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Ratiometric Imaging of the T-Cell Actin Cytoskeleton Reveals the Nature of
Receptor-Induced Cytoskeletal Enrichment
Alexander A. Smoligovets,†‡§ Adam W. Smith,†‡ and Jay T. Groves†‡*
†Howard Hughes Medical Institute, Department of Chemistry, University of California at Berkeley, Berkeley, California; ‡Physical Biosciences
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ABSTRACT TheT-cell actin cytoskeletonmediatesadaptive immunesystem responses topeptideantigensbyphysically direct-
ing themotion and clustering of T-cell receptors (TCRs) on the cell surface.WhenTCRmovement is impeded byexternally applied
physical barriers, the actin network exhibits transient enrichment near the trapped receptors. The coordinated nature of the actin
density fluctuations suggests that they are composed of filamentous actin, but it has not been possible to eliminate de novo poly-
merization at TCR-associated actin polymerizing factors as an alternative cause. Here, we use a dual-probe cytoskeleton labeling
strategy to distinguish between stable and polymerizing pools of actin.Our results suggest that TCR-associated actin consists of a
relatively highproportion of the stable cytoskeletal fraction andextendsaway from the cellmembrane into the cell. This implies that
actin enrichment atmechanically trappedTCRs results from three-dimensional bunchingof the existing filamentousactin network.
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The T-cell actin cytoskeleton is critical for proper antigen
recognition by the mammalian adaptive immune system.
During T-cell receptor (TCR) triggering by antigen peptides
presented on major histocompatibility proteins (pMHCs) on
the surfaces of antigen-presenting cells (APCs), the T-cell
actin cytoskeleton adopts a pattern of centrosymmetric
retrograde flow (1–3). This simultaneously promotes further
TCR triggering (4) and rearranges various T-cell membrane
proteins and their APC counterparts into an organized cell-
cell interface termed the immunological synapse (IS) (5–7).
During this process, TCRs form microclusters that move to
the center of the IS in an actin-dependent manner (8,9).
When engineered physical barriers interrupt the centripetal
motion of TCR clusters, actin flow slows near the pinned
microclusters, and the cytoskeletal network transiently ac-
cumulates and dissipates at the sites (10,11). The amplitude
and duration of the induced cytoskeletal fluctuations are
much greater than would be expected for a random distribu-
tion of independent objects, indicating that the actin in the
local environment is coordinated. Whether this coordination
arises from a rearrangement in the existing F-actin network
or represents de novo polymerization of the cytoskeleton, as
predicted by the association of TCRs with actin polymer-
izing factors (12), remains unclear. Here, we use a dual-
probe cytoskeleton labeling approach that has previously
been applied to distinguish between stable and dynamic
populations of actin by exploiting the different relative affin-
ities of monomeric actin and actin-binding proteins toward
each population (13). This strategy reveals that TCR-associ-
ated actin is composed primarily of the stable cytoskeletal
fraction and that local enrichment results from three-dimen-
sional bunching of the existing filamentous actin network.
Primary T cells from mice transgenic for the AND TCR
were triggered using synthetic APCs consisting of supported
lipid bilayers functionalized with pMHC and the integrin
ligand intercellular adhesion molecule 1. Nanopatterned
metal grids on the bilayer substrate acted as diffusion
barriers that prevented lateral transport of TCR-pMHC com-
plexes (14,15). Transient enrichment of actin at TCR clus-
ters trapped at these barriers was visualized using
fluorescent fusions of actin itself (mKate2-b-actin) and the
F-actin binding domain of utrophin (EGFP-UtrCH). Such
a dual-probe strategy theoretically allows for discrimination
between different pools of actin: dynamic populations char-
acterized by high polymerization and/or short filament frag-
ments tend to be relatively better labeled by direct actin
fusions whereas stable populations composed of longer fila-
ments can support higher labeling by fluorescent fusions of
F-actin binding proteins. This visualization method has been
validated in Xenopus oocytes, where it distinguishes actin
populations during wound healing (13). It has not been
explicitly applied to T cells; however, simultaneous labeling
of the Jurkat cell cytoskeleton using EGFP-actin and Alexa
568-phalloidin reveals distinct populations of actin consis-
tent with the results expected from Xenopus (13,16).

Our results show that the T-cell periphery is relatively en-
riched in mKate2-b-actin (Fig. 1 C, box 1), while EGFP-
UtrCH dominates toward the center of the IS (Fig. 1 C, box
2). We infer from this probe distribution that the cytoskeleton
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FIGURE 1 Ratiometric imaging of the cytoskeleton in live

T cells distinguishes between dynamic and stable actin popula-

tions. (A) mKate2-b-actin, (B) EGFP-UtrCH, and (C) merged

images of a triggered T cell show different actin pools. The

cutouts in panel C correspond to (1) a region high in dynamic

actin featuring short, polymerizing filaments and/or actin

monomers and (2) a region with a stable actin population

featuring longer filaments to which UtrCH can bind. (D) The

UtrCH/actin ratio image highlights pools of relatively high UtrCH

(red) or actin (blue). (Scale bars: 5 mm.)
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FIGURE 2 Receptor-induced cytoskeletal enrichment at sites

of pinned TCRs corresponds to a primarily stable actin fraction.

(A) mKate2-b-actin, (B) EGFP-UtrCH, and (C) merged images of a

triggered T cell interacting with a nanopatterned supported lipid

bilayer show actin enrichment corresponding to putative sites

of pinned TCRs. (D) The UtrCH/actin ratio is high at sites display-

ing actin enrichment, indicating a primarily stable actin fraction

in (1) these regions compared to (2) nearby background areas.

(Scale bars: 5 mm.)
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at the T-cell periphery is composed of short fragments and is a
site of active polymerization, whereas at the center of the IS,
actin filaments are longer and predominantly stable. This is
consistent with previous models of the T-cell actin network
(3,16). An effective way to highlight each of these cytoskel-
etal regions is to consider the relative ratios of the two probes
at each location. In this case, a high UtrCH/actin ratio corre-
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sponds to stable actin, and a high actin/UtrCH ratio corre-
sponds to dynamic actin (Fig. 1 D). When T cells are
treated with cytochalasin D, an inhibitor of actin polymeriza-
tion, the overall UtrCH/actin ratio of the cell decreases as
would be expected from a general decrease in polymerized
actin (see Movie S7 and Movie S8 in the Supporting
Material). However, it should be noted that photobleaching
can also shift the UtrCH/actin ratio over time.We limit quan-
titative analysis of the ratio to its spatial gradients at a single
time point, but such analysis is possible in systems that permit
rigorous calibration for probe expression and photobleaching.

Actin enrichment at trapped TCR clusters incorporates
both mKate2-b-actin (Fig. 2, A and C) and EGFP-UtrCH
(Fig. 2, B and C). The relative UtrCH/actin ratio at these
sites (Fig. 2 D, box 2) is quite high relative to nearby back-
ground areas (Fig. 2 D, box 1), indicating that the actin is
derived primarily from the stable actin population.

The three-dimensional distribution of TCR-associated
actin was analyzed in dual-labeled live T cells using a spin-
ning disk confocal microscope. The recordings show actin
extending away from the cell membrane in the vicinity of
trapped TCRs, while the rest of the actin cytoskeleton re-
mains relatively flat (Fig. 3 and see Fig. S1 in the Supporting
Material). These protrusions of actin away from the mem-
brane surface are predominantly composed of stable, fila-
mentous actin, as indicated by their relatively high UtrCH/
actin ratio (Fig. 3 B).

Our interpretation of these results is that the filamentous
actin network is relatively dense at sites of pinned TCRs.
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FIGURE 3 Three-dimensional ratiometric imaging shows that

actin enrichment extends away from the cell membrane. Single

planes from (A) merged mKate2-b-actin and EGFP-UtrCH and

(B) UtrCH/actin ratio three-dimensional stacks show actin

enrichment at the cell membrane. Cutouts represent Z projec-

tions passing through sites of (1) enrichment and (2) nearby

background regions. The color distribution in panel B is analo-

gous to that in Figs. 1 D and 2 D, and is omitted for clarity. (Scale

bar: 5 mm in the x axis only. Scale box: 1 mm.)
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This is the simplest explanation out of several possibilities,
one of which is formin-mediated mKate2-b-actin-deficient
actin nucleation (17). Filament bunching at pinned TCRs
can arise from consistent biophysical properties without
assuming heterogeneity between the biochemistry of these
receptors and other actin-associated proteins such as those
at the cell edge, where locally high probe ratios are absent.

Although TCRs are intentionally trapped as part of this
experimental strategy, it is likely APCs can naturally
impede TCR ligand mobilities under certain circumstances,
and this has been shown to impact T-cell signaling (18,19).
Actin architecture near cell surface proteins has been exten-
sively studied in focal adhesions of fibroblasts (20), but the
lack of stress fibers in T cells makes it unlikely that the two
structures are similar. Thus, receptor-induced cytoskeletal
enrichment at TCR clusters adds to the catalog of actin
behaviors in situ, which is conveniently probed by tech-
niques such as ratiometric dual-probe imaging in live cells.
These techniques can be coupled to various spatial analysis
algorithms to further extend their utility.
SUPPORTING MATERIAL

Materials and Methods, one figure, and eight movies are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(13)00739-X.
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