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Abstract 

The purpose of this note is to present a polynomial-time algorithm which, given an arbitrary 
graph G as its input, finds either a proper 3-coloring of G or an odd-K4 that is a subgraph of 
G in time O(mn), where m and n stand for the number of edges and the number of vertices of 
G, respectively. (~) 1998 Published by Elsevier Science B.V. All rights reserved 

1. Introduct ion 

A subdivision of  a graph G is any graph obtained from G by repeated applications 

o f  the following operation: introduce a new vertex w and replace an arbitrary edge uv 

by edges uw and wv. An odd-K4 is a subdivision o f  K4 (the complete graph with four 

vertices) such that all four cycles corresponding to triangles in K4 are odd (see Fig. 1, 

where the term odd in each face indicates that the bounding cycle is odd; each line 

stands for a path, nevertheless three straight lines in odd-K32 may have length zero). 

The class of  graphs with no odd-K4 has been studied extensively in the past decade 
(e.g. [2 7]). 

Catlin [2] proved that 

T h e o r e m  1. Every 9raph containing no odd-K4 can be vertex-colored with three 

colors. 

Let GI and G2 be two undirected graphs. We call a map q~: V(GI)-+ V(G2) a 

homomorphism from GI to G2 if q~(ul)~(u2)E E(G2) for each uv E GI. Gerards [3] 
established the following: 
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odd- Y~ odd- K~ 

Fig. 1. Odd-K4 and odd-K32 

Theorem 2. Every graph with no odd-K4 and no odd-K 2 (see Fig. 1 ) is homomorphic 

to a shortest odd cycle in the graph. 

Note that Gerards' theorem is stronger than Catlin's, because of the following 

theorem due to Gerards [5]. 

Theorem 3. I f  a graph with no odd-K4 contains an odd-K 2, then it has a cutset with 

at most two vertices. 

A slight modification of Catlin's proof yields a polynomial-time algorithm for col- 

oring an arbitrary graph G containing no odd-K4 with at most three colors, which can 

be implemented in time O(mn2), where m is the number of  edges and n is the number 

of vertices in G. We point out that another polynomial-time algorithm can be built 

around two previous results. 
The first of  these results is due to Gerards [6]. 

Theorem 4. Every graph G with no odd-K4 and no odd-K23 admits an orientation 

such that the number o f forward arcs and the number o f  backward arcs in each cycle 

differ by at most one. Moreover, the above orientation can be found in polynomial 

time. 

The second of these results is due to Minty [8]. 

Theorem 5. A graph G is vertex k-colorable i f  and only i f  G admits an orientation 
such that every cycle C contains at least [C[/k arcs in each direction. 

Minty's proof of the ' i f '  part goes as follows: For each arc going from x to y, create 
a new arc going from y to x; assign length - 1  to each old arc and assign length k -  1 
to each new arc. It is easy to see that the resulting directed graph contains no negative 
cycles and that, with f ( v )  standing for the length of the shortest path from some fixed 
vertex v0 to v, the values of  f reduced mod k provide a proper coloring of G. 
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Let us point out that the values of  f at all the vertices of  G can be computed in time 

O(mn) with n and m standing, as usual, for the number of  vertices and the number of  

edges, respectively, of  G (see, for instance, [10]). 
It follows from Theorems 4, 5, and the remarks following Theorem 5 that the vertices 

of  every 3-connected graph G with no odd-K4 can be colored by three colors in 

polynomial time. Based on this subroutine, one can easily describe a recursive algorithm 
for coloring the vertices of  an arbitrary graph G with no odd-K4 with three colors. 

The purpose of  this note is to present a polynomial-time algorithm which, given an 

arbitrary graph G as its input, returns either a proper 3-coloring of  G or an odd-K4 
that is a subgraph of  G in time O(mn) with m and n standing for the number of  

edges and the number of  vertices of  G, respectively. Our algorithm compares favor- 
ably with the two algorithms we stated above; it also contains a short proof  of  Catlin's 
theorem. 

2. The algorithm 

Our algorithm, C0LOR(G), given an arbitrary graph G as its input, finds either a 

proper 3-coloring of  G or an odd-K4 that is a subgraph of  G. It begins by preprocessing 
G in order to find 

(1) a vertex of G that belongs to at most one triangle, 

(2) or a diamond (graph obtained from K4 by deleting an edge) 
that is a subgraph of  G, 

(3) or triangles alazbl, a2a362, a3a4b3 
such that al,  a2, a3, a4, bl, b2, b3 are seven distinct vertices. 

It is not difficult to see that at least one of  ( 1 ) - ( 3 )  can always be found in linear time, 

since for each vertex, either itself or one of  its neighbors is in such a configuration. 

In case (1), let u denote the vertex of  G that belongs to at most one triangle and let 
N(u) denote the set of  neighbors of  u. I f  u belongs to no triangle then set A = N ( u ) ;  
if  u belongs to a triangle then let uvw denote this triangle and set A = N(u) - {v}. 

Note that, in either case, A is a stable set. Construct a graph G* by deleting u from 
G and shrinking A into a single new vertex a. Then call COLOR(G*), 

I f  C0LOR(G*) finds a proper 3-coloring q~* of  G* then set 

q~(x) = { ~p*(a)~°*(x) ifif x~A;X is a vertex of  G - (A U {u}), 

note that q~ is a proper 3-coloring of  G -  {u} and that its values in N(u) are restricted 
to at most two colors; hence, q~ can be extended into a proper 3-coloring of  G. 

If  COLOR(G*) finds a subgraph F of  G* such that F is an odd-K4 then either F 
is a subgraph of  G or else a is a vertex of  F;  in the latter case, it is easy to find an 

odd-K4 in (F - {a} )U A U {u}. 
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In case (2), label the vertices of  the diamond as a,b,c,d so that a and d are 
nonadjacent, and then distinguish between two subcases: 

(2.1) G-{b,c} is disconnected, 

(2.2) G-{b,c} is connected. 

In case (2.1), construct proper subgraphs G1, G2 of G such that G -- G1 U G2 and the 
overlap of G1, Gz consists of  the edge bc; then call COLOR (G1) and COLOR ((;2). I f  each 

COLOR(G/) finds a proper 3-coloring of G~ then, after renaming colors if necessary, 

the union of these two colorings constitutes a proper 3-coloring of G; else at least one 
COLOR(G/) finds an odd-K4 that is a subgraph of Gi, and therefore of  G. 

In case (2.2), construct the union Q of all the paths from a to d in G -  {b,c}. Then 

let Q* denote the graph obtained from Q by shrinking {a, d} into a single new vertex 
u and distinguish between two subcases: 

(2.2.1) Q* is not bipartite, 

(2.2.2) Q* is bipartite. 

In case (2.2.1), we propose to find an odd path P from a to d in G -  {b,c}; this 
path and the diamond will form an odd-K4 in G. To find P, we first find an odd cycle 
in Q*. In Q, this cycle yields either the desired P or an odd cycle C. In the former 

case, we are done; in the latter case, we shall find vertex-disjoint paths P,, Pd such 

that Pa links a to C and Pj links d to C. (If  C passes through a or d then one of these 
paths has length zero.) Clearly, the union of Pa, Pd, and C contains the desired P. 

In case (2.2.2), the bipartition of Q* yields a bipartition (A,B) of Q with {a, d} _C A; 

we distinguish between two subcases: 
(2.2.2.1) b and c share a neighbor in B, 
(2.2.2.2) b and c share no neighbor in B. 

In case (2.2.2.1), we find an odd-K4 in G: if w is a common neighbor of  b and c in 

B then the odd-K4 is formed by the diamond on {w, b, c, d} and a path of  odd length 
from w to d in Q. 

In case (2.2.2.2), we first partition B into disjoint sets Bb, Bc so that no x in Bb is 
adjacent to b and no x in Bc is adjacent to c. Then we construct a proper 3-coloring 

of the subgraph of G induced by Q u {b, c} by setting 

~o(b) = 2, 

~o(c) = 3, 

rp(x) = l whenever xcA, 

~o(x)=2 whenever X6Bb, 

q~(x)=3 whenever xEBc. 

Then we distinguish between two subcases: 
(2.2.2.2.1) G has no vertex outside QU{b,c}, 
(2.2.2.2.2) G has a vertex outside Q u {b,c}. 

In case (2.2.2.2.1), we are done: (p is a proper 3-coloring of G. 

In case (2.2.2.2.2), find the set X of all the vertices x in Q that are cutpoints of 
G - {b, c}; for each vertex x in X, construct the connected subgraph Gx of G induced 
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by x and all the components of G - {b, c} which contain no vertex in Q. Clearly, every 
vertex of G - Q belongs to some Gx with xEX.  For each xEX,  construct a graph G* 

as follows: 

• i f x E A  then 

identify a and x in the subgraph of G induced by Gx t3 {a, b, c}, 

• if x EBb then 
identify b and x in the subgraph of G induced by Gx t3 {b, c}, 

• if x E B,. then 

identify c and x in the subgraph of G induced by Gx t3 {b, c}. 

Then call COLOR(G*) for every x in X. 

If every COLOR(G*) finds a proper 3-coloring ~px of G* then we may rename 

the three colors in the range of ~0x so that ~p~(x)= ~p(x), ~px(b)= ~p(b), ~px(C)-. ~p(c); 
clearly, the union of ~0 and all ~p~ is a 3-coloring of G. 

If  at least one COLOR(G*) finds a subgraph F* of G* that is an odd-K4 then we 
shall find a subgraph F of G that is an odd-K4. More specifically, 

• i f x E A  

then there is a path of an even length in Q between a and x; 
• i f xEBb 

then there is a path of an even length in Q u {b} between b and x; 
• i fxEBc 

then there is a path of an even length in Q u {c} between c and x. 

No matter which of the three sets x belongs to, F* either is a subgraph of G or can 
be transformed into the desired F by means of the appropriate path. 

In case (3), distinguish between two subcases: 

(3.1) G - {a2,a3,b2} is disconnected, 
(3.2) G -  {a2,a3,b2} is connected. 

In case (3.1), construct proper subgraphs G1, G2 of G such that G = G1 U G2 and the 

overlap of G1, G2 consists of the triangle a2a3b2; then call COLOR(GI) and C[3LOR(G2). 
I f  each COLOR(Gi) finds a proper 3-coloring of Gi then, after renaming colors if 

necessary, the union of these two colorings constitutes a proper 3-coloring of G; else 
at least one COLOR(G/) finds an odd-K4 that is a subgraph of Gi, and therefore of G. 

In case (3.2), distinguish between two subcases: 

(3.2.1) G -  {a2,a3} is disconnected, 
(3.2.2) G -  {a2,a3} is connected. 

In case (3.2.1), it is easy to see that b2 is of degree 2. Let Gl ={a2,a3, b2} and 
G 2 = G - { b 2 } .  Call COLOR(GI) and COLOR(G2). I f  COLOR(G2) finds a proper 
3-coloring of G2 then, after renaming colors if necessary, the union of these two 
colorings constitutes a proper 3-coloring of G; else C0LOR(G2) finds an odd-K4 that 
is a subgraph of G2, and therefore of G. 

In case (3.2.2), we propose to find an odd-K4 that is a subgraph of G. First, we 
find a path P from {al,bl} to {b3,a4} in G - { a 2 , a 3 , b 2 }  such that all internal vertices 
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of P are outside {al, bl, b3, a4} and we rename vertices (if  necessary) so that P goes 
from al to a4. Then we find a path Q from b2 to {al,bl,b3,a4}UP in G - { a z ,  a3}. 

I f  Q goes from b2 to a vertex x of  P then let P1 denote the segment of  P that goes 
from x to al and let P2 denote the segment of P that goes from x to a4; an odd-K4 in 

G is formed by the triangle a2a3b2 and the three paths 

o Q ,  

• one of Pla2 and Plbla2 (whichever of  the two has the parity of  Q), 

• one of Pza3 and Pzb3a3 (whichever of the two has the parity of  Q). 

I f  Q goes from b2 to {bl,b3} then we rename vertices (if necessary) so that Q goes 

from b2 to b3; if  Q is odd then an odd-K4 in G is formed by the triangle a2a3b2 and 
the three paths 

• Q, 

• b3a3,  

• one of b3Pa2 and b3Pblae (whichever of  the two is odd); 

if  Q is even then an odd-K4 in G is formed by the triangle a2asb2 and the three paths 

• Q a  4, 

• a3a4 ,  

• one of Pa2 and Pbla2 (whichever of  the two is odd). 

3. Implementation 

Case (2.2): To construct the union Q of all the paths from a to d in G - {b,c}, let us 

shrink {a, d} into a single vertex u and let H* denote the resulting graph. By applying 
the biconnectivity algorithm in [9], we can find all the biconnected components of H*.  

Let B be the union of all the biconnected components of  H* that contain at least one 
vertex in N(a) and contain at least one vertex in N(d), where N(w) is the neighbor 

of  w in G for w = a and d. Now let us first split u into a and d in B and then connect 
a to each vertex in N(a)fqB and connect d to each vertex in N(d)NB. The resulting 

graph is Q. 
Case (2.2.1): To find an odd cycle in Q*, we may apply the depth-first search 

method (see [9]). 
To find the vertex-disjoint paths Pa, Pb in linear time, we may appeal to network 

flow theory (see, for instance, [1]). 
Case (2.2.2.2.2): Apply the biconnectivity algorithm in [9] for finding all the cut- 

points and biconnected components in a graph. 
Let us assume that no recursive call will be applied to a graph with at most four 

vertices. The following lemma bounds the number of  recursive calls in our algorithm: 

Lemma. The number of  recursive calls is at most n -  4, where n is the number of 
vertices in G and n >14. 
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Proof .  Let f (n )  stand for the largest possible number of  recursive calls when our 

algorithm is applied to a graph with n vertices. Then f ( 4 ) - - 0 .  Now let us show by 

induction method that f(n)~< n -  4. Since the statement holds for n = 4, we proceed to 

the induction step. 

In case (1), we have f ( n )<~ f (n -  1).4. 1. Hence, f (n)<~(n-  1 ) - 4 . 4 .  1 = n - 4 .  

In cases (2.1), (3.1), (3.2.1), and (3.2.2), let ni denote the number of  vertices in Gi 
for each i =  1,2. Then we have f (n)<. f (n l )  + f ( n 2 )  -4- 1. Hence, f(n)<~(nl - 4 )  -4- 

(n2 - 4 )  .4.1=(nl + n2-  3 ) -4~<n-4 .  
In case (2.2.2.2.2), let nx stand for the number of  vertices in G* for each x in X.  

Then f (n )  ~ Exex f(nx) -4- 1. Hence, f (n)  ~ ~xex(nx - 4) -4- 1 = ~x~X nx - 4[XI + 1. 

Note that when IXI >~2, we have ~x~X nx ~<n+2(121-1). Thus, f(n)<~n - 212[ - 1 ~< 

n - 4 ;  when IXI--1, we have nx<~n-1. Hence, f (n)<~nx-4 + l ~ < n - 4 ,  as 

desired. E5 

4. Running time 

In our algorithm, we reduce the problem on the input graph to corresponding prob- 

lems on a hierarchy of  components. Let us call each component at the bottom of  the 

hierarchy an atom. Then each atom is either a graph with at most four vertices or 

a graph as stated in case (2.2.2.2.1), on which the solution can be obtained in linear 

time (recall case (2.2.2.2)). It follows from our lemma that the total number of  atoms 

is O(n),  so the total time taken on atoms is O(n(n + m)). Note that the implementation 

of  each case stated in the last section takes no more than O(n+m) time. By our lemma 

the total time taken in all recursive calls is O(n(n + m)). Hence, the time complexity 

of  our algorithm is O(n(n -4- m)) -4- O(n(n + m)) = O(nm). 
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