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Abstract
The test precision optical fibre sensors are increasingly important due to the widespread application of optical fibre sensing
technology in structural health monitoring. Strain transfer analysis, which can be used to determine the action mechanism and to
improve the precision of these sensors, is therefore an important issue. The earliest research started in the 1990s, and many excellent
achievements have been obtained based on traditional elastic theory and stress transfer analysis of composites. A variety of strain
transfer deductions appear to describe the differences in the mechanical models, assumptions and boundaries. A comprehensive
discussion and brief review of representative strain transfer analyses is conducted, and some problems that urgently need to be
addressed are stated. In addition, the developing trends in this subject are mentioned. The work in this article provides valuable
guidance for understanding the research advances in strain transfer analysis, which will ultimately serve for the strain transfer error
modification of optical fibre sensing models.
Copyright © 2014, Far Eastern Federal University, Kangnam University, Dalian University of Technology, Kokushikan University.
Production and Hosting by Elsevier B.V. All rights reserved.
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Introduction

Optical fibre is the most popular sensing element,
due to its excellent long-term stability, durability, good
geometrical shape-versatility, corrosion resistance,
electromagnetic interference resistance, low cost and
high precision. It has been widely applied in the aero-
nautics, energy, civil engineering, and nuclear environ-
mental fields [1,2]. Because bare optical fibre is
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vulnerable to harsh environments, encapsulation tech-
nologies were developed to provide protection. There-
fore, the test precision of packaged optical fibre sensors
has become an important issue that is studied by many
scientists. For strain sensors, high-precision detection is
defined as the detected strain infinitely close to the true
strain of the host material. However, a part of the strain
of the host material is absorbed by the middle layer
(usually composed of a protective layer and an adhesive
layer) in the transfer process before being recognised by
the fibre core.

The strain lost is called the strain transfer error and
is influenced by the materials and encapsulation tech-
nology. The strain transfer analysis is developed to
establish the quantitative strain relationship of host
niversity, Dalian University of Technology, Kokushikan University.
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Fig. 1. The three-layered mechanical model.
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material and optical fiber. The different mechanical
models, assumptions and boundaries used in the
deduction leads to the birth of diversiform strain
transfer theories. The immethical theory indicates
immature applications, which cannot aid in the design
of industrial sensors [3]. Therefore, a systematic strain
transfer theory that has an intimate relationship with
optical fibre sensing models is required.

The earliest research on strain transfer analysis
started in the 1990s and used only elastic theory to
analyse simplified mechanical models [4,5]. Improved
strain transfer theory [6] was formed later based on the
stress transfer mechanism of composites [7]. Since
then, this field has grown because of the demands of
practical engineering problems.

Based on these factors, advances in strain transfer
analysis using optical fibre sensing models will be
discussed in this article. A comprehensive discussion
and brief review using representative strain transfer
analysis will be conducted. Moreover, some problems
that urgently need to be addressed will also be dis-
cussed, and the developing trends in this field will be
mentioned.

Basic conception of strain transfer analysis

Bare optical fibres and fibre Bragg gratings are
brittle and vulnerable to harsh environments. There-
fore, encapsulation is required to protect them. As a
consequence, a middle layer between the sensing
element and the host material is created. Strain of host
material firstly makes the middle layer deformed, and
then arrives at fiber core. Some of the strain is dissi-
pated by the middle layer, the magnitude of this
dissipation is greatly influenced by the materials,
packaging and bonded length. Strain transfer analysis
that focuses on establishing the relationship of strains
of optical fibre and host material in multi-layered
models is introduced. The ratio of strain sensed by the
optical fibre and the strain of host material is called the
strain transfer coefficient.

Brief introduction of the existing theory

Strain transfer analysis, which reflects the action
mechanism and improves test precision, has received
considerable attention due to the extensive use of op-
tical fibre sensors in various engineering fields. Initial
research on discussing the relationship between the
measured strain of embedded optical fibre and the real
values started in 1991, which was limited by special
hypotheses and sizes [4]. The strain transfer
relationships for embedded optical fibre sensors were
determined by simplifying the model as an infinite
elastic body and considering it as equivalent plane
strain problem. However, these assumptions were too
ideal to use in practical cases [5]. In 1998, improved
strain transfer theory was achieved for the first time by
introducing the stress transfer analysis of composites
[6,8,9]. The following research on the strain transfer
analysis of different models was extracted from real
engineering problems and conducted in succession.
Several outstanding strain transfer deductions will be
discussed in detail in the sections below.

The parameters sm/εm/tm, sf/εf/tf, sp/εp/tp and sa/
εa/ta stand for the normal stress/strain/shear stresses of
the host material, fibre core, protective layer and ad-
hesive layer, respectively. The letters rm, rf, rp and ra
indicate the radius, and the variables um, uf, up and ua
indicate the displacement of the host material, fibre
core, protective layer and adhesive layer, respectively;
2L is the bonded length.

Theory deduced by Farhad Ansari [6]

The three-layered mechanical model used in the
deduction is shown in Fig. 1. The assumptions,
boundaries and primary processes of the strain transfer
theory based on typical elastic mechanics are as
follows.

Assumptions

1) The bonded length L is supposed to be far greater
than (r � rf

2), which produces (r2 � rf
2)/L z 0;

2) The displacement increments relationships be-
tween the host material, fibre core and protective
layer obeys the summation um ¼ uf þ up;

3) By ignoring the axial variation in the radial
displacement, the simplified Hooke's law for shear
strain is rewritten as gp(r, x) ¼ du/dr;
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4) The compatibility between the strains of the host
material and the optical fibre along the axis of sym-
metry is introduced, which gives sm/Em ¼ sf/Ef.

Boundary conditions

1) There is no axial force at the end of the optical
fibre, Tf (L) ¼ 0;

2) Because of the symmetry of the structures, the sum
of the odd functions for the shear stress should
equal zero;

3) The strain in the host material is considered
equivalent to the strain of the optical fibre
located at the symmetric centre; that is, εm

(0) ¼ εf (0).
Fig. 2. The two-layered mechanical model.
Primary processes
Static equilibrium of the protective layer gives rise

to

r2 � r2f
2L

�
�
s'
p � sp

�
þ r� tpðr;xÞ ¼ rf � tf

�
rf ;x

�
ð1Þ

By introducing assumption 1), the expression for
the shear stress is

tpðr;xÞ ¼ rf,tf
�
rf ; x

��
r ð2Þ

Combining the geometric and physical equations
and taking assumption 3) into account gives

tpðr;xÞ ¼ Gp$du=dr ð3Þ

Simultaneously, Equations (2) and (3) after inte-
gration with respect to r yield

up ¼ rf ln
�
rp
�
rf
�
,tf
�
rf ;x

��
Gp ð4Þ

By utilising the transformational relationships
among displacement, strain and stress, two equations
are obtained:

umðxÞ ¼
Zx

0

smðxÞ
Em

dx ð5Þ

uf ðxÞ¼ 1

pr2f Ef

�
Zx

0

2
4pr2f sf ðxÞ�2prf

Zx

0

tf
�
x;rf
�
dx

3
5dx
ð6Þ
Citing assumption 2) and substituting the related
expressions into it, a formula for shear strain tp is
obtained. Introducing assumption 4) and taking
second-order integration with respect to x gives

d2tf
�
rf ;x

�
dx2

� k2tf
�
rf ;x

�¼ 0 ð7Þ

Adopting the boundary conditions 1), 2) and 3), the
strain transfer relationship can be written as

εf ðxÞ ¼ εm,
�
1� sinhðkxÞ=sinhðkLÞ� ð8Þ

Theory derived by Michel LeBlanc [10]

The two-layered mechanical model, which was used
in the derivation, is shown in Fig. 2. It is thought that
the host material could act as the protective layer. The
general procedures are listed below.

Assumptions

1) The elastic modulus of the host material is deemed
to be much smaller than that of the fibre core,
which results in (r2 � rf

2) Em/r
2Ef << 1;

2) The increment in the radial displacement determined
by the Poisson effect is small enough that it can be
neglected, which brings about gm(r, x) ¼ du/dr.
Boundary conditions

1) When an optical fibre embedded in a host material
is long enough, it is regarded as completely
delivered, which gives, εf(x / ∞) ¼ εm;

2) The stress at the end of optical fibre is known and
the stress sf(x ¼ ±L) is 0.



Fig. 3. The four-layered mechanical model.
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Primary processes
Static equilibrium in the host material produces

tmðr;xÞ ¼ rf
r
,tf
�
rf ;x

��
�
r2 � r2f

�
2r

,
dsm

dx
ð9Þ

By applying assumption 1), the equation above
could be rewritten

tmðr;xÞ ¼ rf,tf
�
rf ;x

��
r ð10Þ

Using assumption 2) and Hooke's law gives

tmðr;xÞ ¼ Gm,du=dr ð11Þ

Establishing simultaneous Equations (10) and (11)
and performing integration with respect to r and x
generates

d2sf ðxÞ
dx2

� n2

r2f
sf ðxÞ ¼ �n2

r2f
,Efεm ð12Þ

Substituting boundary conditions 1) and 2) into the
general solution equation yields

εf ðxÞ ¼ εm,
	
1� exp

�� nðL� xÞ�rf �
 ð13Þ

Additionally, the Fourier transform is able to solve
the second-order differential equation [11], which
produces an expression for the strain transfer
coefficient:

HðkÞ ¼ εf ðkÞ
εmðrm;kÞ ¼

1�
2pkrf

�
n
�2 þ 1

ð14Þ

Theory originating from Zhi Zhou [12]

A four-layered mechanical model is set up, as
shown in Fig. 3. The middle layer is composed of a
protective layer and an adhesive layer. The main steps
in this strain transfer analysis are provided.

Assumptions

1) The elastic moduli of the protective layer and the
adhesive layer are considered to be much smaller
than that of the optical fibre, which creates Ep/
Ef << 1, Ea/Ef << 1;

2) The relationship between the displacement in-
crements of the four layers follows the summation
um ¼ ua þ up þ uf;

3) When the testing area is small enough, the normal
stress is constant: sm ¼ cons.
Boundary conditions

1) The strain on the host material at the symmetric
centre is taken as completely delivered to the fibre
core, which means εm (r, 0) ¼ εf (r, 0);

2) The force at the end of optical fibre is thought to be
0: Tf (x ¼ ±L) ¼ 0;

3) Strain on the optical fibre at the centre sf(x ¼ 0) is
considered to be equivalent to sf.

Primary processes
Based on static equilibrium of the protective and

adhesive layers, the following relationships exist:

2
�
tpðr;xÞ,r� tf

�
rf ;x

�
,rf
�

r2p � r2f
þ dspðxÞ

dx
¼ 0 ð15Þ

2
�
taðr;xÞ,r� tp

�
rp;x

�
,rp
�

r2a � r2p
þ
dsa

�
x
��

dx
¼ 0 ð16Þ

By introducing assumptions 1), the above equations
can be abbreviated as

tpðr;xÞ ¼ tf
�
rf ;x

�
,rf
�
r ð17Þ

taðr;xÞ ¼ tp
�
rp; x

�
,rp
�
r ð18Þ

Using the geometric and physical equations and
assumption 2), as well as performing second-order
differentiation with respect to x, gives

�
rf
Ga

ln
ra
rp
þ rf
Gp

ln
rp
rf

�
v2tf

�
rf ;x

�
vx2

þ 1

Ef

dsf ðxÞ
dx

� 1

Em

dsmðxÞ
dx

¼ 0

ð19Þ

Using assumption 3), the above equation is simpli-
fied as
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v2tf
�
rf ;x

�
vx2

� l2,tf
�
rf ;x

�¼ 0 ð20Þ

By adopting the boundary conditions 1), 2) and 3),
the strain relationship is written as

εf ðxÞ ¼ εm,
�
1� sinhðlxÞ=sinhðlLÞ� ð21Þ

In addition, the case with linear viscoelasticity in
the host material and the optical fibre is also discussed
[13]. The main difference is that Hooke's law cannot be
employed in this condition, and Stieltjes convolution
integral is used to depict the relationship between the
strain and the stress.

Theory deduced by Hongnan Li [14]

A three-layered mechanical model is established, as
displayed in Fig. 4, and the general processes are the
following. The two cases with and without shear stress
tm (rm, x) are discussed separately.

Assumptions

1) The elastic modulus of the protective layer is
thought to be much smaller than that of the optical
fibre, namely (r2 � rf

2) Ep/r
2Ef << 1;

2) The radial displacement increment determined by
the Poisson effect is small enough to be neglected
compared with the axial displacement, which
brings about gp(r, x) ¼ du/dr.
Boundary conditions

1) The symmetry of the optical fibre results in εf

(L) ¼ εf (�L);
Fig. 4. The three-layered mechanical model.
2) The cross section of the optical fibre at the end is
free, and no force is applied; that is, εf (L) ¼ εf

(�L) ¼ 0.

Primary processes

Case 1: Shear stress tm (rm, x) does not exist.

Static equilibrium between the protective layer re-
sults in

tpðr;xÞ ¼ rf
r
,tf
�
rf ; x

��
�
r2p � r2f

�
2r

,
dspðxÞ
dx

ð22Þ

After introducing assumption 1), the formula above
is rewritten as

tpðr;xÞ ¼ tf
�
rf ;x

�
,rf
�
r ð23Þ

Employing assumption 2) and combining the geo-
metric and physical equations gives

tpðx; rÞ ¼ Gp,du=dr ð24Þ

After forming simultaneous Equations (23) and
(24), performing integration with respect to r and
then second-order differentiation with respect to x
produces

dε2f
dx2

� k2,εf ¼�k2,εm ð25Þ

Taking the boundary conditions 1) and 2) into
account, the relationship between the strains is
solved:

εf ðxÞ ¼ εm,
�
1� coshðkxÞ=coshðkLÞ� ð26Þ

Case 2: The influence of shear stress tm is calcu-
lated [15].

The additional assumptions that strain gradients are
expected is used, which produces, dεf/dx z dεp/dx
dεm/dx.

The shear stress derived from the static equilibrium
of the structure with the additional assumption is then
simplified as

tm
�
r;x
�
z

Ef r
2
f

2r

"
1� r2 � r2p

r2m � r2p

#
dεf
dx

ð28Þ

The other result is the same as case 1. The rela-
tionship between the strains in the host material and



Fig. 5. The four-layered mechanical model.
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the optical fibre follows Equation (26). The influence
of the calculated shear stress tm is imposed on
parameter k, which has a different expression than the
former case.

Theory deduced by Shiuhchuna Her [16]

A four-layered mechanical model was chosen, as
shown in Fig. 5. The general procedures of this
deduction are listed below.

Assumptions

1) Due to the low elastic modulus of the protective
and adhesive layers compared with the host ma-
terial and the optical fibre, pure shear deformation
of the protective and adhesive layers is
considered;

2) The radial displacement increment determined by
the Poisson effect is small enough to be neglected
compared with the axial displacement, resulting in
gp(r, x, q) ¼ vu/vr.
Boundary conditions

1) The symmetry of the structure produces εf (L) ¼ εf

(�L);
2) The normal stress of the optical fibre at the end is

deemed to be zero: sf (L) ¼ Efεf (L) ¼ 0.
Primary processes
By introducing assumption 1), the static equilibrium

of the protective layer gives

rp

Zp
0

tp
�
rp;q;x

�
dq,dx� rf

Z2p
0

tp
�
rf ;q;x

�
dq,dx¼ 0

ð29Þ

The shear stress of the protective layer inverse to the
radius is expressed as
Z2p
0

tp
�
rf ;q;x

�
dq¼

Zcos�1
�

b
rp

�

0

2
�
um � uf

��
1� sin q

�
rf
�
Ga þ rf ln

�
rp
�
rf
�
=G
tpðr;q;xÞ ¼ rp,tp
�
rp;q;x

��
r ð30Þ

Employing assumption 2), the geometric equation
for the protective layer is rewritten

gp ¼ vupðr;q;xÞ=vr ð31Þ

Combining the above two equations, conducting
integration with respect to r, and taking the interlayer
continuity into account results in

ua
�
rp;q;x

�¼ up
�
rp;q;x

�¼ rp
Gp

,tp
�
rp;q;x

�
ln
�
rp
�
rf
�

þ uf
�
rf ;q;x

�þC

ð33Þ

The shear stress of the adhesive layer is expressed
as

ta ¼
�
um � ua

�
rp;q;x

��
,Ga=

�
rp � rp,sin q

� ð34Þ

Substituting Equation (33) into Equation (34) and
taking the interlayer continuity into account gives

tp
�
rp;q;x

�¼
�
um � uf

�
rf ;q;x

��
rp,ð1� sin qÞ=Ga þ rp ln

�
rp
�
rf
��

Gp

ð35Þ

Replacing tp in Equation (29) with Equation (35)
and performing the interval transform yields
p

dq ð36Þ
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By considering the static equilibrium of the fibre
core, the expression becomes

Z2p
0

tp
�
rf ;q;x

�
dq¼�prf,

dsf

dx
ð37Þ

Substituting Formula (37) into Formula (36) leads
to

d2sf

dx2
� l2sf ¼� 2l2Efhrp

pr2f Ef þ 2hrpEh
,s0 ð38Þ

where l is1

l2 ¼
 

1

hrpEh
þ 2

pr2f Ef

!

�
Zcos�1
�

b
rp

�

0

1�
1� sin q

�
=Ga þ ln

�
rp
�
rf
��

Gp

dq:

After employing the boundary conditions 1) and 2),
the strain transfer relation is expressed as

εf ¼ ε
0
m

pr2f Ef

��
2hrpEh

�þ 1
,



1� coshðlxÞ

coshðlLÞ
�

ð39Þ

where εm
0 stands for the far field strain applied to the

host material.

Theory derived by Xin Feng [17]

A four-layered mechanical model simulating sur-
face bonded optical fibre sensors was built, as shown
in Fig. 6. The influence of one fixed-width crack
located in the centre of the host material on the strain
Fig. 6. The four-layered mechanical model.
transfer coefficient is considered in this deduction.
The general steps are shown. The variable tcr in-
dicates the critical shear stress when plastic defor-
mation starts.

Assumptions

1) The variation in the radial displacement along the
axis is ignored, and Hooke's law for shear strain is
simplified as gp(r, x) ¼ du/dr;

2) The bonded length L is thought to be far greater
than (r � rf

2), that is, (r � rf
2)/L z 0, which pro-

duces tp(x, r) ¼ rftf(x, rf)/r;
3) The displacement increments of the protective and

adhesive layers are considered equivalent in value,
that is, up ¼ ua;

4) The displacement increment of the host material is
thought to behave as um(x) ¼ εmx þ d;

5) The relationships among the displacement in-
crements in the host material, fibre core, protective
and adhesive layer obey summation, that is,
um ¼ uf þ up þ ua;

6) The protective layer is assumed to be an ideal
elasticeplastic material, and the constitutive
equation for shear stress is expressed as tp ¼ Gpgp
(gp � tcr/Gp); tp ¼ tcr (gp � tcr/Gp).
Boundary conditions

1) Due to the symmetry of the structure, the
displacement increment of the optical fibre at the
centre is considered to be zero, that is, uf
(x ¼ 0) ¼ 0;

2) The strain at the end of the optical fibre is thought
to be equal to the strain of the host material, that is,
εf(x ¼ L) ¼ εm.
Primary processes
According to assumption 1) and 2) and the consti-

tutive relationship, there is

up ¼
Zxþup

x

dx¼
Zrp
rf

gpdr ¼
rf
Gp

Zrp
rf

tf
�
x; rf

�
r

dr ð40Þ

Considering the static equilibrium of the fibre core,
the expression for shear stress is

tf
�
x; rf

�¼�rfEf
dεf
dx

ð41Þ
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By employing the simultaneous Equations (40) and
(41) and then employing assumption 3), the displace-
ment increments in the protective and adhesive layers
are

up ¼ ua ¼�Ef r
2
f

Gp
ln
rp
rf

dεf
dx

¼�aEf rfu
00
f

�
x
� ð42Þ

Assumption 4) and equation (42) list the values of
related displacement increments, and introducing
assumption 5) produces

u
00
f

�
x
�� b2uf ¼�b2

�
εmxþ d

� ð43Þ

By introducing the boundary conditions 1) and 2),
the relationship between the strains in the host material
and the optical fibre are

εf ¼ bC2 expðbðLþ xÞÞ � bC1 expðbðL� xÞÞ þ εm

ð44Þ

Constants C1 and C2 are

C1 ¼� d expð2bLÞ
expðbLÞ þ expð3bLÞ;

C2 ¼� d

expðbLÞ þ expð3bLÞ

ð45Þ

Theory proposed in this article

A three-layered mechanical model was established, as
shown in Fig. 7. The state of the contact interfaces of this
model are illustrated using Goodman's hypothesis. The
strain transfer theory is especially appreciated for the
strain transfer error modification of optical fibre sensors
embedded in some structures, such as asphalt pavement
[18]. The interlayer adhesion coefficients of the host
material and the protective layer are denoted as km and kp.

Assumptions

1) As the radial displacement influenced by Poisson
effects are very small compared with the axial
Fig. 7. The three-layered
displacements, the radial displacement gradients
vw/vx could be neglected, which produces,
tp ¼ Gpvu/vr, tm ¼ Gmvu/vr;

2) Goodman's hypothesis is introduced to describe the
interlayer contact state of the three-layered model,
which results in tm ¼ km(a � 1)um, tp ¼ kp(um �
up). Letter a means the displacement correlation
coefficient.

Boundary conditions

1) Due to the asymmetry of the three-layered struc-
ture, εf(x) ¼ εf (�x);

2) No constraints or forces employed at the two ends
of optical fibre results in sf (x ¼ ±L) ¼ 0.
Primary processes
The static equilibrium of host material, protective

layer and fibre core produces three equations, and the
recombination gives,

tpðr;xÞ ¼ �r2 � r2f
2r

$
dspðxÞ
dx

� r2f
2r
$
dsf ðxÞ
dx

ð46Þ

tmðr;xÞ ¼ �r2 � r2p
2r

$
dsmðxÞ
dx

� r2p � r2f
2r

$
dspðxÞ
dx

� r2f
2r
$
dsf ðxÞ
dx

ð47Þ

Introducing assumption 1) and performing integra-
tion of the two equations above respect to r gives

um�uf ¼� 1

Gm

�
r2m�r2p

4
�r2p

2
ln
rm
rp

�
$
dsmðxÞ
dx

�r2f
2

�
1

Gm

ln
rm
rp
þ 1

Gp

ln
rp
rf

�
$
dsf ðxÞ
dx

�


1

Gm

ln
rm
rp

r2p�r2f
2

þ 1

Gp

�
r2p�r2f

4
�r2f

2
ln
rp
rf

��
$
dspðxÞ
dx

ð48Þ
mechanical model.
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By utilising assumption 2) and performing conver-
sions to replace dsm/dx and dsp/dx, a differential
equation about εf is obtained,

d2εf ðxÞ
dx2

� l22εf ¼�l22ε
'
m ð49Þ

Here, εm
0 stands for l1εm, and l2

2 is constant.
Adopting the boundary conditions 1) and 2) to solve

the general solution function yields

εf ðx Þ ¼ εml1



1� coshðl2xÞ

coshðl2LÞ
�

ð50Þ

The expressions for constants l1 and l2
2 are listed

below:
l1 ¼ 1�
rmkmða�1Þ

�
ln rm

rp
� Em

2rpkpð1þnmÞ

�
r2m�r2p

4
� r2m

2
ln rm

rp
þð1þnmÞðr2m�r2pÞ

Emrpkp

$

2
4
�
1þ np

��
r2m� r2p

�
Ep

0
@1

4
� r2f

2
�
r2p � r2f

� lnrp
rf

1
Aþ1þ nm

Em

�
r2m ln

rm
rp
� r2m� r2p

2

�35

�2rmkmða�1Þ$

2
666664
1þ nm
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Table 1

Various strain transfer functions.

Scholars Strain transfer functions

Farhad Ansari
εfðxÞ ¼ εm

h
1� sinhðkxÞ

sinhðkLÞ

i
Michel LeBlanc

εf ðx Þ ¼ εm

�
1� exp

h
� nðL�xÞ

rf

i�
Zhi Zhou

εf ðx Þ ¼ εm

h
1� sinhðlxÞ

sinhðlLÞ

i
Hongnan Li

εf ðx Þ ¼ εm

h
1� coshðkxÞ

coshðkLÞ

i
Shiuh-Chuan Her εf ¼ ε

0
m
1�coshðlxÞ=coshðlLÞ
pr2

f
Ef=ð2hrpEmÞþ1

Xin Feng εf ¼ bC2 expðbðLþ xÞÞ
� bC1 expðbðL� xÞÞ þ εm

Theory proposed

in this article
εf ðx Þ ¼ εml1

h
1� coshðl2xÞ

coshðl2LÞ

i

Corresponding strain transfer functions

Seven typical strain transfer deductions have been
discussed separately. The differences between the
seven theories are mainly caused by the discrepancies
in the assumptions and boundary conditions used in
the derivations. The assumptions and boundary con-
ditions employed are reasonable under specific con-
ditions, which means that the application of the
corresponding strain transfer error modification
function is restricted. The strain relationships be-
tween the host materials and the optical fibres derived
from these theories are shown in Table 1. The con-
stants included in the strain transfer functions are also
provided.
Comprehensive analysis

To determine the strain transfer relationships, as-
sumptions are necessary to simplify the equations, and
Related constants

k2 ¼ 2Gp

r2
f
Ef lnðrp=rf Þ

n2 ¼ 2Gm

Ef lnðrm=rf Þ

l2 ¼ 2
r2
f
Ef ½lnðra=rpÞ=Gaþlnðrp=rf Þ=Gp �

k2 ¼ 2Gp

r2
f
Ef lnðrm=rf Þ

l2 ¼ ð 1
hrpEm

þ 2
pr2

f
Ef
Þ R cos�1

�
b
rp

�
0

1
1�sin q

Ga
þ 1
Gp

ln
rp
rf

dq

Expressions of constants C1 and C2 are shown

in Equation (45)

Constants l1 and l22 respectively follow

Equations (51) and (52)
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boundary conditions are required to solve the equa-
tions. The reasonability and engineering correlation of
the proposed assumptions and boundary conditions are
the critical factors that influence the applicability of a
strain transfer theory. A brief overview of the existing
theories will be given considering the two aspects.

Four assumptions were made in the strain transfer
theory deduced by Farhad Ansari et al., 1998. When
half of the bonded length L is 40 mm and the radius of
protective layer is less than 0.6 mm, the value (r2 � rf

2)/
L is close to zero, which means that assumption 1) is
convincing. However, when the radius of the protective
layer is greater than 1 mm, the value (r2 � rf

2)/L could
not be zero. Protective layer thicknesses greater than
1 mm are very common in engineering. Considering
the compatibility of the axial deformation, assumption
4), i.e., sm/Em ¼ sf/Ef, is made. Differentiating with
respect to x gives εm(x) ¼ εf(x), which is inconsistent
with the result εm(x ¼ 0) ¼ εf(x ¼ 0) and εm

(x s 0) ¼ εf(x), which indicates that assumption 4) is
weak. Although the theory is not perfect, it still pro-
vides meaningful guidance for the strain transfer error
modification of optical fibre sensors.

For the theory derived by Michel LeBlanc 1999, the
elastic modulus of the host material, Em, must be much
smaller than that of the fibre core, Ef, i.e., assumption
1). If the host material is composed of concrete or
steel, the elastic modulus is 30 GPa or 210 GPa, which
is the same order of magnitude as the elastic modulus
of the fibre core (Ef ¼ 72 GPa), which should not be
neglected. This strain transfer function is suitable for
the cases when optical fibres are embedded in flexible
structures.

The strain transfer analysis of multi-layered struc-
tures was first mentioned in the theory of Zhi Zhou
2003. The same assumption was made that the elastic
moduli of the protective and adhesive layers are much
smaller than that of the optical fibre, which requires a
flexible middle layer. This strain transfer deduction
could be recognised as a further continuation of that
deduced by Farhad Ansari.

In the theory of Hongnan Li, the assumption that the
elastic modulus of the protective layer Ep is much
smaller than that of the fibre core is made, which is
similar to the analysis of Michel LeBlanc. This strain
transfer error modification function is appropriate in
the case when the optical fibre is packaged in a flexible
material.

In the analysis of Shiuh-Chuan Her, the protective
and adhesive layers only bear pure shear deformation,
which means that cross sections of the structure should
be always parallel. In practical applications, the normal
stress along the axis usually cannot be ignored. How-
ever, the deduction is still valuable and provides a
special approach to achieve the strain transfer
relationship.

In the strain transfer analysis of Xin Feng, the in-
fluence of the host material with a fixed-width crack
was first calculated. The assumptions used by Farhad
Ansari were also employed, but additional assumptions
were introduced. Assumption 3) requires the
displacement increment of the protective layer to be
equal to that of the adhesive layer, which is inconsis-
tent with reality because the contact forces imposed on
the two layers are different. Assumption 4) that
um(x) ¼ εmx þ d ignores the influence of the crack on
the axial normal strain could be improved. However,
this research still has importance in explaining strain
transfer relationships.

Given the analysis mentioned above, an improved
strain transfer theory is put forward in this article with
fewer assumptions adopted in the deduction. Moreover,
most widely used Goodman's hypothesis was intro-
duced for the first time to describe the interfacial shear
stress instead of shear-lag model which assumes the
middle layers bearing pure shear force. The proposed
strain transfer error modification function has rela-
tively universal application and is especially suitable
for the case that interface interactions between the
multi-layered structures obey Goodman's hypothesis.

Prospects

Based on the above analysis, it is well known that
the consideration of various mechanical analyses,
improved assumptions and multiple-phase constitutive
relationships have greatly advanced the development
of various strain transfer analysis. It has been expected
that systematic strain transfer theory is established so
as to serve for the design and error modificaition of
wide-spread applied optical fiber sensors. Moreover,
strain transfer analysis on cases where the host material
suffered damage, such as holes, cracks, debonding,
fatigue and creep deformation, should also be
addressed because most damaged structures are
required to serve for long times.

Conclusions

Strain transfer analysis is an efficient approach to
eliminate strain transfer error and aid in the design of
sensors; it has received increasing attention in recent
years. A lot of research on surface bonded or
embedded optical fibre sensors has been performed,
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resulting in some meaningful achievements. Six
excellent deductions that established strain transfer
relationships between host materials and optical fibres
were presented and discussed in detail. In addition, an
improved strain transfer theory that introduces Good-
man's hypothesis to describe the interlayer mechanical
state was proposed. A brief overview of the seven
strain transfer deductions was given, and the most
suitable conditions for each theory were also
mentioned. The developing trends in strain transfer
analysis were presented, based on a comprehensive
analysis of existing strain transfer theories. The
research in this article provides valuable and mean-
ingful guidance for quickly perceiving the advances in
strain transfer analysis.
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