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Abstract

We discuss in this short survey article some current mathematical models from neurophys-
iology for the computational units of biological neural systems: neurons and synapses. These
models are contrasted with the computational units of common arti$cial neural network models,
which re.ect the state of knowledge in neurophysiology 50 years ago. We discuss the problem
of carrying out computations in circuits consisting of biologically realistic computational units,
focusing on the biologically particularly relevant case of computations on time series. Finite state
machines are frequently used in computer science as models for computations on time series.
One may argue that these models provide a reasonable common conceptual basis for analyzing
computations in computers and biological neural systems, although the emphasis in biological
neural systems is shifted more towards asynchronous computation on analog time series. In the
second half of this article some new computer experiments and theoretical results are discussed,
which address the question whether a biological neural system can, in principle, learn to behave
like a given simple $nite state machine. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computational models for neural systems have often concentrated on the processing
of static stimuli. However, numerous ecologically relevant signals have a rich temporal
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Fig. 1. Implementation of a FSM as sequential machine (as de$ned in [13]). The boolean function fM
relates the current input symbol u(k) and the current state x(k) to the output symbol y(k) and the next state
x(k + 1). We assume in this article that u(k), x(k) and y(k) are encoded as bit strings.

structure, and neural circuits must process these signals in real time. In many signal
processing tasks, such as audition, almost all of the information is embedded in the
temporal structure. In the visual domain, movement represents one of the fundamental
features extracted by the nervous system. Hence, it is not surprising that in the last few
years there has been increasing interest in the dynamic aspects of neural processing.
Processing of real-world time-varying stimuli is a diIcult problem, and represents an
unsolved challenge for arti$cial models of neural functions. Simultaneously, in com-
puter science several areas such as, for example, computer vision, robotics, and machine
learning have also increased their eJorts to deal with dynamic real-world inputs.
A computational model which is, in principle, suitable for analyzing computations

on time series is that of a 6nite state machine (FSM). Informally speaking, a FSM
is an abstraction of a device that operates on strings of symbols. But in contrast to
the closely related deterministic $nite automaton (DFA), which just accepts or rejects
an input, the FSM generates for each input string a corresponding output string in an
online manner. The mapping is not arbitrary, but is constrained by the $nite number
of internal states the FSM is allowed to use (for a formal de$nition see [13]). A FSM
can be implemented in several ways. One particular implementation of a FSM which
naturally associates time with the FSM is the so-called sequential machine (SM). It
consists of a boolean function fM which relates the current input symbol u(k) and the
current internal state x(k) to the current output symbol y(k) and the next internal state
x(k + 1); see Fig. 1. The concept of a FSM is a very general model for computation
on time series. However, FSMs are abstract devices and there is no direct relationship
between a FSM and most common models for biological neural systems.
A model for computations in biological neural systems that captures the essential

aspects of biological neural systems has to take into account the way how biological
neurons transmit and process information (see Section 2 for more details). The output
of a biological neuron consists of a sequence of almost identical electrical pulses,
or “spikes” (see Fig. 2). These so-called spike trains are the time series which are
processed by a biological neural system.
In this survey article we point to some new results that address the question what

computations a network of spiking neurons can perform. In particular, we will show
that a network of spiking neurons cannot only perform all computations that a certain
subclass of FSMs can perform, but can also learn to do so.
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Fig. 2. (A) Typical action potential (spike). (B) A typical spike train produced by a neuron (each $ring
time marked by a bar).

This article is organized as follows: In Section 2 we describe a formal model of
a network of spiking neurons. In Section 3 we discuss a computational model which
is suitable for analyzing computations on spike trains. Based on this computational
model we present empirical data from computer simulations that show how a subclass
of FSMs can be learned with a network of spiking neurons. We also brie.y outline
the theory behind these experiments (Section 4).

2. A model for a network of spiking neurons

In this section, we discuss a formal model of spiking neurons that captures the
fact that biological neurons communicate via spikes. 1 For an excellent survey about
modeling neural systems we refer to [5].
If one ignores all dynamic aspects, then a spiking neuron has some similarity to the

familiar threshold gate in computer science (see for example [23]). A threshold gate
outputs 1 if and only if the weighted sum of its inputs reaches some threshold. Similarly
a spiking neuron i “$res”, i.e. generates a short electrical pulse, which is called action
potential, or “spike” (see Fig. 2(A)), if the current input at time t drives the membrane
potential hi(t) above some threshold �i. Each such spike has the same shape. Hence the
output of a spiking neuron is a sequence of spikes at certain points in time, informally
called “spike train” (see Fig. 2(B)). Formally, the spike train generated by neuron i
is simply the set of $ring times Fi ⊂R+ (R+ = {x∈R: x¿0}).
In the simplest (deterministic) model of a spiking neuron one assumes that a neu-

ron i $res whenever the membrane potential hi (which models the electric membrane
potential at the “trigger zone” of neuron i) reaches the threshold �i. hi is the sum
of the so-called excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic
potentials (IPSPs), which result from the $ring of “presynaptic” neurons j that are
connected through a “synapse” to neuron i (see Fig. 3).
The $ring of a neuron j at time t̂ contributes to the potential hi(t) at time t an

amount that is modeled by the term wij(t̂)
ij(t − t̂), which consists of the synaptic
strength wij(t̂)¿0 and a response-function 
ij(t − t̂). Biologically, realistic shapes of
such response functions are indicated in Fig. 3(B). If �i is the set of all neurons

1 The “spike trains” demo software which illustrates information processing with spikes can be downloaded
from http://www.cis.TUGraz.at/igi/tnatschl/spike trains eng.html.

http://www.cis.TUGraz.at/igi/tnatschl/spike_trains_eng.html
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Fig. 3. Information processing with spikes. (A) Spikes are generated by a threshold process whenever the
membrane potential hj(t) crosses the threshold �j(t − t̂). The spike travels down the axon of neuron j. Via
the synaptic connection 〈ij〉 the spike is transformed into a postsynaptic response at neuron i. (B) Typical
shape of a postsynaptic response, which is either positive (EPSP) or negative (IPSP), of a biological neuron.
(C) Typical shape of the threshold function �j(t− t̂) of a biological neuron (t̂ is the time of its most recent
$ring).

presynaptic to neuron i, then the membrane potential hi(t) at the trigger zone of neuron
i at time t is given in terms of the sets Fj of $ring times of these presynaptic neurons
j by

hi(t) :=
∑

j∈�i

∑

t̂∈Fj :t̂¡t
wij(t̂)
ij(t − t̂) : (1)

The membrane potential hi(t) does not really correspond to the weighted sum of a
threshold gate since it varies over time. Unfortunately, not even the threshold �i is
static. If a neuron i has $red at time t̂, it will not $re again for a few ms after t̂, no
matter how large its current potential hi(t) is (absolute refractory period). Then for a
few further ms it is still reluctant to $re, i.e. a $ring requires a larger value of hi(t)
than usual (relative refractory period). Both of these refractory eJects are modeled
by a suitable threshold function �i(t− t̂), where t̂ is the time of the most recent $ring
of i. A typical shape of the function �i(t − t̂) for a biological neuron is indicated in
Fig. 3(C).
The synaptic strength wij(t̂) can be interpreted as the amplitude of the postsynaptic

response triggered by the $ring of neuron j at time t̂, whereas the time course and
the sign (EPSP or IPSP) of the response are determined by the response function

ij(t − t̂). 2

2 The restriction of wij(·) to non-negative values—in combination with positive (EPSP) or negative (IPSP)
response functions 
ij(·)—is motivated by the empirical result that a biological synapse is either excitatory
or inhibitory, and that it does not change its sign in the course of a learning process. In addition, for
most biological neurons j, either all response-functions 
ij(·) for postsynaptic neurons i are excitatory (i.e.
positive), or all of them are inhibitory (i.e. negative).
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In most mathematical models for spiking neurons one ignores the time dependence
of the factor wij(·), and views it as a constant wij which only changes on the slow
time scale of learning. Thus wij corresponds to a “weight” in traditional models for
arti$cial neural nets. However, a large number of experimental studies have shown
that biological synapses have an inherent short-term dynamics, which controls how the
pattern of amplitudes of postsynaptic responses depends on the temporal pattern of the
incoming spike train [17,25]; see Fig. 6 for an example. Various quantitative models
have been proposed [1,19] involving a small number of hidden parameters, that allow
us to predict the response of a given synapse to a given spike train once proper values
for these hidden synaptic parameters have been found. In this article we will use the
model of Markram et al. [19] and point to one possible role of such dynamic synapses
(see Section 3).
We assume that for some speci$ed subset of input neurons their $ring times (spike

trains) are given from the outside as input to the network. The $ring times for all
other neurons are determined by the previously described rules, and the output of the
network is given in the form of the spike trains for the neurons in a speci$ed set of
output neurons (see Fig. 7 for an example).
We would like to point out that the formal model for a spiking neuron that we have

outlined so far is a coarse simpli$cation. In particular, the membrane potential hi(t) at
the trigger zone of a neuron i is, in general, not a linear sum of incoming pulses. Both
sublinear and superlinear summation occur in biological neurons. Also the threshold
function �i (see Fig. 3(C)) varies from neuron to neuron. For example, in the case of
periodically $ring neurons (“pacemaker” neurons) the threshold function �i may also
rise again after its initial decline. With regard to further details about biological neural
systems we refer to [10–12,21,27].

3. Induction of �nite state machines

In this section, we will sketch a new computational model for analyzing computations
on spike trains and show on the basis of this model how, in principle, a network of
spiking neurons can be trained to mimic the behavior of a given de$nite memory
machine (DMM) which is a special case of a FSM. This approach is quite diJerent
from previous theoretical work [14] where it is shown that certain recurrent networks
of spiking neurons can, in principle, simulate any given Turing machine. The results
reported in [14] are based on a construction where the current state of the simulated
Turing machine is stored by the activation of a proper set of oscillators consisting
of a small network of spiking neurons. No such—biologically somewhat dubious—
oscillators are required in the feedforward network that we will investigate in this
article.
We will consider the problem of constructing a network N of spiking neurons

which approximates the behavior of a given DMM M with binary input and output
symbols, i.e. M transforms an input string u∈{0; 1}∗ to an output string y∈{0; 1}∗.
The current output y(k) of a DMM depends only on a $nite number d of previous
inputs u(k − 1); : : : ; u(k − d) in addition to the current input u(k) (see Fig. 4; for a
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Fig. 4. Implementations of a DMM as sequential machine. The current output y(k) is determined by some
boolean function fM, which is applied to a $nite number d of previous inputs u(k − 1); : : : ; u(k − d) in
addition to the current input u(k).

Fig. 5. A new computational model for analyzing computations on time series u(·), such as for example
spike trains.

formal de$nition of a DMM see [13]). 3 We will denote by Dd the class of all DMMs
M for which y(k) can be written in the form

y(k) = fM(u(k); u(k − 1); u(k − 2); : : : ; u(k − d)): (2)

Note that there are 22
d+1

choices for the function fM, or equivalently |Dd|=22
d+1

.

3.1. The network architecture

On an abstract level the computational model that we will consider, see Fig. 5,
consists of an array B1 : : : ;Bm of subsystems—denoted as basis 6lters in the following
—whose collective outputs de$ne a continuous state vector x(·). Note that this state
vector x(·) diJers in general from the current state of the simulated DMM. It is more
closely related to the state vector of a dynamical system [24]. This state x(·) is trans-
formed into an output y(·) by means of a suitable memoryless output device.

3 We will write u(k) (y(k)) for the kth symbol (bit) of the string u(y).
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3.1.1. The set of basis 6lters
From a theoretical point of view it would suIce to choose the basis $lters B1 : : : ;Bm

as a proper set of delay lines. In this case the resulting network is structurally similar
to the implementation of a DMM as sequential machine in the sense that the output
is computed directly from the input and delayed versions of it via the output device
(which corresponds to the boolean function fM in the case of a DMM). It is not
surprising that such an architecture can simulate an arbitrary DMM M if the output
device is able to compute the equivalent of the boolean function fM. However, from a
biological point of view such an implementation is not satisfactory since transmission
delays of more than 30ms are rarely found in cortical circuits [22]. On the other hand
biologically organisms need to respond appropriately to time series that are spread out
over much larger time spans. For example, the temporal distance between saccades
(rapid eye movements) is on average around 300 ms.
Hence, we propose a biologically more plausible implementation for the set of basis

$lters: we employ a multitude of biologically realistic dynamic synapses with a uniform
delay, but with a suitable distribution of the parameters which control the current
synaptic strength. We employ the model of Markram et al. [19], where three parameters
Uij, Fij, and Dij control the dynamics of a synaptic connection 〈ij〉 between neurons
j and i. A fourth parameter Aij—which corresponds to the synaptic “weight” in static
synapse models—scales the absolute sizes of the postsynaptic responses. The resulting
model predicts the amplitude wij(tm)=Aij · uij(tm) ·Rij(tm) of the postsynaptic response
to the (m+1)th spike in a spike train Fj = {t0; t1; : : : ; tm} with interspike intervals (ISIs)
�k = tk+1 − tk ; k =0; : : : ; m− 1, in terms of two internal dynamic variables uij and Rij

ranging over [0; 1], whose dynamics is governed by the following recursive equations 4

uij(tk+1) = Uij + uij(tk)(1− Uij) exp(−�k=Fij);

Rij(tk+1) = 1 + (Rij(tk)− uij(tk)Rij(tk)− 1) exp(−�k=Dij) (3)

with the initial conditions u(t0)=U and R(t0)= 1 for the $rst spike.
It is reported in [9] that the synaptic parameters U; F; D are quite heterogeneous,

even within a single neural circuit (see Fig. 6(A)). Note that the time constants D
and F are in the range of a few hundred ms. The synapses investigated in [9] can
be grouped into three major classes: facilitating (F1), depressing (F2) and recovering
(F3). Fig. 6(B) compares the output of a typical F1-type and a typical F2-type synapse
in response to a typical irregular spike train. One can see that the same input spike
train yields markedly diJerent outputs at these two synapses.
Whenever we talk about synaptic strength or weight in the following we refer to the

parameter Aij. In our learning experiments we just modify this parameter Aij, whereas
Uij; Fij; Dij are assumed to be $xed (at some biologically realistic values).
The vector of internal states x(t)= 〈x1(t); : : : ; xm(t)〉 of our computational model

consists of the individual outputs xj(t) of the m basis $lters. In our concrete

4 To be precise: the term uij(tk)Rij(tk) in Eq. (3) was erroneously replaced by uij(tk+1)Rij(tk) in the
corresponding Eq. (2) of Markram et al. [19]. The model that they actually $tted to their data is the model
considered in this article.
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Fig. 6. Synaptic heterogeneity. (A) The parameters U; D, and F can be determined for biological synapses.
Shown is the distribution of values for inhibitory synapses investigated in [9] which can be grouped
into three mayor classes: facilitating (F1), depressing (F2) and recovering (F3). (B) Synapses produce
quite diJerent outputs for the same input for diJerent values of the parameters U;D, and F . Shown are
the amplitudes w(tk) (height of vertical bar) of the postsynaptic response of a F1-type and a F2-type
synapse to an irregular spike train (horizontal positions of vertical bars mark the spike times). Parameters:
U =0:16; D=45 ms; F =376 ms for F1, and U =0:25; D=706 ms; F =21 ms for F2.

Fig. 7. A network of spiking neurons which can learn to mimic a given de$nite memory machines. Via
its excitatory (•) and inhibitory (◦) synapse the neuron a generates a spike train (“negated” input) which
corresponds to the bitwise inverted input string. During learning only the strengths of the dynamic synapses
(gray circles) to the n neurons in pool P are adjusted.

implementation the jth basis $lter is a single dynamic synapse which either receives
the input spike train s or the “negated” input spike train Ps as input; see Fig. 7. Hence,
we de$ne xj(tk) := uj(tk) · Rj(tk) where j refers to the jth dynamic synapse. Later we
will determine the synaptic strength Aij through a suitable learning algorithm.

3.1.2. The output device
Here we consider as output device a small pool P of spiking neurons and view the

fraction p(t) of neurons in P which $re during a short time interval [t − �; t] as the
output of the computation. To convert p(t) into an output spike train one could use a
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spiking neuron v which receives input from all neurons in pool P (see Fig. 7). In that
case the time course of the membrane potential hv(t) would approximate very closely
the time course of p(t). The spiking mechanism of neuron v translates hv(t) into an
output spike train. For sake of simplicity, we assume that this implementation of the
output device has no temporal delays. However, more realistically one could assume
that the output device maps x(t) to p(t + �) and h(t + �+ �′) for some $xed delays
�; �′ in the range of 5–10 ms.
Recent results [2,15] show that such a single population P of spiking neurons (even

without lateral or recurrent connections) has enough computational power so that a
large class of functions that map state vectors x(t) to the population activity p(t) can
be computed. Furthermore, there exists a new learning algorithm [2], which allows
to tune the synaptic strengths Aij of neurons i∈P such that a given function g from
x(t) to p(t) is computed. From a biological point of view it is particularly appealing
that this algorithm requires for each neuron just the application of a perceptron-like
local learning rule: Whenever too many neurons in P are $ring the weights Aij of all
neurons i∈P which $re are changed such that the membrane potential hi(t) decreases
for the current input x(t). In the case where too few neurons $re the weights of all
neurons which are not $ring are changed such that the membrane potential increases
for the given input (for details see [2]).
To summarize, the proposed network for implementing a given DMM M is a feed-

forward network of spiking neurons consisting of an array of dynamic synapses (the
basis $lters) which supplies the input x(t) to a pool P of spiking neurons (the out-
put device). All information about preceding inputs is carried within these dynamic
synapses. The pool P in turn drives the neuron v which produces the desired output
spike train; see Fig. 7.

3.2. The training procedure

3.2.1. The learning task
The goal of the training experiments which we are now going to describe is to show

that it is possible to mimic the behavior of a DMM M which is chosen randomly from
the class Dd de$ned at the beginning of Section 3 with a 6xed network architecture
(see Fig. 7). Only the values Aij of the synaptic strengths of the dynamic synapses
are diJerent when the network of Fig. 7 is used to simulate two diJerent DMMs
M;M ′ ∈Dd. Note that the number of dynamic synapses, the number n of neurons in
pool P, and the values of the parameters Uij; Dij and Fij are equal for all target DMMs
M ∈Dd. Hence, to simulate a given M ∈Dd we have to $nd proper values Aij for the
synaptic strengths of the dynamic synapses. We will use the learning algorithm from
Auer et al. [2] to accomplish this task. In order to do so we have to generate a suitable
set of training examples.
Speaking more formally, to simulate a given M ∈Dd by a network N of spiking

neurons (see Fig. 7) we need to implement a certain function gM : Rm → [0; 1]—
the target function—which maps state vectors x(t) to population activity p(t). The
network N implements the function gN : Rm → [0; 1] which is de$ned by the values
Aij ∈R; i=1 : : : n; j=1 : : : m of the synaptic strengths of the dynamic synapses. Hence,
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the task of the learning algorithm is to $nd proper values Aij such that gN approximates
gM .

3.2.2. Encoding of input and output
In order to simulate a given DMM M with a network of spiking neurons we have

to choose a particular encoding for the input and output of the DMM M in terms
of an input and output spike train. We represent a value u(k)= 1 (y(k)= 1) by the
occurrence of a spike and a value u(k)= 0 (y(k)= 0) by no spike in the corresponding
time interval. Since spiking neurons normally operate in an asynchronous way one has
to de$ne times tk when one should “look for a spike”. To accomplish this we use an
extra input (“pacemaker”) to our network of spiking neurons which supplies the times
tk in the form of a regular spike train of 40 Hz (see Fig. 7). In a biological context
such invariant periodic input is for example provided by well-known global rhythms
that show up in EEG-recordings; such as rhythmic discharge in the gamma frequency
band (20–70 Hz).

3.2.3. Generation of training examples
As a consequence of our encoding scheme it is only relevant for the times tk how a

state vector x(tk) is mapped to the population activity p(tk) (p(tk)= gN(x(tk))). If the
network N receives an input spike train which encodes a string u∈{0; 1}q and should
produce an output spike train which encodes the string y∈{0; 1}q—the output of the
DMM M—then p(tk)= gN(x(tk)) should be as close as possible to y(k)= gM (x(tk))
for all t1; : : : ; tq. Therefore, the set of training examples consists of tuples 〈z; o〉 where
z= x(tk) and o=y(k) is the target output. A simulation of such network N with the
time points tk marked by dashed lines in shown in Fig. 8.
After the learning algorithm has found proper values for the synaptic strengths Aij

either a large (y(k)= 1) or a small (y(k)= 0) fraction of neurons i∈P will $re around
time tk . Therefore if one chooses a proper threshold for the output neuron v it will
(y(k)= 1) or will not (y(k)= 0) $re around time tk according to the value of y(k).

3.2.4. Results
Some results of our learning experiments 5 for d=3 (|D3|=22

4
= 65536) are sum-

marized in Fig. 9. We have randomly chosen 650 DMMs M ∈D3 from the uniform
distribution over all M ∈D3. For each of these DMMs we trained a network N with the
learning algorithm from Auer et al. [2] on a single randomly chosen string u∈{0; 1}∗
of length 400. To check whether the network has really learned to mimic the DMM
at hand we measured the performance (percent of correct output spikes) of the trained
network on a randomly chosen test string ũ∈{0; 1}∗ of length 400. As one can see

5 For numerical simulations of spiking neurons we used the so called leaky integrate-and-$re neuron model
(see e.g. [5]) with a membrane time constant of $m =20 ms. The only parameters that are modi$ed in our
learning experiments are the synaptic parameters Aij that scale the m=18 components of x(t) (i.e. the output
uj(t) ·Rj(t) of the jth dynamic synapse) individually for each neuron i in the population P of size 200. Each
neuron is connected to the input spike train s and to the “negated” input spike train Ps via nine synapses
(postsynaptic current time constant $s = 1 ms). Each set of nine synapses consists of three depressing, three
facilitating and three recovering synapses with time constants D and F in the range of 30–100 ms.
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Fig. 8. Numerical simulation of the network of Fig. 7 for the input string u=10110010. The traces 1–12
show the contributions to the membrane potential of selected dynamic synapses of the network. Synapses
1–6 receive the direct input s whereas synapses 7–12 get the negated signal Ps as input. If one looks for
example closely at trace 1 one can see that the amplitudes of these EPSPs diJer from spike to spike. These
subtle diJerences, which also vary from synapse to synapse, can serve as short-term memory for a neural
system, since the amplitude for the current spike contains information about the preceding part of the spike
train. The dashed lines mark the times tk at which the state vector x(tk) is recorded in order to serve—in
combination with the target output y(k)—as training example for our learning experiments. Note the time
diJerence (a few ms) between the pacemaker and the time points tk . We have chosen the times tk in that
way because usually a few ms elapse until a EPSP or IPSP reaches its extremal value.

in Fig. 9 the performance on the test string ũ is near 100% (average 96.07%) for all
650 randomly chosen DMMs. This indicates that at network of spiking neurons (see
Fig. 7) can learn to behave like an arbitrary DMM M ∈D3.

4. Theoretical background

In this section, we brie.y review the theory which underlies the computational model
employed in Section 3. Most of this theory was developed in the context of common
models for analog computations in populations of spiking neurons (“population coding”



262 T. Natschl�ager, W. Maass / Theoretical Computer Science 287 (2002) 251–265

Fig. 9. Networks of spiking neurons can mimic the behavior of DMMs M ∈D3. We plotted the performance
(percent of correct output spikes) of the trained network for a random test string ũ∈{0; 1}400 for 650 DMMs
M ∈D3 where the boolean function fM was chosen randomly. Each DMM M ∈D3 can be assigned a unique
index (plotted on the X-axis) by interpreting the string which consists of the enumeration of all possible
outputs of fM as a binary number.

or “space rate coding”), see [4,6]. In the following, we refer to such systems which
map a vector of time varying input signals u(·) onto another vector of time varying
output signals y(·) as 6lter. We adopt the common notation (Fu)(t) to denote the
output that the $lter F gives at time t for the input function u.

4.1. A universal approximation theorem for 6lters

In the preceding section, we had presented empirical evidence for the approximation
capabilities of our network model for computations in the time series (spike train) do-
main. This gives rise to the question, what the theoretical limits of their approximation
capabilities are. The result presented in [16] (and its extension to spike trains in [18])
shows that basically there are no signi$cant a priori limits. Furthermore, in spite of the
rather complicated system of equations that de$nes our network model, one can give
a precise mathematical characterization of the class of $lters that can be approximated
by them. This characterization involves the following basic concepts.
An arbitrary $lter F is called time invariant if a shift of the input functions by a

constant t0 just causes a shift of the output function by the same constant t0. Another
essential property of $lters is fading memory. A $lter F has fading memory if and
only if the value of (Fu)(0) can be approximated arbitrarily closely by the value of
(Fv)(0) for functions v that approximate the functions u for suIciently long bounded
intervals [−T; 0] suIciently well. Informally speaking, this means that the output of a
$lter with fading memory primarily depends on inputs within a certain time interval, i.e.
it has essentially $nite memory. Hence a time invariant $lter with fading memory is a
generalization of a DMM in the setting of analog $lters F. The class of time invariant
$lters with fading memory arguably includes practically any biologically relevant $lter.
In [16] the computational power of feedforward networks with dynamic synapses

where the computational units are pools of neurons is analyzed. Their rigorous the-
oretical result states that even with just a single hidden layer such networks can
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approximate a surprisingly large class of nonlinear $lters: all time invariant $lters with
fading memory. The proof of this result relies on the Stone–Weierstrass Theorem, and
is contained as the proof of Theorem 3.4 in [16]. Furthermore, it is empirically shown
in [20] that gradient descent suIces to approximate a given (quadratic) $lter by a
model for a rather small neural system with dynamic synapses. It is also demonstrated
that the simple feedforward network with biologically realistic synaptic dynamics yields
nonlinear $lter performance comparable to that of an arti$cial network model proposed
in [3] that was designed to yield good performance in the time series domain without
any claims of biological realism.
Very recently the techniques used in [16] have been extended to cover also the

case of spike trains u(·) as input time series [18]. This new result implies that a very
rich class of maps F from input spike trains u(·) to output spike trains y(·) can
be implemented by circuits of spiking neurons with the basic architecture shown in
Fig. 5.

4.2. A new universal approximation theorem for static functions

There also exists a rigorous proof [2,15] that a single population P of threshold
gates (or spiking neurons) can approximate any given continuous function on any
given compact set. This provides another component of the theoretical basis for the
learning approach in Section 3, where only output devices of this type are considered.

5. Discussion

We have sketched in this short survey article mathematical models for biological
neurons and synapses that re.ect the current state of knowledge in neurophysiology. It
becomes clear that neither biological neurons nor biological synapses are modeled well
by the “neurons” and “synapses” of common arti$cial neural network models, which
ignore the inherent temporal dynamics of their biological counterparts. Furthermore,
we have indicated new approaches towards implementing speci$c $nite state machines
through circuits consisting of these more realistic dynamic computational units.
We would like to argue that computations on time series provide a better paradigm

for neural computation than the computations on static inputs that are more frequently
investigated in the context of arti$cial neural networks. One simple model for com-
putations on time series, the $nite state machine (FSM), plays an important role both
in neuroscience and in theoretical computer science. We have shown that a subclass
of such FSMs can be implemented quite well by circuits consisting of biologically
realistic models for neurons and synapses, in a way which diJers strongly from the
common implementations of such machines in boolean circuits or models for arti$cial
neural networks [7,8,26].
In contrast to most previous work on implementations of FSMs in neural networks we

have not just shown that speci$c machines of this type, but randomly selected machines
from a large class of FSMs can be implemented, even with the same architecture of



264 T. Natschl�ager, W. Maass / Theoretical Computer Science 287 (2002) 251–265

the neural circuit. Furthermore we have shown that such $xed neural circuit can in
principle learn to simulate a randomly chosen simple FSM.
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