
Comput. Math. Applic. Vol. 16, No. 9, pp. 705-714, 1988 0097-4943/88 $3.00+0.00
Printed in Great Britain. All rights reserved Copyright © 1988 Pergamon Press plc

A t - U N I D I R E C T I O N A L E R R O R - D E T E C T I N G S Y S T E M A T I C

C O D E

N . K . JRA

Department of Electrical Engineering, Engineering Quad, Princeton University, Princeton, NJ 08544,
U.S.A.

M. B. VORA
Yojna Inc., Detroit, MI 48018, U.S.A.

(Received 10 February 1988)

Communicated by E. Y. Rodin

Alammet--A systematic code consists of codewords in which the check symbol is appended to the
information symbol. Thus, data manipulation and encoding/decoding can be done in parallel. The Berger
code is a well-known optimal systematic code for detecting all unidirectional errors. In VLSI circuits most
of the errors are found to be unidirectional in nature. However, in many appficatious it may not be
necessary to detect all unidirectional errors. Most faults, unless catastrophic in nature, do not cause errors
in all the bits of the information and check symbol. Therefore, it may be enough to guarantee detection
of every unidirectional error in t or fewer bits of the codeword, if t is reasonably large. In this paper we
present such a t-unidirectional error-detecting code.

1. I N T R O D U C T I O N

Due to the ever-increasing complexity of modem computers, ensuring the reliability of the data
in the computer system has become very important. One way to achieve this aim is to use
redundancy in the data bits. With the help of redundant bits it is possible to detect and/or correct
errors.

Extensive research has been clone in the area of symmetric error detecting/correcting codes [1-4].
In a symmetric error model, errors of type 1-to-0 and 0-to-1 are considered to be equally likely.
However, it has been shown that the errors in VLSI circuits are of the unidirectional type [5, 6].
A unidirectional error model assumes that even though both l-to-0 and 0-to-1 errors are allowed,
only one type of error occurs in a particular data word.

Some codes have been found which detect all unidirectional errors in the data word [7-9]. For
the codes given in Refs [7, 8] the information symbol can be separated from the check symbol. This
enables the data manipulation and encoding/decoding to be done in parallel. The Berger code [7]
is optimal if all 2 k information symbols occur in the code, where k is the number of bits in the
information symbol. However, when all the information symbols are not present, Smith's code [8]
is optimal. In Ref. [9] Frieman gave a non-systematic constant-weight code to detect all
unidirectional errors. He showed that Ln/2J-out-of-n codes are the least redundant block codes.
However, the disadvantage of non-systematic codes is that decoding is necessary to get the
information symbol from the codeword.

The three codes mentioned above are optimal when all unidirectional errors are required to be
detected. But when we need to detect unidirectional errors in only any t or fewer bits in the
codeword, these codes are not optimal. In Ref. [10] systematic t-unidirectional error-detecting
(t-UED) codes were presented which require a fixed number of checkbits independent of the
number of information bits. These codes are capable of detecting 2, 3 and 6 undirectional errors
when 2, 3 and 4 checkbits are used respectively. For these cases the codes are shown to be optimal.
For r >I 5, where r is the number of checkbits, codes capable of detecting up to 5 x 2 '-4 + r - 4
unidirectional errors were presented. However, as can be seen from the code presented in this paper,
it is possible to detect a much larger number of unidirectional errors for the same r, depending
on that the value of k is.

705

706 N.K. JrtA and M. B. VORA

In Ref. [11] modified Berger codes were given to detect t-unidirectional errors. However, the
codes presented in Ref. [10] and our code have higher code-detecting capabilities.

In Ref. [12] Borden proved that the set of codewords with weight Ln/2J mod (t + 1) forms the
optimal code among all t -UED codes of length n. However, these codes are non-systematic in
nature.

In this paper we present a systematic t -UED code which performs better than the Bose-Lin code
[10] for certain ranges of k. The organization of the paper is as follows. In Section 2 we discuss
the different error classes. In Section 3 the capabilities of binary block codes are discussed. In
Section 4 we give the encoding technique and other results for our systematic code. In Section 5
we discuss the error-detecting capability of this code. In Section 6 we discuss a self-checking checker
for our code.

2. E R R O R CLASSES

In the following, we define three different type of errors--symmetric, asymmetric and uni-
directional:

Symmetr ic errors. If both 0-to- 1 and l-to-0 errors appear in a data word with equal
probability then the errors are termed symmetric errors, and the channel is termed
a symmetric channel.
Asymmetr ic errors. When only either 0-to-1 or 1-to-0 errors occur in any data word
and the error type is known a priori, the errors are termed asymmetric errors, and
the channel is termed an ideal asymmetric channel.
Unidirectional errors. I f both 0-to-1 and 1-to-0 errors can occur in a data word, but
in any particular word only one type of error occurs, then the errors are termed
unidirectional errors.

A binary channel model [1-4], given in Fig. 1, can be used to illustrate both symmetric as well
as asymmetric channels.

I f p = q, it means that the probabilities of 1-to-0 and 0-to-1 transitions are the same. For such
a case the channel would become a binary symmetric channel. But i fp >> q or vice versa, the channel
would become asymmetric. For the ideal asymmetric channel, either p = 0 or q = 0. When errors
are unidirectional in nature, 0-to-1 and 1-to-0 errors occur with equal probability, but in any given
word only one type of error can occur.

3. NECESSARY AND S U F F I C I E N T C O N D I T I O N S

We will now present some necessary and sufficient conditions for symmetric, asymmetric and
unidirectional error detection. We start with the following definitions:

Definition 1

A word X = (x~, x2 x ,) is said to cover another word Y = (yt, Y2 y ,) if V i, Yi = 1 implies
x; = 1. We write X/> Y.

If neither covers the other, the words are said to be unordered. Else if X 1> Y or Y/> X, X and
Y are said to form an "ordered pair". For example, if Xt = (0011) and Yt = (0010) then Xt/> YI,
and X1 and YI form an ordered pair. But if X2 = (1010) and Y2 = (1001) then neither covers the
other, and they are said to be unordered. Note that a word always covers itself. The symbol /> will
also be used to compare decimal numbers. It will be clear from the context as to what sense it is
used in.

Definition 2

The Hamming distance d(X , Y) between two words X and Y is the number of bit positions they
differ in.

For example, if X = 0011) and Y = (0101), then d(X, Y) = 3.

A t-UED systematic code 707

0 I~ 1 - q 0

1 1
1-o

p = probability of 1 to 0 transition
q = probability of 0 to 1 transition

Fig. 1. A binary channel.

The following theorem by Hamming [13] gives the symmetric error-detecting capabilities of
binary block codes.

Theorem I
A code C is capable of detecting t or fewer symmetric errors iff the minimum Hamming distance

of the code is at least t + I.
From the definition of the error classes it is obvious that a code C satisfying the above condition

will also detect t-unidirectional or t-asymmetric errors.
The next theorem [14] gives the necessary and sufficient condition for the detection of

unidirectional errors.

Theorem 2
A code C is capable of detecting all unidirectional errors if every pair of codewords is unordered.
However, if we want to detect only t-unidirectional or t-asymmetric errors this condition needs

to be modified, as given in Theorem 3 below [10]:

Theorem 3
A code C is capable of detecting t-asymmetric errors if and only if the following condition is

true. For all X, Y E C, either X and Y arc unordercd, or d (X, Y) >I t + I when one covers the other.
Further, a code capable of detecting t-asymmetric errors is also capable of detecting t-
unidirectional errors.

We will use this theorem later to establish the t-UED capability of our code.

4. A t -UED CODE

It was mentioned earlier that Berger codes [7] are optimal systematic codes. For tbesc codes
r = [-log:(k + 1)]. When k < 2' they are superior to any systematic t-UED code. Hence, for the
purpose of this paper, we assume that k /> 2'.

As mentioned beforc, in Ref. [10] optimal codes to detect 2, 3 and 6 unidirectional errors using
2, 3 and 4 cbeckbits, respectively, were given. It is easy to see that single checkbit parity codes are
optimal I-UED codes. Furthermore, in Ref. [10], for r t> 5, a systematic code capable of detecting
up to 5 x 2 '-4 + r - 4 unidirectional errors was given. We will show that our code detects a higher
number of unidirectional errors for the same r for a given range of k. Typically, when k is between
2' to K x 2', where K is a constant roughly equal to 1.3 for odd r and 1.4 for even r, our code
performs better. Beyond this range the Bose-Lin code [10] performs better.

A. Notations and Definitions

Definition 3
A number M(r, x) is defined as follows:

j - I

708 N . K . JHA and M. B. VORA

For our code we will need the number M(r, Lr/2]). One can verify that the following is true:

i
2 r- i _ l, r odd,

M(r, Lr/2])= l (r) r /2 [2r-1+~ - 1, r even.

Definition 4
A set S(r) is defined as follows:

S(r) = {x Ix e (Lr/2J - y)-out-of-r codeword, y = 0, 1, 2 Lr/2d - 1 }.

We assume that in the set S(r), the set of (L r / 2 d - y0-out-of-r codewords is placed before the
set of (Lr/2J - y2)-out-of-r codewords ifyl < Y2- Within any set of (Lr/2J - y)-out-of-r codewords,
the words are arranged in the order of decreasing value.

For example, S (4)= {1100, 1010, 1001, 0110, 0101, 0011, 1000, 0100, 0010, 0001}.
It is easy to see that S(r) consists of M(r, Lr/2d) words. We will denote the ith word in S(r)

as Ct(r). For example, C,(4)= 1100, C8(4)= 0100 and so on.

Definition 5
A set At(r), i = 1, 2 /, for some l <<. M(r, Lr/23), is defined as follows:

Ai(r) = {xlx <<. Ct(r) and x # C/r)},

At+ l(r) = null.

The words in At(r) are arranged in the order of decreasing value.
For example, let r = 4. We can see that M(r, Lr/23) = M(4, 2) = 10. Let 1 = 3. From the earlier

example we know that C,(4)= I100, C:(4)= 1010 and C3(4)= 1001. Hence,

and

Definition 6

A~(4) = {1000, 0100, 0000}

A2(4) = {1000, 0010, 0000}

A3(4) = {1000, 0001,0000}

Bi(r)=At(r)-Ai(r)fq[j=ql Aj(r)], i = 1 , 2 l - 1 ,

B,(r) = At (r) .

For the above example,

B,(4) = A,(4) -- A,(4) fq (A2(4) U A3(4)) = {0100}.

Similarly, B2(4)= {0010} and B3(4) = {1000, 0001, 0000}.

Definition 7
A compaction operation on a set X, which consists of words of length r, is denoted as COMP,

and defined as follows:

COMP: X- - ,Ywhere Y = { yly~Xandy~Ot=l At(r)}"

For example, if X is the set of 16 words of 4 bits, arranged in the order of decreasing value,
and 1 = 3, then

COMP: X - - . { l l l l , 1110, 1101, 1100, 1011, 1010, 1001,0111,0110,0101,0011}.

A4(4) = null.

A t-UED systematic code 709

Definition 8
An append operation on any m sets X~, X~ , Xm is denoted as APP, and defined as

APP: (X~, X~ Am) ~ Z where Z = X,. X~...Xm.

From the previous example, APP: [C3(4), B3(4)] ~{1001, 1000, 0001, 0000}.
Note that if Xi = {1001, 1000} and X2 = {1001}, then APP: (X~, X 2) ~ {1001, 1000, 1001}. So if

two or more of the sets have common members, the appended sequence includes each instance of
the common members.

Given a sequence of words, in which a particular word Q occurs in at most two different
positions, pm(Q) and p2(Q) will denote the numbers of the positions in which Q occurs.

A word W which has m zeros is said to have a group number m. This is denoted as Gn (W) = m.
For example, Gn(10000) = 4 and G n (l l l l l) = 0.

The number of 1-to-0 transitions from a word W~ to another word I4"2 is denoted as N(W~, W2).
For example, N(1000, 0111) = 1 and N(0111, 1000) = 3.

B. Properties of the Different Sets
We will now look into the properties of some of the sets we have already defined.

Lemma 1
Bj(r) fq Bk(r) = null, for any j, k = 1, 2 /, j # k.

Proof. From Definition 6, Bt(r), i = 1, 2 l - 1, contains those words from Ai(r) which are
not present in any Am(r), i < m <~ L Also, Bt(r) = At(r). Without loss of generality, let us assume
j < k. If Bj(r)NBk(r) ~ null, then there exists at least one word (say W) which belongs to both
Bj(r) and Bk(r). Since Bj(r) is a subset of Aj(r), and Bk(r) is a subset of Ak(r), it follows that
W 6 Aj(r) and W ~ Ak (r). But this means that if W ~ Bj (r), then W e B k (r). This is a contradiction.
Therefore, Bj(r) N B k (r) = null. []

Lemma 2

B,(r) = ,~ A,(r).

Proof. From Definitions 5 and 6 it is clear that any word V e {A,.(r) - B;(r)}, i = 1, 2 /,
belongs to Bj(r), where j is the least integer >i , such that V does not belong to any A,(r),
j < k ~< 1 + 1. This, coupled with the fact that Bt(r) is a subset of At(r), implies that every word
that belongs to any A~(r), i = 1, 2 /, also belongs to some B,(r), m = 1, 2 L But, since
8,(r) is a subset of A,(r), it follows that []

Bt(r) = t~ At(r).

Lemma 3
Let Wi e Bi(r), i = 1, 2 1 - 1, and We ¢ Bj(r), j = 2, 3 , . . . , I, j > i. We can never cover Wt.
Proof. Since Bt(r) is a subset of A~(r) and Bj(r) is a subset of Aj(r), Wt ~ At(r) and W2 ~ Aj(r).

If W2 covers Wi then Wl must belong to Aj(r) as well. Then, since W~ belongs to both At(r)
and Aj(r) and j > i, Wt does not belong to B~(r). This is a contradiction. Hence, I4"2 cannot
cover I4"1. []

C. Encoding Technique

Our code requires the number of checkbits r to be equal to Llog2k3. Note that a Berger code,
which detects all unidirectional errors, requires rlog~(k + 1)q cbeckbits. The price we pay for
reducing the number of checkbits is that we can no longer detect all unidirectional errors. We
assume that k - 2 ' < M(r, Lr/23). We will see later that this assumption does not create any
problems. Procedure 1 below gives our encoding technique.

710 N . K . JHA a n d M. B. VORA

Table 1. Check symbol assignment

Group No. Check symbol

18 1111
17 1110
16 1101
15 1100
14 1011
13 1010
12 1001
11 0111
10 0110
9 0101
8 0011
7 1100
6 0100
5 1010
4 0010
3 1001
2 1000
1 0001
0 0000

Procedure 1

(1) Let r = [_log2 k]. Set 1 = k - 2 r a t- 1.
(2) Obtain S(r) and then get Ct(r), i = 1, 2 l.
(3) Obtain Ai(r) and Bi(r), i = 1,2 I.
(4) Let X be the set of r-bit words arranged in the order of decreasing value. Perform COMP:

X ~ Y .
(5) Perform APP: [Y, C~(r), Bl(r), C2(r), B~(r) Ct(r), Bt(r)] ~ Z. Z constitutes a sequence

of check symbols which are to be assigned successively to words with group numbers
k , k - 1 , . . . , 0 .

(6) Find pl[Ct(r)] and p2[Ct(r)] for each Ct(r) ~ Z, i = 1, 2 l, and get

t = min {p~ [Ct(r)] - pl[Ct(r)]} - 1. []
t

Procedure 1 has been implemented in a Pascal program in order to derive the check symbols
and the value of t. The following example illustrates how Procedure 1 works. Let k = 1 8. Hence,
r = [_log2 18_] = 4 and l = 3. S(4), C~(4), Ai(4), Bt(4) for i = 1, 2, 3, and COMP: X--* Y have been
found in earlier examples. Now APP: [Y, C1(4), Bl(4), (72(4), B2(4), C3(r), B3(4)] ~ {1 1 1 1, 1 1 10,
ll01, ll00, 1011, 1010, 10Ol, 0111, 0110, 0101, 0011, 1100, 0100, 1010, 0010, 1001, 1000, 0001,
0000}.

The 19 check symbols thus obtained are consecutively assigned to words with group numbers
18, 17 , 0 , as listed in Table 1.

So if the information symbol has 1 8 zeros then its check symbol is 1 1 1 1; if it has 1 7 zeros then
its check symbol is 1 1 10 and so on.

D. Proof o f Validity o f our Code

The validity of the above code is considered in the following theorem:

Theorem 4

The code derived by Procedure 1 is capable of detecting t or fewer unidirectional errors.
Proof. Let k be the number of bits in the information symbols that have to be encoded. Hence,

r = [_log2k_] and l = k - 2 r+ 1. Let Ct(r), At(r), Bt(r), i = 1, 2 l, be obtained according to
Definitions 4-6, respectively.

In Procedure 1, we defined X to be a set of r-bit words arranged in the order of decreasing value.
By doing COMP: X ~ Y we threw out all those words from X that are covered by any Ct(r). In
other words, Y does not contain any word from any A~(r). Hence, from Lemma 2, it follows that
Y also does not contain any word from any B~(r).

From the above arguments and Lemma 1, we can deduce that Ct(r)'s are the only words which
appear twice in the sequence Z in Step 5 of Procedure 1. It is also clear that the words that were

A t-UED systematic code 711

deleted from X are added back in Z, although at different locations. Since each Ci(r) appears
exactly twice in Z, and IXI = 2', it means that IZI = 2 ' + l -- k + 1. This is exactly the number of
check symbols required for encoding words of length k. Another thing to note from Definitions
4 a n d 6 is that any word from Bi(r), i = 1, 2 l - 1, is not covered by any Cj(r), j = i + 1,
i + 2 , . . . , / .

When a check symbol is assigned to an information symbol a codeword is formed. All such
codewords from the code space. Henceforth, we will refer to the information symbol and check
symbol of a codeword D as E and F, respectively.

Any two codewords, whose information symbols have the same group number, have the same
check symbol. But if the group number of the two information symbols is the same then they will
be unordered, and, hence the two codewords will be unordered. So let us take any two codewords
D~ and D2 such that G n (E 0 ~ G n (E 2) . Without loss of generality let us assume that
Gn(Em) > Gn(Ee). This means that FI will occur before Fe in Z. Two cases may arise.

Case 1: FI and F2 are not the same. For this case there are seven subeases. For each of these
subcases we will show that N(F~, F2)/> 1. Since Gn(E0 > Gn(E2), N(Ee, El) t> 1. Hence

N (D , D2) = N(Et, Ee) + N(F~, Fe) >>- 1

and

N(D 2, D,) = N (Ee, E,) + N (Fe, Fi) ~ 1.

Therefore, by proving N(F1, Fe)i> 1, we prove that DI and De are unordered.

(1) F,,Fe~ Y.
Since Gn(E0 > Gn(Ee), the value of F, > the value of Fe. Hence, N(F~, Fe) >i 1.

(2) F~e Y, F2= C,(r), i = 1,2 I.
Since any word that Fe covers cannot be in Y (from Definition 7), Fe cannot cover FI. This
implies that either F~ covers F2, or F~ and Fe are unordered. Hence, N(F~, F2)>>. 1.

(3) F~ ~ Y, F2 ~ B~(r), i = 1, 2 I.
F2 cannot cover F~ because a word in Y has weight Lr/2J or higher, while a word in Bt(r)
can only have weight Lr/2J - 1 or lower. Hence, N (F , Fe) >>. 1.

(4) Ft=C~(r), i = I , 2 l, Fe=Cj(r),j=2,3 l, i <j.
Since the weight of F 2 ~ the weight of F1, either F1 and F2 are unordered, or FI covers F2.
In other words, N(FI, F2) t> 1.

(5) F~ = Ci(r), i = 1, 2 l, Fe ~ Bj(r), j = 1, 2 I.
If i = j , FI will cover F2. If i # j , then j > i, from Step 5 of Procedure 1. In that case F~
and F2 are unordered, or Fi covers F 2. Therefore, N(FI, F2) I> 1.

(6) F~ ~ B~(r), i = 1, 2 l - l, F2 = Cj(r), j = 2, 3 l.
Note that j > i. From Definitions 4 and 6, we can see that Fe cannot cover F~. So,
N(F,, Fe) >t 1.

(7) F~ E Bt(r), i = 1,2 l, FeeB j (r) , j = 1,2 I.
I f / = j , the value ofF~ > the value ofF2. Hence, N(F~, F2)/> 1. I f j > i, then from Lemma 3,
Fe does not cover Fi. Hence, again, N(FI, F:)>>. 1.

Therefore, by taking into account all these subcases of Case 1, which exhaust all the possibilities,
we find that Dj and D 2 will be tmordered.

Case 2: FI and F2 are the same. This case can only arise when FI, F2 = Cl(r), i = 1, 2 I.
From Step 6 of Procedure 1 we know that d(D~, De) is at least t + 1.

From the arguments given for Cases 1 and 2, and from Theorem 3, we see that the code derived
by Procedure 1 is a t -UED code. []

E. A Note on the Bose-Lin Code

A method is given in Ref. [10] in which the r checkbits of a check symbol are divided into two
parts of 4 bits and r - 4 bits, respectively. The first 4 bits take any one of the 2-out-of-4 codewords,
namely, 0011, 0101, 0110, 1001, 1010 or 1100, and the last r - 4 bits take any one among the 2 "-4
binary (r - 4)-tuples. Therefore, there are 6 x 2 '-4 distinct check symbols in this code. It was shown

712 N . K . JHA a nd M. B. VORA

Table 2. Unidirectional errors detected by the Bose-Lin code and our code

r el k e2 K r e~ k e2 K

32 21 512 465
33 18 525 383

5 11 35 16 1.28 9 165 550 310 1.31
38 12 600 229
40 11 640 197
41 II 672 166

64 49 1024 961
70 35 ll00 596

6 22 75 28 1.42 10 326 1200 462 1.45
85 26 1350 407
90 23 1425 342
91 22 1485 327

128 105 2048 1949
132 89 2200 1250

7 43 140 72 1.31 11 647 2400 869 1.30
150 56 2500 848
160 49 2600 737
168 44 2664 647

256 225 4096 3969
280 144 4400 2370

8 84 300 113 1.42 12 1288 4800 1872 1.42
331 104 5300 1581
360 92 5820 1303
364 84 5827 1289

that this code is capable of detecting 5 x 2 ' -4 + r - 4 unidirectional errors. It was conjectured that
this code is optimal or near-optimal.

It can be seen that if the r checkbits are divided into two parts of x bits and r - x bits,
respectively, then the number of unidirectional errors t detected by a similar code is given by

t = - - 1 • r - - x .
x / 2

This reduces to 5 x 2 ' -4 + r - 4 for x = 4. It can be verified by graphical means, or otherwise,
that t is maximized for x = 4. So, indeed, of all the choices available for breaking up the r checkbits
into two parts, Bose and Lin chose the best one, although they did not prove this fact in their paper.

However, the Bose-Lin code is not optimal or near-optimal for every value of k. In the next
section we will show that our code performs better than the Bose-Lin code when k lies between
2' to K x 2", where K is a constant which is roughly equal to 1.3 for odd r and 1.4 for even r.

5. E R R O R - D E T E C T I N G C A P A B I L I T Y OF O U R CODE

We present in Table 2 a comparison of the error-detecting capability of the Bose-Lin code [10]
with our code. For the Bose-Lin code we will denote the number of unidirectional errors detected
by e~. For our code the number of unidirectional errors detected also depends on the number of
information bits k for a given r. We will denote this number as e2. K will denote the ratio k r ~ / 2 " ,

where kmax is the number of information bits for or less than which our code performs as well
or better than the Bose-Lin code. The numbers in the table were obtained by implementing
Procedure 1 in a program written in Pascal. A program was needed to get e2 since we have not
been able to derive an exact formula for e: in terms of k and r.

F rom the above table we can see that our code performs better than the Bose-Lin code in the
range 2' to K x 2', where K is roughly equal to 1.3 for odd r and 1.4 for even r. In this range the
number of unidirectional errors detected (e2) decreases with increasing k. Let us suppose we want
to encode 64 information bits in a systematic code. By choosing r = 6, we can detect 49
unidirectional errors by our code, whereas the Bose-Lin code can detect only 22 unidirectional
e r r o r s .

Figure 2 presents a plot of logm0 e2 vs log~0k for different values of r.
It is our conjecture that the empirical values of K derived above are valid V r. In any case, the

maximum value o f k that we have considered in Table 2 is 5827. Most practical applications require
the encoding of much fewer information bits.

3.6
¢q

3.3
cIb
o

3.0

P 2 . z

~ 2.4 c o

"o "E 1.S

.,O
E 1.2
7

0.9
1.0

A t-UED systematic code

r , 1 2 \\\\
r - l l

r , l O

r - 9

~ r-8

~ r,7

~ r ,6

I r-S , , I I I I I I I
1.3 1.6 1.9 2 . 2 2 .5 2 .S 3.1 3 . 4 3 . 7 4 . 0

Number of information bits (Log k)

Fig. 2. logme 2 vs log]0 k for different r.

713

6. A C H E C K E R FOR OUR C O D E

The concept o f totally self-checking (TSC) circuits was introduced in Refs [15, 16] for functional
circuits as well as checkers. These circuits can detect errors on-line. The checker is used to moni tor
the outputs of the functional circuit to catch non-codewords. The TSC checker concept was
extended to strongly code disjoint (SCD) checkers in Ref. [17]. It was shown that SCD checkers
are the largest class of checkers which meet the TSC goal. These checkers have the capability of
performing properly in spite of the presence of undetectable faults, unlike TSC checkers. In Ref.
[18] we have presented an SCD checker design applicable to any systematic code. I f the outputs
of the functional circuit are encoded using the systematic code presented in this paper, then we
can use this design to obtain an SCD checker.

7. C O N C L U S I O N

The issue of reliability is becoming increasingly important for VLSI circuits. Therefore, it is
essential to find efficient codes to encode the data words. For VLSI, unidirectional errors have been
found to be the most common type of errors. It may not always be necessary to detect
unidirectional errors of all sizes. In this paper we have presented a new systematic code to detect
t-unidirectional errors. This code performs better than the previously known codes for certain
ranges of k, the number of information bits. Since an SCD checker design is known for this code,
its applicability to real-life circuits is high.

Acknowledgement--Ttds work was supported in part by the National Science Foundation under Grant MIP-8708728.

R E F E R E N C E S

1. W. W. Peterson and E. J. Weldon, Error Correcting Codes. MIT Press, Cambridge, Mass. (1972).
2. E. R. Berkelamp, Algebraic Coding Theory. McGraw-Hill, New York (1968).
3. S. Lin, An Introduction to Error Correcting Codes. Prentice-Hall, Englewood Cliffs, N.J. (1970).
4. N. J. A. Sloane and F. J. MacWilliams, The Theory of Error Correcting Codes. North-Holland Amsterdam, T h e

Netherlands (1977).
5. R. W. Cook et al., Design of self-checking microprogram control. IEEE Trans. Comput. C-22, 255-262 (1973).
6. D. K. Pradhan and J. J. Stiflter, Error correcting codes and self-checking circuits in fauit-tolerant computers. IEEE

Comput. 13, 27-37 (1980).
7. J. M. Berger, A note on error detecting codes for asymmetric channels. Inf. Control 4, 68-73 (1961).
8. J. E. Smith, On separable unordered codes. 1EEE Trans. Comput. C-33, 741-743 (1984).
9. C. V. Frieman, Optimal error detecting codes for completely asymmetric binary channels. Inf. Control 5, 64-71 (1962).

10. B. Bose and D. J. Lin, Systematic unidirectional error-detecting codes. IEEE Trans. Comput. C.34, 1026-1032 (1985).
1 I. D. Dong, Modified Berger codes for detection of unidirectional errors. In Dig. Papers, 12th Int. Syrup. Fault-Tolerant

Comput., pp. 317-320 (1982).

714 N .K. JHA and M. B. VORA

12. J. M. Borden, Optimal asymmetric error detecting codes. Inf. Control 53, 66-73 (1982).
13. R. W. Hamming, Error detecting and error correcting codes. Bell Syst. tech. J. 29, 147-160 (1950).
14. B. Bose and T. R. N. Rao, Theory of unidirectional error correcting/detecting codes. IEEE Trans. Comput. C-31,

521-530 (1982).
15. W. C. Carter and P. R. Schneider, Design of dynamically checked computers. In Proc. 1FIP "68, Edinburgh, Scotland,

Vol. 2, pp. 878-883 (1968).
16. D. A. Anderson and G. Metze, Design of totally self-checking circuits for m-out-of-n toes. IEEE Trans. Comput. C-22,

263-269 (1973).
17. M. Nicolaidis, I. Jansch and B. Courtois, Strongly code disjoint checkers. In Proc. 14th Int. Symp. Fault-tolerant

Comput., Orlando, Fla, pp. 16-21 (1984).
18. N. K. Jha, Strongly code disjoint checkers for systematic and separable codes. Submitted to 18th Int. Syrup.

Fault-Tolerant Comput., Tokyo (1988).

