
 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
How drugs were discovered in the past 
 

Historically, endogenous bioactive ligands were identified long 
before their cognate biomolecular receptor could be isolated and 
before their chemical structure was established [1-3]. Early 
information on ligand chemical structure was rudimentary and scarce 
compared with the many details provided by modern experimental 
chemistry and calculated wave functions. However, that early 
information often proved sufficient to infer knowledge and develop 
hypotheses on the physiological relevance of these ligands, even 
though the underlying physiological mechanisms were unknown.  

The steroid hormones extracted from the bile acids at the 
beginning of the 20th century is an emblematic example of this 
paradigm.  In the 1920s and 1930s several Nobel prizes were 
awarded for discoveries connecting the steroids with the oxidation 
process in living cells, vitamins, sexual development and pregnancy, as 
well as relating the steroid hormones produced by the adrenal cortex 
with   biological  effects  [4].  This  led  to  the  recognition  of  the  

 
 
 
 
 
 

 
 

 
  

 
 
 
 
  
 

polycyclic carbon framework of steroids. Using expert methods based 
on the stepwise pyrolytic breakdown of chemical structures, 
considerable efforts were spent to determine how the component 
rings of steroids were arranged.  In 1932, the advent of X-ray 
diffraction was decisive in revealing directly the 3-dimensional 
arrangement of the atoms constituting the steroid scaffold, and the 
exact position and stereochemistry of the substituents [5]. Combining 
the structural details of steroidal ligands with biochemical knowledge 
showed how variations in the chemical groups substituted at specific 
positions around their scaffold were related to specific biological 
activity; hence allowing new medicines to be developed [4,6]. 

Nowadays drug discovery is driven by biological targets, genetic 
studies, transgenic animal models, molecular biology, gene technology, 
and protein science. Hence, the structure of the target biomolecule is 
of great practical interest. With synchrotrons and fast computers, 
drug designers can visualize ligands bound to their target providing a 
wealth of details concerning the non-bonded interactions that control 
the binding process (Van der Waals repulsive and attractive forces, 
Hydrogen-bonds, salt-bridges, and mediation by water molecules and 
ions). Various computational techniques (visualization, docking, 
molecular simulations, quantum chemistry, de novo design) have been 
devised to score the ligand-protein interactions, including attempts to 
estimate the binding affinity of novel molecular entities with 
pharmacological activity. 

Despite the availability of many co-crystallized ligand-receptors 
X-ray structures, as well as a flora of computational methods that can 
be accessed via sophisticated molecular modeling software, only part 
of the physical reality can be perceived and/or rendered by modern 
computer-based techniques, casting suspicion on the overall validity 
of the field [7,8].  For example, the thermodynamics of the ligand-
receptor association cannot be simply inferred from calculating close 
contact interactions, a situation which dramatically hinders scientific 
efforts toward truly effective rational drug design [7,8]. 
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In this minireview we examine the methodological trends that 
have emerged recently in the computer-aided molecular design of 
pharmacologically relevant ligands and how successful attempts were 
made to rationally combine X-ray, modeling and calculation 
techniques.  

 
The landscape of modern drug discovery  

 

Are there more stars in the universe than possible organic 
molecules with a molecular weight < 600? Observation of the cosmos 
has led astrophysicists to map the universe and suggest that there are 
about 1023 stars gathered in 1011 galaxies [9]. In parallel, consideration 
of the real number of possible ligands has been the subject of savvy 
estimates [10,11]. Complicating the matter is the fact that not all 
chemically plausible molecular structures might be synthetically 
accessible nor might they be affordable. Nevertheless, figures 
commensurate with the number of stars have been proposed. Neither 
the universe nor the ensemble of possible ligands can be explored 

systematically. The surrounding universe hints that extraterrestrial 
civilizations may exist, but the odds that a spaceship travelling for 
centuries at the speed of light may encounter one of them would 
remain so small that such enterprise would be doomed; a dreadful 
calculation which most science fiction aficionados are unaware of.  A 
similar challenge is faced by high through put screening (HTS) widely 
used by the pharmaceutical industry in hit compound identification. 
A spokesperson from the industry modestly acknowledges this issue, 
skillfully admitting that: ‘the discovery task has shifted somewhat 
during the past few years from simply identifying promising leads to 
the added proviso that dead-end leads should be eliminated from 
consideration as early in the process as possible’ [12,13]. In other 
words, the leads supplied by classical chemistry optimization rounds 
performed around HTS-supplied hits are often difficult to transform 
into drugs. Optimization of binding affinity in isolation by traditional 
medicinal chemistry methods leads to poor ADME/tox properties 
through effects such as the inclusion of bulk to ligands, excessive 
functionalization, growth of hydrophobic groups and/or selection of 
functional groups with supposedly known ADME/tox liabilities [14]. 
They are too few leads, they are not diverse and more importantly, 

Figure 1. Idealized description of the probability landscape of the pre-clinical drug discovery process. From the identification of hit compounds with low to 
medium affinities to the optimization of lead compounds with high affinity  and favorable ADME/tox, the process of preclinical drug development is a highly 
complex problem. Affinity and desired ADME/tox constitute two independent (orthogonal) dimensions that, unfortunately, cannot be easily optimized 
separately. Classical/brute force high-throughput identification and optimization of hits too often fails to provide compounds with both high affinity and 
adequate ADME/tox properties. This situation confines project outcome to a low-success probability pitfall represented by the bottom of the phase diagram 
(area I). Escape from this zone can be achieved with the help of a broad variety of virtual screening techniques encompassing pharmacophore-based 
techniques and structure-based techniques (area II).  Ultimately, structure-based considerations can help drug designers guide a project towards a more 
productive area (III) of the phase diagram.  Orders of magnitude for probabilities are only a rough guess and the frontiers between areas are schematic. 
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HTS provides no information at all about the way they interact with 
the target receptor, thereby precluding efficient optimization (Figure 
1). The screened collection tends to represent what happens to be 
available in a particular organization, instead of rationally selected 
chemotypes. HTS favours quantity over quality and insight, and 
results in large amounts of data of dubious quality, which requires 
much time and effort to be analyzed. One could argue that the vast 
resources invested in HTS could have been used more productively to 
characterize how leads interact with the target receptor, to inform 
their efficient optimization. 

In response, many research groups throughout the world have 
dedicated efforts toward structure based drug design (SBDD) and 
virtual ligand screening (VLS), as the most scientifically promising 
approaches to identify ligands for pharmaceutical targets [15-20]. 
SBDD provides insight in the interaction of a specific protein-ligand 
pair, allowing medicinal chemists to devise highly accurate chemical 
modifications around the ligand scaffold, whereas the strength and 
versatility of VLS are self-evident as it can be used to filter 
compounds to be assayed based on any rationale that can be expressed 
in terms of molecular properties (pharmacophores and/or physico-
chemical descriptors). Here, we should point out that docking 
programs can be used to filter libraries of compounds [21]. However, 
it remains extremely complicated to rationally analyze docking results 
for libraries containing chemically diverse compounds [21]. The lack 
of reliable of scoring functions across heterogeneous chemical classes 
and the frequent impossibility to predict the correct binding modes 
has generally cast doubt over docking as a genuine screening method. 
We shall see in further sections how one may combine VLS with 
SBDD and how docking can be efficiently used as a virtual screening 
tool as well in specific circumstances. SBDD offers distinctive 
advantages compared with the classical ligand-based techniques such 
as the comparative molecular field analysis (CoMFA) and 
pharmacophore-based techniques, based on only ligand information, 
that have well known limitations [22]. Another crucial advantage is 
that electronic libraries can cover already existing compounds as well 
as compounds that have not been synthesized yet but are chemically 
relevant.  

SBDD can be broadly envisioned as one intrinsic component of 
rational approaches based on screening assays that are more adapted 
to drug discovery than HTS. For instance, fragment-based drug 
design (FBDD) has emerged as a very powerful means to reverse the 
HTS probability paradigm by exploiting molecular fragments with 
molecular weight < 150-250 [23,24]. These fragments can be 
selected based on adequate physico-chemical properties, collected in 
libraries, assayed and, using SBDD-derived information, reassembled 
into larger molecules with improved drug like characteristics [25-27]. 
FBDD is a genuine branch of rational drug design for which all the 
principles we discuss in this minireview are valid and can be used. We 
refer the reader to recent reviews on FBDD [28,29,30].  

SBDD can reveal important information on the structure activity 
relationships of a chemical series, especially in the lead optimization 
phase, when very accurate modifications are needed to adjust an 
ADME/tox profile while maintaining binding affinity. Target 
selectivity is another issue where SBDD may be vital, especially when 
dealing with large classes of pharmaceutical targets SBDD requires, 
however, that an X-ray structure be available for the pharmaceutical 
target, or that a ‘reasonably’ valid homology model has been 
constructed.  We shall illustrate in the next sections what reasonable 
means.  Knowledge of the target structure plays the same role as 
boundary conditions in physical sciences, providing indications for 
instance on the maximum possible volume that the ligand can occupy, 
and the  particular loci and orientations where hydrophobic and/or 
hydrophilic interactions can be engaged. 

 

Ligand-based approaches (e.g., CoMFA and pharmacophore-
based methods) are intended to capture and/or exploit a remarkable 
pattern detected predominantly from the empirical superposition of a 
set of experimentally identified binder and non-binder compounds 
[31,32]. In this respect, only the first-order/gross characteristics of 
the ligand-receptor recognition and binding pattern are taken in 
consideration. With these techniques virtual library screening tends to 
retrieve large sets of compounds (hundreds to thousands) that are 
usually further filtered based on empirical considerations, excluding 
compounds that are not drug-like and relying on ‘luck’ (see previous 
section) to identify new binders within the remaining compounds.  

In contrast SBDD aims to provide a richer picture of the ligand 
receptor interactions. However, SBDD has developed more slowly. 
Many X-ray structures of pharmaceutical targets co-crystalized with 
their natural ligands and/or inhibitors are publically available, 
however many more have been resolved by the pharmaceutical 
industry without being published [22]. Thus, it is difficult to estimate 
the extent to which these data have contributed in conceiving new 
drugs. This situation has hindered a fair evaluation of the true 
potential of SBDD by the scientific community and the merit of 
SBDD may not seem as widely praised as the ligand-based techniques. 
In many instances, at conferences and during informal discussions 
among experts, the benefit of SBDD in drug design remains a 
controversial issue [7]. For many drug designers, the lack of reliability 
in predicting affinities constitutes what could be referred to as the 
‘missing link’ which undermines effective SBDD. But, if we do really 
believe that is the problem then we should simply resign as rational 
drug designers as there is no obvious way the accuracy gap will be 
bridged [33]. 

Intuitively, the difficulty of establishing the limit of applicability 
of the methods maybe more troubling to the productive development 
of SBDD than inaccuracy in energetic calculations. The 25th 
anniversary issue of JCAMD has published a series of articles that all 
describe one or several aspects related to this concept. Quoting one of 
them seems appropriate: ‘Like poor mule drivers, we have a tendency 
to push our methods beyond their limits’ [7]. To address this 
misbehavior we have to realize that the time scale required by rational 
SBDD contrasts with the state of permanent urgency that 
characterizes the pharmaceutical industry in its quest for introducing 
new drugs to the market [34]. In this setting, a lead optimization 
program hardly lasts 12 to 18 months, a time too short to gather all 
experimental information and model validation necessary for detailed 
SBDD. Pharmacophore-based techniques are well adapted to this 
limit since they require far smaller time overhead than SBDD to 
establish a validated albeit crude model of receptor-ligand interaction 
[35]. But the rewards of SBDD are potentially greater compared with 
those techniques that have proven their paucity in providing 
sufficiently accurate rationales, especially in the lead optimization 
phase where not one but several properties must be optimized 
together.  

 

Despite considerable progress achieved in structure-based virtual 
ligand screening and computer-aided drug design [36-43], the reliable 
and practical prediction of binding affinities remains an elusive holy 
grail [44-51]. Even when knowing the binding mode of a ligand to its 
receptor, its binding affinity cannot be inferred reliably although, 
paradoxically, it can be measured highly accurately with titration 
calorimetry and surface plasmon resonance [52-54].  
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The affinity of the ligand for its receptor is dictated not only by 

the enthalpic contribution arising from close range physical 
interactions (Van der Waals interaction, hydrogen bonds, ionic 
pairing) but also by an entropic contribution that is a measure of the 
overall system disorder. In biology though, the concept of disordered 
systems is difficult to comprehend and is sometimes counter intuitive, 
as a ligand bound to its receptor may seem inherently a more ordered 
state than the unbound ligand and receptor when this is not 
necessarily the case [8]. Indeed, the entropy penalty resulting solely 
from the reduction of the overall body translational and rotational 
freedom of the ligand and receptor may amount up to 15 kcal/mol 
while the entropy penalty due to the reduction of rotational freedom 
is estimated to be ca. 0.6 kcal/mol per rotatable bond [53,55]. Upon 
binding, favorable interactions with the receptor compete with these 
unfavorable energy terms. In addition, the disruption of ordered 
clusters of water molecules around the ligand hydrophobic moieties, a 
process which causes a gain of disorder in the solvent, contributes 
favorably to the stability of the ligand-receptor association [56,57]. 
Experimental measurement showed that increasing the nonpolar 
surface area of an aliphatic alcohol by inserting a CH2 group has an 
unfavorable entropic contribution of +1.7 kcal.mol-1 to the free 
energy of transfer in aqueous solution, which is only partly 
compensated by an enthalpic contribution of -1.3 kcal.mol-1 [58]. 
The result is in an overall unfavorable free energy of 0.4 kcal.mol-1. If 
not counterbalanced by other effects, a change of this magnitude in 
the hydration energetics of a ligand corresponds to an increase by a 
factor of 2 in its measured binding affinity (IC50); and we know that 
optimization of a lead often operates in a range less than 1.4 kcal mol-

1 (i.e., less than a factor of 10 in IC50s) [7]. Increasing the 
hydrophobicity of a ligand is a strategy often used in drug discovery. 
However, this change has to be accommodated by the receptor and 

the ligand must remain a potential drug; ligands with excessively 
increased hydrophobicity have poor absorption, distribution and off-
target toxic binding properties [14,59]. Efforts to gain insight on how 
different chemical groups branched around a same scaffold may 
influence binding affinity are hampered because the experimental 

evaluation of the enthalpy (ΔH) and entropy (TΔS) of binding (with 
ITC) are large quantities that compensate each other while having 
error bars exceeding 1.4 kcal mol-1, which is uncomfortably large in 
comparison to the overall binding energies [60]. In standard assays, 
however, the error in the binding free energy is usually in the range 
+/- [0.1 - 0.5] kcal/mol only, allowing results to be more readily 
exploited in drug design, though deeper insight in the binding process 
is limited. 

An often neglected aspect in rational drug design is the ubiquitous 
presence of water inside and around the receptor binding cavity and in 
some instances, the free-energy cost of displacing ordered or partially 
ordered water molecules involved in the residual solvation of active 
site residues should be considered carefully [61-64]. Computational 
methods are being devised to calculate the energy cost of displacing 
clusters of rotationally and translationally hindered water molecules 
present in binding site cavities accessible to water [65-70]. 

When a ligand binds to a protein, water molecules surrounding 
the ligand and protein need to rearrange. These rearrangements 
contribute to the binding affinity of the ligand. Most water molecules 
building the hydration shell around the ligand and in the protein 
active site need to be either removed or displaced. Paying attention to 
the thermodynamics of these phenomena, for which no relevant 
experimental data are available, has been done in early theoretical 
studies of protein folding and protein association [71]. Very recently, 
molecular dynamics simulation (MDS) has further contributed to our 
understanding by showing that water molecules in the first hydration 

Figure 2. Example of how SBDD can be applied to displace highly ordered (immobilized) waters in the active site of an enzyme: (a) X-ray structure of lin-
benzogunaine in complex with TGT with a binding affinity 58 nM; (b) an amine substituent that could mimic the water molecules while maintaining the same 
level of affinity for TGT (55 nM) was introduced; (c) substitution of the amine to occupy the small hydrophic pocket with a cyclohexyl moiety increased the 
binding affinity significantly (2nM). 
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layer around a receptor surface are less thermodynamically stable than 
bulk water [61]. The process of transferring water from the bound 
state to bulk solvent is associated with a favorable free energy 
[61,64,65]. This, however, does not hold for water molecules that are 
deeply buried and tightly bound in crevasses at the surface or inside 
the active site of proteins. The maximum entropy change of releasing 
such a water molecule into bulk water is evaluated around 2 kcal.mol-

1; a gain which is unfavorably outweighed by the loss of enthalpy due 
to the breaking of hydrogen bonds with the receptor [63]. Because 
they are highly ordered (immobilized), these water molecules are seen 
in X-ray crystal structures, and in many cases ligand binding is often 
mediated by such water molecules [66].  Attempting to displace them 
with experimental ligands may not only be difficult to achieve but also 
have unpredictable unfavorable effects [63,72,73].  

However, when a ligand is binding to a hydrophobic cleft at the 
surface or inside the protein the enthalpic contribution to the free 
energy of binding will increase because of favorable interactions 
between the ligand and protein. Simultaneously, water molecules that 
occupy the hydrophobic cleft will be released into the solvent, 
resulting in a favorable increase in entropy [61]. 

The discovery and optimization of inhibitors for the enzyme 
tRNA-guanine-transglycosylase (TGT), an enzyme from pathogenic 
Shigella bacteria, is an example where desolvation of the ligand and 
protein has a significant influence on the binding affinity of the 
inhibitors [62,74]. The tRNA binding site of TGT consists of one 
deeply buried pocket surrounded by smaller, solvent exposed pockets 
(Figure 2) in between two negatively charged catalytic aspartates. 
Using classical SBDD approaches, attempts were made to substitute 
the lin-benzoguanine scaffold with a scaffold that occupies the 
hydrophobic cleft situated below the two aspartates to improve 
potency. However, occupation of this hydrophobic cleft did not result 
in the expected gain in binding affinity. 

In the crystal structure of lin-benzoguanine in complex with 
TGT, an ordered solvation shell solvating the two proximal charged 
aspartates was discovered [75]. Functional groups such as amine 
substituents that could mimic the water molecules were introduced. 
Comparing the binding affinity of the scaffold lin-benzoguanine 
(Figure 2a, 58 nM) with the unsubstituted amine (Figure 2b, 55 nM), 
binding affinity could be maintained (cost neutral) while restoring the 
favorable interaction provided by the displaced network of water 
hydrating the aspartates. Hydrophobic substitutions on the amine 
(with for example a cyclohexyl moiety) increased the binding affinity 
significantly by accessing a lipophilic pocket below the catalytic 
aspartates (Figure 2c, 2nM). 
 

The choice of the template(s) used for the homology model 

construction may lead to Cα positional variations of the order of 1 to 
3 Å (or more) in the active sites of enzymes, depending on the 
percentage of sequence identity shared with the elected template(s) 
[76,77]. Such variations have to be appraised during a model 
construction because they may lead to substantial side chain 
displacements in the final model. Various techniques can be used to 
mitigate this problem: the use of multiple templates or a mixed 
template etc. In principle, homology modeling software can be used to 
optimize side chain conformations and the non-bonded interactions 
between them by simulated annealing, conditional probability 
distribution, or potential of mean force [78]. At this stage there are 
no safe recipes to apply but careful physical insight along with 
verification that hydrogen bond networks and hydrophobic residue 
packing statistically conform with the knowledge-based characteristics 

extracted from the X-ray structures [79]. Conserved interactions 
between particular residues (hydrogen bonds, ionic bridges,….) in the 
active site may be also used as a guide to adjust the model during its 
elaboration [80,81]. One has to avoid the pitfall of model 
overoptimization that might actually drive the model away from 
physical reality. At the same time the model should be consistent with 
respect to most (if not all) available experimental data [77,79]. Failing 
to abide by this necessity inevitably leads to a high risk of project 
failure in a later phase when the simultaneous optimization of other 
properties, such as absorption, metabolism, excretion and toxicity 
(ADME/tox), must be performed for a lead compound to become a 
real drug, while retaining a high affinity and selectivity for the 
pharmacological target. The next sections illustrate with recent 
examples that this approach can be effectively put in practice; 
successfully combining two or more modeling techniques together 
(Homology Modeling, Docking, MDS,…). 

 
Different types of ligand-receptor complexes and different 
challenges 

 
There are a plethora of X-ray structures of receptor-ligand 

complexes for several important families of drug targets, including 
proteases, HIV reverse transcriptase, nuclear receptors (NR), protein 
kinases (PK), and even RNA targets [82]. Structures have also started 
to become available for some G-protein coupled receptors (GPCR). 
Some of these receptors are already privileged targets for SBDD (e.g., 
NR, PK) and some others might also provide other avenues for 
SBDD in due course (e.g., GPCR, RNA) [83,84]. This wealth of 
structural information will continue to increase, also as a result of the 
structural genomics initiatives [85]. 

When exploiting structural information, drug designers are 
confronted with situations that bear similarities within the same class 
of targets. This gives rise to what we refer to as prototypical situations 
of ligand-receptor recognition, but not simply ‘routine situations’ 
because each project requires its own logical development. Different 
types of receptors possess unique challenges for SBDD. We present 
two example systems here: 

 
 Protein kinases (PK) (Figure 3): multidomain proteins 

with complex catalytic domain ligand binding sites (large 
cleft between two domains); ATP is the natural ligand; 
weakly bound water and Mg or Mn  ions mediate ATP 
binding; the vast majority of PK inhibitors target the ATP 
binding site; selectivity is a crucial issue that requires 
SBDD-based considerations; a well defined purine binding 
motif acts as an anchor; possibility of allosteric 
binding/inhibition;  activation occurs via loop 
phosphorylation; many crystal structures of complexes 
exist and homology models can be routinely constructed; 
PKs are well suited for SBDD. 

 
 GPCR (Figure 4): 7-helix bundle transmembrane 

assembly; very versatile binding modes, deeply buried 
inside the transmembrane region; possibility of allosteric 
binding, agonism and antagonism effects, selectivity is an 
issue; binding cavity is very complex and topped by large 
highly flexible loops; mechanism of activation/inhibition 
requires more in depth understanding; not yet routinely 
amenable to SBDD; more X-ray structures and binding 
experiments combined with mutational data are expected 
to clarify this mechanism. 
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Although PKs constitute only 2% of the human genomes they 
represent ~ 25% of putative drug targets [86,87]. They are 
multidomain proteins that intervene in many biological processes, 
especially signal transduction. Their catalytic domain (called kinase 

domain) chemically modifies other proteins by transferring the γ-
phosphate group from a nucleoside triphosphate (usually ATP) to the 
hydroxyl group of specific residues such as serine, tyrosine, threonine, 
and sometimes to histidine. Deregulation of these processes is 
implicated in many physiological disorders, including inflammatory 
diseases and cancer [88,89]. Hence, protein kinases are prominent 
drug targets as reflected by the number of deposited patents [90]. 

Since the first X-ray structures of the kinase domain appeared, it 
was understood that the kinase domain had a highly conserved fold 
across all members of the superfamily [91-93]. This fold comprises 
two connected domains that form a cleft where ATP binds, adjacent 
to a shallow substrate binding region (Figure 3). The fact that 
proteins can be categorized in a large superfamily sharing a common 
fold has far-reaching practical impact in drug design because it is 
expected that a substantial amount of information gleaned from one 
kinase can be transferred to other ones. Indeed, the conserved natural 
ligand (ATP) of PKs means that their binding site is also somewhat 
structurally conserved, which was initially perceived as a drawback 
preventing the discovery of selective ATP-competitive inhibitors. 
Competing with ATP was also deemed difficult since it is abundant 
in cells [94].  

 
 

Figure 3. (a) Ribbon representation of Erk2 kinase in its activated form with ATP bound (pdb entry 4gt3). The ATP binding cleft has a large solvent exposure and 
can be decomposed into several compartments or pockets (I to VI)(b). The average rate of conservation for the residues lining it is only 51% [80].  Together 
these observations allow the design of a large variety of selective inhibitors. Subareas (b) and (d) show clipped views of the ATP binding site seen from the top, 
for two X-ray structures of Erk2 with, respectively, ATP (pdb entry 4gt3) and the synthetic ligand E71 (pdb entry 4fv9). Note that highly ordered water 
molecules (red spheres) mediate the binding in both cases. The synthetic ligand is anchored to the hinge residues via the same two hydrogen bonds (bidentate 
motif; white arrow) as does ATP.  However, it is oriented differently and expands perpendicularly to the cleft main axis, occupying the buried pocket (V) on one 
side and extending to the outer part of the cleft (VI) on the other side (c). Despite considerable difference in the chemical structures and binding modes of ATP 
and E71 the deviation between the backbone and side chains atoms of the two X-ray structures is small (<1Å) (4fv9 brown and 4gt3 cyanide blue) (d). Although 
it is not true in 100% of cases, conformational invariance of the active site residues can be reasonably assumed in many SBDD-based drug design projects. 
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On the other hand, this situation has the advantage that structural 

models may be obtained by homology (comparative) modeling for 
most kinase domains [80]. This should signify a successful future for 
SBDD, as long as, modelers assess the potential weakness of their 
model prior to its use and bear in mind a number of practical 
limitations that continue to hamper the development of protein 
models constructed by homology modeling. First, the opening of the 
two lobes that sandwich the ATP binding site can vary by a few 

degrees, due to the flexibility of the hinge region connecting them, 
causing substantial displacements (up to several Å) in the relative 
positioning of the residues lining ATP at the other extremity of the 
binding pocket making the ideal alignment of structures often 
ambiguous [92,95]. Second, as happens almost systematically in 
homology model construction, the multiple sequence alignments used 
for selecting templates cannot be 100% ascertained because of gaps 
and insertions, especially with superfamily members characterized by a 

Figure 4. (a) Cartoon representation of X-ray structures of bovine rhodopsin, representative of class A GPCRs: with retinal (R) in the cis form bound before it 
has absorbed light (inactivated form, PDB* entry 1u19; side view (a)). GPCRs are made of a bundle of 7 alpha helices (numbered from 1 to 7 in view (a) and (b)) 
topped by a large β-pleated sheet structure resulting from the packing of two helix connecting loops. One additional helix (8) located at the interface between 
the cell membrane and cytosol has a regulatory role in deactivating the receptor. A major evolutionary constraint on GPCR function is to bind G-proteins in a 
large crevasse at their cytoplasmic side (G-site) [128]. The structural change that leads to GPCRs activation (G-protein coupling) is a general mechanism 
controlled by an extremely broad array of endogenous effectors (modulators) ranging from large structured peptides such as chemokines and peptide 
hormones to low molecular weight ligands that bind in the cone-shape cavity buried inside the 7-helix transmembrane bundle near the extracellular side of the 
receptor. Illustration of GPCR plasticity is given with: (b) zoomed side view of X-ray structure of β2AR in complex with the antagonist (S)-Carazolol (β2AR 
inactive state, PDB entry 2rh1); (c) X-ray structure of β2AR in complex with a high affinity agonist (BI-167107) (β2AR-Gs protein active complex, PDB entry 
3sn6); (d) overlay of the side views (b) and (c) showing residues in close contact (< 5 Å) with the antagonist (cyanide blue) and the agonist (brown). Positional 
shifts of side-chain and main-chain atoms highlight the plasticity of the small ligand-binding site; the side chain of Phe 193 (black arrow) was too disordered to 
be resolved in the agonist bound structure. (*see reference [82]) 
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low sequence identity (< 40%), even around the active site, and even 
when multiple templates are used and class-specific information 
(position-specific sequence conservation) is implemented in the 
sequence alignment [76,96,97]. Third, despite elaborate algorithms 
using conformational propensities derived from X-ray structures, it is 
difficult to accurately assert which residue side chain conformations 
are physically relevant for each particular ligand-receptor association 
and the positions of the residue side chain lining the active site of a 
homology constructed model remains questionable [79,98-100]. 
Fourth, the possible effect due to the presence of mediating water 
molecules and/or counter ions inside the active site is difficult to 
predict, except for the few conserved (tightly bound/structural) 
examples that are inferred from X-ray structures [101].  Many 
research groups have developed state-of-the-art semi-automated 
methods that allow experienced drug designers to construct 
knowledge-based homology models where issues related to limitations 
1, 2 and 3 can be tackled in a ‘fairly’ rational way in many cases and, 
less frequently, in an evidence-based way [79]. However, the way 
these models are built cannot be generalized and their validity must be 
assessed on a per individual project basis due to the conditions and  
specific interactions involved in ligand binding being extremely 
variable.   

A kinase structural database (Kinase Knowledge Base, KKB) has 
been recently developed that covers about 148 different kinase 
domain structures that have been deposited in the Protein Data Bank 
(PDB) and which represents about 20% of all kinase domains in the 
human genome [80]. Using a carefully selected set of 20 non-
redundant X-ray structures overlaid with a protein structure alignment 
tool a structure-based sequence alignment of the 594 members of the 
human kinome has been generated [102]. 

This work opens the possibility for drug designers to benchmark 
their homology model construction methods. For instance, they can 
select a dozen kinases out of the 148 X-ray structures and reconstruct 
them by homology based on the kinome-wide sequence alignment 
provided in the KKB database. The comparison between the 
reconstructed set and the X-ray structures can provide drug designers 
valuable feedback to test their methodology. 

The analysis of sequence conservation for active site residues 
shows the residue variability and character (hydrophobic, flexible, 
polar, aromatic, positively or negatively charged, and mixed) at every 
particular position in the ATP binding pocket [80]. This high 
variability together with the finding of kinase inhibitors that have a 
high affinity for a relatively reduced subset of kinases enables the 
SBDD approach (Figure 3) [102].  We shall show how in the 
detailed analysis presented in the next sections.   

 
The combined techniques approach 

 

Accurately conducted docking studies can be used very efficiently 
to complement QSAR techniques such as CoMFA and comparative 
molecular similarity index analysis (CoMSIA) which crucially rely on 
how compounds are overlaid [103]. However, the validity of the 
docking methodology must be established by successfully reproducing 
the binding modes of some of the ligands belonging to the set of 
studied derivatives and for which X-ray structures are available in the 
PDB.  The remaining compounds are docked following the same 
docking protocol. The purpose of docking is to provide a rationally 
derived structural alignment (spatial superposition) of the studied set 
of compounds, that in turn can be used to derive a predictive QSAR 
model based on molecular descriptors including steric, electrostatic, 

hydrophobic, and hydrogen bond donor fields as well as PSA and 
MLogP.   

We see how a multi-stage approach and the use of two 
computational methods can complement each other and compensate 
for the respective weaknesses of each method, thus creating a synergy 
in SBDD. Docking scores are unreliable, and most QSAR techniques 
cannot be applied without either knowledge or a strong hypothesis of 
the bound conformations of the ligands and spatial alignment [104-
106]. But if the preferred binding mode of chemically related 
compounds can be inferred, docking can provide the correct ligand 
conformation and an accurate structural alignment that is required to 
build a predictive QSAR model [107-109].  

 

Acquiring accurate knowledge of the binding modes for identified 
chemical classes of compounds is such a stringent issue in SBDD that 
strategies have developed to reverse engineer the problem and try to 
identify proto-ligand scaffolds with adequate affinity and 
physicochemical properties selected from the molecular characteristics 
of known ligands. This approach requires the assay of specific subsets 
of compounds extracted from specialized libraries containing 
relatively large molecular fragments within a molecular weight range 
of 150 – 250 Da. For instance in the case of protein kinases, 
prototypical scaffolds targeting the ATP binding site are preferably 
flat and contain at least two conjugated ring systems which can engage 
bidentate hydrogen bonding interactions [18,110,111].  

Once proto-ligand scaffolds that compete with ATP have been 
identified in biochemical assays, they can be co-crystallized with the 
target enzyme and their binding mode determined by X-ray 
crystallography. They are particularly well suited for SBDD. Virtual 
libraries can be subsequently constructed by identifying the 
substitution positions best suited to expand the ligand around the 
scaffolds. Docking can be used to select the putative ligands that best 
fit the identified binding modes and that provide additional 
complementarity with the residues lining the binding site [111].  

This approach is particularly well suited for PKs because the ATP 
binding cleft is large and open which allows for multiple possibilities 
to expand the ligand scaffold in various directions to search for 
selective interactions (Figure 3) [111]. The concept of scaffold-based 
series can be implemented in SBDD projects with a great deal of 
variation and prior screening in biological assays might not always 
appear necessary. For instance, a docking study performed on a series 
of PKs has shown that docking large sets of ligands that share the 
same scaffold is statistically more likely to retrieve the correct class-
specific binding mode within the top clusters of docked poses than 
clustering 100 poses generated from a single ligand [112].    

 
SBDD with GPCRs 

 
GPCRs (Figure 4) are important pharmaceutical targets for the 

treatment of many physiological disorders including some 
inflammatory diseases, neurotransmission and sensory perception 
impairment, diabetes, cardiovascular defects, AIDS and some cancers. 
At least 40% of the currently marketed drugs target GPCRs [113]. In 
the past decade, groundbreaking X-ray structures have been solved for 
an increasing number of class A GPCRs. The first one was the bovine 
rhodopsin receptor X-ray structure that has served from that time as a 
useful template for homology modeling of other GPCRs to replace 
the old bacteriorhodopsin based models. Nowadays X-ray structures 

are available for the adrenergic β1A and β2A, histamine H1, 
adenosine A2A, dopamine D3, muscarinic M2 and M3, opioid kappa 
and mu, CXCR4 receptors, etc., most bound to low molecular weight 
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antagonists. These structures have helped assess the many ‘common 
mistakes’ that have crippled early GPCR models [114,115]. It is 
fantastic that the importance of all this work starting from molecular 
cloning to X-ray structure was recognized by a Nobel Prize awarded 

in 2012 for the X-ray structure of the β2-AR-Gs protein complex 
[116,117]. But the early models had served already as valuable 3D 
alignments that stimulated our thoughts on how ligands might bind, 
and have led to many successful suggestions for site-directed 
mutagenesis experiments to study ligand binding. Implementing valid 
SBDD considerations within drug design projects targeting GPCRs 
still remains difficult due to limited insights as to how ligands interact 
with them and modulate their activity [118].  

Many experimental observations for rhodopsin have shown that 
residues from the second extracellular loop (ECL2) and located in the 
cone-shape cavity inside GPCRs interact with ligands to trigger the 
outward tilt of transmembrane helix 6 (TM6) relative to TM3 and 
TM5 [119]. This movement induces a concerted rearrangement of 
the whole helix bundle that conveys the activation signal to the 
intracellular side of the receptor, allowing G-protein coupling to the 
activated form of the receptor (Figure 4) [120-122]. This mechanism 
is thought to be general across class A GPCRs [123]. Both the 
activated and inactivated states are assumed to exist in vivo as an 
equilibrium governed by specific sets of amino acids acting as ‘micro-
switches’ and conserved within class A subfamilies [124-128]. By 
interacting with these residues, agonists and antagonists stabilize one 
state or the other. Although the mechanism is general, it is modulated 
by different amino acids across subfamilies and subfamily members 

[129]. In 2007, the X-ray structure of the β2-adrenergic receptor 
proved that the spatial arrangement of the transmembrane helices 
relative to each other is highly similar to that of bovine rhodopsin; 
which was encouraging for homology modelling and SBDD [130]. 
However, the conformation of ECL2 was entirely different between 
the two structures. 

Compared with other classes of receptors such as PKs and NRs 
the number of elucidated X-ray structures of GPCRs bound to small 
compounds is still too small to safely extrapolate to other classes of 
ligands in SBDD [131]. However, the number of GPCR X-ray 
structures is growing rapidly. Already, they have helped validate the 
use of docking and virtual ligand-screening (VLS) applied to GPCR 
crystal structures [131-133]. Until recently, the GPCR 
conformational plasticity was thought an obstacle for SBDD of 
agonists [134,135]. Several X-ray structures of agonist-bound 

complexes have been produced in 2011 for β1AR, β2AR and A2AAR 
and more structures are expected in the near future. These structures 
will provide an improved 3D framework for the rational design of 
agonists and antagonists, illustrating the utility of modeling broader 
structural changes than only those limited to the residues lining the 
binding site pocket [120,134]. 

The elucidation of the X-ray structure of bovine rhodopsin in 
2000 put GPCR homology modelling on a reasonable footing, 
assuming a high overall structural conservation across members of the 
superfamily despite their very low sequence identities [136].  GPCR 
homology models of improved quality can now be prepared routinely 
thanks to database such as GPCRDB and GPCR-SSFE constructed in 
conjunction with the structural elucidation of several other class A 
GPCRs [114,134,135-140]. 

So far, antagonist/agonist ligands have been mostly identified 
using ligand based approaches consisting of filtering libraries of 
commercially available compounds with pharmacophore models 
[141-143]. Nevertheless, carefully constructed homology models of 
rhodopsin-like GPCRs are increasingly reported, with the 
concomitant use of docking, which allowed enrichment of screened 

compounds with actives with rates similar to those obtained with the 
ligand-based pharmacophore approaches [144-154]. Crucially, the 
advantage of structure-based screening would not be only in an 
improved success rate but also in providing: ‘useful information on 
the structurally vital residues involved in binding, and their 
unexplored potential for the future development of potent receptor 
antagonists’ [145].   

Hence, the design of GPCR modulators will ultimately require 
the ability to make a ligand have a defined functional profile in terms 
of agonism/antagonism. This assumes that the micro-switch residues 
with which ligands engage are correctly identified and that these 
interactions are accurately modeled [127-129]. A recent multiple 
sequence-alignment based bioinformatics analysis including 1664 
receptor-ligand pairs comprising 767 full agonists, 184 partial 
agonists and 713 antagonists illustrates how large scale data analysis 
can provide a deeper understanding of the GPCR activation 
mechanism [118]. This set covered 100 class A GPCRs belonging to 
30 subfamilies. Residues at relative positions determined by a 
multiple sequence alignment were correlated with ligands’ physico-
chemical descriptors and activities. Such approaches provide 
information that, in principle, can be exploited in combination with 
homology models to generate many working hypotheses [155,156]. 
How can SBDD help in sorting and filtering them to select the 
relevant ones? In the coming years, drug designers, chemists and 
biologists will be exposed to a daunting combinatorial explosion of 
hypotheses, with the cumbersome task to explore them by trial and 
error [144]. We assume that more integrated multi-software SBDD 
systems combining state of the art modeling, bioinformatics 
procedures and bioassay results including site-directed mutagenesis 
will assist drug designers in these arduous tasks [144,155,157,158].   

 
Concluding remarks  

 
Over the 35 years that have followed the first published work 

describing SBDD in 1976, computer aided molecular design and 
SBDD has surmounted several hurdles and has played a key role in 
the development of several marketed drugs [22,159]. The proof of 
concept is now well established for SBDD, but cultural shifts are still 
needed to accept and implement this strategy broadly [159]. 

Modern genomic investigations and translational research have 
identified a wealth of new targets. Certainly, in the past decade the 
number of targets has increased more rapidly than the discovery of 
new drugs. The plethora of new pharmacological targets must be 
accompanied by the discovery of new drugs and active classes of 
ligands in a sustainable manner; otherwise the continuous health care 
improvement that has characterized the 20th century will fade. The 
industry is highly profitable thanks largely to revenue from public 
health schemes and insurance contributions, yet the high costs and 
risks associated with new drug discovery have been used to justify a 
growing disengagement from research by the pharmaceutical industry 
[160]. If not counterbalanced by broad and dedicated investment in 
SMEs and universities, this process might be highly detrimental to the 
already damaged social contract between this industry and society in 
the short and medium term [161].  

We believe that homology modeling, docking and virtual 
screening can be successfully combined to accelerate drug discovery. 
Just as it was the case for drugs discovered at the beginning of the 20th 
century, an important part of the reality will always remain hidden, 
but the synergy of these techniques is part of the ‘New Deal’ we 
advocate. With evidence-based SBDD scientists will be put back in 
control, and they will engage their minds again, taking pride in their 
"craft". 
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