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Abstract

Let ϕ be a polynomial overK (a field of characteristic 0) such that the Hessian ofϕ is anonzero constant. Let
ϕ̄ be the formal Legendre transform ofϕ. Thenϕ̄ is well defined as a formal power series overK . The Hessian
conjecture introduced here claims that̄ϕ is actually a polynomial. This conjecture is shown to be true whenK = R

and the Hessian matrix ofϕ is either positive or negative definite somewhere. It is also shown to be equivalent
to the famous Jacobian conjecture. Finally, a tree formula forϕ̄ is derived; as a consequence, the tree inversion
formula of Gurja and Abyankar is obtained.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Jacobian conjecture is one of the famous open fundamental problems in mathematics [1], and is
very often stated as

Conjecture 1.1 (Jacobian Conjecture). Let f : C
n → C

n be a polynomial map whose Jacobian is a
nonzero constant; then f is invertible and the inverse is also a polynomial.

(In fact the fieldC can be replaced by any field of characteristic zero. But the analogue for a field with
characteristicp > 0 is false. See Ref. [2].)

Originally called Keller’s problem [3], the Jacobian conjecture has a few published faulty
proofs [4–7]. Over a hundred papers have been published, but the conjecture is still open even in
dimension two. Like many other famous conjectures, this conjecture is deceptively simple!
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Ref. [2] gives an excellent review on the Jacobian conjecture up to 1982. For a more recent review
and references on the Jacobian conjecture, the reader may consult Ref. [8].

It is probably well known to people working on the Jacobian conjecture that there are many other
conjectures which are equivalent to the Jacobian conjecture. Here we propose another equivalent
conjecture—the Hessian conjecture. This conjecture grows out of the author’s failed attempt to settle
the Jacobian conjecture and is interesting in its own right; and it looks simpler: instead of dealing with
many polynomials, one just needs to deal with a single polynomial.

1.1. Hessian conjecture

Let K be a field of characteristic zero,ϕ a polynomial in n variables with coefficients inK , i.e.,
ϕ ∈ K [x1, . . . , xn]. The Hessian matrix Hϕ(x) is a symmetric matrix whose(i, j )-entry is∂i ∂ j ϕ(x). By
definition, the determinant ofHϕ(x) is called the Hessian ofϕ at x, denoted byhϕ(x).

Suppose thathϕ �= 0 at x = 0; then y = ∇ϕ(x) := (∂1ϕ(x), . . . , ∂nϕ(x)) has a formal inverse
x = g(y)—a formal power series iny. Let ϕ̄(y) be the(formal) Legendre transform ofϕ, i.e., ϕ̄(y) is a
formal power series iny defined by the equation

ϕ̄(y) = [xy − ϕ(x)]|x=g(y). (1)

It is clear thatx = ∇ϕ̄(y), soϕ̄ is apotential function forg. Obviouslyϕ̄ is a formal power series iny;
however, we may consider the

Conjecture 1.2 (Hessian Conjecture). Let ϕ be a polynomial over K whose Hessian is a nonzero
constant,ϕ̄ the formal Legendre transform ofϕ. Thenϕ̄ is alsoa polynomial.

Theorem 1.3. The Hessian conjecture is true when K= R and the Hessian matrix is definite (either
positive or negative) somewhere. Therefore, if

ϕ(x) = 1

2
x2 + higher order terms

is a real polynomial with hϕ = 1 everywhere, then̄ϕ is alsoa polynomial.

Proof. Let ϕ be a real polynomial function onRn whose Hessian is constant. Without the loss of
generality we may assumehϕ = 1 everywhere.

Claim 1. Hϕ is non-degenerate everywhere and has constant signature. Therefore, if Hϕ is positive
(negative) definite somewhere, it is positive (negative) definite everywhere.

Proof of the Claim 1. Fix x ∈ R
n. Define

O(t) := Hϕ(tx).

ThenO is a smooth path in the space of non-degenerate (because of the Hessian condition onϕ), real
symmetricn × n matrices; therefore we have a spectral flow fromt = 0 to t = 1. The Hessiancondition
onϕ implies that the signature ofO(1) = Hϕ(x) must be equal to that ofO(0); otherwise, there would
be a zero eigenvalue somewhere along the path, say att0 (0 < t0 < 1), but then we would have the
following contradiction:

0 = detO(t0) = detHϕ(t0x).

Claim 2. As a map fromR
n to R

n, ∇ϕ is one to one.
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Proof of the Claim 2. Suppose that ∇ϕ(x1) = ∇ϕ(x2) for somepointsx1 andx2 in R
n. Set f (t) =

(x2 − x1) · ∇ϕ(x1 + t (x2 − x1)) for 0 ≤ t ≤ 1. Notethat f (0) = f (1), so there is at0 ∈ (0, 1) such that
f ′(t0) = 0, i.e.,

(x2 − x1)
T Hϕ(x1 + t0(x2 − x1))(x2 − x1) = 0.

By the assumption onϕ andClaim 1above, we know thatHϕ(x1+t0(x2−x1)) is definite, sox2−x1 = 0,
i.e.,x2 = x1. Since∇ϕ is one to one, by Theorem 2.1 of Ref. [2], we know∇ϕ has a polynomial inverse,
so it is clear from Eq. (1) thatϕ̄ is also a polynomial. �

Proposition 1.4. The Hessian conjecture is equivalent to the Jacobian conjecture.

Proof. If the Jacobian conjecture is true, then Eq. (1) implies that the Hessian conjecture is also true.
On the other hand, assume the Hessian conjecture is true; then the Jacobian conjecture is also true, and
this can be proved by the following trick: Let f : K n → K n be a polynomial map whose Jacobian is 1
everywhere. Letϕ(v, x) = v · f (x); thenϕ is a polynomial function onK 2n whose Hessian is(−1)n

everywhere. Then̄ϕ is also a polynomial function by the assumption. Nowϕ̄(w, y) = w · f −1(y) where
f −1(y) is the formal inverse off , so f −1(y) is also a polynomial. �

1.2. A reduction theorem

In view of the reduction theorem in [2] and the proof of Proposition 1.4, the following reduction
theoremcan be easily deduced.

Theorem 1.5. The Hessian conjecture is true⇔ for each integer n≥ 1 and for each polynomial map
ϕ : C

2n → C of the form

ϕ(x) = 1

2
x2 + a homogeneous quartic polynomial in x,

if the Hessian ofϕ is constant, then̄ϕ is a polynomial.

In Section 2 we shall introduce and prove a tree formula forϕ̄; as a consequence, we obtain the tree
formula of Gurja and Abyankar [15,2].

2. A tree formula

Let x = (x1, . . . , xn) and

ϕ(x) =
∑

2N≥m≥2

1

m!Tm(x), (2)

whereN > 1 is an integer andTm(x) is a degreem homogeneous polynomial inx. Note that Tm(x)

should be identified withTm = [(Tm)i1...im]—a symmetrictensor of m indices:

Tm(x) = (Tm)i1...in xi1 · · · xim.

(Here the repeated indices are summed over.)
Assume thatT2 is non-degenerate. Then we can introduce the symmetric tensorT−1

2 : by definition,
[(T−1

2 )i j ] is the inverse matrix of[(T2)i j ]. Under the assumption, we can formally solve equation
y = (∂1ϕ(x), . . . , ∂nϕ(x)) for x, so the Legendre transformation (1) is well defined. We sayϕ is non-
degenerate if its degree two homogeneous component is non-degenerate.
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Theorem 2.1 (Tree Formula). Suppose thatϕ is non-degenerate; then the formal Legendre transform of
ϕ has the following tree expansion formula:

ϕ̄(y) =
∑

Γ∈{connected tree diagrams}
w(Γ ) (3)

wherew(Γ ) is the contributionfrom treediagramΓ and is given according to the following rules:

(1) to eachedge ofΓ , assign T−1
2 ,

(2) to each externalvertex, assign y= (y1, . . . , yn),
(3) to each internal vertex of degree n, assign−Tn,
(4) multiply all assignments in(1) through(3) and make all necessary contractions and then divide by

|Aut Γ | to getw(Γ ).

Here Aut(Γ ) is the automorphism group ofΓ (seeAppendix Afor its precisemeaning) and|Aut(Γ )|
is the order of Aut(Γ ).

To help readers understand the rules in the theorem, let us present two examples here:

Example 1.

Example 2.

where the repeated indices are summed over.
Write ϕ̄(y) = ∑

m≥2
1

m! Sm(y) and the right-hand side of (3) as
∑

m≥2
1
m! S̃m(y), whereboth Sm(y)

andS̃m(y) are degreem homogeneous polynomials iny. It is not hard to see that each coefficientC of
Sm(y)−S̃m(y) is a rational function (over the field of rational numbers) in the coefficients ofT2, . . . , T2N .
To prove (3), we need to show that eachC is zero as a rational function in the coefficients ofT2, . . . , T2N ;
equivalently, we need to show that the zero set of eachC contains an open subset. Therefore, without
loss of generality, we may assume thatK = R; moreover, we just need to show that eachC has value
zero for allϕ in anonempty open set ofPN—the space all real polynomials without linear and constant
terms andhaving degree at most 2N, i.e., we just need to proveTheorem 2.1for all ϕ in an nonempty
open set ofPN . (PN is a vector space and we can put a metric on it: by definition, iff , g are inPN , then
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the distance between f andg is defined to be the maximum of the absolute value of the coefficients of
f − g.)

Lemma 2.2. There is a nonempty open set UN in PN such that for allϕ ∈ UN we have(1) ϕ(x) >
1
2|x|2N if |x| is sufficiently large;(2) 0 is theonly critical point ofϕ; (3) the quadratic component T2 of
ϕ is positive definite.

Proof. Let ϕ0(x) = (|x|2 + 1)N − 1. Thenϕ0 satisfies conditions (1)–(3) in the lemma. It is not hard to
see that ifϕ is sufficiently close toϕ0, thenϕ satisfies conditions (1)–(3) in the lemma, too. So we can
takeUN to be a sufficiently small ball centered atϕ0. �

Corollary 2.3. Theorem2.1 is valid for all ϕ ∈ UN.

Proof. Assumeϕ ∈ UN . Without loss of generality, we may assumeT2(x) = |x|2—that amounts to a
rotation of the coordinate system.

The proof is obtained by evaluating

lim
�→0

� log

∫
dx exp1

�
(yx − ϕ(x))∫

dx exp
(
− 1

2�T2(x)
) (4)

in two different ways. (The integrations are done over the whole spaceR
n.)

On the one hand, assume|y| is sufficiently small; using the assumption onϕ, by steepest descent [16],
this limit becomes

yz− ϕ(z), (5)

wherez is the unique solution of equation

y − ∇ϕ(x) = 0 (6)

for x, i.e., z = (∇ϕ)−1(y). Therefore, this limit isϕ′(y)—the Legendre transform ofϕ as a function (not
as a formal power series) iny and the coefficients ofT3, . . . , T2N .

On the other hand, using the assumption onϕ, wecan calculate

� log

∫
dx exp1

�
(yx − ϕ(x))∫

dx exp
(
− 1

2�T2(x)
) (7)

in terms of connected Feynman diagrams to get its asymptotic series expansion1 in �, y and the
coefficients of T3, . . . , T2N ; see Appendix A for more details. Note that the contribution from a
connected Feynman diagram withm loops is proportional to�m, so only the contributions from the
tree diagrams survive in the limit (4). Since the contributions from the tree diagrams are exactly given
by the rules specified inTheorem 2.1, we have theright-hand side of (3) which can be seen to be an
asymptotic series expansion forϕ′ in y and the coefficients ofT3, . . . , T2N .

By the definition ofϕ̄ andϕ′, one can see that̄ϕ is a convergent power series expansion ofϕ′; hence it
is alsoan asymptotical series expansion forϕ′ in y and the coefficients ofT3, . . . , T2N . By theuniqueness
of asymptotical series expansion, we have a proof ofTheorem 2.1for ϕ ∈ UN . �

1 For a definition of the asymptotic series expansion, see Ref. [16].
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Proof of the Theorem 2.1. The proof in the general case follows from the above corollary and the
discussion preceding toLemma 2.2. �

Remark 2.4. Strictly speaking, we should obtain some estimates to fully justify some of the arguments
in the above proof of Lemma 2.2and its corollary. These estimates are not hard to obtain; however, they
would make the work lengthy and also make the main ideas behind the proof a little bit obscure.

Remark 2.5. Using the trick involved in the proof ofProposition 1.4, it is not hard to see that the tree
formula given in this work and the tree formula of Gurja and Abyankar actually imply each other. While
the original proof of the tree formula of Gurja and Abyankar is purely algebraic, the proof given here for
our tree formula is both algebraic and analytic.
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Appendix A. Feynman diagrams for Lebesgue integrals

A very good reference for the discussion below is [17]. Let

Y(λ) =
∫

dx exp

(
−a

2
x2 − λ

4!x
4
)

≡
〈
exp

(
− λ

4!x
4
)〉

(8)

wherea > 0 andλ > 0 areparameters and the integration is done overR and the integration measure is
normalized so that∫

dx exp
(
−a

2
x2

)
= 1. (9)

We are interested in the perturbative computation ofY(λ). Formally, we have

Y(λ) ∼
∑

n

1

n!(4!)n (−λ)n

〈
x4 · · · x4︸ ︷︷ ︸

n

〉
, (10)

where symbol∼ means the asymptotic series expansion ofY(λ) asλ → 0. We would like to compute

1

n!(4!)n
(−λ)n

〈
x4 · · · x4︸ ︷︷ ︸

n

〉
,
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and for that purpose we observe that

(1)
〈
eJ x

〉 = e
J2
2a ,

(2)
〈
x2m+1

〉 = 0 for any integerm ≥ 0,

(3) 〈xx〉 = ∂2

∂ J2

〈
eJ x

〉∣∣
J=0 = 1

a ,

(4)

〈
x · · · x︸ ︷︷ ︸

2m

〉
= ∂2m

∂ J2m 〈eJ x〉|J=0 which is equal to the number of complete parings ofx’s in x · · · x︸ ︷︷ ︸
2m

times

( 1
a)m.

Viewing x4 · · · x4︸ ︷︷ ︸
n

asXn—a collection ofn identical copies ofx-cross (herex-cross means a cross

with each of its four legs attached to anx). The topological symmetry group ofXn is Gn = (S4)
n
�Sn—

the semi-product of(S4)
n with Sn. Let Pn be the set of all possible complete parings ofx’s in Xn. Then

Gn acts on Pn. Note that an orbit of this action can be identified with a graph obtained by pairing the
x’s in Xn according to any complete pairing in the orbit. Now, ifΓ is suchan orbit or graph (called a
Feynman diagram), then

|Γ | = |Gn|
|Aut(Γ )| (11)

where|S| denotes the number of elements in set S and Aut(Γ ) means the subgroup of Gn that fixes an
element inΓ , called the symmetry group of the Feynman diagramΓ . Therefore,

1

n!(4!)n
(−λ)n

〈
x4 · · · x4︸ ︷︷ ︸

n

〉
=

∑
Γ∈

{
4-valent closed graphs

with n-vertices

}
1

|Aut(Γ )| (−λ)n
(

1

a

)2n

,

where 1
|Aut(Γ )|(−λ)n( 1

a)2n is the contribution from Feynman diagramΓ according to the following
Feynman rules:

(1) To each vertex ofΓ we assign−λ.
(2) To each 1-simplex ofΓ we assign1

a (called the propagator).
(3) We multiply the contributions from all vertices and all 1-simplexes and then divide by the order of

the symmetry group ofΓ .

In summary, we have

Y(λ) ∼
∑

Γ∈{4-valent closed graphs}

1

|Aut(Γ )| (−λ)vΓ

(
1

a

)eΓ
,

wherevΓ andeΓ are the number of vertices and 1-simplexes ofΓ . Note that the contribution from the
empty graph is set to 1 by convention. And it is tautological that

logY(λ) ∼
∑

Γ∈
{

connected nonempty
4-valent closed graphs

}
1

|Aut(Γ )|(−λ)vΓ

(
1

a

)eΓ
. (12)

It is not hard to see how to generalize all the above discussion to the general case when other types of
versus(such as 3-valent, 5-valent, . . . , ones) may also appear.
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