the median JI for BS had increased to 0.67 (range 0.65 -0.70) and the median JI for CT1 had increased to 0.70 (range 0.66 - 0.75). 

**Conclusions:** Target volume delineation varies significantly in head and neck radiotherapy trials. However, it appears that detailed RTQA feedback does improve clinician conformity within the pre-accrual period.

**PO-0938**

Use of deformation metric for head and neck atlas selection

G. Stevenson1, F. Perrens2, M.J. Gooding1

1Mirada Medical Ltd, Science and Medical Technology, Oxford, United Kingdom

**Purpose/Objective:** Metrics relating to the deformation field between the patient and an atlas have been frequently used in the literature as a method of atlas selection. Two popular metrics in neurology have been the mean and maximum of the deformation after rigid alignment, used as a method to assess similarity between patient and atlas. The aim of this study was to investigate whether this approach is suitable for head and neck atlas selection.

**Materials and Methods:** 33 structures were contoured to atlas standard according to RTOG guidelines for 10 Head and Neck subjects. A leave-one-out approach was used to auto-contour each case using an atlas-based contouring system (RTx, Mirada Medical, Oxford, UK). Thus, 90 cases with manual ground truth results were available for assessment. The Dice similarity between the patient and selected atlas was calculated in each case as a method to assess similarity. The mean and maximum absolute deformation distance after rigid registration were measured. The correlation between the deformation metrics and the Dice similarity were calculated using Spearman rank correlation coefficient.

**Results:** The average Dice similarity for the case as a whole was 0.79. The average and maximum absolute deformations were 16.90mm and 59.31mm respectively. The Spearman rank correlation coefficient was -0.11 for Dice versus mean and 0.02 for Dice versus max.

**Conclusions:** Poor correlation was found between the deformation metrics and the Dice similarity, suggesting that these metrics are not suitable for atlas selection on a whole case basis for head and neck cancer. These deformation metrics may reflect change in patient position, and it may be more appropriate to measure deformation for individual structures as a method of assessing similarity.

**PO-0939**

Factors of importance for the need for adaptive re-planning in head and neck IMRT

A. Schoubbe1, U.V. Elstrøm1, M. Ellegaard1, C. Grau1

1Aarhus University Hospital, Department of Oncology, Aarhus, Denmark

**Purpose/Objective:** Adaptive re-planning is of interest in head and neck IMRT due to anatomical changes with potential dosimetric consequences. It is not clear how and when such re-planning should be performed. Weight loss and tumor shrinkage occur in some but not all patients. The daily volumetric KV-Cone Beam CT (CBCT) taken for positioning may be used to select patients for re-planning. The purpose of this study was to identify factors of importance for the need for adaptive re-planning during the treatment course. Tumor site, TNM stage, age, body weight twice weekly, HPV status and medication during treatment were collected from patient records and CBCT scans were reviewed off-line. From the daily CBCTs in the online matched position template changes in the body outline from planning at the level of cervical vertebra C2 were measured to assess shrinkage of soft tissue near the parotid glands.

**Results:** A total 36 (10%) of curative head and neck patients were re-planned over a 2 year period. Average time for re-plan was after 14 fractions. Eight patients needed more than one re-plan. Cause of re-planning was improper immobilization in 23 patients, of whom 14 needed a new mask. Six patients had significant weight loss, 4 from tumor shrinkage, 3 from tumor growth and 3 from swelling. Despite interventions with dietary supplements a significant weight loss (3.5% mean) was observed, most pronounced in the group of patients treated with chemoradiotherapy, who lost 13% weight. Data from more than 1000 CBCT have been collected and investigations of the association between patient weight curve and change in body-outline are ongoing.

**Conclusions:** The data suggest that adaptive replanning during head and neck cancer IMRT is necessary in about 10% of cases, most commonly due to weight loss and tumor shrinkage, leading to unstable immobilization. The potential role of using anatomical information from the daily CBCT in a prognostic model for the need for replanning is currently being investigated.

**PO-0940**

The influence of bladder and rectum movement on geographic miss during post-prostatectomy IMRT

L. Bell1, J. Cox1, T. Eade1, M. Rinks1, A. Kneebone1

1Royal North Shore Hospital, Radiation Oncology, St Leonards, Australia

**Purpose/Objective:** There is little guidance for Radiation Oncologists on appropriate margin for post-prostatectomy IMRT (PP-IMRT) and what importance to place on reproducible bladder and rectal filling. The aim of this study was to quantify prostate bed movement and to determine what amount of bladder or rectum size variation creates the potential for geographic miss.

**Materials and Methods:** Cone Beam CT images (n=377) of forty patients, who received PP-IMRT, were reviewed. Prostate bed motion was measured in the upper and lower segments using the position of surgical clips relative to bony anatomy. The movement was then related to variation of bladder and rectal filling. The frequency of potential geographic misses was calculated assuming a 1cm CTV to PTV margin except 0.5cm posteriorly.

**Results:** The mean movement of the prostate bed in the anterior/posterior (A/P), superior/inferior (S/I) and left/right (L/R) directions was: upper portion: 0.50cm, 0.28cm, and 0.10cm respectively, and lower portion: 0.18cm, 0.18cm, and 0.08cm. Most geographic misses occurred in the upper prostate bed in the A/P direction. Geographic miss occurred in the A/P, S/I, L/R directions in the upper prostate bed in 18.0%, 1.1%, and 0% of images respectively, and in the lower prostate bed in 1.9%, 0%, and 0% respectively. In the upper prostate bed, variations in bladder filling of >2cm larger, ±1cm, or >2cm smaller occurred in 3.5%, 55.7%, and 15.4% of images respectively. These variations in bladder filling resulted in geographic misses in 61.5%, 9.5% and 27.6% of these images respectively. In the upper prostate bed, variations in rectal filling of >1.5cm larger, 1.1cm larger to 1cm smaller, and <1cm smaller occurred in 17.8%, 75.1%, and 7.1% of images respectively. These variations in rectal filling resulted in geographic misses in 28.4%, 12.4%, and 63.0% of these images respectively. Bladder and rectum size variation had minimal impact in the lower prostate bed, with less than 2% of all images demonstrating a potential geographic miss.

**Conclusions:** Greatest movement occurred in the upper prostate bed especially in the A/P direction. Potential geographic miss occurred in 20.2% of all images with a 0.5cm posterior margin. Bladder and rectum size changes had greatest potential for geographic miss seen when the bladder increases or the rectum decreases. Therefore ensuring a full bladder and empty rectum at simulation could significantly decrease the frequency of potential geographic miss.

**PO-0941**

A prospective analysis of inter and intrafractional errors to calculate CTV to PTV margin in HH cancer patients

J.F. Perez1, J. Cacciolo1, R. Ortiz de Zarate1, O. del Hoyo1, A. Lasso1, A. Gomez de Iturriaga2, E. Boyo1, I. Trueba1, F. Caquerera1, P. Bilbao2

1Hospital de Cruces, Medical Physics, Barakaldo, Spain
2Hospital de Txagorritxu, Radiotherapy, Vitoria, Spain

**Purpose/Objective:** To analyse the appropriate CTV-PTV margin in head and neck (HN) carcinomas for our institution.

**Materials and Methods:** Twenty-three consecutive patients with HH tumors were analysed. Patients were immobilized with a thermoplastic mask fixed on each angle indexed carbon mask fixed to the table coach of the linac. Two orthogonal (anterior-posterior, and lateral) set-up fields were used for the isocenter’s verification. Digitally reconstructed radiographs of those fields were imported into the electronic portal imaging device software for verification purposes. Manually bony anatomy template matching was undertaken in an off-line environment to compare reference images to those acquired daily during treatment in order to extract the displacement errors. Displacements in antero-posterior and in crano-caudal were measured on the lateral portal image. Displacements in crano-caudal
For all the treatment sessions analysed, the systematic component of the interfraction displacement \( (\vec{d}) \) between simulation and portal images was 0.77, 1.45, 1.27 mm in M-L (X), C-C (Y) and A-P (Z) directions respectively. The random component of the displacement was 1.31, 1.13 and 1.20 mm in M-L, C-C and A-P directions respectively. On average, the Y direction had greatest shifts compared to X and Z directions.

**Interfraction error**

For all the treatment sessions analysed, the systematic interfraction displacement \( (\vec{d}_{\text{sys}}) \) was 1.11, 0.56, 0.79 mm in M-L, C-C and A-P directions respectively. The random \( (\vec{d}_{\text{rand}}) \) component of the interfraction displacement was 1.10, 1.11 and 1.13 mm in M-L, C-C and A-P directions respectively.

The systematic constituent of a deviation from the isocentre signifies displacement that is persistent during the whole treatment course, while the random constituent of a deviation \( (\vec{d}) \) signifies day-to-day variations during the treatment course. The resultant values were incorporated into a formula proposed by Van Herk et al. to derive PTV margins \( (M = 2.5 \sigma \pm 0.7\sigma) \). See Fig 1.

**Results:** A total of 276 portal images were prospectively analysed in 23 patients.

**Interfraction error**

All the correction was performed when a setup error of \( \geq 3 \text{mm} \) was detected. Intrafractional error was analyzed to evaluate the efficacy of immobilization devices. In the figure 1 is shown a diagram of the protocol used.

**Results:** The migration of FM was estimated comparing centroid of triangle formed by markers on planning set-up DRR images and last fraction 2D kV image pair. The mean 3D FM migration vector SD was found to be 0.9 mm ± 0.4 mm. The estimation of positional accuracy of different imaging methods (MV, kV, CBCT) was first performed on block phantom. For prostate cancer patients all imaging methods agreed relatively well for Left-Right direction shifts (the residual error and SD were on average 1 mm ± 1 mm for all methods compared to reference [range from -2 mm to 5 mm]), however as expected there were larger deviations for Anterior-Posterior and Superior-Inferior shifts between imaging based on bony anatomy and on soft tissue or markers. The residual error and SD were on average 2 mm ± 2 mm for methods using bony anatomy [range from -11 mm to 10 mm]. CBCT is superior to imaging based on bony anatomy and it was correlating with FM on 82% of imaging fractions when residual error of not more than 5 mm for all axes was accepted. However, this dropped to 56% of imaging fractions when residual error of not more than 2 mm was needed. For gynaecological cancer patients the differences between different methods are smaller. Both MV and kV imaging is correlating with CBCT on 90% of imaging fractions when 5 mm residual error is acceptable.

**Conclusions:** When daily positioning precision better than 5 mm is needed for prostate cancer patients then FM are superior to CBCT. The main uncertainty in CBCT comes from prostate outline determination on CBCT images. For gynaecological cancer patients similar positional precision have been achieved with all three methods when rotations are not taken into account. Therefore, for daily imaging 2D kV image pair could be. However, to correct rotational uncertainties weekly CBCT is recommended.