JOURNAL OF DIFFERENTIAL EQUATIONS 24, 349-354 (1977)

On Infinite-Dimensional Differential Equations*

PAUL BINDING

Mathematics Department, University of Calgary, Alberta, T2N 1N4, Canada

Received September 2, 1975; revised February 9, 1976

Differential equations $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), t)$ are exhibited in a general infinitedimensional Banach space, failing each of the following in turn. (i) The set S_t of solution values $\mathbf{x}(t)$ from a given point $\mathbf{x}(0)$ is compact. (ii) S_t is connected. (iii) Any point on the boundary ∂S_t of S_t can be reached by a solution \mathbf{x} with $\mathbf{x}(s) \in \partial S_s$, $0 \leq s \leq t$.

1. INTRODUCTION

Consider the differential equation

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), t), \qquad t \in \mathbb{R}_+, \qquad (1.1)$$

where \mathbf{f} is (jointly) continuous. Let S_t be the set of points $\mathbf{x}(t)$ as \mathbf{x} runs through all solutions of (1.1) for fixed $\mathbf{x}(0)$ in the Banach space X which has its norm topology throughout. Since \mathbf{f} maps some neighborhood of $\mathbf{x}(0)$ into a bounded set and

 $(d/dt) \parallel \mathbf{x}(t) \parallel \leqslant \parallel \dot{\mathbf{x}}(t) \parallel,$

we may scale t to an interval I on which S_t (if nonempty) lies in a fixed ball of radius r, say.

When $X = \mathbb{R}^n$ with Euclidean topology, the following results are well known (cf. [2]) for all $t \in I$:

$$S_t$$
 is nonempty. (1.2)

$$S_t$$
 is compact. (1.3)

S_t is connected. (1.4)

Given
$$\mathbf{b} \in \partial S_t$$
, there is a solution \mathbf{x} satisfying (1.5)

$$\mathbf{x}(t) = \mathbf{b}, \qquad \mathbf{x}(s) \in \partial S_s \qquad 0 \leqslant s \leqslant t.$$
(1.5)

Let c_0 denote the Banach space of real valued sequences $\mathbf{y} = (y_1, y_2, ...)$ satisfying

$$\lim_{n\to\infty} y_n = 0, \qquad ||\mathbf{y}||_{\infty} = \sup\{|y_n|: n > 0\},$$

* This research was supported by a grant from the National Research Council of Canada.

while l_2 is the corresponding Hilbert space for which

$$\|\mathbf{y}\|_2^2 = \sum_{n=1}^\infty |y_n|^2 < \infty.$$

Dieudonné [1] gave an example failing (1.2) in c_0 and since then various authors have considered (1.2) in more general spaces. Recently Godunov [5] has shown that (1.2) fails in any Banach space X, if (as is assumed from now on) dim $X = \infty$. Godunov's example is based on Day's result [2], that X has a closed subspace Y with a basis, and on an earlier example [4] failing (1.2) in l_2 . See [5] for further references to work along these lines: in particular Godunov's work has much in common with Yorke's earlier example [7] in l_2 .

The main object here is to negate (1.3), (1.4), and (1.5) in turn for any X. Dieudonné's example [1] has no solutions at all in c_0 , regardless of $\mathbf{x}(0)$, as pointed out by Yorke [7]. Section 3 contains examples with exactly one and exactly two solutions in c_0 , and these are then used to counter (1.5) and (1.4), respectively. The examples for general X in Section 4 on (1.4) and Section 5 on (1.5) roughly combine the S_t behavior of those in Section 3 with Godunov's example [5] cited above.

I am most grateful to Geoff Butler for discussing these and related problems with me and for bringing to my attention Godunov's paper [5]. I also thank unknown referees for various improvements.

Notation. The following functions will be needed:

$$g(0) = 0, \quad g(x) = 2x ||x||^{-1/2} \quad \text{if } x \neq 0$$
 (1.6)

defines $g: X \to X$, and when $x \in \mathbb{R}$ this function is denoted by g. Further, two continuous piecewise linear functions h and $k_{\alpha\beta} : \mathbb{R} \to \mathbb{R}$ are defined by

$$h(-\infty) = h(0) = 0, \quad 1 = h(1) = h(+\infty), \quad (1.7)$$

$$k_{\alpha\beta}(\pm\infty) = k_{\alpha\beta}(\alpha) = k_{\alpha\beta}(\beta) = 0, \qquad k_{\alpha\beta}[(\alpha+\beta)/2] = 2.$$
(1.8)

Throughout, k_{01} will simply be written as k; observe that $\int_0^1 k = 1$.

2. Compactness

Although this example is elementary, it will be needed later. Let

$$f(x, t) = g(x) k(t), \quad x(0) = 0.$$
 (2.1)

Obviously

$$\mathbf{x}(t) = \mathbf{0} \quad \text{for} \quad \mathbf{0} \leqslant t \leqslant \alpha,$$

 $= \left(\int_{\alpha}^{t} \mathbf{k}\right)^{2} \mathbf{e} \quad \text{for} \quad t \geqslant \alpha$ (2.2)

satisfies (1.1) for any $\alpha \ge 0$ and unit $\mathbf{e} \in X$.

It is easy to show that these are the only solutions, so S_1 is the unit ball of X, hence is not compact. It is in fact possible to modify Dieudonné's second example in [2] (on continuation) to give S_1 noncompact yet with empty interior, but this will not be pursued here.

3. Examples in c_0

Let $\mathbf{e}_1 = (1, 0, 0, ...), P_1 \mathbf{x} = \mathbf{x} - x_1 \mathbf{e}_1$ and consider the three equations

$$f_n(\mathbf{x}, t) = |g(x_n)| + n^{-1}$$
 $n \ge 1$, (3.1)

$${}_{2}f_{n}(\mathbf{x}, t) = |g(x_{n})| + ||\mathbf{x}|| \ n^{-1}, \qquad n \ge 1,$$

$$(3.2)$$

$$_{3}f_{1}(\mathbf{x}, t) = ||P_{1}\mathbf{x}||, \quad _{3}f_{n}(\mathbf{x}, t) = |g(x_{n})| + |x_{1}^{2} - 1| n^{-1}, \quad n \ge 2.$$
 (3.3)

Evidently if (1.1) is defined by (3.1) then $|x_n(t) - x_n(0)|$ exceeds the maximal value without the n^{-1} term, and from 2 (in \mathbb{R} instead of X), this is t^2 so does not tend to zero as $n \to \infty$. Thus $\mathbf{x} \notin c_0$, i.e., no solutions exist, a fact observed by Dieudonné [1] for $\mathbf{x}(0) = \mathbf{0}$ and Yorke [7] for general $\mathbf{x}(0)$.

Likewise (3.2) gives exactly one solution, viz., $\mathbf{x} \equiv \mathbf{0}$. For if not then $||\mathbf{x}(t)|| > 0$ on an interval $[\sigma, \tau]$ of positive length so $|x_n(\tau) - x_n(\sigma)| > (\tau - \sigma)^2$ which is again positive and independent of *n*. Similarly (3.3) gives precisely two solutions $\mathbf{x} \equiv \pm \mathbf{e}_1$.

Statement (1.2) is countered by (3.1) and (1.3) by (2.1). To negate (1.5), take (2.1) again on [0, 1] and

$$\mathbf{f}(\mathbf{x}, t) = {}_{2}\mathbf{f}(\mathbf{x}, t) k(t-1)$$
(3.4)

on [1, 2]. Evidently **f** is continuous, $S_2 = \{0\}$ so $0 \in \partial S_2$ but $0 \notin \partial S_1$.

Statement (1.4) fails by taking $\mathbf{x}(0) = \mathbf{0}$ and

$$f_1(\mathbf{x}, t) = g(x_1) k(t), \quad f_n(\mathbf{x}, t) = 0, \quad n \ge 2$$
 (3.5)

over [0, 1] to give S_1 as the line segment joining $\pm e_1$. Then continue over [1, 2] with

$$\mathbf{f}(\mathbf{x}, t) = {}_{3}\mathbf{f}(\mathbf{x}, t) k(t-1)$$
(3.6)

to give $S_2 = \{-\mathbf{e_1}, \mathbf{e_1}\}$. In the next section this S_t behavior will be reproduced, although it will be convenient to replace (3.6) by

$$\mathbf{f}(\mathbf{x}, t) = P_1(\mathbf{1}\mathbf{f}[P_1\mathbf{x}, t]) \mid x_1^2 - 1 \mid k(t-1),$$
(3.7)

which behaves in the same way on the subspace $P_1^{-1}(0)$.

PAUL BINDING

4. Kneser's Property

First we collect some results and notation to be used. A construction of Day [2] gives a closed subspace $Y \subseteq X$ with a basis \mathbf{e}_1 , \mathbf{e}_2 ,.... For each $\mathbf{y} \in Y$, which will play the role of c_0 in 3, let

$$P_n \mathbf{y} = \sum_{m=n+1}^{\infty} y_m \mathbf{e}_m , \qquad (4.1)$$

where y_m are the coordinates of y, so P_0 is the identity on Y.

In what follows, it will sometimes be convenient to define $\mathbf{f}(\mathbf{y}, t) \in Y$ and extend \mathbf{f} to (\mathbf{x}, t) using Dugundji's construction [3]. This preserves continuity and Y-valuedness of \mathbf{f} , so solutions to (1.1) once in Y remain there, as observed by Godunov [5].

As in (3.5) let x(0) = 0 and

$$\mathbf{f}(\mathbf{y}, t) = \mathbf{g}(y_1 \mathbf{e}_1) \, k(t) \tag{4.2}$$

on [0, 1]. The analog of (3.7) will be a slight modification of Godunov's equation. Let $\theta: \mathbb{R} \to \mathbb{R}_+$ be continuous and

$$\mathbf{q}(\mathbf{y}, t, \theta) = \mathbf{g}(P(t)\mathbf{y}) + \sum_{n=1}^{\infty} \varphi_n(\mathbf{y}, t, \theta) \mathbf{e}_n, \quad \mathbf{y} \in Y, \quad 0 \leqslant t \leqslant 1,$$
(4.3)

where the projector P(t) on Y and the \mathbb{R} -valued functions φ_n are defined as follows. Take three sequences

 $a_n = 1/(2n + 1),$ $c_n = \frac{1}{2}(a_n + b_n),$ $b_n = 1/2n$

and define P countably piecewise linearly by

$$P(0) = 0, \quad P(b_{n+1}) = P(c_n) = P_n, \quad P(1) = P_0.$$

Referring to (1.7, 8), let

$$\varphi_n(\mathbf{y}, t, \theta) = n^{-1}k_{a_n c_n}(t) h(w[t - b_{n+1}] - || P_n \mathbf{y} ||), \quad w(s) = \left[\int_0^s \theta\right]^2.$$

Godunov in fact takes $\mathbf{x}(0) = 0$, $\theta(s) = s$ in (4.3) and $\mathbf{f}(\mathbf{y}, t) = \frac{1}{2}\mathbf{q}(\mathbf{y}, t, \theta)$ in (1.1). He concludes that $\mathbf{x}(b_n) = \mathbf{0}$ from some *n* onwards is impossible, the argument going through provided $\theta(s) > 0$ if s > 0. The alternative case, that $\mathbf{x}(b_n) \neq \mathbf{0}$ for arbitrarily large *n*, is contradicted provided *w* is not less than the maximum solution of

$$\dot{\xi} = \frac{1}{2}g(\xi), \quad \xi(0) = 0;$$
 (4.4)

i.e., $w(s) \ge s^2/4$. (The reasoning involves showing that (1.1) reduces to $\dot{\mathbf{x}} = \frac{1}{2}\mathbf{g}(\mathbf{x})$, a device typical of "nonexistence" examples.)

In order to continue (4.2) over [1, 2], set

$$\mathbf{f}(\mathbf{y}, t) = P_1 \mathbf{q}(P_1 \mathbf{y}, t-1, |y_1^2 - 1| k) |y_1^2 - 1| k(t-1),$$

cf. (3.7). Nonexistence of solutions for $y_1 \neq \pm 1$ follows essentially as in [5], (4.4) showing that $\theta = |y_1^2 - 1| k$ is a suitable choice.

5. HUKUHARA'S PROPERTY

This example is based on a similar idea to that in c_0 (3.4), to generate S_1 as the unit ball and then kill enough nonzero solutions to give $0 \in \partial S_2$. Since the nonexistence example (4.3) does not have the extreme non-Lipschitz behavior of (3.2) in c_0 , some nonzero solutions will remain in S_2 this time, although it will be shown how to remove these too in case Y = X.

Over [0, 1], define **f** by (2.1), so S_1 is the unit ball and $\mathbf{0} \notin \partial S_1$ is reached only via the zero solution. Now using (4.2) suppose that we chose

$$\mathbf{f}(\mathbf{y},t) = P_1 \mathbf{q}(P_1 \mathbf{y}, t-1, |y_1|k) |y_1|k(t-1).$$
 (5.1)

Evidently $y_1(1) = 0$ would give constant y. Further $y_1(1) \neq 0$ but $P_1y(1) = 0$ would give no solution, following similar reasoning to that in 4, since y_1 would remain a nonzero constant.

In fact we reverse (5.1), replacing f(y, t) by f(y, 3 - t), i.e.,

$$\mathbf{f}(\mathbf{y}, t) = -P_1 \mathbf{q}(P_1 \mathbf{y}, 2 - t, |y_1| k) |y_1| k(t-1)$$
(5.2)

over [1, 2]. The key conclusion is that S_2 contains no points with $y_1(2) \neq 0$ but $P_1\mathbf{y}(2) = \mathbf{0}$, or else we could again reverse the flow to obtain solutions emanating from such points, and this was ruled out above. Further $\mathbf{0} \in S_2$ and is reached only via $\mathbf{x} \equiv \mathbf{0}$. Thus $\mathbf{0} = \lim_{n \to \infty} n^{-1}\mathbf{e}_1 \in \partial S_2$ and this negates (1.5).

In case Y = X (for example $X = l_2$) we can kill the remaining nonzero solutions as follows. Note that y_1 is bounded (by 2 in Day's construction [2]) if $||\mathbf{y}|| \leq 1$, so since y_1 is constant over [1, 2] we have $|y_1(2)| \leq \alpha$ say. Choose

$$\mathbf{f}(\mathbf{y},t) = -\alpha^{1/2} \mathbf{g}(y_1 \mathbf{e}_1) \ k(t-2)$$

to give $y_1(3) = 0$.

So far then, $P_1S_3 = S_3$ and **0** is reached only via $\mathbf{y} \equiv \mathbf{0}$. With $\eta = ||P_1\mathbf{y}||$, observe that

$$\eta(1) \leqslant ||\mathbf{y}(1)|| + |y_1(1)| \leqslant 1 + \alpha,$$

and over [1, 2] that

$$\dot{\eta}(t) \leqslant \|\dot{\mathbf{y}}(t)\| \leqslant lpha(\eta(t)^{1/2}+1) \ k(t-1) \leqslant lpha(\eta(t)+1) \ k(t-1).$$

Thus

$$\eta(3) = \eta(2) \leqslant \beta = (1 + \alpha) e^{\alpha} - 1$$

so if we choose

$$\mathbf{f}(\mathbf{y},t) = \left[-\beta^{1/2}\mathbf{g}(P_1\mathbf{y}) + \eta\mathbf{e}_1\right]k(t-3)$$

over [3, 4] we obtain $\eta(4) = 0$, i.e., $P_1 y(4) = 0$. Note again that 0 is reached only via $y \equiv 0$.

It remains to repeat (5.1) without reversal, explicitly

$$\mathbf{f}(\mathbf{y}, t) = P_1 \mathbf{q}(P_1 \mathbf{y}, t - 4, |y_1| k) |y_1| k(t - 4)$$

over [4, 5], leaving just the zero solution.

References

- 1. J. DIEUDONNÉ, Deux exemples singuliers d'équations différentielles, Acta Sci. Math. (Szeged) B 12 (1950), 38-40.
- 2. M. DAY, On the basis problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), 655-658.
- 3. J. DUGUNDJI, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
- 4. A. GODUNOV, A counterexample to Peano's theorem in infinite dimensional Hilbert space, Moscow Univ. Math. Bull. 27 (1972), 24-26.
- 5. A. GODUNOV, On Peano's theorem in Banach spaces (in Russian), Funktsional. Anal. i Priložen. 9 (1975), 59-60.
- 6. P. HARTMAN, "Ordinary Differential Equations," Wiley, New York, 1964.
- 7. J. YORKE, A continuous differential equation in Hilbert space without existence, Funkcial. Ekvac. 13 (1970), 19-21.

354