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Abstract

The zero divisor graph of a commutative sgnoiup with zero is a grdpwhose vertices are the
nonzero zero divisors of the semigroup, with two distinct vertices joined by an edge in case their
product in the semigroup is zero. We continue the study of this construction and its extension to a
simplicial complex.

0 2004 Elsevier Inc. All rights reserved.

This article continues the study of the zero divisor graph of a commutative semigroup
begun (implicitly) in [1,2] and in [4,5], though it is mostly self contained. Throughout
S denotes a commutative semigroup with 0 whose operation is written multiplicatively.
Associate taS a simple graphG whose vertices are the nonzero zero divisors efith
x # y connected by an edge in case = 0. Since the zero divisors ¢f form an ideal
in S, we usually assum§& consists of zero divisors. Observe though, that an ideal in a
zero divisor semigroup may not consist of zero divisors. For examplg 2f{0, x, y |
x2=1x,y?2=y,xy =0} then § consists of zero divisors but the ided, x} does not.
Recall the semigroug is nilpotent in case for eache S there is a positive integerwith
x" = 0. Every subsemigroup of a nilpotent semigroup consists of zero divisors. Moreover,
in order thatG be non empty, we usually assurfielways contains at least one nonzero
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zero divisor. While we are principally interested in the assignnsent G, when helpful
we extend the graptr to the graphG® which adds toG the vertex 0 connected to every
other vertex ofG, and sayG" is the graph ofs°. In Theorem 1 we recall four conditions
which are necessary for a graph to be the graph of a semigroup. Every graph with five or
fewer vertices which satisfies these conditions is the graph of a semigroup, but we give
an example of a graph with six vertices which is not the graph of a semigroup but does
satisfy these conditions. In Theorem 2 we give examples of graphs which are the graph of
a semigroup. For each positive integehe setl; of elements of§ whose vertex degree in
G is greater than or equal fotogether with O forms a descending chain of ideals.ihf
S is nilpotent then the subgraph 6f spanned by vertices of degree greater than or equal
to k is the graph offx. If S is nilpotent, then generalizing the corresponding result in [6],
we show every edge of the core@fis the edge of a triangle 6.

The second purpose of this article is to introduce the associati§nofoa simplicial
complexkK (S), where a simplex is a subsgtof S — {0} with the property thak,y € A
with x # y impliesxy = 0. We give examples of semilattices whose associated complexes
have non trivial homology in degree greater than 0 and show the complex associated to any
finite nilpotent semigroup has trivial homology in degree greater than 0. As a result, we can
give an example of a graph with the property that every edge imthe edge of a triangle
andG is the graph of a semilattice bat is not the graph of any nilpotent semigroup.

Section 1

If x is a vertex in a graply;, let N(x) be the vertices irG adjacent toc (connected to
x by a single edge) anl (x) = N (x) U {x}.

A graphG is a star graph in case there is a vertér G such that every other vertex in
G is an end, connected toand no other vertex by an edge.

The core ofG is the largest subgraph @f in which every edge is the edge of a cycle
inG.

Theorem 1. If G is the graph of a semigroup th&nsatisfies all of the following conditions.

(1) G is connected.

(2) Any two vertices of; are connected by a path witd 3 edges.

(3) If G contains a cycle then the core Gfis a union of quadrilaterals and triangles, and
any vertex notin the core @f is an end.

(4) Foreach pairx, y of nonadjacentvertices @f, there is a vertex with N(x) UN (y) C
N(2).

Proof. For semigroups, the first three conditions were proved in [4]. For the fourth, assume
G is the graph ofS and letx andy be nonadjacent vertices &. Thenxy =z #0in S. If

a € N(x) UN(y) then eitheux = 0 oray = 0. In either casejz = a(xy) = 0 s0a € N(z).
ThusN(x)UN(y) C N(z). O
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Theorem 2. If G is a graph satisfying conditiond)—(4)of Theoremml, and there are five
or fewer vertices irG thenG is the graph of a semigroup.

Proof. The proof is given by enumerating all the candidate graphs with fewer than six
vertices and writing down a semigroup for each graph.

Example 1. The graph below gives a graph with six vertices which has diameter 2. The
verticesa andd are not adjacent, so the produet is nonzero. Observe théi, ¢, e, f} C
N(a)UN(d). There does not exist a vertesuch thatb, c, e, f} C N(z), hence this graph
fails to satisfy condition (4) of Theorem 1. Thus, this is not the graph of a semigroup.

b

f e

Example 2. The graphG with six vertices pictured below satisfies the conditions of The-
orem 1 and is not the graph of any semigroup.

Y3 X Y2
Proof. Assume that the grapfi pictured above is the graph of a semigrdup

Step 1. First observe that sinde, x3, y2, y3} C ann(x1y1) and{xz, x3, y2, y3} C anr(xf),
x1y1, X2 € {0, x1}. Thus by symmetry0, x;} forms an ideal foi =1, 2, 3. Thus x? = x;
or 0 for eachi. Since{0, x;} forms an ideal and; is not adjacent to; for anyi, we
have thatx;y; # 0, hencex;y; = x;. Consider the triple produat.y;y; wherei # j. By
associativity,x, (y;y;) = (xkyi)yj = yi(xxy;). Sincei # j, eitherx;y; =0 orxzy; = 0.
Thereforex,(y;y;) =0 fork =1, 2, 3 and hence the produgty; € {x1, x2, x3}.
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Step 2. Consider the product;y2. We have thak; y? = (x;y;)y: = x;y; = x; # 0. Hence
y? € {x;, y;} for any indexi € {1, 2, 3}.

Case 1. Supposeyozl =y, for some fixed indexx. Let j be any index not equal ta.
Consider the triple product,y.y;. Then ygyj = yayj € {x1,x2, x3} by Step 1. Also,
yozlyj = Ya(Yayj) = Yo Wheref € {x1, x2, x3}. If yoy; = x; orx; for j, k # o, we have
yaYayj = 0, which gives a contradiction tyfyj € {x1, x2, x3}. This leaves the remaining
case where,y; = xa

The produc@yay = (Yayj)yj =xayj =0sincej #a, hencgz € {0, x,,xk} for j, k,«
aII distinct. In Step 2 it was shown thaf € {x;,y;} forall j, hencey = x;. Similarly,
yk = Xk-

Therefore we have €= x;yr = (y;jy;))yx = yj(y;jyx) and similarly 0= y;x; =
viye) = (vjyi)yk- Sincey;ye # 0, y; vk is represented by a vertex which is adjacent to
bothy; andyi. Thus,y; v = xq.

Hence the triple productyy;yk = yo (¥ Vk) = YaXe = Xo @NAYaYjyk = (Yayj) Yk =
xoyi = 0. This gives a contradiction sinag # 0.

Case2. Supposgzl.2 = x; foralli. Thenfori, j distinct, 0= x;y; = (yiyi)y; = yi(yiy;) =
yiB, whereg € {x1, x2, x3}. Hencep # x; and thereforey;y; € {x;, x¢}. Similarly, the
same argument witly;y;y; shows thaty;y; € {x;, xx}. Therefore, we have;y; = x
wherei, j, k are all distinct. Then, we havg = y1x1 = y1(y2y3) = (y1y2) y3 = x3y3 = X3,
which is a contradiction.

Hence, the above graph cannot be the graph of any semigraup.

A graphG is a refinement of a grapH in case the vertex sets 6fandH are the same
and every edge i is an edge irG.

Theorem 3. The following graphs are the graph of a semigroup.

(1) A complete graph or a complete graph together with an end.

(2) A complete bipartite graph or a complete bipartite graph together with an end.

(3) A refinement of a star graph.

(4) A graph which has at least one end and has diamstér

(5) A graphwhich is the union of two star graphs whose centers are connected by a single
edge.

Proof. (1) A complete graphG is the graph of the null semigroup ai U {0}. If x is
an additional vertex connected only &oe G by an edge then beginning with the null
semigroup orG U {0} definex? = x, xa =0 andxb =b forall b # a in G U {0}. Itis easy
to check the result is a semigroup whose graph is the complete grapbether with an
end.

(2) Let G be the complete bipartite graph @nJ B. Well order the elements ia and
in B and letS be the semilattice with root 0 and two branches consisting of the vertices in
A andB. The resulting semigroup has gra@ghlf x is an additional vertex connected only
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to a € A then leta = a; be the first element i, a2 € A the second element, aihg € B
the first element inB. Then the semilattice defined above aru B with the additional
relations 0< x < a2 andx < b1 defines a semilattice with the given graph.

(3) Let G be a refinement of a star graph with cergeaind end vertice$x; | i € I}.
Define a semigroug by: z2=0,x?=z (i € I), xiz=0 (i € I), x;x; = 0if x; andx; are
connected by an edge G andx;x; = z otherwise. Any triple product(bc) or (ab)cis 0
in S soS is a semigroup with the given graph.

(4) Let G be a graph of diametet 2 with an end vertex. Let z be the vertex joined
to x. Then because the diameter@fis < 2, every other vertex of7 is connected tg by
an edgez is the center of a star graph which spansandG is the graph of a semigroup
by (3).

(5) This is (2) of Theorem 1.3 of [4]. O

Example 3. By (3) and (5) of Theorem 3 we know that the refinement of a star graph and
the union of two star graphs are each thepgraf some semigroup.The graph drawn below
is a refinement of the union of two star graphs with centers at versaxd vertexy. How-

ever, this is not the graph of a semigroup. The verticasd f do not satisfy condition (4)

of Theorem 1 since vertaxis adjacent tal and vertexf is adjacent ta:, but there is no
vertex adjacent to bothandd.

a b c

d e 'f

A vertexx of a graphG has degree: in caseN (x) hasm elements. For each positive
integerk let G, be the subgraph af spanned by the vertices 6f of degree> k.

Theorem 4. Let S be a semigroup with grap&, and let/; be the elements @f of degree
> k together with0. Then{/;} is a descending chain of ideals

Proof. Let x be a vertex inG of degreem > k and lety be a vertex inG. Assumex
is connected by an edge exactly to the{set| i € I}. If yx = 0 thenyx € I;. Otherwise
(yx)x;i = y(xx;) =0foralli € I.If yx # x; foralli € I thendeg@yx) > dedgx). If yx = x;
for somei € I then{x; | j #i} U {x} is a subset ol (yx) so de@yx) > dedgx). The last
statement of the theorem is obviousa

Corollary 1. If § is a semigroup with grapl& then the core o6 together with{0} is an
ideal in S whose graph is the core @f.

Proof. The core ofS together with 0 is the idedh of Theorem 4, and the graph &f is
the core ofG. O
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Corollary 2.

(1) Let S be a nilpotent semigroup, and lét be the graph ofS. ThenGy, is the graph
of I.

(2) Let S be a zero divisor semigroup, thég %), 1 is the graph whose vertices are the
elements of the ided},.

Proof. (1) Since each element &f is nilpotent, each element &f is a zero divisor in/y.
Therefore the vertices of the graph ifcorrespond to the vertices 6f;. Two vertices in
G are connected by an edge if and only if their corresponding produgtis 0, so the
graph ofly is Gy.

(2) Including 0 with the elements in the idehl gives precisely the vertex set of the
graph(GO)k+1. Note that there may be elements in the idgakhich are not zero divisors.
These elements are adjacent only to the vertexm.

Corollary 3. Let G be a graph and assum@;, is not the graph of a semigroup for sorhe
ThengG is not the graph of a nilpotent semigroup.

Proof. This is an immediate consequence of Corollary 21

Coroallary 4. If G is a graph equal to its core which is not the graph of a semigroupsnd
is a graph obtained front; by adding ends t@;, thenH is not the graph of a semigroup.

Proof. This is an immediate consequence of Corollary t
The following result for commutative rings is in [6].

Theorem 5. Let S be a nilpotent semigroup.

(1) The diameter of the grapfd of S is < 2.
(2) Every edge in the core of the graghof S is the edge of a triangle i.

Proof. (1) Leta, b be vertices irG and assume andb are not connected by an edge. Let
n be the index ofc andm the index ofb. Thenab # 0 buta"b™ = 0. There is a largest
pair i, j in the lexicographic order withb/ # 0. Thena — a'b/ — b is a path inG of
length= 2.

(2) Leta — b be an edge in the core df. By Theorem 1.5 of [4]a — b is either the
edge of a rectangle or triangle @. In the first case let — b — ¢ — d — a be a rectangle.
Thenac # 0 so as in the proof of the first part, we get the trianglea’c/ —c —a. O

Coroallary 5. If every element it$ has finite order and some edge in the core of the graph
G of S is the edge of a square but not a triangle thnontains a nonzero idempotent.
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Proof. If G contains an edge in its core which is not the edge of a triangle then by part (2)
of Theorem 5,5 contains an element which is not nilpotent. If(a) is finite then{a)
contains a nonzero idempotent (see p. 19 of [3])

Section 2

Associate to a commutative semigroivith 0 a complexKo(S) by letting the sim-
plices A in Ko(S) be the finite subsetd of S such thatcy =0 for all x 2y € A. Itis
trivial to checkKp(S) is an abstract complex [7, p5], and that the associatioh— Ko(S)
defines as in [4] a covariant functor from the category whose objects are commutative semi-
groups with 0 and maps are semigroup homomorphisms taking 0 to O to the category whose
objects are simplicial complexes and whose maps are simplicial maps. Since the complex
Ko(S) is a cone with vertex 0 over the nonzero elements tffie resulting complex has
trivial homology and cohomology [7, p. 44]. As in the graph construction, the interesting
object of study is the subcomplex whose vertices are the nonzero zero divishrien
K (S) denote this complex. Sindeé(S) is connected (Theorem 1}p(K,Z) =Z [7, 41].

Example 4. (a) Let S be the semigroup with 0 generatedfy, y; |1<i <2, 1< <
m + 1} wherem > 1 andx;x; = Xmin, j), Yi¥j = YminG,j) andx;y; =0 forall i, j.
The complexK (S) associated t@ is the nest of quadrilaterals

N )

X Ym +1

Itis easy to see thatif > 1 thenH1(K (S),Z) =Z™ andH,, (K (S),Z) = {0} forn > 1.
(b) The complexM drawn below gives a triangulation of the Mobius strip. Note that
Hi(M)=Z andH,(M)=0forn > 1.
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The semilattice below determines the compléx

0

Example 5. Let S be the semigroup with O generated py, y;, zx | 1 <i, j, k <2} and
relationsx;x ; = XminG, j)» Yi¥j = YminG, j)» ZiZj = ZminGi, j) @andx;y; = yjzx = xizx = 0 for
alli, j, k.

The complexK (S) associated td is the following surface.

X2

Itis easy to seél>(K(S),Z) =Z and forn > 0,n # 2, H,(K (S), Z) = {0}.

As aresult of Example 5, the following can be considered an improvement of Theorem 5
in the case wher§ is finite.

Theorem 6. Let S be a finite commutative nilpotent semigroup withLet K (S) be the
associated complex. Theéf, (K (S), Z) = {0} forall n > 0.

Proof. Sinces is finite, S contains a maximal idedl. Since every element ifi is nilpo-
tent, every elementifi/I is nilpotent, whereS /I is the semigroup obtained by identifying
each element i with 0 and leaving all other elements alone. TH&fT is a O-simple
nilpotent semigroup withS| — |7| + 1 elements. LeT = S/l and letb € T, b #0. Then
Thb=T or Th=0. The first case is impossible sin€eis finite andb is a zero divisor, so
Tb = 0. Therefore{0, b} is an ideal inT, soT = {0, b} andb? = 0. Thus|I| = |S| — 1.
LetJ ={x € S—{0}| bx =0} andletV = J U (b). Note thatV is a subsemigroup df.
LetKo=K(V), K1 =K{)andK =K(S).If Aec K(S)andifbe AthenA e K(V) =
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Koandifb ¢ AthenA € K(I) = K;. Thusk = KoU Kj. If Ae Kon K1thenAcCV
andA CcIsoAcCcVnNnI.ThusKonN K1 C K(V NI). Conversely, ifA € K(V NI)then
Ae KoNKj.

Letn be the index ob, i.e.,b” = 0 buts”~1£0,n > 1. ThenV is a cone with vertex
b"1, so by Theorem 8.2, p. 45 of [7H,(Ko) = 0 for p > 0. Part of the Mayer—Vietoris
sequence (p. 142 of [7]) gives: — H,(Ko) ® H,(K1) = H,(K) — Hp_1(KoN K1) —
H, 1(Ko) @ Hp-1(K1) - --.

Proceed by induction of§|. Clearly if| S| = 2 thenH,(K) = 0 for p > 0. By induction,
H,(K1) = H,(K(I)) =0for p > 0. Observe tha¥ N I is a nilpotent semigroup of order
strictly less than the order fsince the elemet¢ VN 1. By induction,H,(KoN K1) =0
for p >0, henceH,(K) =0for p > 1.

If p =1 then we have.-- — Hi(Ko) & H1(K1) - H1(K) - Ho(Ko N K1) —
Ho(Kp) & Ho(K1) — Ho(K) — 0 from Mayer-Vietoris. In the casep = 1 this se-
guence gives us 8 H1(K) > Z - Z & Z — Z — 0. By exactness, we have that
H1(K)=0. O

Corollary 6. Let R be a finite commutative local ring. L&t(S) be the associated complex.
ThenH, (K (S),Z)={0} forall n > 0.

Proof. The complement of the maximal ideal &f consists of units, and thus the set of
zero divisors ofR coincides with the maximal ideal a®, which is nilpotent. Thus the
corollary follows from Theorem 6. O

Question. Is there a simplicial decomposition of the Klein bottle or the real projective
plane which is the complex of a semigroup?
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