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A Bijective Proof of the Hook Formula for the Number of Column 
Strict Tableaux with Bounded Entries 

JEFFREY B. REMMEL * AND ROGER WHITNEY 

A formula for the generating function for the number of column strict tableaux of a fixed 
shape A with entries bounded by some positive number a was proved by Littlewood and given 
an expression in terms of the hook and content numbers of the Ferrers diagram of shape A by 
Stanley. We give a bijective proof of this formula and in the process give a combinatorial 
explanation for the appearance of the hook and content numbers in the formula. 

O. INTRODUCTION 

Let A = (A 1 ;3 A 2;3· •• ;3 Ak > 0) be a partition. The Ferrers diagram of shape A is a set 
of left justified rows of squares or cells with Ai cells in the i-th row for i = 1, ... , k. Thus 

J 
F -(4 ,3.2.2 ) -

We let (i, j) denote the cell in the i-th row and j-th column of FA' The hook number of 
cell (i, j), denoted by hi.i> equals 1 plus the number of cells to the right and below cell 
(i, j) and the content of cell (i, j), denoted by Ci.i> equals j - i. For example, the hook 
numbers and contents of F(4.3.2 .2) are pictured below: 

7 6 3 1 1 0 1 2 31 
5 4 1 -1 0 1 

3 2 -2 -1 

2 1 -3 -2 

hooks contents 

A tabloid A of shape A is a filling of the cells of FA with nonnegative integers ai.i' A 
column strict tableau T of shape A is a filling of the cells with positive integers ti.i such 
that the numbers ti•i are weakly increasing in rows and strictly increasing in columns. 
The weight of a tabloid or column strict tableau T, denoted by weT), is just the sum of 
the entries of T, i.e. w (T) = L(i.i) EF" ti•j • 

Let fY~ denote the set of all column strict tableaux T of shape A such that ti,j ,;;; a for 
all (i, j) E FA' An explicit formula for the generating function, LTE .'r~ qW(T), was first derived 
by Littlewood [6] and Stanley [13] transformed Littlewood's formula to give an explicit 
expression for the generating function in terms of contents and hook numbers yielding 
the following. 

* The first author was partially supported by NSF Grant MCS79-03406. 
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THEOREM 0.1. 

(0.1) 

where 
k 

PI\ = L iAi 
i~l 

d [] (
l_qn) 1 n-l an n = -- = + q + ... + q . 
1-q 

The main purpose of this paper is to give the first completely combinatorial proof of 
Theorem 0.1. First, we transform expression (0.1) by multiplying both sides by the 
product of the hooks to get 

( n [hiJ)( L qW(T)) = qP" n [a +Ci,i]' (0.2) 
(i.j)EF" TE::r~ (i,j)EF" 

Next, we let 'ltl\ denote the set of all tabloids A of shape A such that 0,,;: ai,i < hi,i for all 
(i, j) E FI\ and ce~ denote the set of all tabloids B of shape A such that 0,,;: bi,i < a + Ci,i 
for all (i, j) E FI\. It is then easy to see that 

L qw(A) = n [hi,i] (0.3) 
AE~" (i,j)EF" 

and 
(0.4) 

It now follows that we can prove expression (0.2) and hence Theorem 0.1 by constructing 
a bijection (J: 'ltl\ x ;y~ ~ ce~ which is weight preserving in the sense that for all pairs 
(H, T) E 'ltl\ x ;y~, we have 

w(H) +w(T) = PI\ +w((J(H, T». (0.5) 

The construction of our bijection (J is based on several fundamental ideas. The basic 
idea is to take the algebraic proof and replace each algebraic step by a bijective one. 
This idea is not, in practice, always so simple to carry out as sometimes rather trivial 
algebraic steps become fairly complicated to do bijectively. Nevertheless, we often gain 
more information and insight into the problem for such an effort. For example, in this 
case we shall get explicit combinatorial interpretations of the numbers [hi,i] and [a +Ci,i] 
that appear in the right-hand side of expression (0.1). To carry out the transformation 
of the algebraic proof into a bijective proof, we use two other ideas from separate 
sources. Firstly, we use a lattice path interpretation of tableaux and certain determinants 
which count tableaux developed by Gessel [2] and Gessel and Viennot [3, 4, 5]. Secondly, 
we use an important new method due to Garsia and Milne [1] for constructing bijections 
out of certain pairs of involutions. 

The outline of this paper is as follows. In section 1 we shall present the ideas from 
[3] and [1] in the form in which we shall use them. In section 2, we shall define (J and 
give some examples. 

Finally the authors gratefully acknowledge A. M. Garsia for several helpful conversa­
tions and for his suggestion that the involution principle (see Theorem 1.3) should prove 
useful in this area. 

1. LA'ITICE PATHS AND THE INVOLUTION PRINCIPLE 

We begin this section with a brief introduction to the theory of interpreting tableaux 
and certain determinants which count tableaux developed in [2, 3, 4, 5]. Since our main 
interest in this paper is in the class of column strict tableaux with bounded entries, we 
shall start with a lattice path interpretation designed specifically for interpreting such 
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tableaux found in [3]. However, the basic ideas can be used to interpret many other 
classes of tableaux. (See [2,4, 5].) 

For pictorial purposes we shall consider a grid of lattice points in 1R2 which lie below 
the main diagonal in the first quadrant, i.e. the set of (i, j) with 0 ~ j ~ i where i and j 
are natural numbers. We shall always picture this grid rotated 90° clockwise, see Figure 
1.1. 

° 234 • • • 

2 • 

3 11"J~ • 

4 • • • 

• • • • • 

• • • • • • 

• • • • • • • 

FIGURE 1.1. Basic grid. 

For any integers a, b ;;;.: 0, p~ denotes the set of all directed paths from (a, 0) to (b, b) 
which can be formed from two types of directed segments or vectors, namely, horizontal 
segments which go from (i, j) to (i, j + 1) for some i and j and vertical segments which 
go from (i, j) to (i -1, j). Thus in our basic grid we can go either right or up to one unit 
so that p~ is empty unless b ~ a. Assume bt. ... , bk and at. ... , ak are sets of nonnegative 
integers such that al ~ a2 ~ ... ~ ak, then we let p~:::::: denote the k-fold product 
X ~=l p~:. Figure 1.2 gives a geometrical representation of an element of P~~~. 

(0,0) ~ 

(1,0) • • • 

• • • 

• • (3,3) 

• ,--- --"*-- --4 (4,4) 
I 
I 
I 

(5,0) e---" • • • 

(6,0) • • • • 

• • • • • • • • 

• • • • • • • • • 
FIGURE 1.2. 
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A k-tuple of paths (Ph . .. ,Pk) is said to be intersecting if at least one pair of paths Pi 
and Pi have some point in common. A k-tuple of paths is said to be nonintersecting if it 
is not intersecting. We let NP~~:: :~t denote the nonintersecting k-tuples of paths in P~~:::::~t. 
Noti<;ethatNP~~:::~t is empty unless al < ... <ab b1 < ... <bk,andbi ~adori = 1, ... , k. 

Given any sequence of nonnegative integers ah ... , ak and b lo ••• , bb we let 

(
a1 ... ak) 

D b
1 

••• b
k 

denote the k x k determinant of the matrix whose entry in the i-th row 

and j-th column is the binomial coefficient (:i) where (:i) is set equal to 0 if ai < bi. A 
1 1 

basic result of [3] is that the determinant D(ba1 
... ak) counts the number of nonintersect-

1· •. bk 

ing paths INP~~:::~t I when the ai and bi are increasing sequences of nonnegative integers. 
The proof of the following result uses. an involution which will be important in our 
construction of the main bijection () so we shall give the details of this proof. 

THEOREM 1.1. (Gessel and Viennot [3]). If O~al < ... <ak and O~bl < ... <bb 
then 

(1.1) 

PROOF. Let Y k denote the set of all permutations of 1, ... , k. Notice that for any a 
and b, a path P E P~ must have b horizontal segments and a - b vertical segments so 

that IP~I = (:). Similarly Ip~~:::~tl = (::) ... (::) so that 

(1.2) 

Let pp(a
b

1 ... b
ak

) denote the set of signed objects L<TE9'k sgn(u)P~.!··:.~t . We can then 
1 • •• k 1 k 

(
a1 ... ak) (a1 ... ak) 

prove equation (1.1) by constructing an involution cp : @l b b ~ @l b b such 
1 • •• k 1 • •• k 

that cp leaves fixed all k-tuples in NP~~:::~t and cp sends any intersecting k-tuple of paths 
(Ph . .. ,Pk) to a k-tuple of paths with an opposite s~gn. The involution cp is defined as 
follows. Suppose (Ph ... , Pk) E P~~:::~t is intersecting. Find the lexicographically least 
lattice point (x, y) for which at least two paths Pi and Pi with i, j ~ k go through (x, y). 
Then given (x, y), pick the lexicographically least pair (i, j) such that i ~ j and paths Pi 
and Pi go through (x, y). Thencp sends (Ph ... ,Pk)tO(P~, ... ,p~)wherep~ =Pe ifee{i,j} 
and P j is the path obtained by following Pi to (x, y) and then following Pi and P j is the 
path obtained by following Pi to (x, y) and then following Pi. Thus (p~, ... , P ~) is obtained 
from (Ph . .. , Pk) by simply interchanging the tails of Pi and Pi after (x, y). For example 
Figure 1.3 exhibits the image of Figure 1.2 under cpo It is easy to see that (p~, ... ,pD E 

P~~~':.~t'Yk' where y is the permutation obtained from u by composing it with the permuta­
tion which interchanges i andj. Thussgn(u) = -sgn(y). Now if (Ph . .. ,Pk) is nonintersect~ 
ing, then CP((Ph ... , Pk» = (Ph . .. , pd. It is easy to see that cp2 = cp so cp is the desired 
involution to prove equation (1.1). 

Next we shall describe a bijection between tableaux and set of lattice paths due to 
Gessel and Viennot [3]. Given a partition A = (A I;?!: A2 ;?!:· •• ;?!: Ak > 0), let A' = 
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(0,0) , 

(1,0). • 

• • • 

• • ~-- ... (3,3) 

• ,.. (4,4) 
I 
I 
I 

(5,0) .----4 • • • 

(6,0) • • • • 

• • • • • • • • 

• • • • • • • • • 
FIGURE 1.3. 

(A ~ ;;;. ... ;;;. A ~, > 0) denote the conjugate partition of A, i.e. the partition that arises 
from the column heights of FA' Let A * = (A T ,,;;; ... ,,;;; At) denote A' written in reverse 
order and A* = (AT < ... < At) where Ai = Ai + j -1. For example, if A = (4, 3, 2, 2) 
is the partition pictured in the introduction, then A' = (4, 4, 2, 1), A * = (1, 2, 4, 4), and 
A* = (1,3,6, 7). 

The bijection will associate to each Ai-tuple of paths (Ph' .. , PA,) in NPrt r;l ::: '5..:;'A ,
-1 

for a ;;;. 0, a tableau T(Ph . .. ,PAl) in ;r:.. This bijection will also have certain weight 
preserving properties so before giving the correspondence, we shall describe the weight 

a a+l .. · a+A , -1 a a+l .. · a+A , -1 • a a 
of a path. let PAt A~ ... At, and NPAt A~ ... At, be denoted by sImply P A• and NPA• 

respectively. Then given (qh . .. , qA1) EPf., let (i) the weight w(h) of a horizontal segment 
h between (k, j -1) and (k, j) equal a - k + j, (ii) the weight w (q) of a path q equal the 
sum of the weights of the horizontal segments on q, and (iii) the weight of a set of paths 
(qh ... ,qA,) be given by (qh ... ,qA1) = L.~~1 W(qi)' 

Now given (Ph ... , PA,) E NP~., it is easy to see that for each i = 1, ... , A 10 the 
nonintersecting condition forces the first i-I segments of Pi starting at (a + i-I, 0) to 
be horizontal. Thus Pi passes through (a +i -1, i-I). Now Pi has a +i -1 segments of 
which n = At + i-I must be horizontal. Then starting at (a + i-I, i-I) and reading 
the segments of Pi in order, suppose that the h, h-th, ... ,jA t-th segments are horizontal. 
Notice that A t is the column height of the (Ai - i + 1)-th column of FA' Thus we fill the 
(Ai -i + 1)-th column of FA from top to bottom with the numbers h, . .. ,jAto Proceeding 
in this way for each path Pi, we produce a filling of FA with the numbers between 1 and 
a, which we denote by T(Ph ... , PA,), (See Figure 1.4 for an example of the correspon­
dence.) Now it is easy to see that our definition ensures that the columns of T(Ph ... ,PA,) 
are strictly increasing. It is not difficult to show that the nonintersecting condition ensures 
that the rows of T(Ph'" ,PAl) are weakly increasing. Now for each i, if the h-th,h­
th, ... , j A t-th segments on Pi after (a + i -1, i -1) are horizontal, then for each 1 ,,;;; I ,,;;; At, 
the h-th segment lies between (k, j -1) and (k, j) where k = a + i-I + (1-1) - (jl -1) and 
j = i -1 + I so that the h-th segment contributes a - k + j = h to the weight of (Ph' .. , PA,) 
and to the weight of T(Ph"" PAl)' Thus the correspondence (Ph ... , PA1)-+ 
T(Ph ... , PA,) is weight preserving except for the fact that we have neglected the weights 
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FIGURE 1.4. Here, A = (4, 3,2,2), A * = (1,2,4,4), a = 5, A* = (1, 3, 6, 7). 

of the first i-I horizontal segments on Pi for i = 1, ... , A1• It follows that 

r +w(Pt. ... , P",) = w(T(pt. .. . , P",)), 

where r = L~~1 _(; 1). 
(1.3) 

Finally the correspondence is reversible so that the map (Pt. ... , p,,) -+ T(pt. ... , p,, ) 
establishes the following. (We refer the reader to [3] for details.) 

THEOREM 1.2. (Gessel and Viennot [3]). Let A = (A 1 ;;;. · .. ;;;.A k) be a partition and a 
be a positive integer, then 

L qw(T ) =q' L q w( p, ..... P,,>, (1.4) 
Te~~ ( p" ...• P, , )e NP'f. 

where 

_ ", (i-I) 
r - i~l - 2 . 

Next we outline a fundamental method for constructing bijections out of certain pairs 
of involutions discovered by Garsia and Milne [1] who used the method to give the first 
bijective proof of the famous Rogers-Ramanujan identities. Assume we have two disjoint 
finite spaces A and B and both A and B are further partitioned into 'positive' and 
'negative' parts, A =A +uA - and B =B+uB- . (For example, the set of signed paths 
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~ (b
a 

1 ••• b
ak

) described in Theorem 1.1 is such a space.) Assume we have a sign preserving 
1 • •• k 

bijection f from A onto B, that is, f(A +) = B+ and f(A -) = B-. Next assume we have a 
pair of what we term 'sign reversing bijections' a from A onto A and (3 from B onto 
B with positive fixed points. That is, we assume a :A ~A and for all a EA, either (i) 
a(a) = a and a EA + or (ii) a(a);;c a in which case a EA + implies a(a) EA - and a EA-

implies a (a) E A + and similarly for {3. (For example, if A = ~(al ... ak) then the 
b1 • •• bk 

involution cp of Theorem 1.1 is such a sign reversing bijection.) We let Fa and F(3 denote 
the fixed point sets of a and {3 respectively. Notice we immediately have that IFal = IF(31 
since by a we have IA +1-IFa 1= IA -I, by f we have IA -I = IB - I and IA +1 = IB+I, and by 
{3 we have IB-I=IB +I-IF(3I. The fundamental observation of Garsia and Milne is that 
a direct bijection between Fa and F(3 can be constructed out of a, {3, and f. Let a * = f 0 a 
and {3* = rIo {3 so that a* maps A onto Band {3* maps B onto A. Start with a fixed 
point a EFa and form a sequence a =al. b1> az, bz, ... by first applying a*, then {3*, 
then a *, etc., that is, ai+ 1 = {3 * (bJ and bi = a * (aJ for all i. We call a 1> b 1> ••• the iterated 
(a, (3)-sequence associated to a. There are two basic facts to establish: 
(A) If a EFa, then there is a least n, denoted by na, such that bn EF(3. 
This fact is easily established by showing by induction that if there is no such n, then 
a1> b1> az, bz, ... are all pairwise distinct violating the finiteness of A and B. Having 
established (A), then we can show the following by appealing to the fact that a * and 
{3 * are one-one. 
(B) If a, a' EFa with iterated (a, (3)-sequences a = al. bl.' .. , ana' bna and a' = 
a~, b~, .. . , b ~a ' respectively, then a ;;c a' implies bna ;;c b ~a " 
Now given (A), we can define a map [(a, (3, f) : FOt ~ F(3, which we shall call the iterated 
(a, (3)-map, by [(a, (3, f) (a ) = bna for all a E Fa. By (B), it follows that [(a, (3, f) is one-one 
and by a symmetrical argument, it is easy to show that [(a, (3, f) is onto. Thus we have 
the following: 

THEOREM 1.3. (Garsia-Milne [1]). LetA =A + uA -,B =B+ uB-,f:A ~B, a :A ~ 
A, and {3 : B ~ B be described as above, then the iterated (a, (3)-map [(a, (3, f) is a bijection 
between Fa and F(3. 

REMARK. There are many applications of Theorem 1.3. See for example [1], [8], 
[9], and [10]. In all of these applications, a and {3 are involutions. In fact, in Garsia and 
Milne's original paper [1], they state theorem 1.3 in a slightly different setting and only 
for involutions although their proof remains unchanged for sign reversing bijections. 
Thus, we shall sometimes refer to . an application of Theorem 1.3 as an application of 
the involution principle. 

2. THE CONSTRUCTION OF THE BIJECTION (J 

Let A = (AI =3: A2 =3:' •• =3: Ak > 0) be a partition. Recall that leA is the set of tabloids B 
of shape A such that 0 ~ bi,i ~ hi.i -1 for all (i, j) E FA where hi,i is the hook number of the 
(i, j)-th cell of FA and <{5~ is the set of all tabloids D of shape A such that 0 ~ di.i ~ a + Ci,i -1 
for all (i,j)EFA where Ci,i is the content number of the (i,j)-th cell of FA' In this section, 
we shall construct a bijection (J : leA x f1~ ~ <{5~ by induction on the number of rows in 
FA' Since the base step of the induction is essentially the same as the general inductive 
step, we shall deal only with the general inductive step. Our induction will yield a 
recursive procedure to find the image under (J of any pair (A, T) E leA X f1~ and in the 
last part of this section we shall carry out this recursive procedure with some examples. 
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Let A - Al denote the partition (A2;?;' .. Ak > 0). Thus the Ferrers diagram FA.-A.I of 
A - A 1 is obtained from FA. by simply removing the first row of FA.' Hence a cell (i, j) E FA. 
with i ;?; 2 will remain in FA.-A.I' however the cell (i, j) of FA. is indexed by (i -1, j) in FA.-A.I 
since its row number has decreased by 1. This reindexing of cell (i, j) E FA. relative to 
FA.-A., does not affect its hook number but it does affect its content number. That is, if 
for a partition A we let h ~j and c ~j denote the hook number and content number 
respectively of the (i,j)-th cell in FA., then (i) h~j=h~~tJ and (ii) C~j=C~~l~J -1. Thus, 
for example, if we take a tabloid B E 'leA. and remove its first row to obtain a tabloid 
B IA -AI. then B IA -AI E 'leA.-A." However, if we take a tabloid D E '?6~ and remove its 
first row to get a tabloid D 1 A - A 10 then D 1 A - AlE '?6~=L since the condition for the 
(i, j)-th cell of D 0 ~ d~j < a + c ~j becomes the condition on the (i -1, j)-cell of D 1 A - A 1 

that 0~di-1,j<a+(c~~~J -1)=(a-1)+c~~~J. We also note that the tabloid obtained 
from D by just taking its first row, denoted by D 1 A 10 is an element '?6~, where A 1 denotes 
the partition with one part equal to AI' Thus aD E '?6~ can be decomposed into two 
tabloids DIAl E '?6~, and D IA -AI E '?6~=L. 

Our inductive step will proceed as follows. We start with a pair (B, T) E 'leA. x fJ~. We 
shall take the first row of B, denoted by B 1 A 10 and the tableaux T and produce a one 
row tabloid of length AI. DIAl E '?6~, and a column strict tableaux T' E '?6~=i" Then by 
induction we assume we have a bijection ()': 'leA.-A., x fJ~=t ~ '?6~=t so that ()' will associate 
with the pair (B IA -AI. T'), a tabloid in '?6~=L which we shall denote by D IA -AI' Then 
DIAl uD IA -AI =D E '?6~ so that we let ()(B, T) =D. Now for () to have the desired 
weight preserving properties, we saw in the introduction that we must have 

k 

weB) +w(T) = p +w(D) where p = L iAi. 
i=l 

(2.1) 

By induction, we assume that ()' has the required weight preserving properties so that 

(2.2) 

where p' = L~=2 (i -1) . Ai. Combining expression (2.1) and (2.2) and using the facts that 
weB) = weB IA 1) +w(B IA -AI) and weD) =w(D IA1) +w(D IA -AI), we see that it must 
be the case that 

(2.3) 

where n = L~=l Ai = no. of cells in FA.' 
Finally, to show that () is a bijection, we must be able to reverse the whole process. 

Now clearly, we can decompose D into DIAl uD IA -AI and from ()' we can find the 
pair (B 1 A - A 10 T'). Thus we will be done if we show that from the pair (T', D 1 A 1)' we 
can reconstruct T and B 1 A 1. Thus we can prove by induction that () exists if we can 
prove the following lemma. 

LEMMA 2.1. Let A = (AI;?;' .. ;?;Ak >0) be a partition. There is a bijection X: 'leA. IA1 x 
fJ~ ~ '?6~, x fJ~=t (where 'leA. 1 A 1 is the set of a tabloids which result by taking the first row 
of tabloids B E 'leA.) such that for all (B 1 AI. T) E 'leA. 1 A 1 X fJ~, if X (B 1 A 10 T) = (D 1 A 1, T'), 
then equation (2.3) holds. (Notice that in the case where A has just one part, ~=i, is 
empty and in such cases X will simply be a bijection from 'leA. x fJ~ onto '?6~.) 

PROOF. The definition of X will involve all the ideas of section 1. First we shall 
interpret 'leA. 1 Al X fJ~ and '?6~, x fJ~=t in terms of lattice paths and then use the involution 
principle to construct X. 

First we shall interpret 'leA. 1 A 1 X ~ in terms of lattice paths. We saw in Theorem 1.2 
• a a a+l ... a+'\ 1 

how to assocIate to each tableau T E fJ A. a set of paths (Ph . .. , PA.,) E NP At A~ ... At ,-
t 
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A (i -1) such that T(Ph . .. ,PAl) = T and w(T) = r +W(Ph' .. , PA,) where r = Li'!'l - 2 . Now 

Pi is a path with At = A t + i -1 horizontal segments and a + i -1- At vertical segments. 
Notice that At+i-1 is the hook number of the (1,A 1 -i+1)-th cell in FA' Thus we 
consider AI-tuples of paths (Ph' .. , PAl) where we mark one horizontal segment on each 
path Pi. We shall denote the collection of such 'marked' paths by ml(NPf.). (Here, ml 
stands for marked levels and we shall often refer to a horizontal segment as simply a 
level.) Then with each (Ph . .. ,PA,) E ml(NPf·) we can associate a tableau T(Ph ... ,PAl) E 
fJ~ as in Theorem 1.2 and a tabloid B(Ph'" ,PA,) in .reIAI where the (1, A1 -i + l)-th 
entry of B(Ph ... ,PAl) is k i -1 if the level marked on path Pi is the ki-th level reading 
left to right. Notice that since 1~ki~At=hI.Al-i+h we have 0~bI.Al-i+l=ki-1~ 
hI.A,-i+I -1. Now if we define the weight of a marked k-tuple of paths (Ph' .. ,PA,), 
denoted by Wm/(Pb ... , Pk), to be equal to the old weight W(Ph ... , PAl) plus L~'!'1 k i -1, 
ili~~h~ . 

r +Wrn /(Pl, ... ,PA,) = W (T(Ph ... ,PAl)) +w(B(Ph ... ,PAl))' (2.4) 

See Figure 2.1, for an example of this correspondence where we indicate a marked level 
by placing an x on that level. 

o • 

I. (1,1) 

2 • • 

3 • • 

4 · · r.X (4,4) 

:: : :.: : j'5':' 
FIGURE 2.1. Here A =(3,2,2), A*=(l, 3,3), A*=(1,4, 5), and a =4. 

Next we turn our attention to giving a lattice path interpretation to the pairs in 
~~, x fJ~=!,. Given a tableau T' E fJ~=L, the coding used in Theorem 1.2 would associate 
T' to a A2-tuple of paths. However, for reasons which will become clear shortly, we shall 

• • ( , , ) a-I a ... a+A , -2 d h use a AI-tuple of nomntersectmg paths Ph ... ,PAl ENPAt-1A~-I'" A~ -1 to co e suc 
1 

a tableau T'. The idea is simple. If we start with the column heights of FA, A t ~ ... ~ At, 
and subtract 1 from each height to get A t - 1, ... , At - 1, we get the column heights 
of FA- Al . Of course, if Al >A2, then the first A1-A2 of these numbers are O. Next if we 
consider the sequence At -1 < A! -1 < ... < Ar, -1, then in the case where AI> A2, the 
first A I - A 2 of these numbers are 0, 1, ... , A 1-A2 -; 1. In su~h a situ~!ilo~, th~. ~If; ~l - A2 
paths of a AI-tuple of nonintersecting paths (Ph".,PAJENPA1-tA~-I"'A~A,'-1 are 
completely forced. That is, P; goes from (a -1, 0) to (0,0) and hence has only vertical 
steps. The nonintersecting property forces the first i -1 segments of path P; to be 
horizontal so that if i ~ A 1 - A 2, then path P; must end at (i - 1, i -1) and hence we must 
have all vertical segments on P; after the initial i -1 horizontal segments. If i >A 1-A2, 
then after the forced i -1 horizontal steps, we have a path of length a -1 with At -1- i + 
1 = n -1 horizontal segments. As before, At -1 represents the Al - i + 1-th column 
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height in FA-A,' Suppose the h-th, ... ,jA!-I-th segments of P; after the point (a -1 +i-
1, i -1) are horizontal, then we fill the Al -i + 1-th column of FA-A, from top to bottom 
with jl, ... ,jA;-I' If we do this for each Pi with i > A 1-A2, we get a filling of FA-A, which 
we denote by T'(pI. ... ,PA,). By exactly the same reasoning as used to prove Theorem 
1.2, we can show that the correspondence a(g\··· ,.p:+1~l'(p~, ... , P~J ~s a 0an~-one 
correspondence between AI-tuples in NPAf- 1 A~-I ... At _\ and elements m fYA=Al' In 
fact, if we start with (p~, ... ,P~J and remove the first AI -A 2 columns (which will 
eliminate entirely the first Al -A2 paths) we will get a A2-tuple of nonintersecting paths 
(ql, ... ,qA2) and it is easy to see that T'(p~, ... , P~J is just T(qI. ... , qA2) where 
(qt. ... , qA2)~ T(qI.' .. , qA2) under the old correspondence of Theorem 1.2. This fact 
is illustrated in Figure 2.2. 

0 (0,0) 

(1,1) 

2 • 

3 • • 

(~'131*161) 
4 • (4,4) ~ 

5 • 
2 

6 (6 ,6) 

7 • 
2 

8 
I • • 

eliminate 
first two ~ ~ ~ ~ ~ ~ ~ 
columns 

0 • 

• • 

2 
5 • 

~ 3 • ~ 3 5 

2 5 

4 
5 • 

5 • • 
2 

6 I • • 
FIGURE 2.2. Here A = (4, 2, 2, I), A * = (1,1,3,4), A* = (1, 2, 5, 7), A - Al = (2, 2, I), and a -1 = 5. 

Thus for each T' E fY~=L, we can associate a AI-tuple (Pl, ... ,P~J E 
a-t a'" a+A t -2 ", I • • NPAt - 1 M-I ... At -I such that T = T (PI. ... ,p A,). Notice that the number of vertices 

on Pl, ... , P~l are respectively a, a + 1, ... , a +A I-1 which are exactly the numbers 
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a +cI,i for 1:Sj:S AI. We shall consider the collection, mv(Np~;I), which consists of all 
AI-tuples (pi, ... ,p~,) of paths as above where one vertex on each path Pi is marked. 
Then the marked vertices for such AI-tuples can code a tabloid D'(Ph ... ,p~,) E C~, by 
letti~g dl,i = Ii ~ 1 wher~ the lrth vertex rea~ing left tOa~i~t is m~rked on P!, We as~ig~ 
a weIght, wmv(Pt. . .. ,PA,) to such a AI-tuple 10 mv(NP;'*_I) by lettmgwmv(Ph' .. , Pk)­
w(pi, ... ,Pk)+L~~lli-1. Then by the same type of argument which established 
expression (2.4), we have 

r +wmv(pi, ... ,p~,) = w(T'(pi, ... ,p~,)) +w(D'(pi, ... ,p~,)). (2.5) 

See Figure 2.2 for an example of this coding where a marked vertex on a path is 
indicated by putting a box around the vertex. 

(Notice that in the case where A has just one row, all the paths pi, ... ,P~, are forced 
so that we only regard the marked vertices as a code for a tabloid in ce~.) 

We pause at this point to note that we now have explicit interpretations of the hook 
numbers [hi,i] and the content numbers [a +Ci,J which appear in Theorem 0.1. Namely, 
the numbers [hi,i] represent the number of horizontal segments on the paths in ml(NP~*) 
and the numbers [a +Ci,i] represent the number of vertices on the paths in mv(NP~;!I)' 
Our next task is to show that these two sets of paths are in bijection. 

Given these two lattice path interpretations oLrfA IAI x fT~ and ce~, x fT~=!, respectively, 
we see that by expressions (2.4) and (2.5) we can reduce the problem of constructing 
the bijection X to constructing a bijection r: ml(NP~*) -+ mv (NP~::.!.I) such that for all 
(Ph ... ,PA,)Eml(NP~.) 

Wml(PI, ... ,PA,) = n +Wmv(r(PI. ... ,PA,)), (2.6) 

where n = L~~l Ai' We shall construct r by the involution principle. First we must interpret 
ml(NP~.) and mv(NP~;!I) as the fixed point sets of some 'signed' spaces relative to 
involutions a and (3 respectively. Given Theorem 1.1, the signed spaces are clear. That 
is, for any O:sal:S'" :san and b I. ... , bn where 0 "'P~::::t::, we let ml(P~::::t::) denote 
the collection of all n-tuples of paths (Ph' .. , Pn) E P~: :::t:: where one level on Pi is marked 
if there are any levels on Pi) and similarly mv(p~::::g::) will denote the collection of 
n-tuples of paths (Ph' .. , Pn) EP~::::t:: where one vertex on each path Pi is marked. Then 

ml(NP~.) ~ ml(PfJ(A
a
*)) = L sgn(cr)ml(P~~ ~t ::: ~t,-I), (2.7) 

A CTE9'A, '2 A, 

and 

mv(NP~~~) ~ mv ( PfJ(;* -=-~)) = CTE~Al sgn(cr )mv (P~;'~I 1~2-I ::: 1;:~~2). (2.8) 

We also need to assign weights to the paths in ml( PfJCt*)) and mv( PfJ(;* -=-11)) 

respectively. Given (Ph' .. ,PA,) E ml( PfJ(;*)) , we let 

A, 

Wml(PI.' .. , PA,) = Wa(PI. . , . ,PA,) + L (ki -1), 
i~1 

(2.9) 

where Wa (Ph' .. ,PA,) is the old weight assigned to paths in PfJCt*) and the ki-th level 

is marked on the path that ends at (At, At). Similarly, given (pi, ... ,p~,)E 

mv( PfJ(;* -=-11)), we let 
A, 

Wmv(pi, ... ,p~,)=Wa-l(pi, ... ,p~,)+ L (li- 1), (2.10) 
i~l 
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where the li-th vertex is marked on the path that starts at (a + i -1, 0) and in this case 

Wa-I(P~' . .. , P~J is the old weight assigned to paths in ~()a* -=.11)' 

The involutions a on ml( ~(Aa*)) and {3 on mv( ~(;*-=.~)) are suggested by the 

involution cp used in theorem 1.1. Given (Pl> . .. ,P>.,) E ml( fiJ>(;*)), if (Pl> ... , P>.,) is 

nonintersecting then a(pl> ... ,P>.,) = (Pl>' .. , PA,). If (Pt. ... ,P>.,) is intersecting, then 
just like for cp, we take the lexicographically least lattice point (x, y) which is on two 
paths and the lexicographically least pair (i, j) such that Pi and Pi pass through (x, y) and 
switch the tails of Pi and Pi after (x, y) to get a new AI-tuple of paths (ql> .. . , q>.,). Then 
as with cp, we are insured that the signs assigned to (Ph' .. ,P>.,) and (ql> ... ,q>.,) are 
opposite. However, we must say how to deal with the marks. Notice that in expression 

• 

• 

• 

: ..... 
· · · · l 1. , 
• I 
• I 
• X I ... --t--.. -------.... · · · 

j x 

• • • • 

i 
a 

~ 
• 

• • 

JJ.: ... 
x • ...... . • I · I 

• I 
• X I .... --t-- ..... -- ..... -- ... • · · · x 

:l • • • 

• • • • 

• • 

• 

• • 
FIGURE 2.3. The or involution. 

( 4567) E m{ P3426 

( 4567) E mL P 2436 



A bijective proof of a hook formula 57 

(2.9) we assigned a weight to a marked level on a path according to its end point. So 
"'* A..* "'* .A.* ""* suppose Pi ends at (A(T" A(T) and pj ends at (A(Tj' A(T) so that there are A(T, horizontal 

segments or levels on Pi and A-! levels on Pj. After the switch, qi now ends at (X!, X!> 
and qj ends at (X!" X!) so that there are X!j levels on qi and X!, on qj. In this case, if th~ 
krth level of the t!, levels on Pi is marked (reading left to right), then we mark the ki-th 
level of theA!, levels on qj. Similarly, if the krth level of the A!j levels of Pj is marked, 
then we mark the krlevel of the X!j levels on qi. If n e {i, j}, then Pn = qn so we ensure 
that the same level is marked on both paths. The procedure will, in general, move some 
of the marks but by our definition of weight, it is easy to see that Wml(Ph ... ,PA,) = 
Wml(qh . .. ,qA,). Moreover, our definition of a ensures a (qh ... ,qA,) = (Ph . .. ,PA,) so 

that a is a weight preserving involution on ml( g>Ca*)) with fixed point set ml(NPf.). 

See Figure 2.3 for an example of the a involution. 

The definition of (3 on mv( g>C~*-=-~)) is similar. Given (pi, ... ,p~,)E 

mv ( g>(;* -=-11))' we let {3 (pi, ... ,p~,) = (pi, ... ,p~,) if (pi, ... ,p~,) is nonintersecting. 

If (p i, ... , P Ie> is intersecting, then as before we locate the lexicographically least lattice 
point (x, y) such that at least two paths pass through (x, y) and the lexicographically least 
pair (i, j) such that P: and pi pass through (x, y) and then we switch the tails of P: and 
pi after (x, y) to get a new AI-tuple of paths (qi, ... , q~,). Dealing with the marked 
vertices in this case is easier than with a since the number of vertices on a path depends 
only on its starting point. Thus, for example, P: and q: start at (a -1 +i -1,0) and hence 
have a + i -1 vertices on them. Thus, if the In-th vertex is marked on p~, we mark the 
In-vertex on q~ for all n = 1, ... ,AI. This procedure may change the marked vertices 
associated with the i-th and j-th paths but it will leave all other marked vertices fixed. 
By our definition of the weight in expression (2.10), it is easy to see that Wmv (p i, ... , p~,) = 

wmv(qi, . .. , q~,) so that {3 is weight preserving. Again it is easy to check that {3 is in fact 
an involution. See Figure 2.4 for an example of the (3 involution. 

Finally we must define a sign preserving map between ml( g>(Aa*)) and 

mv ( g> Ca* -=-11)) which we call the reduction map and denote by Red. We note that since 

a and {3 are weight preserving, to guarantee that expression (2.6) holds we must ensure 

that for all (Ph . .. ,PA,) E g>(t*) 
(2.11) 

The idea of the reduction map is very simple. Suppose that we have d > b > 0 and we 
take any path P E Pt with one marked level l. Now if we remove the marked levell and 
join the two end points of I together we get a path pi with d -1 segments of which b-1 
are horizontal segments. Thus pi EPt:~ and if we mark the vertex on pi where the two 
end points of I are joined together, it is clear we can recover p. Thus the correspondence 
p~p' is a bijection from m/(Pt) onto mv(Pt=t) and this is the reduction map and we 

(
a a+l ... a+A -1) 

write pi = Red(p). (See Figure 2.5.) Then for (Ph ... , PA.,) E ml P A~, A~2 ... A~,' ,let 
( 

a-I a'" a+A l -2) '. 
(Red(pl), ... , Red(PA,» = Red(Ph ... , PA,) E mv PA~'-1 A~2-1 ... A~, -1 . Thus Red IS a 

sign preserving bijection between ml( g>(Aa*)) onto mv ( g>(;* ~11)). [For example if 

(Ph ... ,P4)EP~~~~ in Figure 2.3 and (pi, ... ,p~)EPi~i~ in Figure 2.4, then 
Red(ph ... ,P4) = (p i, ... ,p~ ).J 
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• 

: ...... 
· · · 

CD I : j , 
· I E ( 3456) · I mv P 2315 
• I 
~-- ...... -- ..... --~ • · · · 
~ 

I!I • 

• • • • • 

• • • • • • • • 

i 
f3 

t 
• 

c· ® ........ j , · · I 

E mV(P7~~~) · I 

• I 
~-- ... -- ....... --~ • · · · 
~ 

• I!I 

• • • 

• • • • • • • • 
FIGURE 2.4. The (3 involution. 

For the weight preservin¥ properties of the reduction map, consider the i-th path Pi 
of (Ph, .. , PAl) E m/(P~. x: ::: X:A,-l) and suppose the li-th level of Pi is marked and this 

C71 0'2 CTA 

segment ends at (k, j). Now the wbight of li-th level of Pi is a - k + j. The number of the 
vertex marked on Red(Pi) is simply the number of vertices on Pi from (a + i -1, 0) to 
(k,j-1) which equals (a+i-1)-(k-1)+j-1=a+i-k+j-1. Thus the weight due 
to the marking of the level on Pi is Ii -1 and the weight due to the marking of the vertex 
on Red(Pi) = a + i - k + j - 2. Let h 10 ••• , hAd denote the levels on Pi reading left to right. 
Now if j < Ii and hi ends at (x, y), then under the reduction map hi is shifted up one unit 
and ends at (x -1, y). (See Figure 2.5.) But the weight of hi as a segment relative to 

q>(;*) is a - x + y and the weight of h j shifted up vertically one unit relative to q>(X* -=.11) 
is (a -1) - (x -1) + y = a - x + y so that hi contributes the same weight to W (Pi) relative 
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• 

• • 

• • • 

• • .... --~ 
I 

" 
I 
I 
I 

• • + 
I 
I 
I 

• .----f!J • • 
i t x Red p • • • 

p •••••• 

FIGURE 2.5. 

to ,o/>(t*) and W (Red(p;) relative to ,0/>(;* -=-~). Now if j > Ii, then hj is shifted diagonally 

up one unit and ends at (x -1, y -1). Thus its weight relative to ,0/>(;*-=-11) is a -1-

(x - 1) + Y - 1 = a - x + y - 1 and hence is one less than its weight relative to ,0/> C~* ). 
Thus the difference between wa(p;) and wa-l(Red(p;) is given by 

- ..... * - . ""* Wa (p;) -wa-l(Red(p;) - wa(h/.) + Au; -Ii - a - k + J + Au, -Ii. (2.12) 

Now taking into account the weights of the marked level on Pi and the marked vertex 
on Red(Pi), we have 

Wm/(Pi) -wmv(Red(Pi» = a -k +j + J...!, -Ii + (Ii -1) -(a +i -k + j -2) 

(2.13) 

Thus summing over all i, we get 

AI AI 

= L (A ~ + i - 1) - L (i - 1) 
i=1 i=1 

AI 

== L A~ =n. (2.14) 
i=1 

It now follows from Theorem 1.3 that if r = I (a, (3, Red), the iterated (a, (3) map in 

our situation, then r is a bijection from ml(NP(J...:)) onto mv(NP(;*-=-~)) such that 

expression (2.6) holds as desired. Thus the map x, required by Lemma 2.1, is the map 
that starts with a pair (B I A 10 T) E .reAl A I X g~, then sends (B I A 10 T) to a A I-tuple 
(Ph'" ,PAJEmINP'/'., next via r(Ph .. ' ,PA) is sent to a AI-tuple (pi, ... ,P~JE 
mv (NPi:~l)' and finally (pi, ... , P~,) is sent to a pair (D IA10 T') E ~~, X g~::t. Schemati­
cally, we can picture the X map as in the following diagram of X where the values in 
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brackets give the correspondence of the weights: 

(B I A b T) E ~" I A I X .'T~ ? 

[weB IAI)+w(T)] 

[n +w(D IAI)+w(T')] 

r 

(PI, ... ,P"J E mlNpf· 

[r+w(Pb'" ,P"J] 
{Y 

[r+n +w(p~, ... ,P~,)] 

This completes the proof of Lemma 2.1 and by our remarks preceding the lemma, we 
have the following: 

THEOREM 2.1. Let A = (Al;;o· .. ;;OAk >0) be a partition. There is a bijection (J:~" x 
.'T~~C(5~ such that for all (B, T)E~"x.'T~, w(B)+w(T)=p+w((J(B, T)), where p= 
"k . .... j=l IA j• 

C*IOI.~) 
t t t 

P3 P2 P, 

T' 

(' 213141. ffiE) 
t t 

P3 pz 

0 • 

I • 

2 • 

3 • • • 
X 

PI 4 • :**** •• ***-· · : x 
P2 5 •• ••••••••• ~-- ....... -- ... 

I 
I 
I 

P3 6 .. -----.... --... • • • 

pz 

o 

2 

3 

J Red 

• 

• 

• ~* •• *. 
· 

4 ••••••••••• ~-- ... 
I 
I 

I 

P'3 5 .. - -------.. • • 

6 • • • • • 

i 
(first co lu mn is forced) 

FIGURE 2.6. Step 1. 
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It is clear that our proof of Lemma 2.1 gives a constructive recursive procedure to 
calculate 8 so we end this section by explicitly carrying out this procedure in the following 
example. 

EXAMPLE. Let a = 4 and A = (3,2,2) so that A * = (1, 3, 3) and A* = (1, 4, 5). Consider 

II 

B T 

Step 1. Our first step is to carry out the X map on (B IAh T). Recalling our diagram 
of X, we proceed as in Figure 2.6. Notice that the reduction map in this case sends a 

fixed point in ml( g>(A4*)) to a fixed point in mv( g>(A * ~ 1)) so we require no iterations 

to find r in this case, i.e. r(Ph P2, P3) = Red(ph P2, P3)' Now at the end of step 1, we 
have produced the first row of D = 8(B, T), 1413121, and a tableaux T' E g-!-A!. 

Step 2. We next take (B IA -AI. T') and repeat the procedure as shown in Figure 2.7. 
In this case, Red(ph P2) is intersecting which means that r, the iterated (a, (3) map, 

( [ili] . fITiJ) E if A-A X [D2J [ili] , 
- 3 

? A- A, 

o • 

,. . 
2 x 

S,.: ... PI 3 
PI P2 · · · 4 · • • P2 _ ••••• * ••• -

tRed 

o • 

'J 
2 * .**.-

* * 

4. • • • 

FIGURE 2.7. Step 2. 
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• • • 

• • J ..... • • · · Red {3 · · (PI ,P2) = 
X • · I!I 

~ ..... 
~ -----';>0 : · · · · · · · · e****[!] • • _.***(!J • • . 

x . 
e****e****. • • • • • • • • • • • • 

~ Red-I 

• • • 

J • • • 
Red Q 

f(PI,P2) ~ -E--

~ -- • • : · · · · · x x · x · · e****e****. • ... ****. : • · · · · · x • · · • • • • • e****e****e • • _****e****_ • • 
FIGURE 2.8. Iterations used to find F(Pb P2)' 

requires more than one iteration. For emphasis, we shall explicitly picture the iterations 
to find rep!. P2) as shown in Figure 2.8. Now having constructed rep!. P2), we complete 
our picture by 0 

DIA2 T" (rn. ITEJ)-
1 

~ 2 [!] 
* 

3 * · ***. ***. 

4 
Thus at the end of the second step of the procedure we have produced the second row 
of D, D IA2 = lJW, and a tableau T"E g-LAI-A2' 

(~ , GIQ) E ;fA-AI-A, X 
-2 
~ 1.-1. ,-1. 2 

• 

(~,GI!J)-- j 
PI 

~ P2 • 
t Red 

01>"3 P'I ~ ([2GJ,~) 
P'2 • 

• • • • 
FIGURE 2.9. Step 3. 
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Step 3. Finally we take (B IA -A 1 -A2, Til) and repeat the procedure as shown in 
Figure 2.9. Notice that in the last step of the procedure the paths (p~, p;) are completely 
forced and hence the only information they code is D 1 A3 E fT~3" 

At the end of the procedure we have B(B, T) =D =D IAI uD IA2 uD IA3 so that 

(J llir2 0 

1 1 , 

1 0 [illfl 2 

2 2 

4 4 
gr34 

= 1 3 

o 1 

One can easily check that, indeed, weB) +w(T) = L:~1 iAi +w(D) in this case. The 
interested reader will find it instructive to carry out the procedure on some examples of 
his own. For example, as an exercise the reader can check that for A = (4, 3, 3, 2) and 
a = 5 that 

II 6 3 2 01 1 2 2 41 3 4 4 7J 
1 2 1 3 3 4 3 3 1 

(J 
0 2 0 4 4 5 1 0 4 

\ 1 0 5 5 1 2 
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