the nonterminals. Nonterminals of the form

(XY,A, UV) are used, if a non-context-free production UV -+ W occurs to the right of

XY + Z, and A is the common ancestor of Y and U. By induction on the number of

non-context-free productions used it follows that w E L(G’).

F. J. Brandenburg I Theoretical Computer Science 207 (I 998) 2541 33

Conversely, let D’ = [(Qi, Cli 4 pi, pi)(i = 1,. . . ,t] be a derivation from S to some

terminal string w in G’. Let j be minimal such that in the jth step new nonterminals are

introduced, say by a production A + (Xl ,XY)(XY, Y,). The XY components disappear

only by productions of the form (XJY) -+ 2 and (XY, Y) + 1. They are passed

or are distributed over two nonterminals by productions of the form (XY, A, UV) -+

WY,B)(C, UV).
Now rearrange the derivation D’ such that for every XY the erasing of the XY com-

ponents is done in two successive steps. Notice that a right /W-component disappears

only by a production of the form (X,XY) -+ 2 and the left XY-component diappears

only by (XY, Y) + A, where XY + Z is a production in P. Merge these rewritings

into a single step and let D” = [(Q(‘, ai -+ /Ii, pi)li = 1,. . . , t”] be the resulting deriva-

tion. Then XY-components are adjacent. I.e., if Qy = uABv for some symbols A, B and

A = (A’,XY), then B = (XY,B’). This follows directly from the form of the productions

of G’. Let h : (N’ U T)* -+ (N U T)’ be a homomorphism, which erases the compo-

nents from the new nonterminals. Then D” = [(h(Q(‘), h(ai) -+ h(bi), pi)li = 1,. . . , t”]

is a derivation from S to w in G, where the merged rewritings are non-context-free

productions of the form XY 4 Z. This follows by induction on the length of the

derivation.

Moreover, the ancestor width of D” is bounded by two. To see this consider the

strings of ancestors of a left-hand side XY of length greater than one in D”. These

are of length two, since in D” the nonterminals with the XY component are always

adjacent, and these are the strings of ancestors. Hence, every derivation D’ in G’ from

S to some terminal string is associated with a derivation of ancestor width at most two

from S to w in G. 0

This result comes from the fact that non-context-free productions cannot interact in

derivations with ancestor width two. A non-context-free production cannot be applied

to the string of ancestors of length two, i.e. to the predecessors of another non-context-

free production. The derivation graphs of such derivations are “almost” trees and in the

planar drawings of these graphs there is no interior face enclosed by another interior

face, i.e. the derivation graphs are outerplanar graphs.

To the contrary, ancestor width three is no restriction for the generation of recursively

enumerable sets. Thus, we have a jump in complexity from two to three, as it can be

observed for many NP-hard problems. First we give a construction with ancestor width

four, which is then refined to three.

Theorem 8. For every recursively enumerable set L there is a grammar G such that
L = L(G) and the ancestor width of G is bounded by four.

Proof. Let L = L(M) for some (nondeterministic) single tape Turing machine M. As-

sume that M reserves the workspace needed for the computation in a preprocessing

phase. Then it begins its real computation, which is described by a sequence of instan-

taneous descriptions (ID) Ka k K1 t . . . k Kt. Every ID is a string of the form @qv$,

34 F. J. Brandenburg I Theoretical Computer Science 207 (1998) 2SdI

where q is the state of M, u and v are the contents of the worktape to the left and right

of the read-write head and 1 and $ are the left and right endmarkers, see. e.g. [20].

All IDS have the same length. Successive IDS coincide up to a substring of length two

or three around the state q, which describes the used instruction. The set of succes-

sive IDS can be described by strings of the form KiK’f+, , where K/F+, is the primed

and reversed copy of Ki+l. This set is a (linear) context-free language generated by

some grammar Gr = (Nr, Tr,Pr, Y). Let Go = (NO, To,Po,X) be a (linear) context-free

grammar simulating the preprocessing phase of M and generating stings of the form

WK. w is a terminal string, whereas all other strings are over the nonterminals of

the grammar G.

Let GZ = (A$, T3,P2,2) be a (Type 3) context-free grammar generating strings K,
of the form of accepting IDS .

Finally, let G3 = (Nj, Ts,Ps,S) be a (Type 3) context-free grammar generating

strings of the form XY*.Z. The alphabets Nj are pairwise disjoint. All symbols except

the ones from the alphabet T C TO of the grammar Go are nonterminals for G. Every

such nonterminal A has a unique primed copy A’. For every such pair add the non-

context-free production A’A + L. Let G = (N, T, P,S) be the collection of all these

components.

Then L(G) = L(M). To see this, observe that every accepting computation of the

Turing machine M on some input string w E T” of the form KO 1 KI k , . . k Kl is

simulated by a derivation S J* XY-‘Z J* wK’~KoK’~. . . K’fK, +* w, where every

pair K’fKi cancels to the empty string 1. Conversely, if G generates a terminal string

W, then it must erase all nonterminals to the right of the nonterminal X. This can be

achieved only by productions of the form A’A + A, which induces pairs of the form

KfRK. Each such K describes an ID of M. Then the derivation can be rearranged into

the form as shown in Fig. 2. Every such derivation represents an accepting computation

of M on w.

Every derivation D of a string w of the form of Fig. 2 has ancestor width four. D
operates “level by level”. From left to right it produces the i-th symbol of each ID and

then immediately cancels pairs A’A. The strings of ancestors of these left-hand sides

are of length at most four. They are of the form XA’AY or YA’AY or YA’AZ. Notice

that the strings of ancestors of the symbols of the generated string w are X and S and

are singletons of length one. q

As a consequence we obtain Savitch’s normal form for Type 0 grammars [23]. This

normal form has been improved by Geffert [171 using only a fixed set of non-context-

free productions, e.g. ABC + A.

Corollary 9. Every recursively enumerable set L can be generated by a grammar
which has only context-free productions and productions of the form AB + lb.

For the reduction of the ancestor width to three we modify the derivations and

avoid strings of ancestors of the form YA’AY. The matching of pairs of symbols A’A

F.J. Erundenhurg I Theoretical Compufer Science 207 (1998) 2541 35

Fig. 2

is controlled by a distribution. This enforces an exponential expansion of the size of

accepting derivation. See Figs. 3 and 4 for an illustration.

Theorem 10. For every recursively enumerable set I, there is a grammar G such that

L = L(G) and the ancestor width qf G is bounded by three.

Proof. Consider a Turing machine M as above and use the grammars Go, Gi and Gz.

Modify Gs to generate strings of the form X(ZY)*IZ, where I is a new nonterminal.

Let C U { $} be the set of symbols used for the IDS of A4 and let C’ be the set of primed

copies. The cancellation rules A’A + 3. with A # $ from above are now replaced by

the following productions

A’A + BIB’ for every A, B E C,

I + AIA’ for every A E C,
A’A --f $$ for every A E C,
I + $$‘and S’S + A. Again, A’ is the unique primed copy of A.

As above L(M) = L(G). G simulates accepting computations of M by derivations

as indicated in Figs 3 and 4. Conversely, every derivation of a terminal string MI can

be rearranged into a derivation of that form.

Consider a substring YZY and its derivation towards %. For clarity call them Yt/Yz.

In a leftmost derivation the left spine generates Yi J* xo$$‘x’T where x0$ and x1$

represent a pair of successive IDS of M. Similarly, the right spine generates Y, J*

x,s$?;.

Consider the string $‘x’~Zxz$. This string can be rewritten into a string of the form

($‘$)* if and only if xp = x2. This is due to the alternation of primed and nonprimed

symbols. If x2 = AlAz . . .A, with symbols Al,. . ,A,, then

$‘A:, . . . A;IA, .A,$

3 $‘A:,...A;A,IA’,A, . ..A.$

36 F. J. Brandenburg I Theoretical Computer Science 207 (1998) 2541

Fig. 3.

X I Y

Fig. 4.

J* $‘A:, . . . A21A;A21A;A21A; . . . A,,,$

=+* $‘A;(A,IA:,)2*-1A,$

** (%‘%ym+’

Consider the strings of ancestors of $‘$ in derivations as in Fig. 3. They are of

the form $‘$, UA’A,A’AU,UAU and A’U, where U stands for I,X,Y or Z. The an-

cestor width of such derivations is three, and every string can be generated in such a

way. 0

F.J. Brandenburg! Theoretical Computer Scierlce 207 (1998) 2541 31

The ability to generate arbitrary recursively enumerable sets with low ancestor com-

plexity comes from the extensive use of i,-productions and the transfer of the “real”

computation to the ancestors of occurrences of i.. Hence, only two classes of lan-

guages remain, the context-free languages with ancestor width one and two, and the

recursively enumerable sets with ancestor width three. Thus, there is no recursive re-

lationship to other complexity measures, and the ancestor width is not a complexity

measure satisfying Blum’s axioms [20,25].

4. Ancestor width of l-free grammars

In A-free grammars the symbols from the derived string are the only leaves of

a derivation graph. Hence, the ancestor width and the workspace of derivations and

strings differ at most by the factor n where n is the length of the derived string. The

workspace of a derivation is the maximal length of the occurring strings. The workspace

of grammars is one-to-one related to the space complexity of nondeterministic single

tape Turing machines.

Let NSPACE(f) denote the complexity class defined by nondeterministic .f(n) space

bounded Turing machines. For f(n)>n, NSPACE(J’) is the class of languages gener-

ated by grammars with workspace bounded by f(n). Let AWi(f) (AW,,(f)) denote

the class of languages generated by I-free (contest-sensitive) grammars with ancestor

width bounded by f(n) and denote the class of context-free languages by CFL. Then

we obtain:

Theorem 11. For every jimction f

CFL C A w&f) CA wj.(f) C NSPACE(n . .f(n>>

and jbr f(n) 3 n

NSPACE(f) C A W,(f) 2 NSPACE(n . f(n)).

In particular, if f(n)<k for some k, then i-free grammars with ancestor width

f(n) can generate only context-sensitive languages. Many well-known languages, such

as {wcwc~w E {a,b}*}, {a b n “c” n3 l} and {(n”c)“ln> 1) can be generated by such 1

grammars with ancestor width four. Moreover, any language L can be generated by a

context-sensitive or i-free grammar with small ancestor width, if L is represented with

sufficiently long tails. Clearly, every context-sensitive language can be generated by a

context-sensitive grammar with linear ancestor width.

Example 12. The language {wcwclw E {a,b}*} can be generated by a A-free grammar

with ancestor width four.

Proof. Consider a grammar as in Theorem 2. All symbols except a, b and c are

nonterminals. Let, 5, u’ and a” be distinct copies of the symbol a, and similarly for b.

38 F. J. Brandenburg I Theoretical Computer Science 207 (1998) 2541

Fig. 5

The underlying idea is similar to the derivation shown in Fig. 2, where instead of I’s

we generate the second copy of WC. Fig. 5 illustrates the derivation of ababcababc.

Let G first generate strings of the form XY’C. In a linear context-free fashion X

generates strings WC$‘W’~ with w E {a, b}* and wIR E {a’, b’}* being the primed and

reversed copy of w. Let Y generate strings of the form dzP$“$‘~‘~ with d E {i,b},u” E

{a”, b”}*, u’ E a’, b” and uIR being the primed and reversed copy of u.

Let A, &A,,& B,, Bb be new nonterminals. These symbols remember the barred

symbol with A, A, and Ab for a and B, B, and Bb for 6. The indices handle the matching.

Add the non-context-free productions a’ii --f A, a’A -+ A,, A,a” -+ A, b’A + Ab, Abb" +

A,$‘A --f As and A$$” + a and similarly b’i + B,a’B + B,,B,a” -+ B, b’B -+

Bb,Bbb” + B,$‘B -+ Bs and B$V’ + b. Finally add $‘C + c. Using these productions

strings of the form 33°C can be transformed into strings of the form wcwc if and

only if n = IwI and the ith symbol of the second w is derived from the barred symbol

created by the ith Y. Concerning the ancestor width, if the derivations are done level

by level, then long strings of ancestors are of the form Ya’a” Y, Ya’iY, Ya’A Y or YA,aY.

This derivation scheme can be extended to the generation of more complex languages

including {a” b”c” 1 n 2 1)

F. J. Brandenburg/ Theoretical Computer Science 207 (1998) 2541 39

Example 13. The languages k-COPY ={(wc)~]{w E {a,b}*},k>l} and w-COPY=

{(WC)“l{WE {a,b}*),fl= 14) and similarly languages such as {a”b”c”ln> I}

and {(a”c)“Jn> 1) can be generated by A-free grammars with ancestor width four.

Proof. The grammar from Example 1 is extended by some extra book-keeping. For

n-COPY with IZ = k for some k or n = \wl let X generate strings of the form (WC)“-’

$‘(C’W’R)n--l, otherwise the derivation does not end with a terminal string.

If n is bounded, then the proper number of c’s is counted using new nonterminals.

The final WC is generated to the right of X. Clearly, it must be checked that all copies

of w coincide. This is done symbol by symbol, such that the ith symbol of each copy

of w is checked by the subderivation to the left of the ith Y.

The grammar G first generates strings of the form X{ Y,, Yb}nC. Here, Y, and Y,, are

new nonterminals. Yd E {Y,, Yb} generates strings of the form dn~c”d~~~“. . . dz.(‘c”
II I I $ $cu /R r . ..CU~CU. ’ ‘R ’ lR with d E {&6},$ E {a”,b”}*, u; E {u’,b’}*, and u’J” being

the primed and reversed copy of z$’ for O< j<r. I’ must decrease by 1 from left to

right. Yd produces extra d’s only to the left. This d determines the terminal symbol

derived from the subderivation by the productions u’a + A, and b’b -+ B, and the

capital letters so obtained are passed by the other productions.

The coincidence of the copies of WC is guaranteed by pairs of double and single

primed copies of a, b,c and $, and subderivations of the form u’Au” J* A. If the

derivations are done level by level, then their ancestor width is bounded by four.

Languages such as {u”b”c”ln>l} and {(u”c)nl n 3 1) can be obtained by a renaming

of symbols. 0

The derivation schemes from Theorems 2 and 3 are now applied to a represention

of arbitrary languages with “tails”. This padding technique is used in Translational

Lemmas in complexity theory and has been investigated by Book [5]. Strings from a

given language are expanded by tails, i.e. w is transformed into wd’, where d is a

new symbol. So a language with a high complexity is transformed into one with a

lower complexity. In the Translational Lemmas for complexity classes [5] the lengths

of the tails measure the difference between the bounding functions for the complexity

classes. Thus, the length of the tails can be used as a complexity measure. In our case,

if a),-free grammar with ancestor width four generates languages from NP, then it

has tails of polynomial length. However, with ancestor width three the tails are expo-

nential in the size of the space used and polynomial in the time used. Thus, in the

terminology of [7], every language in NP has a polynomial representative generated

by a J.-free grammar with ancestor width four, and every language in PSPACE has

an exponential representative generated by a context-sensitive grammar with ancestor

width three.

Theorem 14. Let L be a language accepted by a nondeterministic Turing machine

M running in time T(n) and using space S(n) with T(n)>S(n)>n and T and S

constructible.

40 F.J. Brundenburgl Theoretical Computer Science 207 (1998) 25-41

(1) There is a A-free grammar G with ancestor width four such that L(G) represents

L with tails of length T(n).

L(G) = {wd’jw E L(M) and t = T(lwl)}.

(2) There is a context-sensitive grammar G’ with ancestor width three such that

L(G’) represents L with tails of length T(n) .2’(“).

L(G’) = {wd’lw E L(M) and t = T(lwl) . 2s(lwl)}.

Proof. (1) Consider the grammar G constructed in Theorem 2. Modify G to a ,I-

free grammar G and replace the L-productions of the form A’A + il by productions

A’1 + ZA,ZAA + 2 and I + d, where d is a new terminal symbol and I and ZA are

new nonterminal symbols. As in Theorem 3, let the subgrammar Gx generate strings of

the form X(YI)*Z. Then the matching of pairs of symbols A’A is done by derivation

steps YZY + AYA’ZY =% AYZAY + AYZAAYA’ + AYIYA’. These are applied level by

level to guarantee strings of ancestors of length at most four, e.g. YA’ZY or YZAAY.
(2) Replace the only erasing production $‘$ -+ L from the proof of Theorem 3 by

$‘$ -+ dd. Suppose that a computation of M of length t and space s is described by

t - 1 instantaneous descriptions, each of length s - 2. Then the grammar G’ generates

strings wd’ where r = t .2”. 0

Theorem 5 reveals that the languages generated by l-free or context-sensitive gram-

mars with ancestor width k > 3 have a context-sensitive behaviour. The classes AWL(k)

and AW,--(k) are close to arbitrary context-sensitive languages. For example, they have

the same decision properties. The membership problem, i.e. w E L(G), is decidable,

whereas, the emptiness problem, i.e. L(G) = 0, is undecidable.

Regarding closure properties, it is readily seen that the classes Awl,(k) and AW&k)

are closed under union, concatenation, star, nonerasing homomorphism and intersection

with regular sets. This can be shown by the usual constructions with grammars. We do

not know whether or not these classes are closed under inverse homomorphism. The

grammar based proofs of a closure under inverse homomorphism apply a compression

technique, as it is used in speed-up theorems. However, speed-up techniques don’t work

for grammars with ancestor width. This shows the jump from the ancestor widths two

to three. Thus it is unsolved whether or not there is a strict hierarchy of classes of

languages with bounded ancestor width, i.e. whether the inclusion Awl.(k) C AWn(k +

1) is proper for k > 3. However, we feel that these questions are not of a primary

concern.

5. Conclusion

Our results show that the notion of ancestor width used in this paper does not fully

explain the way in which grammars generate non-context-free languages. However,

one may vary the notion of ancestor width and restrict oneself to leftmost deriva-

tions or consider the maximum - and not the minimum - over all derivations. Then

F. J. Brundenburg I Theoreticul Computer Science 207 (1998) 25-41 41

the ancestor complexity is closely related to the space bounds of one-way auxiliary

pushdown automata [8] and to Chytil’s approaches towards the context-sensitivity of

languages [13, 14, 161. However, Book’s question on the use of context in context-

sensitive derivations is still unanswered.

References

[l] B.S. Baker, Non-context-free grammars generating context-free languages, Inform. and Control 24

(1974) 231.-243.

[2] R.V. Book, Grammars with time functions, Mathematical Lmgustics and Automatic Translation, NSF

23, Harvard University, Cambridge, MA, 1969.

[3] R.V. Book, Time-bounded grammars and their languages, J. Comput. System Sci. 5 (1971) 397418.

[4] R.V. Book, Terminal context in context-sensitive grammars, SIAM J. Comput. 1 (1972) 2&30.

[5] R.V. Book, On the structure of context-sensitive grammars, Internat. J. Comput. Inform. Sci. 2 (1973)

129-139.

[6] R.V. Book, Translational lemmas, polynomial time and (log n)‘-space, Theoret. Comput. Sci. 1 (1976)

2 155226.

[7] R.V. Book, On the complexity of formal grammars, Acta Inform. 9 (1978) 171-181.

[8] F.J. Brandenburg, On one-way auxiliary pushdown automata, Lecture Notes in Computer Science, vol.48

Springer, Berlin, 1977, pp. 132-144.

[9] F.J. Brandenburg, The contextsensitivity bounds of contextsensitive grammars and languages, Lecture

Notes in Computer Science, ~01.52, Springer, Berlin, 1977, pp. 120-132.

[lo] F.J. Brandenburg, Die Zusammenhangskomplexitat von nicht-kontext-freien Grammatiken, Dissertation,

Universitat Bonn, 1978.

[I I] F.J. Brandenburg, On the height of synactical graphs, Lecture Notes in Computer Science. vol. 104

Springer, Berlin, 198 I, pp. 13-2 I.
[12] F.J. Brandenburg, On the transformation of derivation graphs to derivation trees, Lecture Notes in

Computer Science, vol. 118, Springer, Berlin, 198 I, pp. 224-233.

[I31 M.P. Chytil, Analysis of the non-context-free component of formal languages, Lecture Notes in

Computer Science, vol. 45, Springer, Berlin, 1976, pp. 230-236.

[I41 M.P. Chytil, Charaterization of context-sensitivity by grammars and automata, Twente University of

Technology, Netherlands, Memorandum no. INF. 82-9, 1982.

[I51 M.P. Chytil, Almost context-free languages, Fund. Inform. IX (1986) 283-322.

[16] M.P. Chytil, Kins of context-free languages, Lecture Notes in Computer Science, vol. 233, Springer,

Berlin, 1986, pp. 45-58.

[171 V. Geffert, Grammars with context dependency restricted to synchroniztion. Lecture Notes in Computer

Science, vol. 233, Springer, Berlin, 1986, pp. 37&378.

[I81 S.A. Greibach, Visits, crosses and reversals for nondetermimstic offline machines, Inform. and Control

36 (1978) 174216.

[l9] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.

[20] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-

Wesley, Reading, MA, 1979.

[21] T. Kamimura, G. Slutzki, Transductions an dags and trees, Math. Systems Theory 15 (1982) 2255249.

[22] J. Loeckx, The parsing of general phase-structure grammars, Inform and Control 6 (1970) 443464.

[23] W.J. Savitch, How to make arbitrary grammars look like context-free grammars, SIAM J. Comput. 2

(1973) 174-182.

[24] K.W. Wagner, Do there exist languages with an arbitrarily small amount of context-sensitivity, Lecture

Notes in Computer Science, vol. 270, Springer, Berlin, 1987, pp. 427d32.

[25] K.W. Wagner, G. Wechsung, Computational Complexity, VEB Deutscher Verlag der Wissenschaften,

Berlin, 1986.

