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Abstract 

The ancestor width is a new measure for the structure of derivations of arbitrary grammars. 
For every production used in a derivation or equivalently for every leaf we consider the strings of 
ancestors. The ancestors define a complexity measure with a local flavour. Obviously, context-free 

grammars have ancestor width one. We show that languages with ancestor width two are context- 
free. However, every recursively enumerable set can be generated by a grammar with ancestor 
width three. For I-free grammars the ancestor width is closely related to nondeterministic space 

complexity. Then languages such as {wcwclw E {a,b}*}, {a”b”c”ln>l} or {(a”c)“ln>l} can 
be generated with ancestor width four. Moreover, any language can be generated with ancestor 
width three, if padding is used and the language is represented with tails. @ 1998-Elsevier 

Science B.V. All rights reserved 
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1. Introduction 

The theory of formal languages is one of the fundamental areas of Theoretical Com- 

puter Science. It has been investigated since the 1960s. However, most of the research 

effort has been directed towards the theory of context-free grammars and languages. 

The theory of context-sensitive and phrase structure grammars is not well developed. 

These grammars generate highly complex languages, which are more commonly de- 

scribed by machines and studied in terms of their computational complexity, such as 

time and space. 

In his early research work, Professor Ron Book investigated context-sensitive gram- 

mars. He transferred the notion of time complexity to grammars [2,3,7] and made 

attempts to understand the use of context in derivations of context-sensitive grammars. 

His “connectivity lemma” [2,3] sheds some light on the structure of context-sensitive 

derivations. Barriers of terminal context impose structural properties of a different type 

[4]. Then context-sensitive grammars generate only context-free languages [l]. In [5] 

Book writes “The way in which rewriting rules containing context interact to generate 
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non-context-free languages has not been explained. While it is undecidable whether a 
context-sensitive (or arbitrary) grammar generates a context-free language, it is not 

unreasonable to ask for a formal description of the mechanism used in derivations of 

such grammars in order that non-context-free languages are generated. In many ex- 

amples it appears that a capacity for “storing and transmitting information” is coded 

into the rewriting rules by choice of context. Several results have used the creation of 

“barriers” to “message-sending” in order to show that under certain conditions only 

context-free languages are generated. The description of the types of rules used in 

showing that a grammar can imitate the actions of a Turing machine does little to 
explain the mechanism (or power) of context.” 

In this paper we define a new measure on the derivations of grammars. For every 

left-hand side of a production or equivalently for every symbol of the generated string 

and every derived occurrence of the empty string we consider the strings of ancestors, 

which are the predecessors in the derivation. This relation is based on the fact, that the 

full left-hand side ~1 of a production u + j3 is the string of ancestors of every symbol 

of /?. Obviously, a production is context-free if and only if it has a string of ancestors 

of length one. Hence, context-free grammars and languages have ancestor width one. 

This can be interpreted by saying that “context-freeness is for free”. 
In a derivation of an arbitrary grammar, every substring of a derived string depends 

only on its strings of ancestors. The strings of ancestors completely describe the history 

in the derivation. Derivations can be rearranged into an initial part on the strings of 

ancestors towards the distinguished substring and two independent left and right sub- 

derivations. By recursion, every derivation of an arbitrary grammar can be transformed 

into a syntactically equivalent derivation with a global tree structure, where the vertices 

consist of local subderivations on strings of ancestors, see [9-121. 

The ancestor width measures the size of the strings of ancestors of the left-hand sides 

of the productions, or equivalently of the leaves of the derivation. It does not suffice 

to consider only the symbols of the generated string. This notion has been introduced 

in [lo] and has been investigated for context-sensitive grammars and languages in [9]. 

Here, we consider arbitrary grammars. Now, A-productions generating the empty string 

play a crucial role. We show that every recursively enumerable set can be generated 

by a grammar with ancestor width three. Thus arbitrary languages can be generated by 

spreading out information over strings of length three. However, grammars with ances- 

tor width two generate only context-free languages. For A-free grammars, the ancestor 

width is closely related to the workspace of grammars, which coincides with the space 

complexity of nondeterministic Turing machines. Such grammars can generate e.g. the 

languages {a”b”c”lnb 1) and {wcwc~w E {a, b,}*} with ancestor width four. Moreover, 

any language L can be generated by a A-free (resp. context-sensitive) grammar with 

ancestor width four (resp. three), if padding is used and the language is represented 

with tails. The length of the tails is related to the time and space complexity of L. 

This research was motivated by Professor Book’s research on grammars [2-5,7] 

and was stimulated by his encouragements and useful hints while I was writing my 

dissertation [lo]. 
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2. Preliminaries 

We review some basic definitions on strings and grammars. A string w = al..a, is 

a finite sequence of symbols from an alphabet C. Its length is denoted by Iw/. The 

substring ai..a, of w from the i-th to the j-th symbol is denoted by w(i,j), where 

w(i,.j) = &if ,j < i. Here j, denotes the empty string. 

Definition 1. A (phrase-structure or Type 0) grammar is a quadruple G = (N, T, P, S), 
where N and T are the alphabets of nonterminal and terminal symbols with N n T = 

@,S E N is the axiom and P is a finite set of productions of the form a + b with 

a E N’ and [I E (N U T)*. 

Let u + v denote the derivation relation defined by the application of a production 

and -J* its reflexive, transitive closure. 

The language generated by G is the set L(G) = {w E T* IS +* w}. 

Two grammars are equivalent, if they generate the same language. 

Grammars are classified by the form of their productions. A grammar G = (N, r, P, S) 

is %-free, if it has no productions of the form r + 1,, where Jb denotes the empty string. 

G is Type 1 or context-sensitive, if 1~116 IFi f or every production c( -+ p, Type 2 or 

context-free, if CI E N and linear context-free (resp. Type 3), if additionally j E 

T*NT* U T* (resp. j E T’N U T*). A language L is of Type 0, if L is generated by 

a phrase structure grammar. Accordingly, L is called Type 1, Type 2 or context-free, 

linear context-free and Type 3. 
Recall that the Type 0 languages coincide with the recursively enumerable sets. 

Type 1 grammars generate the context-sensitive languages, which coincide with the 

space complexity class NSPACE(n). The Type 2 languages correspond to pushdown 

automata and the Type 3 languages are the regular sets. These types define the Chomsky 

hierarchy of languages [ 19,201. 

In this paper, %-productions shall play an important role. It is known that 

i-productions can be eliminated from arbitrary and from context-free grammars. Up 

to the empty string 2, which may be attached by a separate production S + i, every 

recursively enumerable set can be generated by a R-free grammar and every context-free 

language can be generated by a R-free context-free grammar. For arbitrary grammars, 

replace every A-production a ---f J. by productions Act + A and cul -+ A for every 

symbol A E N U T, and for context-free grammars contract I-paths. 

For our new complexity measure we must take a closer look at derivations. 

Definition 2. Let G = (N, T, P,S) be a grammar. A derivation from Q, to Ql is a 

sequence of triples D = [(Qi,~ri + pi, pi)li = 1,. . . , t]. Here Ql + . . . =S Ql is the 

sequence of derived strings. For 1 <i < t, ri + /I, E P is the production used in the ith 

step and pi describes the position of the application, such that pi = Iui I + 1, if Qj = 

UiZ,Ui and Ql+l = UifliVi. In the ith derivation step, the symbols from Qi(pi, pi+ Ic$ - 1) 

are replaced, whereas all other symbols are copied. The last production a, --i ,& and 
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Fig. 1. 

pt are added for convenience of writing. For i = 1,. . . , t - 2, the derived string Qi+, 

has two partitions into substrings according to the application of the ith and (i + 1)th 

productions, Qi+i = Ui/?iUi = Ui+iCli+lUi+l. Accordingly, the (i + 1)th derivation step 

occurs to the left of the ith derivation step, if lui+rai+i I< luil and to the right, if 

IuiBil <<Iui+i]. T wo d erivation steps overlap, if ]Ui+il < juiflil and IUil < (ui+icli+i]. 

These cases are mutually exclusive and exhaust all possibilities. 

A derivation D has a natural representation in terms of a derivation graph z(D). 

7(D) has two types of vertices, one for the symbols of the derived strings and one 

for the productions. Every symbol from Qi is represented by a full vertex “or’. These 

vertices are organized into t layers, and are labelled from left to right by the symbols 

of the Q,. Every production Cxi + pi is represented by a subgraph as shown in Fig. 1. 

It has a vertex “0” for the production, which is placed between the layers for Qi and 

Qi+i. If Qi = UiCliUi and Qi+, = uibini then the vertices representing the symbols from 

Ui and v; in Qi and Qi+i are connected by directed edges, which are drawn dashed. 

There is a full edge from every vertex representing a symbol from Cli to the circle 

vertex for the production and from there to every vertex from pi. 

In graph theoretic terms, a derivation graph r(D) is a directed, acyclic, planar graph 

with labelled vertices. Its sources are the symbols from the initial string Qi, its sinks 

are the symbols from the final string Qr and the vertices from i-productions. Some of 

these sinks from i-productions are interior vertices. Those on the outer face and the 

symbols from Qt are the leaves of z(D). These are the real result of D. 
Derivation graphs are somewhat redundant. More common are syntactical graphs 

[21,22] and derivation trees [ 19,201. These are more compact and are obtained from 

our derivation graphs by shrinking paths along dashed edges. However, syntactical 

graphs and derivation trees do not represent a single derivation but a class of derivations 

with the leftmost derivation as a unique representative. 

We now come to the main notion of this paper. 

Definition 3. Let G = (N, T,P,S) be a grammar and let D = [(Qi,ui -+ pi, pt)li = 

1 , . . . , t] be a derivation from Qi to Qt. For every nonempty substring y = f&(1, r) 

of some Qk and all previous Qi, 1 6 i < k, the string of ancestors of y in Qi is the 
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non-empty substring of Qi, defined as follows. For i = k let anq(k,l,r) = Qk(Zk,rk) 
with lk = I and rk = r. 

For i < k let utici(k,Z,r) = Qi(li,r;), where 

and 

1 Pi+1 ifri+l < pi, 

6 = rl+r - IPi\ + lclil if pi + lfii\<ri+l, 

Pi + [‘%I if piGri+l < pi + j/&l. 

Hence, anc;(k, I, r) = anq+~ (k, I, r), if the i-th derivation step does not overlap with 
uns+l(k, l,r). Otherwise, if Eli + fii is the actual production, then unci(k, Z,r) is ob- 
tained from anc;+r (k, 1, r) by replacing pi or the portion of pi contained in unc;+l(k, I, r) 

by a,. 
The strings of ancestors fully describe the history of a substring y. y only depends on 

its strings of ancestors and can be retrieved from them by applying the productions of 
D overlapping with the strings of ancestors. Then y is rewritten in the context of some 
strings y and 6, i.e. Qi(li,ri) J* yy6. This property is well known for context-free 
grammars, where it is decidable whether or not a grammar generates a substring y. 

The ancestor width measures the complexity of derivations and strings by the lengths 
of the strings of ancestors of the productions or equivalently of the leaves of D. The 
symbols from the derived string do not suffice. Also, the occurrences of the empty 
string in ,I-productions must be taken into account. Our results will make this clear. 

Definition 4. Let G = (N, T, P,S) be a grammar. The ancestor width of a derivation 
D = [(Qi,Mi --+ pi, Pi)li = 1,. . .,t] is defined by 

A W(D) = max{ ( unci(k,pkrpk + (uk( - l)l( 1 bk<t - 1 and 1 <i<k}. 

For a terminal string w let 

AW(w) = min{AW(D)ID : S +* w is a derivation of w). 

Thus, the ancestor width of a string w is taken over all derivations S =+* w and 
the best one is chosen. This is important. The ancestor width may vary, if the same 
productions are used in a different order. For example, if there are productions S -+ 
SB,S’ 3 B’S’ and BXB’ -+ X, then applying each production n times yields the 
derivation SXS’ J* SXS’. If the productions are applied n times in the given order, 
then the strings of ancestors of the occurring X are BXB’,SXB’,SXS’, BXS’ and X. 
However, if the productions BXB’ -+ X are applied last, then the last X has B”XB’” 

as a string of ancestors. 
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Notice that we would obtain completely different results, if the ancestor width of 

a string were defined by the maximal ancestor width of all derivations. This follows 

from results in [9, lo]. 

Definition 5. Let f : N --f N be a total recursive function. A grammar G is f(n) 
ancestor width bounded, if A W(W)< f(n) for every w E L(G) with 1~1 = n. A lan- 

guage L is f(n) ancestor width bounded, if L = L(G) for some f(n) ancestor width 

bounded grammar G. Similarly, L is A-free (resp. context-sensitive) f(n) ancestor 

width bounded, if there is a corresponding l-free (resp. context-sensitive) grammar 

generating L. 

3. Ancestor width of grammars 

The ancestor width of derivations and strings has a local flavour. It is a punctual 

measure in the sense that it considers the strings of ancestors of single productions. In 

this respect it resembles complexity measures for Turing machines, such as crossings, 

visits, returns or dual returns, see [ 18,251 for definitions. On the other hand, time and 

space are global complexity measures. They take computations as a whole and do not 

consider details of the internal behaviour of computations and derivations. 

From the graphical representation of derivations it is clear that the ancestor width 

is determined by the leaves of the derivation graph. For a derivation D = [(Qi,~i + 

Bi,Pi)li = I,..., t] from Qr to Qt, the leaves of D are the symbols of the derived 

string, i.e. Q!(k,k) with 1 <k< let], and those distinguished rewritings of the empty 

string ak -+ A, which are not covered by other productions. 

Let the ancestor width of the leaves be 

where A W(D,l) = max{ ( anci(k,pk,pk + /CCkl - I)1 11 bi<k,l fk<t, flk = A, and 

there is no Y > k such that a?tck+i(r, pr, p,. + /cI,/ - 1) = Qi+l (I, r) with 1 < pk and 

r > pk} is the maximal length of a string of ancestors of a derived occurrences of 

the empty string 2. 

Then we obtain. 

Lemma 6. For every derivation D, A W(D) =A WL(D). 

Consider the ancestor width of context-free grammars and languages. The derivation 

graphs of context-free grammars are trees. Thus the ancestors of the leaves are sin- 

gletons and the ancestor width is one. Conversely, if a non-context-free production is 

applied in a derivation, then the ancestor width is greater than one. Hence, the context- 

free grammars and languages are the ones with ancestor width one. However, for a 

grammar G it is undecidable, whether or not G has an ancestor width greater than 

one. To see this, compose G of two grammars G = Gi U Gz, such that L(G1) = C’ 
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and every derivation of Gi has ancestor width k > 1 and G2 is (linear) context-free. 

Then G has ancestor width one if and only if L(G2) = z*, which is an undecidable 

problem, see e.g. [20]. 

Next, consider the ancestor width two. Strings of ancestors of length two cannot 

interact and pass information. In the derivation graphs of such derivations the strings 

of ancestors surround a face of the underlying planar graph. Now non-context-free 

productions can be split and simulated by context-free productions. Hence, grammars 

with ancestor width two generate only context-free languages. 

Theorem 7. (f’ G is u grammar with ancestor width ,f(n) and f(n) <2, then L(G) is 

a context-free language. 

Proof. Let G = (N, T, P, S) and suppose that the productions are of the form A + B, 

A --j BC,A - a,A + 2 and AB + C, where A, B, C E N and a E T. Non-context-free 

productions c( + ,6 with Ial 33 cannot be used and other productions can directly be 

simulated by such productions with the same ancestor width. 

If a non-context-free production XY + Z is used in some derivation D with A W(D) 

= 2, then XY has a special history. There are an initial production A0 + Xl YI and two 

chains of nonterminal symbols from Xl to X and from Yr to Y, which are obtained 

by productions of the form X, ---f 11,X~+1 and Xi + ,U;+i and accordingly Y; + Yi+i u; 

and Yi + Y,.,, . The strings of ancestors of XY are of the form X;Yj. Neither non- 

context-free productions of the form AB 4 C nor %-productions A + i can be used 

in these subderivations. They would increase the ancestor width at least to three. The 

subderivation A0 =+ Xl Y, J* Uxyz: + uZc with strings u and v is split into A0 + 

Xl Y,,X, =s* uX + uZ and Yi J* Yu + r using only context-free productions. The 

correctness of this procedure is controlled by additional components at the nonterminals 

recording the left-hand sides. 

For every left-hand side XY of a non-context-free production XY + Z define their 

left and right predecessors by 

pre,(X) = {X’ E NI there is a rightmost derivation by context-free productions of G 

of the form A + BC and A + B from X’ to UX for some u E N* }. 

pre,( Y) = {Y’ E NI there is a leftmost derivation by context-free productions of G 

of the form A + BC and A + B from Y’ to Yu for some v E N*}. Let init = 

{A,) 4 Xl Y1 E PlX, E prel(X) and Y, E pre,.(Y)} be the set of initial productions for 

XY + z. 

These sets can be effectively computed, since only context-free productions are in- 

volved. 

Construct the context-free grammar G’ = (N’, T, P’, S) as follows: 

N’ = N u {A.XY),(XY,A),(XY,A, UV)IA,X, Y, U, V E N and XY and UV are left-hand 

sides of non-context-free productions}. 

The set P’ contains the set of context-free productions of P. Additionally, for every 

left-hand side XY of a non-context-free production let P’ contain the following pro- 

ductions: 
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for every A + XrYr f init and all A,(A,UV),(UV,A),(U1V,,A,U*y2) E N’ let 

P’ contain the productions 

For every production A -+ B E P and all (AJY), (XY,A),(XY,A, UV) E N’ let P 

contain the productions 

(XY,A) --+ (XY,B) and 

(XY,A, UV) -+ (XY, B, UV). 

For every production A -+ BC E P and all (AJY), (XY,A), (XY,A, UV) E N’ let P’ 

contain the productions 

(&W -+ B(W-Y), 

@?‘,A) + (XY,B)C and 

(XY,A, UV) -+ W-JUG, UV). 

Finally, for every non-context-free production XY + Z let PI contain 

(X,xY) + Z and (Xr, Y) + A. 

These productions can be effectively computed. 

It remains to show that G and G’ are equivalent. 

Let w E L(G). If A W(w) = 1, then there is a derivation with only context-free 

productions. Hence w E L(G’), since G’ contains all context-free productions of G. 

Let AI+‘(w) = 2 and let D = [(Qi,t~i --+ pi,pi)li = l,...,t] be a derivation from S 

to w. Let Xy 4 Z be a non-context-free production applied at Qk. Consider the string 

of ancestors of XY in Qk-,,Qk_2,...,Qj such that these strings are of length two for 

k-l , . . . , j + 1 and of length one for j. Let these strings be &1 Yk-1,. . . ,Xj+i c+l 

and Aj respectively. From the form of the productions of G, for i = j + 1,. . . , k, 

either Xi = Xi+,, i.e. Xi is copied in the i-th step, or Xi + Xi+, or X; -+ X’Xi+i for 

some nonterminal X’. By symmetry, either K = yi+i or Yi + yi+i or & + &+I Y’ 

for some nonterminal Y’. Moreover there is a production Aj + Xj+l Yj+l. Any other 

case, i.e. the application of a A-production or of another non-context-free production 

yields an ancestor string of length three. The subderivation on the strings of ancestor 

of J3’ between the j-th and k-th steps is simulated by new productions of P’, which 

store Xy in the additional components of the nonterminals. Nonterminals of the form 

(XY,A, UV) are used, if a non-context-free production UV -+ W occurs to the right of 

XY + Z, and A is the common ancestor of Y and U. By induction on the number of 

non-context-free productions used it follows that w E L(G’). 
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Conversely, let D’ = [(Qi, Cli 4 pi, pi)(i = 1,. . . ,t] be a derivation from S to some 

terminal string w in G’. Let j be minimal such that in the jth step new nonterminals are 

introduced, say by a production A + (Xl ,XY)(XY, Y, ). The XY components disappear 

only by productions of the form (XJY) -+ 2 and (XY, Y) + 1. They are passed 

or are distributed over two nonterminals by productions of the form (XY, A, UV) -+ 

WY,B)(C, UV). 
Now rearrange the derivation D’ such that for every XY the erasing of the XY com- 

ponents is done in two successive steps. Notice that a right /W-component disappears 

only by a production of the form (X,XY) -+ 2 and the left XY-component diappears 

only by (XY, Y) + A, where XY + Z is a production in P. Merge these rewritings 

into a single step and let D” = [(Q(‘, ai -+ /Ii, pi)li = 1,. . . , t”] be the resulting deriva- 

tion. Then XY-components are adjacent. I.e., if Qy = uABv for some symbols A, B and 

A = (A’,XY), then B = (XY,B’). This follows directly from the form of the productions 

of G’. Let h : (N’ U T)* -+ (N U T)’ be a homomorphism, which erases the compo- 

nents from the new nonterminals. Then D” = [(h(Q(‘), h(ai) -+ h(bi), pi)li = 1,. . . , t”] 

is a derivation from S to w in G, where the merged rewritings are non-context-free 

productions of the form XY 4 Z. This follows by induction on the length of the 

derivation. 

Moreover, the ancestor width of D” is bounded by two. To see this consider the 

strings of ancestors of a left-hand side XY of length greater than one in D”. These 

are of length two, since in D” the nonterminals with the XY component are always 

adjacent, and these are the strings of ancestors. Hence, every derivation D’ in G’ from 

S to some terminal string is associated with a derivation of ancestor width at most two 

from S to w in G. 0 

This result comes from the fact that non-context-free productions cannot interact in 

derivations with ancestor width two. A non-context-free production cannot be applied 

to the string of ancestors of length two, i.e. to the predecessors of another non-context- 

free production. The derivation graphs of such derivations are “almost” trees and in the 

planar drawings of these graphs there is no interior face enclosed by another interior 

face, i.e. the derivation graphs are outerplanar graphs. 

To the contrary, ancestor width three is no restriction for the generation of recursively 

enumerable sets. Thus, we have a jump in complexity from two to three, as it can be 

observed for many NP-hard problems. First we give a construction with ancestor width 

four, which is then refined to three. 

Theorem 8. For every recursively enumerable set L there is a grammar G such that 
L = L(G) and the ancestor width of G is bounded by four. 

Proof. Let L = L(M) for some (nondeterministic) single tape Turing machine M. As- 

sume that M reserves the workspace needed for the computation in a preprocessing 

phase. Then it begins its real computation, which is described by a sequence of instan- 

taneous descriptions (ID) Ka k K1 t . . . k Kt. Every ID is a string of the form @qv$, 
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where q is the state of M, u and v are the contents of the worktape to the left and right 

of the read-write head and 1 and $ are the left and right endmarkers, see. e.g. [20]. 

All IDS have the same length. Successive IDS coincide up to a substring of length two 

or three around the state q, which describes the used instruction. The set of succes- 

sive IDS can be described by strings of the form KiK’f+, , where K/F+, is the primed 

and reversed copy of Ki+l. This set is a (linear) context-free language generated by 

some grammar Gr = (Nr, Tr,Pr, Y). Let Go = (NO, To,Po,X) be a (linear) context-free 

grammar simulating the preprocessing phase of M and generating stings of the form 

W$K$. w is a terminal string, whereas all other strings are over the nonterminals of 

the grammar G. 

Let GZ = (A$, T3,P2,2) be a (Type 3) context-free grammar generating strings K, 
of the form of accepting IDS . 

Finally, let G3 = (Nj, Ts,Ps,S) be a (Type 3) context-free grammar generating 

strings of the form XY*.Z. The alphabets Nj are pairwise disjoint. All symbols except 

the ones from the alphabet T C TO of the grammar Go are nonterminals for G. Every 

such nonterminal A has a unique primed copy A’. For every such pair add the non- 

context-free production A’A + L. Let G = (N, T, P,S) be the collection of all these 

components. 

Then L(G) = L(M). To see this, observe that every accepting computation of the 

Turing machine M on some input string w E T” of the form KO 1 KI k , . . k Kl is 

simulated by a derivation S J* XY-‘Z J* wK’~KoK’~. . . K’fK, +* w, where every 

pair K’fKi cancels to the empty string 1. Conversely, if G generates a terminal string 

W, then it must erase all nonterminals to the right of the nonterminal X. This can be 

achieved only by productions of the form A’A + A, which induces pairs of the form 

KfRK. Each such K describes an ID of M. Then the derivation can be rearranged into 

the form as shown in Fig. 2. Every such derivation represents an accepting computation 

of M on w. 

Every derivation D of a string w of the form of Fig. 2 has ancestor width four. D 
operates “level by level”. From left to right it produces the i-th symbol of each ID and 

then immediately cancels pairs A’A. The strings of ancestors of these left-hand sides 

are of length at most four. They are of the form XA’AY or YA’AY or YA’AZ. Notice 

that the strings of ancestors of the symbols of the generated string w are X and S and 

are singletons of length one. q 

As a consequence we obtain Savitch’s normal form for Type 0 grammars [23]. This 

normal form has been improved by Geffert [ 171 using only a fixed set of non-context- 

free productions, e.g. ABC + A. 

Corollary 9. Every recursively enumerable set L can be generated by a grammar 
which has only context-free productions and productions of the form AB + lb. 

For the reduction of the ancestor width to three we modify the derivations and 

avoid strings of ancestors of the form YA’AY. The matching of pairs of symbols A’A 
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Fig. 2 

is controlled by a distribution. This enforces an exponential expansion of the size of 

accepting derivation. See Figs. 3 and 4 for an illustration. 

Theorem 10. For every recursively enumerable set I, there is a grammar G such that 

L = L(G) and the ancestor width qf G is bounded by three. 

Proof. Consider a Turing machine M as above and use the grammars Go, Gi and Gz. 

Modify Gs to generate strings of the form X(ZY)*IZ, where I is a new nonterminal. 

Let C U { $} be the set of symbols used for the IDS of A4 and let C’ be the set of primed 

copies. The cancellation rules A’A + 3. with A # $ from above are now replaced by 

the following productions 

A’A + BIB’ for every A, B E C, 

I + AIA’ for every A E C, 
A’A --f $$ for every A E C, 
I + $$‘and S’S + A. Again, A’ is the unique primed copy of A. 

As above L(M) = L(G). G simulates accepting computations of M by derivations 

as indicated in Figs 3 and 4. Conversely, every derivation of a terminal string MI can 

be rearranged into a derivation of that form. 

Consider a substring YZY and its derivation towards %. For clarity call them Yt/Yz. 

In a leftmost derivation the left spine generates Yi J* xo$$‘x’T where x0$ and x1$ 

represent a pair of successive IDS of M. Similarly, the right spine generates Y, J* 

x,s$?;. 

Consider the string $‘x’~Zxz$. This string can be rewritten into a string of the form 

($‘$)* if and only if xp = x2. This is due to the alternation of primed and nonprimed 

symbols. If x2 = AlAz . . .A, with symbols Al,. . ,A,, then 

$‘A:, . . . A;IA, .A,$ 

3 $‘A:,...A;A,IA’,A, . ..A.$ 
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Fig. 3. 

X I Y 

Fig. 4. 

J* $‘A:, . . . A21A;A21A;A21A; . . . A,,,$ 

=+* $‘A;(A,IA:,)2*-1A,$ 

** (%‘%ym+’ 

Consider the strings of ancestors of $‘$ in derivations as in Fig. 3. They are of 

the form $‘$, UA’A,A’AU,UAU and A’U, where U stands for I,X,Y or Z. The an- 

cestor width of such derivations is three, and every string can be generated in such a 

way. 0 
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The ability to generate arbitrary recursively enumerable sets with low ancestor com- 

plexity comes from the extensive use of i,-productions and the transfer of the “real” 

computation to the ancestors of occurrences of i.. Hence, only two classes of lan- 

guages remain, the context-free languages with ancestor width one and two, and the 

recursively enumerable sets with ancestor width three. Thus, there is no recursive re- 

lationship to other complexity measures, and the ancestor width is not a complexity 

measure satisfying Blum’s axioms [20,25]. 

4. Ancestor width of l-free grammars 

In A-free grammars the symbols from the derived string are the only leaves of 

a derivation graph. Hence, the ancestor width and the workspace of derivations and 

strings differ at most by the factor n where n is the length of the derived string. The 

workspace of a derivation is the maximal length of the occurring strings. The workspace 

of grammars is one-to-one related to the space complexity of nondeterministic single 

tape Turing machines. 

Let NSPACE(f) denote the complexity class defined by nondeterministic .f(n) space 

bounded Turing machines. For f(n)>n, NSPACE(J’) is the class of languages gener- 

ated by grammars with workspace bounded by f(n). Let AWi(f) (AW,,(f)) denote 

the class of languages generated by I-free (contest-sensitive) grammars with ancestor 

width bounded by f(n) and denote the class of context-free languages by CFL. Then 

we obtain: 

Theorem 11. For every jimction f 

CFL C A w&f) CA wj.(f) C NSPACE(n . .f(n>> 

and jbr f(n) 3 n 

NSPACE(f) C A W,(f) 2 NSPACE(n . f(n)). 

In particular, if f(n)<k for some k, then i-free grammars with ancestor width 

f(n) can generate only context-sensitive languages. Many well-known languages, such 

as {wcwc~w E {a,b}*}, {a b n “c” n3 l} and {(n”c)“ln> 1) can be generated by such 1 

grammars with ancestor width four. Moreover, any language L can be generated by a 

context-sensitive or i-free grammar with small ancestor width, if L is represented with 

sufficiently long tails. Clearly, every context-sensitive language can be generated by a 

context-sensitive grammar with linear ancestor width. 

Example 12. The language {wcwclw E {a,b}*} can be generated by a A-free grammar 

with ancestor width four. 

Proof. Consider a grammar as in Theorem 2. All symbols except a, b and c are 

nonterminals. Let, 5, u’ and a” be distinct copies of the symbol a, and similarly for b. 
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Fig. 5 

The underlying idea is similar to the derivation shown in Fig. 2, where instead of I’s 

we generate the second copy of WC. Fig. 5 illustrates the derivation of ababcababc. 

Let G first generate strings of the form XY’C. In a linear context-free fashion X 

generates strings WC$‘W’~ with w E {a, b}* and wIR E {a’, b’}* being the primed and 

reversed copy of w. Let Y generate strings of the form dzP$“$‘~‘~ with d E {i,b},u” E 

{a”, b”}*, u’ E a’, b” and uIR being the primed and reversed copy of u. 

Let A, &A,,& B,, Bb be new nonterminals. These symbols remember the barred 

symbol with A, A, and Ab for a and B, B, and Bb for 6. The indices handle the matching. 

Add the non-context-free productions a’ii --f A, a’A -+ A,, A,a” -+ A, b’A + Ab, Abb" + 

A,$‘A --f As and A$$” + a and similarly b’i + B,a’B + B,,B,a” -+ B, b’B -+ 

Bb,Bbb” + B,$‘B -+ Bs and B$V’ + b. Finally add $‘C + c. Using these productions 

strings of the form 33°C can be transformed into strings of the form wcwc if and 

only if n = IwI and the ith symbol of the second w is derived from the barred symbol 

created by the ith Y. Concerning the ancestor width, if the derivations are done level 

by level, then long strings of ancestors are of the form Ya’a” Y, Ya’iY, Ya’A Y or YA,aY. 

This derivation scheme can be extended to the generation of more complex languages 

including {a” b”c” 1 n 2 1) 
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Example 13. The languages k-COPY ={(wc)~]{w E {a,b}*},k>l} and w-COPY= 

{(WC)“l{WE {a,b}*),fl= 14) and similarly languages such as {a”b”c”ln> I} 

and {(a”c)“Jn> 1) can be generated by A-free grammars with ancestor width four. 

Proof. The grammar from Example 1 is extended by some extra book-keeping. For 

n-COPY with IZ = k for some k or n = \wl let X generate strings of the form (WC)“-’ 

$‘(C’W’R)n--l, otherwise the derivation does not end with a terminal string. 

If n is bounded, then the proper number of c’s is counted using new nonterminals. 

The final WC is generated to the right of X. Clearly, it must be checked that all copies 

of w coincide. This is done symbol by symbol, such that the ith symbol of each copy 

of w is checked by the subderivation to the left of the ith Y. 

The grammar G first generates strings of the form X{ Y,, Yb}nC. Here, Y, and Y,, are 

new nonterminals. Yd E {Y,, Yb} generates strings of the form dn~c”d~~~“. . . dz.(‘c” 
II I I $ $cu /R r . ..CU~CU. ’ ‘R ’ lR with d E {&6},$ E {a”,b”}*, u; E {u’,b’}*, and u’J” being 

the primed and reversed copy of z$’ for O< j<r. I’ must decrease by 1 from left to 

right. Yd produces extra d’s only to the left. This d determines the terminal symbol 

derived from the subderivation by the productions u’a + A, and b’b -+ B, and the 

capital letters so obtained are passed by the other productions. 

The coincidence of the copies of WC is guaranteed by pairs of double and single 

primed copies of a, b,c and $, and subderivations of the form u’Au” J* A. If the 

derivations are done level by level, then their ancestor width is bounded by four. 

Languages such as {u”b”c”ln>l} and {(u”c)nl n 3 1) can be obtained by a renaming 

of symbols. 0 

The derivation schemes from Theorems 2 and 3 are now applied to a represention 

of arbitrary languages with “tails”. This padding technique is used in Translational 

Lemmas in complexity theory and has been investigated by Book [5]. Strings from a 

given language are expanded by tails, i.e. w is transformed into wd’, where d is a 

new symbol. So a language with a high complexity is transformed into one with a 

lower complexity. In the Translational Lemmas for complexity classes [5] the lengths 

of the tails measure the difference between the bounding functions for the complexity 

classes. Thus, the length of the tails can be used as a complexity measure. In our case, 

if a ),-free grammar with ancestor width four generates languages from NP, then it 

has tails of polynomial length. However, with ancestor width three the tails are expo- 

nential in the size of the space used and polynomial in the time used. Thus, in the 

terminology of [7], every language in NP has a polynomial representative generated 

by a J.-free grammar with ancestor width four, and every language in PSPACE has 

an exponential representative generated by a context-sensitive grammar with ancestor 

width three. 

Theorem 14. Let L be a language accepted by a nondeterministic Turing machine 

M running in time T(n) and using space S(n) with T(n)>S(n)>n and T and S 

constructible. 
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(1) There is a A-free grammar G with ancestor width four such that L(G) represents 

L with tails of length T(n). 

L(G) = {wd’jw E L(M) and t = T(lwl)}. 

(2) There is a context-sensitive grammar G’ with ancestor width three such that 

L(G’) represents L with tails of length T(n) .2’(“). 

L(G’) = {wd’lw E L(M) and t = T(lwl) . 2s(lwl)}. 

Proof. (1) Consider the grammar G constructed in Theorem 2. Modify G to a ,I- 

free grammar G and replace the L-productions of the form A’A + il by productions 

A’1 + ZA,ZAA + 2 and I + d, where d is a new terminal symbol and I and ZA are 

new nonterminal symbols. As in Theorem 3, let the subgrammar Gx generate strings of 

the form X(YI)*Z. Then the matching of pairs of symbols A’A is done by derivation 

steps YZY + AYA’ZY =% AYZAY + AYZAAYA’ + AYIYA’. These are applied level by 

level to guarantee strings of ancestors of length at most four, e.g. YA’ZY or YZAAY. 
(2) Replace the only erasing production $‘$ -+ L from the proof of Theorem 3 by 

$‘$ -+ dd. Suppose that a computation of M of length t and space s is described by 

t - 1 instantaneous descriptions, each of length s - 2. Then the grammar G’ generates 

strings wd’ where r = t .2”. 0 

Theorem 5 reveals that the languages generated by l-free or context-sensitive gram- 

mars with ancestor width k > 3 have a context-sensitive behaviour. The classes AWL(k) 

and AW,--(k) are close to arbitrary context-sensitive languages. For example, they have 

the same decision properties. The membership problem, i.e. w E L(G), is decidable, 

whereas, the emptiness problem, i.e. L(G) = 0, is undecidable. 

Regarding closure properties, it is readily seen that the classes Awl,(k) and AW&k) 

are closed under union, concatenation, star, nonerasing homomorphism and intersection 

with regular sets. This can be shown by the usual constructions with grammars. We do 

not know whether or not these classes are closed under inverse homomorphism. The 

grammar based proofs of a closure under inverse homomorphism apply a compression 

technique, as it is used in speed-up theorems. However, speed-up techniques don’t work 

for grammars with ancestor width. This shows the jump from the ancestor widths two 

to three. Thus it is unsolved whether or not there is a strict hierarchy of classes of 

languages with bounded ancestor width, i.e. whether the inclusion Awl.(k) C AWn(k + 

1) is proper for k > 3. However, we feel that these questions are not of a primary 

concern. 

5. Conclusion 

Our results show that the notion of ancestor width used in this paper does not fully 

explain the way in which grammars generate non-context-free languages. However, 

one may vary the notion of ancestor width and restrict oneself to leftmost deriva- 

tions or consider the maximum - and not the minimum - over all derivations. Then 
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the ancestor complexity is closely related to the space bounds of one-way auxiliary 

pushdown automata [8] and to Chytil’s approaches towards the context-sensitivity of 

languages [ 13, 14, 161. However, Book’s question on the use of context in context- 

sensitive derivations is still unanswered. 
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