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Abstract

Let ¢ be a polynomial oveK (a field of characteristic 0) such that the Hessiap @ anonzero constant. Let
@ be the formal Legendre transform @f Theng is well defined as a formal power series o¥er The Hessian
conjecture introdced here claims thatis actually a polynomial. This conjecture is shown to be true Wwkea R
and the Hessian matrix @f is either positive or negative definite somewhere. It is also shown to be equivalent
to the famous Jabian conjecture. Finally, a tree formula f@ris derived; as a consequence, the tree inversion
formula of Gurja and Abyankar is obtained.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Jacobian conjecture is one of the famous open fundamental problems in mathethatios s
very often stated as

Conjecture 1.1 (Jambian Conjecturg Let f : C" — C" be a polynomial map whose Jacobian is a
nonzero constant; then f is invertible and the inverse is also a polynomial.

(In fact the fieldC can be replaced by any field of characteristic zero. But the analogue for a field with
characteristiqp > 0 is false. 8e Ref. £].)

Originally called Keller's problem 3], the Jcobian conjecture has a few published faulty
proofs B—7). Over a hundred papers have been published, but the conjecture is still open even in
dimension two. Like many other famous conjectures, this conjecture is deceptively simple!
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Ref. [2] gives an excellent review on the Jacobian conjecture up to 1982. For a more recent review
and references on the Jacobian conjecture, the reader may consufijRef.

It is probably well known to people working on the Jacobian conjecture that there are many other
conjectures which are equivalent to the Jacobian conjecture. Here we propose another equivaler
conjecture—the Hessian conjecture. This conjecture grows out of the author’s failed attempt to settle
the Jacobian conjecture and is interesting in its own right; and it looks simpler: instead of dealing with
many polynomials, one just needs to deal with a single polynomial.

1.1. Hessian conjecture

Let K be a field of characteristic zerg, a polynomial inn variables with oefficients inK, i.e.,
¢ € K[Xq, ..., Xn]. The Hessian mérix H, (x) is a symmetric matrix whosg, j)-entry iso; dj¢(X). By
definition, the determinant dfl, (x) is called the Hessian af at x, denoted byh,, (x).

Suppose thah, # 0 atx = 0; theny = Vo(x) = (d1¢(X), ..., dne(X)) has a fomal inverse
X = g(y)—a formal power series ig. Let ¢(y) be the(formal) Legendre transform af, i.e., ¢(y) is a
formal power series iy defined by the equation

oY) = [Xy — ¢(X)]Ix=qg(y)- (1)

It is clear thatx = V@(y), so¢ is apotential function forg. Obviously ¢ is a formal pover series iry;
however, we may consider the

Conjecture 1.2 (Hessian Conjectude Let ¢ be a polynomial over K whose Hessian is a nonzero
constantgp the formal Legadre transform ofp. Theng is alsoa polynomial.

Theorem 1.3. The Hessian conjecture is true when R and the Hessian matrix is definite (either
postive or negative) somewhere. Therefore, if

1 .
p(X) = Exz + higher order terms
is a real polynomial with h = 1 everywhere, thei is alsoa polynomial.

Proof. Let ¢ be a real polynomial function o®" whose Hessian is constant. Without the loss of
generality we may assunig, = 1 everywhere.

Claim 1. H, is non-degenerate everywhere and has constant signature. Thereforg,id pbsitive
(negative) definite somewhere, it is positive (negative) definite everywhere.

Proof of the Claim 1. Fix x € R". Define
O(t) == H,(tx).

Then O is a gnooth path in the space of nhon-degenerate (because of the Hessian conditpead
symmetricn x n matrices; therefore we have a spectral flow friom 0 tot = 1. The Hessancondtion
ong implies that he signature oD(1) = H,(x) must be equal to that dd(0); otherwise, lhere would
be a zero eigenvalue somewhere along the path, sky@t < to < 1), but then we wuld have the
following contradiction:

0 = detO(tg) = detH,(tox).

Claim 2. As a map fronR" to R", V¢ is one to one.
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Proof of the Claim 2. Supposehat Vp(x1) = Ve(x2) for somepointsx; andxz in R". Set f (t) =
(X2 —X1) - V(X1 +t(Xo — X1)) for0 <t < 1. Notethat f (0) = f (1), sothereis & € (0, 1) such that
f'(tg) =0, i.e.,

(X2 — x1) " Hy (X1 + to(X2 — X1)) (X2 — X1) = 0.

By the assmption ong andClaim 1above, we know thatl, (X1 +to(X2—X1)) is definite, sk —x1 = 0,
i.e.,X2 = X1. SinceVy isone to one, by Theorem 2.1 of Re2][we know V¢ has a polynomial inverse,
so it is clear from Eq.X) thatg is also a polynomial. O

Proposition 1.4. The Hessian conjecture is equivalent to the Jacobian conjecture.

Proof. If the Ja®bian conjecture is true, then Ed) (mplies that he Hessian conjecture is also true.

On the other hand, assume the Hessian conjecture is true; then the Jacobian conjecture is also true, an
this can be pved by the folleving trick: Let f: K" — K" be a polynomial map whose Jacobian is 1
everywhere. Letp(v, X) = v - f(X); theng is a polynomial function onk 2" whose Hessian is—1)"
everywhere. Therp is also a polynomial function by the assumption. Ngw, y) = w - f ~1(y) where

f ~1(y) is the formal inverse of , so f ~1(y) is also a polynomial. O

1.2. A reduction theorem

In view of the reduction theorem ir2] and the poof of Proposition 1.4the following reduction
theoremcan be easily deduced.

Theorem 1.5. The Hessian conjecture is true for each nteger n> 1 and for each polynomial map
¢ : C? — C of the form
1
p(X) = §X2 + a homogeneous quartic polynomial in x
if the Hessian o is constant, therp is a polynomial.

In Sedion 2 we shall introduce and prove a tree formula §gras a onsequence, we obtain the tree
formula of Guja and Abyankar [L5,2].

2. A treeformula

Letx = (x1,...,x" and

1
)= Y =Tm(), )

2N>m>2 "~

whereN > 1 is an integer and,(x) is a degreen homogeneous polynomial ix. Note hat T, (X)
should be identified witlm = [(Tm)i,...i, —a Symmetridensor of mindices:

T () = (Tmiy g X2+ X,
(Here the rpeated indices are summed over.)

Assume thafl, is non-degenerate. Then we can introduce the symmetric té’g‘sjorby defnition,

[(Tz‘l)‘j] is the inverse matrix of(T»)ij]. Under the assumption, we can formally solve equation
y = (019(X), ..., dne(X)) for X, so the Lgendre transformatiorl) is well defined. We say is non-
degenerate if its degree two homogeneous component is non-degenerate.
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Theorem 2.1 (Tree Formuld. Suppose thap is non-degenerate; then the formal Legendre transform of
¢ has the following tree expansion formula:

oY) = > w(l) 3)

I'e{connected tree diagrarhs

wherew(I") is the contributiorfrom treediagram /" and is given according to the following rules:

(1) to eachedge off’, assign T %,

(2) to each externabertex, assign y¥= (y1, ..., Yn),

(3) to each internal vertex of degree n, assig,,

(4) multiply all assignments iil) through(3) and make all necessary contractions and then divide by
|Aut I'| to getw(I).

Here Aut([") is the aubmorphism group of " (seeAppendix Afor its precisameaning) andAut(I™)|
is the order of Autl").
To help readers understand the rules in the theorem, let us present two examples here:

Example 1.

=

7! yiy; (T, i,

Example 2.

= Vi Vi Vs (<T3)j s (T3 N Ty D22 (T B2,

where the repeated indices are summed over.

Write (y) = Y 2 2 Sn(y) and the right-hand side 08 as " .-, o Sn(y), whereboth Sy(y)
andSn(y) are degreen homogeneous polynomials in It is not hard to see that each coeffici€hbf
Sn(Y)—Sn(y) is a rational function (ovehe field of rational numbers) in the coefficientsTef . . . , Ton.

To prove @), we need to show that ea€his zero as a rationéunction in the coefficients df, . . ., Ton;
equivalently, we need to show that the zero set of dadontains an open subset. Therefore, without
loss of generality, we may assume tlkat= R; moreover, we just need to show that e&lnhas value
zero for allp in anonempty open set 3?y—the space all real polynomials without linear and constant
terms anchaving degree at most\?, i.e., we just reed to provelrheorem 2.Xor all ¢ in an nonempty
open set ofPy. (Pn is a \ector space and we can put a metric on it: by definitior, ify are inPy, then
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the distane betveenf andg is defined to be the maxiam of the absolute value of the coefficients of
f-g)

Lemma2.2. There is a nonempty open sefih Py such that for allp € Uy we have(l) ¢(x) >
%|x|2N if |x| is sufficiently largey2) 0 is theonly critical point ofy; (3) the quadratic componentslof

@ is positive definite.

Proof. Let gg(x) = (|x|% + 1)N — 1. Thenyg satisfies conditions (1)—(3) in the lemma. It is not hard to
see that ifp is sufficiently close tapg, theng satisfies conditions (1)—(3) in the lemma, too. So we can
takeUy to be a sufficiently small ball centered@t. O

Corollary 2.3. Theoren®.1is valid for all ¢ € Uy.

Proof. Assumeyp € Uy. Without loss of generality, we may assuifigx) = |x|>—that amounts to a
rotation of the coatinate system.
The proof is obtained by evaluating

1 _
im hlog L 2XEPE BX = ¢()
h—0 [ dx exp(—zihTz(x))

in two different ways. (The integrations are done over the whole sféce
On the one hand, assurg is sufficiently small; ging the assumption gn by seepest descent ],
this limit becomes

(4)

yZ—¢(2), (®)
wherez is the ungue solution of equation

y— Vo(x) =0 (6)
for x, i.e., z= (V) ~1(y). Therdore, this limit is¢’ (y)—the Legendre transform af as a function (not
as a formal power series) inand the coefficients ofs, ..., Ton.

On the other hand, using the assumptiorpomwe can calculate
J dxexpg (yx — ¢(x))
[ dx exp(—%Tﬁx))

in terms of conneetd Feynman diagrams to get its asymptotic series expansioh, y and the
coefficients ofTs, ..., Ton; see Appendix A for more deails. Note that the contribution from a
connected Feynman diagram with loops is proportional tg;™, soonly the contributions from the
tree dagrams styvive in the limit (4). Since he contributions from the tree diagrams are exactly given
by the rules specified imfheorem 2.1we have theight-hand side of3) which can be seen to be an

hlog (7)

asymptotic series expansion fafrin y and the coefficients ofs, . .., Ton.
By the definition ofp andy’, one can see thatis a convergetpower seéies expansion ofy’; herce it
is alsoan asymptotical series expansiongdin y and the coefficients dfg, . . ., Ton. By theuniqueness

of asymptotical series expansion, we have a prodfteforem 2.¥or ¢ € Uy. O

1 For addinition of the asymptotic series expansion, see RH].[
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Proof of the Theorem 2.1. The proof in the generalcasefollows from the abovecorollary and the
discussion preceding temma 2.2 O

Remark 2.4. Strictly speaking, we should obtain some estimates to fully justify some of the arguments
in the alove pioof of Lemma 2.2and its corollary. These estimates are not hard to obtain; however, they
would make the work lengthy and also make the main ideas behind the proof a little bit obscure.

Remark 2.5. Using the trick involved in the proof dProposition 1.4it is not hard to see that the tree
formula given in this work and the tree formula of Gurja and Abyankar actually imply each other. While
the orighal proof of the tree formula of Gurja and Abyankar is purely algebraic, the proof given here for
our tree formula is both algebraic and analytic.
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Appendix A. Feynman diagramsfor L ebesgueintegrals

A very good reference for the discussion belowlig| Let

Y(h) = fdx exp(—glx2 - %x”’) = <exp(—%x4)> (8)

wherea > 0 andx > O are parameters and the integration is done dv@nd the itegration measure is
normalized so that

a o\
/dxexp(—zx ) =1 (9)
We are inérested in the perturbative computatioriah). Formall, we have
1 n 4 4
n

where symbot- means the asymptotic series expansioi @f) as» — 0. We would like to compute

1 4 4
n!(4!)n(—“n<_x X5 >

n
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and for that purpose we observe that

(2) (x2™*+1) = 0 for any ntegem > 0,
02
(3) {(xx) = ad? )20 =3
52m . . . g .
@ (x---x)= &W(e“"x)h:o which is equal to the number of complete paringg’sfin x - - - X times
2m 2m
"

Viewing x*- - - x* as X,—a collection ofn identical copies ofx-cross (herex-cross means a cross

n
with each of its four legs attached to &p The topological symmetry group éf, is G, = (Ss)" x Sp—
the mi-product of(Sy)" with S,,. Let 42, be the set of all possible complete paringgsfin X;,. Then
Gy acts on #2,. Note hat an orbit of this action can be identified with a graph obtained by pairing the
X's in A, according to any complete pairing in the orbit. Now/lfis suchan orbit or graph (called a
Feynman diagram), then

Gnl
M=
[AUL(D)]

where|S| denotes the number of elements in set S and Aumeans the subgroup ofGhat fixes an
elementinl’, called the symmetry group of the Feynman diagi@anTherdore,

L (=" (x*. .. x*) = Z ;(_x)“ <1)2n
ni4nn = (Aut(D)] a) -

n Ie { 4-valent closed graph)

(11)

with n-vettices

where ‘ATl(F)‘(—A)”(%)Z” is the contribtion from Feynman diagraml” according to the following
Feynman rules:

(1) To each vertex of” we assign-A.

(2) Toeach 1-simplex of " we assign}1 (called the propagator).

(3) We multiply the contributions from all vertices and all 1-simplexes and then divide by the order of
the symmety group of I'.

In summary, we have
1 1\ér
oy (YT
I"e{4-valent closed grapr)s|AUt(F)| a

wherevp ander are the number of vertices and 1-simplexed'oNote hat the contribution from the
empty graph is setto 1 by convention. And it is tautological that

1 1\°r
logY (L) ~ > S——" (—) . (12)

e/ connected nonempt |Aut(I)| a
{ 4-valent closed graph

It is not hard to see how to generalize all the above discussion to the general case when other types o
versus(such as 3valert, 5-valent, ..., ones) may also appear.
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