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Differential equations i(t) = f(x(t), t) are exhibited in a general infinite- 
dimensional Banach space, failing each of the following in turn. (i) The set St of 
solution values x(t) from a given point x(0) is compact. (ii) S, is connected. (iii) 
Any point on the boundary aS, of St can be reached by a solution x with 
x(s) E as,, 0 g s Q t. 

1. INTRODUCTION 

Consider the differential equation 

w = f(x(t), t), tER+, U*l) 

where f is (jointly) continuous. Let S, be the set of points x(t) as x runs through 
all solutions of (1 .I) for fixed x(0) in the Banach space X which has its norm 
topology throughout. Since f maps some neighborhood of x(0) into a bounded 
set and 

(44 II x@)ll < II w, 

we may scale t to an interval I on which St (if nonempty) lies in a fixed ball of 
radius r, say. 

When X = Iw” with Euclidean topology, the following results are well 
known (cf. [2]) for all t EI: 

St is nonempty. (1.2) 
S, is compact. U-3) 
S, is connected. (1.4) 

Given b E X5’, , there is a solution x satisfying 
x(t) = b, X(S) E as, O<s<t. (1.5) 

Let c0 denote the Banach space of real valued sequences y = (yr , ys , . ..) 
satisfying 

;i_mm Yn = 0, II Y Ill0 = SUP{1 Yn I: n > 01, 
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while 1s is the corresponding Hilbert space for which 

02 

Dieudomre [I] gave an example failing (1.2) in c,, and since then various authors 
have considered (1.2) in more general spaces. Recently Godunov [5] has shown 
that (1.2) fails in any Banach space X, if (as is assumed from now on) dim X = co. 
Godunov’s example is based on Day’s result [2], that X has a closed subspace Y 
with a basis, and on an earlier example [4] failing (1.2) in 1s . See [5] for further 
references to work along these lines: in particular Godunov’s work has much in 
common with Yorke’s earlier example [7] in I, . 

The main object here is to negate (1.3), (1.4), and (1.5) in turn for any X. 
Dieudonne’s example [l] has no solutions at all in c,, , regardless of x(O), as 
pointed out by Yorke [7]. Section 3 contains examples with exactly one and 
exactly two solutions in cs , and these are then used to counter (1.5) and (1.4) 
respectively. The examples for general X in Section 4 on (1.4) and Section 5 
on (1.5) roughly combine the St behavior of those in Section 3 with Godunov’s 
example [5] cited above. 

I am most grateful to Geoff Butler for discussing these and related problems 
with me and for bringing to my attention Godunov’s paper [5]. I also thank 
unknown referees for various improvements. 

Notation. The following functions will be needed: 

g(O) = 0, g(x) = 2x 11 x p2 if x#O (1.6) 

defines 8: X--f X, and when x E Iw this function is denoted by g. Further, two 
continuous piecewise linear functions h and k,, : Iw + 88 are defined by 

h( - co) = h(0) = 0, 1 = h(l) = h(+co), 

kc&c 00) = k&) = k&9 = 0, ks[(~ + PPI = 2. 
Throughout, k,, will simply be written as k; observe that jt k = 1. 

2. COMPACTNESS 

Although this example is elementary, it will be needed later. Let 

f(x, t> = g(x) k(t), x(0) = 0. 
Obviously 

x(t) = 0 for 0 < t < (Y, 
t 2 

=(I > 
k e for t>a 

u 

satisfies (1.1) for any 01 3 0 and unit e E X. 

(1.7) 

(1.8) 

(2-l) 

(2.2) 
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It is easy to show that these are the only solutions, so S, is the unit ball of X, 
hence is not compact. It is in fact possible to modify DieudonnC’s second 
example in [2] (on continuation) to give S, noncompact yet with empty interior, 
but this will not be pursued here. 

3. EXAMPLES IN c,, 

Let e, = (1, 0,O ,... ), Plx = x - iqe, and consider the three equations 

Jn(x* t) = I &Jl + n-l * 2 1, (3.1) 

nfn(x, 4 = I &n)l + II x II n-l, n 2 1, (3.2) 

2fl(X, t) = II PlX II, 2fn(x, t> = I &n)l + I Xl2 - 1 I n-l, II 3 2. (3.3) 

Evidently if (1.1) is defined by (3.1) then I x,(t) - x,(O)1 exceeds the maximal 
value without the n-1 term, and from 2 (in R instead of X), this is t2 so does 
nottendtozeroasn-+co.Thusx$c,, i.e., no solutions exist, a fact observed 
by Dieudonne [I] for x(0) = 0 and Yorke [7] for general x(0). 

Likewise (3.2) gives exactly one solution, viz., x = 0. For if not then Ilx(t)ll > 0 
on an interval [a, ~1 of positive length so I ~~(7) - x,(o)1 > (T - u)” which is 
again positive and independent of n. Similarly (3.3) gives precisely two solutions 
x = fe,. 

Statement (1.2) is countered by (3.1) and (1.3) by (2.1). To negate (1.5), 
take (2.1) again on [0, I] and 

f(x, t) = 2f(x, q k(t - 1) (3.4) 

on [ 1,2]. Evidently f is continuous, S, = (0) so 0 E as2 but 0 $ as, . 
Statement (1.4) fails by taking x(0) = 0 and 

fib t) = &l) w fn(x, 4 = 0, n32 (3.5) 

over [0, l] to give S, as the line segment joining fe, . Then continue over 
[l, 21 with 

f(x, t) = 3f(x, t) k(t - 1) (3.6) 

to give S, = {-e 1 , el}. In the next section this S, behavior will be reproduced, 
although it will be convenient to replace (3.6) by 

f(x, t> = Pl(lfrplx, tl> I XI2 - 1 I k(t - I>, (3.7) 

which behaves in the same way on the subspace P;l(O). 
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4. KNESFX'S F'ROPERTY 

First we collect some results and notation to be used. A construction of Day [2] 
gives a closed subspace Y _C X with a basis e, , e, ,.... For each y E Y, which 
will play the role of c,, in 3, let 

P,Y = f Ymemy 
m-n+1 

(4.1) 

where ym. are the coordinates of y, so PO is the identity on Y. 
In what follows, it will sometimes be convenient to define f(y, t) E Y and 

extend f to &, t) using Dugundji’s construction [3]. This preserves continuity 
and Y-valuedness of f, so solutions to (1 .l) once in Y remain there, as observed 
by Godunov [5]. 

As in (3.5) let x(0) = 0 and 

f(y, t) = th5ed W (4.2) 

on [0, 11. The analog of (3.7) will be a slight modification of Godunov’s equation. 
Let 0: OB -+ Iw, be continuous and 

q(y, 4 0) = idWy) + 5 9)n(~, 4 e> e, , YEY, o<t<1, 
12=1 (4.3) 

where the projector P(t) on Y and the [W-valued functions vPn are defined as 
follows. Take three sequences 

0, = 1/p + 11, c, = &&2 + bz), b, = 1/2n 

and define P countably piecewise linearly by 

P(0) = 0, P(b+J = P(cn> = p?a > P(1) = PO. 

Referring to (1.7, 8), let 

%(Y> 4 4 = =-%,c,(t) e4t - h+,l - II PnY II), w(s) = [Jb” q 

Godunov in fact takes x(0) = 0, e(s) = s in (4.3) and f(y, t) = $q(y, t, 0) in 
(1.1). He concludes that x(b,) = 0 from some 12 onwards is impossible, the 
argument going through provided e(s) > 0 if s > 0. The alternative case, 
that x(&J # 0 for arbitrarily large n, is contradicted provided w is not less than 
the maximum solution of 

i = km 5(O) = 0; (4.4) 

i.e., w(s) > s2/4. (The reasoning involves showing that (1.1) reduces to j, =-- ig(x), 
a device typical of “nonexistence” examples.) 
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In order to continue (4.2) over [ 1, 21, set 

f(Y, t) = P,q(PlY, t - 1, I Y12 - 1 I 4 I Y12 - 1 I w - 11, 

cf. (3.7). Nonexistence of solutions for yl + fl follows essentially as in [5], 
(4.4) showing that 0 = 1 y12 - 1 1 k is a suitable choice. 

5. HUKUHARA'S PROPERTY 

This example is baaed on a similar idea to that in q, (3.4), to generate S, as 
the unit ball and then kill enough nonzero solutions to give 0 E 8, . Since the 
nonexistence example (4.3) does not have the extreme non-Lipschitz behavior 
of (3.2) in cc, , some nonzero solutions will remain in S, this time, although it 
will be shown how to remove these too in case Y = X. 

Over [0, 11, define f by (2.1), so S, is the unit ball and 0 $ &S’, is reached only 
via the zero solution. Now using (4.2) suppose that we chose 

f(Yt t> = PldPlY9 t - 17 I Yl I A) I Yl I W - 1). (5.1) 

Evidently yr( 1) = 0 would give constant y. Further yl( 1) # 0 but Ply(l) = 0 
would give no solution, following similar reasoning to that in 4, since yl would 
remain a nonzero constant. 

In fact we reverse (5.1), replacing f(y, t) by f(y, 3 - t), i.e., 

f(Y, 4 = --pdP,Y, 2 - t, I Yl I 4 I Yl I w - 1) (5.2) 

over [I, 21. The key conclusion is that S, contains no points with y,(2) # 0 
but P,y(2) = 0, or else we could again reverse the flow to obtain solutions 
emanating from such points, and this was ruled out above. Further 0 E S, 
and is reached only via x = 0. Thus 0 = lim,,, +el E aSa and this negates 
(1.5). 

In case Y = X (for example X = I,) we can kill the remaining nonzero 
solutions as follows. Note that yl is bounded (by 2 in Day’s construction [2]) 
if j/ y I] < 1, so since yr is constant over [I, 21 we have I y,(2)l < 01 say. Choose 

to givey,(3) = 0. 

f(y, t) = --d2g(y,e,) k(t - 2) 

So far then, PI& = Ss and 0 is reached only via y = 0. With 7 = /I Ply /I, 
observe that 

T(l) G II YU)ll 4 I Ydl)l G 1 + % 

and over [l , 21 that 

$4 < II jr(Ol < +w2 + 1) w - 1) < c+?(t) + 1) k(t - 1). 
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Thus 

so if we choose 

7?(3) = 71(Z) < B = (1 + a) @ - 1 

f(Y, t) = [-P%PIu) + ml W - 3) 

over [3, 41 we obtain q(4) = 0, i.e., P,y(4) = 0. Note again that 0 is reached 
only via y = 0. 

It remains to repeat (5.1) without reversal, explicitly 

f(YY 4 = ~,q(~lY, t - 4, I Yl I 4 I Yl I w - 4) 

over [4, 51, leaving just the zero solution. 
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