On Infinite-Dimensional Differential Equations*

Paul Binding
Mathematics Department, University of Calgary, Alberta, T2N 1N4, Canada

Received September 2, 1975; revised February 9, 1976

Differential equations $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), t)$ are exhibited in a general infinitedimensional Banach space, failing each of the following in turn. (i) The set S_{t} of solution values $\mathbf{x}(t)$ from a given point $\mathbf{x}(0)$ is compact. (ii) S_{t} is connected. (iii) Any point on the boundary ∂S_{t} of S_{t} can be reached by a solution \mathbf{x} with $\mathbf{x}(s) \in \partial S_{s}, 0 \leqslant s \leqslant t$.

1. Introduction

Consider the differential equation

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), t), \quad t \in \mathbb{R}_{+} \tag{1.1}
\end{equation*}
$$

where \mathbf{f} is (jointly) continuous. Let S_{t} be the set of points $\mathbf{x}(t)$ as \mathbf{x} runs through all solutions of (1.1) for fixed $\mathbf{x}(0)$ in the Banach space X which has its norm topology throughout. Since \mathbf{f} maps some neighborhood of $\mathbf{x}(0)$ into a bounded set and

$$
(d / d t)\|\mathbf{x}(t)\| \leqslant\|\dot{\mathbf{x}}(t)\|
$$

we may scale t to an interval I on which S_{t} (if nonempty) lies in a fixed ball of radius r, say.

When $X=\mathbb{R}^{n}$ with Euclidean topology, the following results are well known (cf. [2]) for all $t \in I$:
S_{t} is nonempty.
S_{t} is compact.
S_{t} is connected.

Given $\mathbf{b} \in \partial S_{t}$, there is a solution \mathbf{x} satisfying
$\mathbf{x}(t)=\mathbf{b}, \quad \mathbf{x}(s) \in \partial S_{s} \quad 0 \leqslant s \leqslant t$.
Let c_{0} denote the Banach space of real valued sequences $\mathbf{y}=\left(y_{1}, y_{2}, \ldots\right)$ satisfying

$$
\lim _{n \rightarrow \infty} y_{n}=0, \quad\|\mathbf{y}\|_{\infty}=\sup \left\{\left|y_{n}\right|: n>0\right\}
$$

[^0]while l_{2} is the corresponding Hilbert space for which
$$
\|\mathbf{y}\|_{2}^{2}=\sum_{n=1}^{\infty}\left|y_{n}\right|^{2}<\infty
$$

Dieudonné [1] gave an example failing (1.2) in c_{0} and since then varinus authors have considered (1.2) in more general spaces. Recently Godunov [5] has shown that (1.2) fails in any Banach space X, if (as is assumed from now on) $\operatorname{dim} X=\infty$. Godunov's example is based on Day's result [2], that X has a closed subspace Y with a basis, and on an earlier example [4] failing (1.2) in l_{2}. See [5] for further references to work along these lines: in particular Godunov's work has much in common with Yorke's earlier example [7] in l_{2}.

The main object here is to negate (1.3), (1.4), and (1.5) in turn for any X. Dieudonné's example [1] has no solutions at all in c_{0}, regardless of $\mathbf{x}(0)$, as pointed out by Yorke [7]. Section 3 contains examples with exactly one and exactly two solutions in c_{0}, and these are then used to counter (1.5) and (1.4), respectively. The examples for general X in Section 4 on (1.4) and Section 5 on (1.5) roughly combine the S_{t} behavior of those in Section 3 with Godunov's example [5] cited above.

I am most grateful to Geoff Butler for discussing these and related problems with me and for bringing to my attention Godunov's paper [5]. I also thank unknown referees for various improvements.

Notation. The following functions will be needed:

$$
\begin{equation*}
\mathbf{g}(\mathbf{0})=\mathbf{0}, \quad \mathbf{g}(\mathbf{x})=2 \mathbf{x}\|\mathbf{x}\|^{-1 / 2} \quad \text { if } \quad \mathbf{x} \neq \mathbf{0} \tag{1.6}
\end{equation*}
$$

defines $\mathbf{g}: X \rightarrow X$, and when $x \in \mathbb{R}$ this function is denoted by g. Further, two continuous piecewise linear functions h and $k_{\alpha \beta}: \mathbb{R} \rightarrow \mathbb{R}$ are defined by

$$
\begin{align*}
h(-\infty)=h(0)=0, & 1=h(1)=h(+\infty), \tag{1.7}\\
k_{\alpha \beta}(\pm \infty)=k_{\alpha \beta}(\alpha)=k_{\alpha \beta}(\beta)=0, & k_{\alpha \beta}[(\alpha+\beta) / 2]=2 . \tag{1.8}
\end{align*}
$$

Throughout, k_{01} will simply be written as k; observe that $\int_{0}^{1} k=1$.

2. Compactness

Although this example is elementary, it will be needed later. Let

$$
\begin{equation*}
\mathbf{f}(\mathbf{x}, t)=\mathbf{g}(\mathbf{x}) k(t), \quad \mathbf{x}(0)=\mathbf{0} \tag{2.1}
\end{equation*}
$$

Obviously

$$
\begin{align*}
\mathbf{x}(t) & =0 \quad \text { for } \quad 0 \leqslant t \leqslant \alpha \\
& =\left(\int_{\alpha}^{t} k\right)^{2} \mathrm{e} \quad \text { for } \quad t \geqslant \alpha \tag{2.2}
\end{align*}
$$

satisfies (1.1) for any $\alpha \geqslant 0$ and unit $\mathbf{e} \in X$.

It is easy to show that these are the only solutions, so S_{1} is the unit ball of X, hence is not compact. It is in fact possible to modify Dieudonné's second example in [2] (on continuation) to give S_{1} noncompact yet with empty interior, but this will not be pursued here.

3. Examples in \boldsymbol{c}_{0}

Let $\mathbf{e}_{1}=(1,0,0, \ldots), P_{1} \mathbf{x}=\mathbf{x}-x_{1} \mathrm{e}_{1}$ and consider the three equations

$$
\begin{array}{rr}
{ }_{1} f_{n}(\mathbf{x}, t)=\left|g\left(x_{n}\right)\right|+n^{-1} & n \geqslant 1, \\
{ }_{2} f_{n}(\mathbf{x}, t)=\left|g\left(x_{n}\right)\right|+\|\mathbf{x}\| n^{-1}, & n \geqslant 1, \\
{ }_{3} f_{1}(\mathbf{x}, t)=\left\|P_{1} \mathbf{x}\right\|, \quad{ }_{3} f_{n}(\mathbf{x}, t)=\left|g\left(x_{n}\right)\right|+\left|x_{1}{ }^{2}-1\right| n^{-1}, \quad n \geqslant 2 . \tag{3.3}
\end{array}
$$

Evidently if (1.1) is defined by (3.1) then $\left|x_{n}(t)-x_{n}(0)\right|$ exceeds the maximal value without the n^{-1} term, and from 2 (in \mathbb{R} instead of X), this is t^{2} so does not tend to zero as $n \rightarrow \infty$. Thus $\mathbf{x} \notin c_{0}$, i.e., no solutions exist, a fact observed by Dieudonné [1] for $\mathbf{x}(0)=0$ and Yorke [7] for general $\mathbf{x}(0)$.

Likewise (3.2) gives exactly one solution, viz., $\mathbf{x} \equiv 0$. For if not then $\|x(t)\|>0$ on an interval $[\sigma, \tau]$ of positive length so $\left|x_{n}(\tau)-x_{n}(\sigma)\right|>(\tau-\sigma)^{2}$ which is again positive and independent of n. Similarly (3.3) gives precisely two solutions $\mathbf{x} \equiv \pm \mathbf{e}_{\mathbf{1}}$.

Statement (1.2) is countered by (3.1) and (1.3) by (2.1). To negate (1.5), take (2.1) again on [0,1] and

$$
\begin{equation*}
\mathbf{f}(\mathbf{x}, t)={ }_{2} \mathbf{f}(\mathbf{x}, t) k(t-1) \tag{3.4}
\end{equation*}
$$

on [1, 2]. Evidently \mathbf{f} is continuous, $S_{2}=\{0\}$ so $0 \in \partial S_{2}$ but $0 \notin \partial S_{1}$.
Statement (1.4) fails by taking $x(0)=0$ and

$$
\begin{equation*}
f_{1}(\mathbf{x}, t)=g\left(x_{1}\right) k(t), \quad f_{n}(\mathbf{x}, t)=0, \quad n \geqslant 2 \tag{3.5}
\end{equation*}
$$

over [0,1$]$ to give S_{1} as the line segment joining $\pm \mathbf{e}_{1}$. Then continue over [1, 2] with

$$
\begin{equation*}
\mathbf{f}(\mathbf{x}, t)={ }_{3} \mathbf{f}(\mathbf{x}, t) k(t-1) \tag{3.6}
\end{equation*}
$$

to give $S_{2}=\left\{-\mathbf{e}_{1}, \mathbf{e}_{1}\right\}$. In the next section this S_{t} behavior will be reproduced, although it will be convenient to replace (3.6) by

$$
\begin{equation*}
\mathbf{f}(\mathbf{x}, t)=P_{1}\left(\mathbf{1}_{\mathbf{f}}\left[P_{1} \mathbf{x}, t\right]\right)\left|{x_{1}^{2}}^{2}-1\right| k(t-1) \tag{3.7}
\end{equation*}
$$

which behaves in the same way on the subspace $P_{1}^{-1}(0)$.

4. Kneser's Property

First we collect some results and notation to be used. A construction of Day [2] gives a closed subspace $Y \subseteq X$ with a basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots$. For each $\mathbf{y} \in Y$, which will play the role of c_{0} in 3 , let

$$
\begin{equation*}
P_{n} \mathbf{y}=\sum_{m=n+1}^{\infty} y_{m} \mathbf{e}_{m} \tag{4.1}
\end{equation*}
$$

where y_{m} are the coordinates of \mathbf{y}, so P_{0} is the identity on Y.
In what follows, it will sometimes be convenient to define $\mathbf{f}(\mathbf{y}, t) \in Y$ and extend \mathbf{f} to ('X,t) using Dugundji's construction [3]. This preserves continuity and Y-valuedness of \mathbf{f}, so solutions to (1.1) once in Y remain there, as observed by Godunov [5].
$\Lambda \mathrm{s}$ in (3.5) let $\mathrm{x}(0)=0$ and

$$
\begin{equation*}
\mathbf{f}(\mathbf{y}, t)=\mathbf{g}\left(y_{1} \mathbf{e}_{1}\right) k(t) \tag{4.2}
\end{equation*}
$$

on $[0,1]$. The analog of (3.7) will be a slight modification of Godunov's equation. Let $\theta: \mathbb{R} \rightarrow \mathbb{R}_{+}$be continuous and

$$
\begin{equation*}
\mathbf{q}(\mathbf{y}, t, \theta)=\mathbf{g}(P(t) \mathbf{y})+\sum_{n=1}^{\infty} \varphi_{n}(\mathbf{y}, t, \theta) \mathbf{e}_{n}, \quad \mathbf{y} \in Y, \quad 0 \leqslant t \leqslant 1 \tag{4.3}
\end{equation*}
$$

where the projector $P(t)$ on Y and the \mathbb{R}-valued functions φ_{n} are defined as follows. Take three sequences

$$
a_{n}=1 /(2 n+1), \quad c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right), \quad b_{n}=1 / 2 n
$$

and define P countably piecewise linearly by

$$
P(0)=0, \quad P\left(b_{n+1}\right)=P\left(c_{n}\right)=P_{n}, \quad P(1)=P_{0}
$$

Referring to (1.7, 8), let

$$
\varphi_{n}(\mathbf{y}, t, \theta)=n^{-1} k_{a_{n} e_{n}}(t) h\left(w\left[t-b_{n+1}\right]-\left\|P_{n} \mathbf{y}\right\|\right), \quad w(s)=\left[\int_{0}^{s} \theta\right]^{2}
$$

Godunov in fact takes $\mathbf{x}(0)=\mathbf{0}, \theta(s)=s$ in (4.3) and $\mathbf{f}(\mathbf{y}, t)=\frac{1}{2} \mathbf{q}(\mathbf{y}, t, \theta)$ in (1.1). He concludes that $\mathbf{x}\left(b_{n}\right)=\mathbf{0}$ from some n onwards is impossible, the argument going through provided $\theta(s)>0$ if $s>0$. The alternative case, that $\mathbf{x}\left(b_{n}\right) \neq \mathbf{0}$ for arbitrarily large n, is contradicted provided w is not less than the maximum solution of

$$
\begin{equation*}
\dot{\xi}=\frac{1}{2} g(\xi), \quad \xi(0)=0 \tag{4.4}
\end{equation*}
$$

i.e., $w(s) \geqslant s^{2} / 4$. (The reasoning involves showing that (1.1) reduces to $\dot{\mathbf{x}}=-\frac{1}{2} \mathbf{g}(\mathbf{x})$, a device typical of "nonexistence" examples.)

In order to continue (4.2) over [1, 2], set

$$
\mathbf{f}(\mathbf{y}, t)=P_{1} \mathbf{q}\left(P_{1} \mathbf{y}, t-1,\left|y_{1}^{2}-1\right| k\right)\left|y_{1}^{2}-1\right| k(t-1)
$$

cf. (3.7). Nonexistence of solutions for $y_{1} \not \equiv \pm 1$ follows essentially as in [5], (4.4) showing that $\theta-\left|y_{1}^{2}-1\right| k$ is a suitable choice.

5. Hukuhara's Property

This example is based on a similar idea to that in c_{0} (3.4), to generate S_{1} as the unit ball and then kill enough nonzero solutions to give $0 \in \partial S_{2}$. Since the nonexistence example (4.3) does not have the extreme non-Lipschitz behavior of (3.2) in c_{0}, some nonzero solutions will remain in S_{2} this time, although it will be shown how to remove these too in case $Y=X$.

Over [0,1], define \mathbf{f} by (2.1), so S_{1} is the unit ball and $0 \notin \partial S_{1}$ is reached only via the zero solution. Now using (4.2) suppose that we chose

$$
\begin{equation*}
\mathbf{f}(\mathbf{y}, t)=P_{1} \mathbf{q}\left(P_{\mathbf{1}} \mathbf{y}, t-1,\left|y_{\mathbf{1}}\right| k\right)\left|y_{\mathbf{1}}\right| k(t-1) \tag{5.1}
\end{equation*}
$$

Evidently $y_{1}(1)=0$ would give constant y. Further $y_{1}(1) \neq 0$ but $P_{1} \mathbf{y}(1)=0$ would give no solution, following similar reasoning to that in 4 , since y_{1} would remain a nonzero constant.

In fact we reverse (5.1), replacing $\mathbf{f}(\mathbf{y}, t)$ by $\mathbf{f}(\mathbf{y}, 3-t)$, i.e.,

$$
\begin{equation*}
\mathbf{f}(\mathbf{y}, t)=-P_{1} \mathbf{q}\left(P_{1} \mathbf{y}, 2-t,\left|y_{1}\right| k\right)\left|y_{1}\right| k(t-1) \tag{5.2}
\end{equation*}
$$

over [1, 2]. The key conclusion is that S_{2} contains no points with $y_{1}(2) \neq 0$ but $P_{1} y(2)=0$, or else we could again reverse the flow to obtain solutions emanating from such points, and this was ruled out above. Further $0 \in S_{2}$ and is reached only via $\mathbf{x} \equiv 0$. Thus $\mathbf{0}=\lim _{n \rightarrow \infty} n^{-1} \mathbf{e}_{1} \in \partial S_{2}$ and this negates (1.5).

In case $Y=X$ (for example $X=l_{2}$) we can kill the remaining nonzero solutions as follows. Note that y_{1} is bounded (by 2 in Day's construction [2]) if $\|y\| \leqslant 1$, so since y_{1} is constant over $[1,2]$ we have $\left|y_{1}(2)\right| \leqslant \alpha$ say. Choose

$$
\mathbf{f}(\mathbf{y}, t)=-\alpha^{1 / 2} \mathbf{g}\left(y_{1} \mathbf{e}_{1}\right) k(t-2)
$$

to give $y_{1}(3)=0$.
So far then, $P_{1} S_{3}=S_{3}$ and $\mathbf{0}$ is reached only via $\mathbf{y} \equiv \mathbf{0}$. With $\eta=\left\|P_{1} \mathbf{y}\right\|$, observe that

$$
\eta(1) \leqslant\|\mathbf{y}(1)\|+\left|y_{1}(1)\right| \leqslant 1+\alpha
$$

and over [1, 2] that

$$
\dot{\eta}(t) \leqslant\|\dot{\mathbf{y}}(t)\| \leqslant \alpha\left(\eta(t)^{1 / 2}+1\right) k(t-1) \leqslant \alpha(\eta(t)+1) k(t-1)
$$

Thus

$$
\eta(3)=\eta(2) \leqslant \beta=(1+\alpha) e^{\alpha}-1
$$

so if we choose

$$
\mathbf{f}(\mathbf{y}, t)=\left[-\beta^{\mathbf{1} / 2} \mathbf{g}\left(P_{\mathbf{1}} \mathbf{y}\right)+\eta \mathbf{e}_{\mathbf{1}}\right] k(t-\mathbf{3})
$$

over $[3,4]$ we obtain $\eta(4)=0$, i.e., $P_{1} \mathbf{y}(4)=\mathbf{0}$. Note again that $\mathbf{0}$ is reached only via $\mathbf{y} \equiv \mathbf{0}$.

It remains to repeat (5.1) without reversal, explicitly

$$
\mathbf{f}(\mathbf{y}, t)=P_{1} \mathbf{q}\left(P_{1} \mathbf{y}, t-4,\left|y_{1}\right| k\right)\left|y_{1}\right| k(t-4)
$$

over [4, 5], leaving just the zero solution.

Refirences

1. J. Dieudonne, Deux exemples singuliers d'équations différentielles, Acta Sci. Math. (Szeged) B 12 (1950), 38-40.
2. M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), 655-658.
3. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
4. A. Godunov, A counterexample to Peano's theorem in infinite dimensional Hilbert space, Moscow Univ. Math. Bull. 27 (1972), 24-26.
5. A. Godunov, On Peano's theorem in Banach spaces (in Russian), Funktsional. Anal. i Priložen. 9 (1975), 59-60.
6. P. Hartman, "Ordinary Differential Equations," Wiley, New York, 1964.
7. J. Yorke, A continuous differential equation in Hilbert space without existence, Funkcial. Ekvac. 13 (1970), 19-21.

[^0]: * This research was supported by a grant from the National Research Council of Canada.

