The Volume of a Tetrahedron

E. C. CHO
Mathematics Department
Kentucky State University
Frankfort, KY 40601, U.S.A.

(Received March 1993; revised and accepted October 1994)

Abstract—A formula for the volume of a tetrahedron in terms of the length of edges is given. It may be viewed as a generalization of Heron’s formula to the volume of a tetrahedron.

Keywords—Heron, Simplex, Tetrahedron, Volume.

Heron’s formula represents the area of a triangle in terms of the length of its sides:

\[A = \sqrt{p(p-a_1)(p-a_2)(p-a_3)}, \]

where \(a_1, a_2,\) and \(a_3\) are the length of the sides of the triangle and \(p = (1/2)(a_1 + a_2 + a_3)\).

It is natural to ask for such a formula for higher dimensional simplexes. Since the length of each edge (1-dimensional face) determines the \(n\)-simplex up to isometry, the volume of an \(n\)-simplex is determined by the length of its edges. The formula for a general 3-simplex is not very simple, but Theorem A gives a relatively simple formula of the volume of 3-simplexes which can be isometrically embedded as a face of a rectangular 4-simplex.

THEOREM A. Let \(w_1, w_2, w_3\) and \(w_4\) be vectors of \(E^3\) in a general position. Let \(T\) be the tetrahedron spanned by \(w_1, w_2, w_3\) and \(w_4\), and \(a_{ij}\) be the length of the edge \([w_i, w_j]\). If \(a_{ij}\) satisfy the conditions (3) and (4) given in Lemma 1, then

\[\text{volume of } T = \frac{1}{6} \sqrt{A(4p(p-a_{12})(p-a_{23})(p-a_{31})) - q^2} \] \hspace{1cm} (1)

where \(p = (1/2)(a_{12} + a_{23} + a_{31})\), \(q = a_{12} \cdot a_{23} \cdot a_{31}\), and \(A\) represents the common value in the condition (4), for example, \(A = a_{12}^2 + a_{34}^2\).

REMARK. Conditions (3) and (4) are those for \(T\) to be isometrically embedded as a 3-dimensional face of a 4-dimensional rectangular simplex.

Let \(E^n\) be the \(n\)-dimensional Euclidean space. Let \(v_0\) be the zero vector of \(E^n\). A rectangular \(n\)-simplex, by definition, is an \(n\)-simplex generated by \(v_0\) and a set of nonzero orthogonal vectors \(\{v_1, \ldots, v_n\}\) in \(E^n\). For more details on simplex, we refer to [1].

The following generalization of Pythagoras’ theorem holds on rectangular \(n\)-simplexes. (See [2] or [3] for details.)

THEOREM 1 OF [2]. If \(S\) is an \((n+1)\)-dimensional rectangular simplex generated by the zero vector \(v_0\) and a set of nonzero orthogonal vectors \(\{v_1, \ldots, v_{n+1}\}\), then

\[|F_0|^2 = \sum_{i=1}^{n+1} |F_i|^2, \]
where $|F_i|$ is the volume of the face F_i of S, the n-dimensional simplex generated by the set
\{v_0, \ldots, \hat{v}_i, \ldots, v_{n+1}\}.

Since every F_i, $i \neq 0$, is a rectangular simplex, we have
$|F_i| = \frac{1}{n!} |v_1| \cdots |v_{i-1}| |v_{i+1}| \cdots |v_{n+1}|$
and
\begin{equation}
|F_0| = \frac{1}{n!} \left(\sum_{i=1}^{n+1} |v_1| \cdots |v_{i-1}| |v_{i+1}| \cdots |v_{n+1}| \right)^{1/2}.
\end{equation}

For example, the area of a triangle which is the face F_0 of a rectangular tetrahedron generated
by v_0 and a set of nonzero orthogonal vectors \{v_1, v_2, v_3\} is
\begin{equation}
|F_0| = \frac{1}{2} \left(\left(|v_1| |v_2| \right)^2 + \left(|v_2| |v_3| \right)^2 + \left(|v_3| |v_1| \right)^2 \right)^{1/2}.
\end{equation}

A regular n-simplex is a simplex generated by a set of equidistant vectors \{w_0, \ldots, w_n\} in E^n,
i.e., $|w_i - w_j| = a \varepsilon_{ij}$ for some $a > 0$ where $\varepsilon_{ij} = 1$ for $i \neq j$ and $\varepsilon_{ii} = 0$ for every i.
A regular n-simplex with edges of length a is the face F_0 of the rectangular $(n+1)$-simplex generated
by the zero vector v_0 and a set of nonzero orthogonal vectors \{v_1, \ldots, v_{n+1}\} with $|v_i| = a/\sqrt{2}$ for
every i. So, we have the following corollary.

Corollary. Let S be a regular n-simplex with edges of length a. Then the volume of S is given
by
\begin{equation}
|S| = \frac{a^n}{n!} \sqrt{\frac{n+1}{2^n}}.
\end{equation}

For example, the above formula shows the area of a unit equilateral triangle is $\sqrt{3}/4$ and the
volume of a unit regular tetrahedron is $\sqrt{2}/12$.

We will apply Theorem A to find the volume formula for the tetrahedra which are faces of
rectangular 4-simplexes. Any acute triangle (a triangle whose angles are less than or equal to
the right angle) is a face of a rectangular tetrahedron. A triangle is acute if and only if the length
of its edges $a_1, a_2, \text{ and } a_3$ satisfy the inequalities
\begin{equation}
a_i^2 \leq a_j^2 + a_k^2, \text{ for distinct } i, j, k \in \{1, 2, 3\}.
\end{equation}

Lemma 1 gives a condition for a tetrahedron T to be a face of a rectangular 4-simplex. More
precisely, it gives a condition that there is a rectangular 4-simplex S in higher dimensional
Euclidean space such that T can be isometrically embedded as a face of S.

Lemma 1. Let $T = [w_1, w_2, w_3, w_4]$, i.e., T is the 3-simplex (tetrahedron) spanned by $w_1, w_2, w_3, \text{ and } w_4$.
If the lengths a_{ij} of the edges $[w_i, w_j]$ satisfy
\begin{equation}
a_{12}^2 + a_{34}^2 = a_{13}^2 + a_{24}^2 = a_{14}^2 + a_{23}^2
\end{equation}
and if every 2-dimensional face of T is an acute triangle or, equivalently, the condition (3) is
satisfied on each 2-dimensional face of T, then T is a face of a rectangular 4-simplex.

Remark. The condition (4), imposed on all the three pairs of opposite edges of T, means that
the sum of squares of the length of the two opposite edges in the pair are the same for all pairs.

Proof. Consider the following system of simultaneous quadratic equations with four variables
$x_1, x_2, x_3, \text{ and } x_4$.
\begin{equation}
x_i^2 + x_j^2 = a_{ij}^2, \text{ for every } i, j \in \{1, 2, 3, 4\} \text{ with } i < j.
\end{equation}

This system of equations has a unique solution if the conditions of the lemma are satisfied and
if we require $x_i > 0$ for $i = 1, 2, 3, 4$. Let S be the rectangular 4-simplex $[v_0, v_1, v_2, v_3, v_4]$ where
\(v_0\) is the zero vector, \(\{e_1, e_2, e_3, e_4\}\) is the standard basis of \(E^4\), and \(v_i = x_i e_i\) for \(i = 1, 2, 3, 4\). The correspondence between \(w_i\) and \(v_i\) can be extended piecewise linearly to define an isometric embedding of \(T\) as the face \(F_0\) of \(S\). This proves the lemma.

Proof of Theorem A. Suppose \(T\) is isometrically embedded as the face \(F_0\) of a rectangular 4-simplex \([v_0, v_1, v_2, v_3, v_4]\) by mapping \(w_i\) to \(v_i\) for \(i = 1, 2, 3, 4\). Then we have

\[
a_{ij}^2 = |v_i|^2 + |v_j|^2, \quad \text{for } 1 \leq i \neq j \leq 4, \tag{5}
\]

and

\[
\text{(volume of } T)^2 = \sum_{i=1}^{4} |F_i|^2 = \sum_{i=1}^{4} \left(\frac{1}{6} |v_1| \cdots |v_i| \cdots |v_4|\right)^2. \tag{6}
\]

By substituting the relation (5) into (6) and simplifying, the conclusion (1) of the theorem follows.

Theorem A applies to regular tetrahedra, for example. If \(T\) is a regular tetrahedron with sides of length \(a\), then the volume of \(T\) is \(a^3/(6\sqrt{2})\).

References