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Abstract

The geometric mean of two positive definite matrices has been defined in several ways and
studied by several authors, including Pusz and Woronowicz, and Ando. The characterizations
by these authors do not readily extend to three matrices and it has been a long-standing problem
to define a natural geometric mean of three positive definite matrices. In some recent papers
new understanding of the geometric mean of two positive definite matrices has been achieved
by identifying the geometric mean of A and B as the midpoint of the geodesic (with respect
to a natural Riemannian metric) joining A and B. This suggests some natural definitions for
a geometric mean of three positive definite matrices. We explain the necessary geometric
background and explore the properties of some of these candidates.
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1. Introduction

The goals of this article are partly expository but include an analysis of recent
approaches to the definition of a geometric mean for three (or more) positive defi-
nite matrices. Effective definitions for this concept have long been elusive although
related ideas have appeared as our work was in progress (see [2,9]). We first review
some standard constructions from Riemannian geometry with stress on the matrix
analytic aspects of these constructions. We then explain how this setting allows a
better understanding of the geometric mean of two positive definite matrices. Finally
we turn to the problem of extending these ideas to three matrices.

One well-established interpretation of the “geometric mean” A#B of two positive
definite matrices A, B says that

A#B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 . (1)

There is a natural hyperbolic geometry (i.e. one with nonpositive curvature) on the
space Pn of n × n positive definite matrices in which this A#B has a pleasing con-
ceptual meaning: A#B is the midpoint of the geodesic joining A and B (see for
example [5]). A preferred interpretation of the “geometric mean” of three matrices
A, B, C ∈ Pn is not so well-established. There are several competing definitions,
helpfully discussed in [2]. In that paper the authors highlight a particular interpretation,
which we denote by alm(A, B, C), that is obtained by a limit procedure successively
replacing the vertices of the “triangle” by the geometric means of its sides. More
precisely, starting from �0 = {A0, B0, C0} we define by induction

�m+1 = {Am#Bm, Bm#Cm, Cm#Am}, (2)

and set

alm(�0) = lim
m→∞ �m, (3)

or to be exact alm(�0) = M∞ where limm→∞ �m = (M∞, M∞, M∞).
In these notes we explore the hyperbolic-geometry setting for constructions such as

(3), pointing out for example that the convergence result essential to (3) is especially
evident in that geometric setting. We examine certain other candidates for the “geo-
metric mean” of a triple � = {A, B, C} that appear natural in the geometric setting,
with emphasis on the “least squares” point Z minimizing δ2(A, Z) + δ2(B, Z) +
δ2(C, Z), where δ(A, Z) denotes the geodesic distance from A to Z. This point,
denoted by ls(�), is that Z ∈ Pn (it turns out to be unique) such that, for all Y ∈ Pn,
ss�(Z) � ss�(Y ), where

ss�(Y ) = δ2(A, Y ) + δ2(B, Y ) + δ2(C, Y ). (4)

This construction is classic, going back to Élie Cartan in the early 20th century
(see for example [6, p. 178]), but it is perhaps only recently that ls(�) has been
considered as a matrix geometric mean. We have learned that our own work runs
parallel, in several respects, to that of Moakher in [9]. We have tried to make our
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account self-contained wherever it is reasonable to do so, and have included many
geometric details that may be convenient for readers coming from a background in
matrix analysis similar to our own.

In this paragraph we provide a guide to some of the literature related to this article;
other references appear in later sections. The effective definition of the geometric
mean for two positive definite matrices seems to have first appeared in Pusz and
Woronowicz [12]. Ando [1] provided the first systematic development of many of
its basic properties, giving equivalent characterizations and applications to matrix
inequalities that are otherwise difficult to prove. Trapp [13] is a good survey of matrix
means, including the geometric, and relates these concepts to the earlier electrical
engineering literature. The geometric mean has been linked to differential geometry
in Corach–Porta–Recht [7] and Lawson–Lim [8], for example.

2. The natural metric on Pn

Here we review the definition of the hyperbolic geometry for Pn and obtain some
of its properties, notably the “exponential metric increasing property” and the “semi-
parallelogram law”. In part this is a reworking of (some of) the material in [5]. Our
notation includes the following: Mn(C) denotes the space (�-algebra) of all n × n

complex matrices, GLn denotes the space (group) of all invertible elements in Mn(C),
Sn denotes the space (real-linear subspace) of all self-adjoint elements in Mn(C), and
Pn denotes the space (cone) of all positive definite (pd) elements in Mn(C).

A Riemannian metric on Pn is determined locally (at A) by the relation

ds = ‖A− 1
2 dAA− 1

2 ‖2, (5)

where ‖X‖2 denotes the Frobenius, Hilbert–Schmidt, or Schatten-2 norm of a matrix
X ∈ Mn(C), i.e. ‖X‖2 = (

∑
i,j |xij |2) 1

2 . The mnemonic (5) is interpreted as a recipe
for computing the “length” L(γ ) of a (differentiable) path γ : [a, b] → Pn:

L(γ ) =
∫ b

a

‖γ − 1
2 (t)γ ′(t)γ − 1

2 (t)‖2 dt. (6)

A key observation is that we have a large class of bijections � : Pn → Pn that are
isometric with respect to this notion of length. Indeed, given any X ∈ GLn, let �X :
Pn → Pn be defined by �X(A) = XAX∗. Given a path γ as above, the composition
�X ◦ γ : [a, b] → Pn is another such path and we have

(∀X ∈ GLn) L(�X ◦ γ ) = L(γ ), (7)

since for each t

‖(Xγ (t)X∗)−
1
2 (Xγ (t)X∗)′(Xγ (t)X∗)−

1
2 ‖2

= ‖γ − 1
2 (t)γ ′(t)γ − 1

2 (t)‖2. (8)
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To obtain (8), recall that for any Y ∈ Mn(C) we have ‖Y‖2
2 = ∑n

1 s2
k (Y ), where sk(Y )

denotes the kth singular value of Y . In the case of positive definite matrices such as

A− 1
2 BA− 1

2 (A, B ∈ Pn) we see that ‖A− 1
2 BA− 1

2 ‖2 depends only on the eigenvalues

of A− 1
2 BA− 1

2 ; these, by similarity, are the same as the eigenvalues of BA−1. Thus
(8) follows from the observation that (Xγ ′(t)X∗)(Xγ (t)X∗)−1 and γ ′(t)γ −1(t) have
the same eigenvalues: indeed, (Xγ ′(t)X∗)(Xγ (t)X∗)−1 = X(γ ′(t)γ −1(t))X−1.

Based on the notion of length, introduced above, we define the geodesic distance
δ(A, B) between any two A, B ∈ Pn:

δ(A, B) = inf{L(γ ) : γ is a (differentiable) path from A to B}. (9)

We shall soon see that this infimum is attained by a path uniquely determined by
A and B. This path is called the geodesic joining A to B and it will be denoted by
[A, B]; this notation should not be confused with the Lie bracket notation (which
would also make sense here!). In any case, it is clear that (9) defines a metric on Pn.
In particular, the triangle inequality δ(A, B) � δ(A, C) + δ(C, B) follows from the
observation that a path γ1 from A to C can be adjoined to a path γ2 from C to B

to obtain a path “γ1 + γ2” from A to B having length L(γ1) + L(γ2). By definition
δ(A, B) � L(γ1 + γ2) = L(γ1) + L(γ2), and taking infima on the right we obtain
the triangle inequality.

Because of the isometry of the mapping �X with respect to length L, it is clear
that each �X is also an isometry with respect to δ:

(∀X ∈ GLn, ∀A, B ∈ Pn) δ(�X(A), �X(B)) = δ(A, B). (10)

This observation, together with the identification of certain special geodesics, will
allow us to find δ(A, B) directly and to compute the geodesic [A, B] explicitly.

The main new ingredient is the infinitesimal exponential metric increasing property
(IEMI):

(H, K ∈ Sn) ‖(eH )−
1
2 DeH (K)(eH )−

1
2 ‖2 � ‖K‖2, (11)

where DeH denotes the Fréchet derivative of the (matrix) exponential function exp
at H . This is a linear map on Sn and its action is given by the formula

DeH (K) = lim
t→0

eH+tK − eH

t
.

Let f : R → R be any differentiable function (here we are concerned with the case
f (t) = exp(t) = et ). It is well-known that, working with respect to an orthonormal
basis of eigenvectors for H ∈ Sn,

(∀K ∈ Sn) [Df (H)](K) =
[
f (λi) − f (λj )

λi − λj

]
◦ K, (12)

where λ1, λ2, . . . , λn are the eigenvalues of H and ◦ denotes here the Schur or entry-
wise product of n × n matrices. See, for example, [4, Theorem V.3.3]. Note that when
λi = λj (for example, when i = j ) the corresponding entry in the “Löwner matrix”
on the right of (12) is interpreted as f ′(λi).
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Thus we may compute (eH )− 1
2 DeH (K)(eH )− 1

2 as

diag{e−λi/2}
([

eλi − eλj

λi − λj

]
◦ K

)
diag{e−λj /2} =


e

λi−λj
2 − e− λi−λj

2

λi − λj


 ◦ K,

so that (11) follows from the elementary fact that et/2−e−t/2

t
� 1 for all t .

Proposition 1. Given any differentiable path γ : [a, b] → Pn, parametrized as
γ (t) = eH(t) (i.e. setting H(t) = log γ (t)),

L(γ ) �
∫ b

a

‖H ′(t)‖2 dt. (13)

For any A, B ∈ Pn,

δ(A, B) � ‖ log A − log B‖2. (14)

Proof. By the chain rule γ ′(t) = DeH(t)(H ′(t)) so that (13) follows directly from
(6) and (11). Let γ : [a, b] → Pn be any (differentiable) path from A to B. Then
H(t) = log γ (t) defines a path in the Euclidian space (Sn, ‖ · ‖2). The RHS of (13)
is just the Euclidian length of H(·) so that it is bounded below by ‖H(a) − H(b)‖2 =
‖ log A − log B‖2. Thus, for any such γ , we have L(γ ) � ‖ log A − log B‖2, and (14)
follows. �

Proposition 2. Let A, B ∈ Pn be commuting matrices. Then the exponential func-
tion exp maps the Euclidian line segment [log A, log B]2 ⊂ Sn isometrically to the
geodesic [A, B] in Pn. In particular, δ(A, B) = ‖ log A − log B‖2.

Proof. Consider the path claimed to trace out the geodesic [A, B], namely γ (t) =
exp((1 − t) log A + t log B). We must verify that γ : [0, 1] → Pn traverses the
unique path of shortest length joining A to B. Because A and B commute, γ (t) =
A1−tBt and γ ′(t) = (log B − log A)γ (t). Hence, directly from (6),

L(γ ) =
∫ 1

0
‖ log A − log B‖2 dt = ‖ log A − log B‖2. (15)

Proposition 1 says that ‖ log B − log A‖2 is the least possible length for a path from
A to B so that γ (t) = A1−tBt does attain the minimum. Any other path γ̃ with
this length would, applying (13) to γ̃ , be such that H̃ (t) = log γ̃ (t) had Euclid-
ian length equal to ‖ log B − log A‖2, i.e. the distance between its end-points. Thus
H̃ (·) would be a reparametrization of [log A, log B]2. It is the affine parametrization
H(t) = (1 − t) log A + t log B, however, that maps isometrically to [A, B] through-
out the whole interval (apply the calculation of (15) to the restriction of H(·) to any
subinterval [a, b] of [0, 1]). �
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Note that Proposition 2 tells us that when A and B commute the natural parame-
trization of [A, B] in Pn is given by γ (t) = A1−tBt in the sense that δ(A, γ (t)) =
tδ(A, B) for each t ∈ [0, 1]. Combining this information with the isometries �X we
can proceed to the general case.

Proposition 3. For any A, B ∈ Pn the geodesic [A, B] is naturally parametrized
by γ : [0, 1] → [A, B] with

γ (t) = A
1
2

(
A− 1

2 BA− 1
2

)t

A
1
2 , (16)

in the sense that δ(A, γ (t)) = tδ(A, B) for each t ∈ [0, 1]. Moreover,

δ(A, B) = ‖ log(A− 1
2 BA− 1

2 )‖2. (17)

Proof. The matrices I and A− 1
2 BA− 1

2 commute so that γ0(t) = (A− 1
2 BA− 1

2 )t

naturally parametrizes [I, A− 1
2 BA− 1

2 ]. Applying the isometry �
A

1
2

to γ0 we obtain

the natural parametrization of [A, B] = [
�

A
1
2
(I ), �

A
1
2
(A− 1

2 BA− 1
2 )
]
,

namelyγ (t) = �
A

1
2
(γ0(t)) = A

1
2 (A− 1

2 BA− 1
2 )tA

1
2 , as claimed. Moreover, δ(A, B) =

δ(I, A− 1
2 BA− 1

2 ) = ‖ log I − log(A− 1
2 BA− 1

2 )‖2 = ‖ log(A− 1
2 BA− 1

2 )‖2. �

As a special case we see that γ (1/2), the geodesic midpoint of A and B, is given

by A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 , which is the geometric mean A#B of A and B as defined

by (1). The formula (1) appears unlikely at first glance since the symmetry in A and
B is obscured. Proposition 3 reveals the symmetry geometrically since, reversing the
roles of A and B, the proposition tells us that the midpoint of [A, B] can equally well

be expressed as B
1
2 (B− 1

2 AB− 1
2 )

1
2 B

1
2 . Note also that δ(A−1, B−1) = δ(A, B) (see

(17), for example); this makes it clear geometrically that the geometric mean respects
matrix inversion, i.e. A−1#B−1 = (A#B)−1.

Proposition 4. If, for some A, B ∈ Pn, I lies on the geodesic [A, B], then A and
B commute, [A, B] is the isometric image via the map exp of a line segment through
0 in Sn, and

log B = −1 − t

t
log A, (18)

where t = δ(A, I)/δ(A, B).

Proof. From Proposition 3 we know that, for some t , I = A
1
2 (A− 1

2 BA− 1
2 )tA

1
2 . Thus

B = A
1
2 A−1/tA

1
2 = A−(1−t)/t so that A and B commute and (18) holds. Propo-

sition 2 ensures that [A, B] is the isometric image of the Euclidian line segment
[log A, log B]2 in Sn and, of course, 0 = log I lies in this segment. �
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The following proposition establishes the “semi-parallelogram law” for Pn.

Proposition 5. Given A, B ∈ Pn, let M (= A#B) be the midpoint of the geodesic
[A, B]. Then for any C ∈ Pn we have

δ2(M, C) � δ2(A, C) + δ2(B, C)

2
− 1

4
δ2(A, B). (19)

Proof. Applying the isometry �
M

− 1
2

to all the matrices involved, we may assume

that M = I . By Proposition 4 we have log B = − log A and δ(A, B) = ‖ log A −
log B‖2 = 2‖ log A‖2. That proposition also applies to [M, C] = [I, C] so that
δ(M, C) = ‖ log M − log C‖2 = ‖ log C‖2. In the Euclidian space (Sn, ‖ · ‖2) we
have

‖ log C‖2
2 + ‖ log A‖2

2 = ‖ log C − log A‖2
2 + ‖ log C + log A‖2

2

2
(a form of the parallelogram law). Recalling the relations above, we may write this
as

δ2(M, C) + (δ(A, B)/2)2 = ‖ log C − log A‖2
2 + ‖ log C − log B‖2

2

2
so that, by Proposition 1,

δ2(M, C) + 1

4
δ2(A, B) � δ2(A, C) + δ2(B, C)

2
. �

The impact of Propositions 1 and 4 may be summarized by saying that the mapping
exp: Sn → Pn is isometric on line segments through 0 and is metric nondecreasing
in general. These features are conventionally expressed as the “exponential metric
increasing” property (EMI). The semi-parallelogram law and EMI reflect the nonposi-
tive curvature of (Pn, δ), though we’ll not define curvature formally here. Another
useful aspect of this nonpositive curvature will be the fact that, for any A, B, C ∈ Pn

and any t ∈ [0, 1]
δ(A#tB, A#tC) � tδ(B, C), (20)

where we use A#tB to denote the point T on [A, B] such that δ(A, T ) = tδ(A, B) (in
particular we have A# 1

2
B = A#B, the midpoint). In terms of this notation, Proposition

3 yields the relation

A#tB = A
1
2 (A− 1

2 BA− 1
2 )tA

1
2 . (21)

The relation (20) is known as “convexity of the metric”. See for example [5], p. 218.
Here we first provide a proof for the case we need later (t = 1/2), basing it on the
semi-parallelogram law.

Proposition 6. For any A, B, C ∈ Pn we have

δ(A#B, A#C) � 1

2
δ(B, C). (22)
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Proof. Let M1 = A#B and M2 = A#C. Since M1 is the midpoint of the side of the
geodesic triangle {A, B, C} opposite C, Proposition 5 (the semi-parallelogram law)
tells us that

δ2(C, M1) � δ2(C, A) + δ2(C, B)

2
− 1

4
δ2(A, B).

Since M2 is the midpoint of the side of the geodesic triangle {A, M1, C} opposite
M1, Proposition 5 also tells us that

δ2(M1, M2) � δ2(M1, C) + δ2(M1, A)

2
− 1

4
δ2(C, A).

Applying the first inequality to the second, we obtain

δ2(M1, M2) � 1

4
δ2(C, A) + 1

4
δ2(C, B) − 1

8
δ2(A, B)

+ 1

2
δ2(M1, A) − 1

4
δ2(C, A).

Since δ(M1, A) = 1
2δ(A, B), the RHS simplifies to 1

4δ2(C, B) and (22) follows. �

As a corollary we obtain (20) in a somewhat more general form: (20) follows from
(23) by setting B ′ = C′ = A.

Corollary. Given B, C, B ′, C′ ∈ Pn, the function f (t) = δ(B ′#tB, C′#tC) is con-
vex on [0, 1], i.e.

δ(B ′#tB, C′#tC) � (1 − t)δ(B ′, C′) + tδ(B, C). (23)

Proof. Since f is continuous it is sufficient to prove that it is midpoint-convex. Let
M1 = B ′#B, M2 = C′#C, and M = B ′#C. Proposition 6 implies that δ(M1, M) �
1
2δ(B, C) and δ(M, M2) � 1

2δ(B ′, C′). Hence

δ(M1, M2) � δ(M1, M) + δ(M, M2) � 1

2
δ(B, C) + 1

2
δ(B ′, C′). �

3. Convex hulls

We say a subset S of Pn is convex if A, B ∈ S 
⇒ [A, B] ⊆ S. Evidently the
intersection of any family of convex subsets is itself convex. It is then natural to define
the convex hull conv(T) of a subset T of Pn by

conv(T) =
⋂

{S : T ⊆ S and S is convex}. (24)
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Thus conv(T) is the smallest convex set containing T. Since [A, B] is itself convex,
it is clear that for any two points A, B ∈ Pn we have conv({A, B}) = [A, B]. The
convex hull of three points A, B, C ∈ Pn is, however, harder to describe in general.
Note 6.1.3.1 in [3] comments on this problem. Although it is natural to regard any
A#tB (t ∈ [0, 1]) as a “geometric” convex combination of A and B, we do not have
a consistent notion of geometric convex combination for three or more elements.
Nevertheless, there is a more “constructive” approach to computing conv(T) than
(24) reveals.

Proposition 7. Given T = T0 ⊆ Pn, define inductively the sets Tm via

Tm+1 =
⋃

{[A, B] : A, B ∈ Tm}.
Then conv(T) = ⋃∞

0 Tm.

Proof. It is clear by induction that eachTm ⊆ conv(T). Hence
⋃∞

0 Tm ⊆ conv(T).
It only remains to show that

⋃∞
0 Tm is convex. Note that Tm+1 ⊇ Tm since

A ∈ [A, B]. Thus given any particular A, B ∈ ⋃∞
0 Tm there is some fixed m′ such

that A, B ∈ Tm′ . Then [A, B] ⊆ Tm′+1 ⊆ ⋃∞
0 Tm. �

If, in the construction of Proposition 7, we take a “triangle” T = {A, B, C}, it
is clear that T1 is the union of the “edges”, i.e. T1 = [A, B] ∪ [B, C] ∪ [C, A].
However, T2 is not in general a “surface”, as we might expect by analogy with
Euclidian space, but rather a “fatter” object. Fig. 1 attempts to portray a part of T2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25
0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 1. Two pieces of conv(A, B, C), namely the “surfaces” [A, [B, C]] and [B, [C, A]].
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00.20.40.60.8
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0.45

0.5

0.55

0.6

0.65

0.7

0.75

P 

Q 

Fig. 2. In general, conv(A, B, C) lacks consistent convex coordinates.

The blue1 “surface” in Fig. 1 represents the union of geodesics joiningA to points of
the opposite edge [B, C]. That is, the blue curves sketch out

⋃{[A, B#tC], t ∈ [0, 1]},
which we may denote by [A, [B, C]]; again, we warn the reader that we are not using
the Lie bracket notation. The red curves, on the other hand, sketch out [B, [C, A]], and
it is clear from this example that [A, [B, C]] and [B, [C, A]] do not in general belong
to a simple surface bounded by T1. Indeed, it appears in Fig. 1 that [A, [B, C]] and
[B, [C, A]] intersect only along the edges T1 of the triangle. The points A, B, and
C in this demonstration have been chosen “at random” from P2 and normalized so
that ‖A‖2 = 1, etc. The coordinates used to plot Fig. 1 correspond to a choice of
orthonormal basis in S2. While the dimension of S2 is 4, Fig. 1 plots the projection
of (some of) T2 on the subspace spanned by 3 of the 4 orthonormal basis elements.
We remark that (except for Fig. 3b) the matrices chosen are “generic”, but that the
views have been selected carefully to reveal certain features.

In Fig. 2 we focus on the impossibility (in general) of assigning consistent con-
vex coordinates to the points of conv({A, B, C}). Indeed, it turns out that it is not
appropriate to speak of “consistent convex coordinates” in this setting; see how-
ever our discussion of the “Cartan surface” following Proposition 17. Here T1 =
[A, B] ∪ [B, C] ∪ [C, A] is artificially rendered by the sides of an affine triangle.
The blue geodesics representing [A, [B, C]] are plotted with a positive vertical dis-
placement proportional to their distances from the points in [B, [C, A]] to which they
might be expected to correspond (and which they would indeed match perfectly if,

1 For interpretation of color in figures, the reader is referred to the Web version of this article.
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for example, A, B, and C commuted—see Proposition 9). As an illustration, P =
A# 2

3
(B# 1

2
C), which under favorable conditions would be a “centroid” for {A, B, C},

is plotted a distance ‖P − Q‖2 above the affine triangle, where Q is the “match-
ing” point in [B, [C, A]]: Q = B# 2

3
(C# 1

2
A). Likewise the red geodesics representing

[B, [C, A]] are plotted below the affine triangle by amounts related to their distances
from “matching” elements in [A, [B, C]].

We next examine those favorable cases in which conv({A, B, C}) can be viewed as
a surface spanning [A, B] ∪ [B, C] ∪ [C, A]. We say A, B, C ∈ Pn are �-commuting
if there exists X ∈ GLn such that �X(A), �X(B), �X(C) commute with one another.
Note that A, B, C themselves need not commute, though that situation is a special
case of �-commutativity. For example, {A, B, B}�-commute for arbitrary A, B ∈ Pn

(take X = A− 1
2 ). On the other hand, �-commutativity is quite a restrictive condition,

as (b) of Proposition 8 makes clear.

Proposition 8. Given A, B, C ∈ Pn, the following conditions are equivalent:

(a) A, B, C �-commute, i.e.

(∃X ∈ GLn) such that �X(A), �X(B), �X(C) commute;
(b) AB−1C = CB−1A;
(c) A− 1

2 BA− 1
2 and A− 1

2 CA− 1
2 commute.

Proof. Suppose that (a) holds. Since XAX∗, XBX∗, XCX∗ commute, so do XAX∗,
(XBX∗)−1, XCX∗ so that

XAX∗(XBX∗)−1XCX∗ = XCX∗(XBX∗)−1XAX∗,
i.e. XAB−1CX∗ = XCB−1AX∗. Thus (a) implies (b).

Reversing the steps above we see that if (b) holds we have, for any Y ∈ Pn,

�Y (A)�Y (B)−1�Y (C) = �Y (C)�Y (B)−1�Y (A). Taking Y = A− 1
2 we have

�
A

− 1
2
(B)−1�

A
− 1

2
(C) = �

A
− 1

2
(C)�

A
− 1

2
(B)−1. Thus (b) implies (c). Finally, (c) pro-

vides a specific X, namely A− 1
2 , for (a). �

Remark. The symmetric condition of �-commutativity is equivalent to the easily
computable but less-obviously symmetric (b). It is easy to check directly that condition
(b) of Proposition 8 is in fact symmetric in A, B, C.

Proposition 9. Let A, B, C be �-commuting and choose any X ∈ GLn such that
�(A), �(B), �(C) commute, where � = �X. Then conv({A, B, C}) is isometric to
the affine triangle conv({log �(A), log �(B), log �(C)}) (in the Euclidian space
(Sn, ‖ · ‖2)) via the map �−1 ◦ exp . Thus consistent “convex” coordinates may be
assigned to points in conv({A, B, C}) with (r, s, t) (r + s + t = 1) corresponding to
�−1((�(A))r (�(B))s(�(C))t ).
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Proof. Since � is a δ-isometry, we need only show that exp maps conv({log �(A),

log �(B), log �(C)})⊂ Sn isometrically to conv({�(A), �(B), �(C)}).
The fact that exp is isometric on conv({log �(A), log �(B), log �(C)}) is a conse-

quence of Proposition 2, and commutativity ensures that

exp(r log �(A) + s log �(B) + t log �(C)) = (�(A))r (�(B))s(�(C))t .

It remains to show that

T = {(�(A))r (�(B))s(�(C))t : r, s, t � 0, r + s + t = 1}
is, in fact, conv({�(A), �(B), �(C)}). Certainly T contains each of �(A), �(B), and
�(C), andT is convex: if T (r, s, t) = (�(A))r (�(B))s(�(C))t ∈ T and T (r ′, s′, t ′)
∈ T then

T (r, s, t)#uT (r ′, s′, t ′) = T (r(1 − u) + r ′u, s(1 − u) + s′u, t (1 − u) + t ′u)

is also in T. In fact, we see that if {�(A), �(B), �(C)} is denoted by T0 then, in
terms of the notation of Proposition 7, T = T2. �

Figs. 3a and 3b illustrate the effect of the �-commutativity in Proposition 9. In Fig.
3a we see a simulation of conv({A, B, C}) when A, B, C are chosen at random in P2.
In Fig. 3b we see the same sort of simulation applied to a triple of matrices chosen
so that they �-commute. The simulations were computed via finite approximations
to the towers of sets occurring in Proposition 7. If {A, B, C} is denoted by T0 then,

Fig. 3a. Part of conv(A, B, C) where A, B, C are random in P2.
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Fig. 3b. Part of conv(A, B, C) where A, B, C in P2 Gamma-commute.

in terms of the notation of Proposition 7, T1 (union of the triangle’s edges) is shown
in blue, part of T2 is shown in red, and part of T3 is shown in green.

Remark. In [9] (see Section 3.3) Moakher studies a different situation where, as in
Fig. 3b, conv({A, B, C}) is a surface. He analyzes SP(2), the space of real pd 2 × 2
matrices with determinant 1. Since SP(2) itself has real dimension 2, if A, B, C are
chosen from SP(2) we may expect a picture rather like Fig. 3b, but for different
reasons. Moakher notes thatSP(2) is a hyperboloid (of constant negative curvature),
but conv({A, B, C}) will not admit consistent convex coordinates in the sense of
Proposition 9.

4. Completeness and metric projection

In contrast to the matrix norms, the geodesic metric δ makes Pn into a complete
metric space.

Proposition 10. The metric space (Pn, δ) is complete.

Proof. Suppose that {An}∞1 is a δ-Cauchy sequence in Pn. By (14) of Proposition 1,
{log An}∞1 is a Cauchy sequence in the Euclidian space Sn so that it has a limit L ∈ Sn:
‖ log An − L‖2 →n 0. We can conclude that δ(An, exp L) → 0 once we are convin-
ced that exp : (Sn, ‖ · ‖2) → (Pn, δ) is continuous. Suppose Ln → L in (Sn, ‖ · ‖2).

In view of (17) we have δ(exp Ln, exp L) = ‖ log((exp L)− 1
2 exp Ln(exp L)− 1

2 )‖2,
so that to see that δ(exp Ln, exp L) → 0 we need only observe that the eigenvalues
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of (exp L)− 1
2 exp Ln(exp L)− 1

2 tend to 1. This follows by the continuity of exp with
respect to any convenient matrix norm (eg the operator norm), combined with spectral
continuity. �

Note that Pn is not complete with respect to matrix norms. Instead, it has a boundary
consisting of the singular positive semi-definite (psd) matrices. In terms of (Pn, δ)

these “boundary points” are “points at infinity”. Proposition 11 shows that they may
be approached along appropriate geodesics. It is conventional to extend certain matrix
operations from pd to psd matrices by means of the “+εI” device. For example, we
may define the geometric mean S1#S2 of psd matrices S1, S2 by

S1#S2 = lim
ε↓0

(S1 + εI )#(S2 + εI ).

Proposition 11 makes it less surprising that this operation, while continuous on Pn,
is no longer continuous when so extended to the psd matrices.

Proposition 11. Let S be a singular psd matrix in Sn. Then S = limt→∞ A#tB for
certain pairs A, B ∈ Pn. Commuting A, B may be chosen, in fact, and in this case
S = limt→∞ A1−tBt . These limits may be computed with respect to any convenient
matrix norm. With respect to δ, on the other hand, we have limt→∞ δ(A, A#tB) = ∞.

Remark. We may safely extend our notation A#tB from t ∈ [0, 1] to arbitrary real
t using the relation (21).

Proof. Working with an orthonormal basis of eigenvectors for S, we have S =
diag{λk} where λk � 0 and, for some k, λk = 0. Let A = diag{αk} and B = diag{βk},
where αk = βk = λk if λk > 0 and αk = 1, βk = 1/2 if λk = 0. Then it is clear
that S = limt→∞ A1−tBt with respect to any matrix norm, while δ(I, A1−tBt ) =
‖ log A1−tBt‖2 � | log 2−t | = t log 2 → ∞ as t → ∞. �

As in a Hilbert space, we can define metric projection onto closed convex subsets
of any space, such as (Pn, δ), that is complete and satisfies the semi-parallelogram
law (19).

Proposition 12. Let S be a closed convex set in (Pn, δ). For each A ∈ Pn there is
a unique closest point C to A in S, i.e. C ∈ S and for any other S ∈ S we have
δ(A, S) > δ(A, C).

Proof. Consider a sequence Cn in S such that δ(A, Cn) →n µ where

µ = inf{δ(A, S) : S ∈ S}.
The semi-parallelogram law (19) implies that

δ2(Cn, Cm) � 2(δ2(A, Cn) + δ2(A, Cm)) − 4δ2(A, M),
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so that

δ2(Cn, Cm) � 2(δ2(A, Cn) + δ2(A, Cm)) − 4µ2, (25)

since M , the geodesic midpoint of [Cn, Cm], is in S by the assumed convexity. As
n, m → ∞ the RHS of (25) tends to 2(µ2 + µ2) − 4µ2 = 0, so that {Cn} is a Cauchy
sequence. By Proposition 10 {Cn} has a limit C and continuity of the metric ensures
that δ(A, C) = lim δ(A, Cn) = µ. Since S is closed, C ∈ S. By the definition of
µ, δ(A, S) � δ(A, C) for any S ∈ S. Finally, if S is any element of S such that
δ(A, S) = µ then putting Cn = C and Cm = S in (25) shows that δ(C, S) = 0, i.e.
S = C. �

The mapping π : Pn → S defined by π(A) = C, where S, A, C are as in Propo-
sition 12, may be called metric projection ontoS. Metric projection shrinks distances
in an appropriate context of nonpositive curvature (see [6, pp. 176–177]). Here we
give a proof of a special case needed later, basing our argument directly on the semi-
parallelogram law. Thus, the argument given in Proposition 13 for (Pn, δ) applies
also to any Bruhat-Tits space (compare [6, p. 163]).

Proposition 13. If π is metric projection onto a closed convex subset S of Pn, A ∈
Pn, C = π(A), and D ∈ S, then δ2(A, D) � δ2(C, D) + δ2(A, C).

Proof. Let M0 = D and let Mn+1 be the geodesic midpoint of [C, Mn]. Then Mn →n

C = M∞ and in fact δ(C, Mn) = 2−nδ(C, D). The semi-parallelogram law (19)
implies that

2δ2(A, Mn+1) � δ2(A, Mn) + δ2(A, C) − 1

2
δ2(C, Mn),

i.e.

δ2(A, Mn) − δ2(A, Mn+1) � 1

2

1

4n
δ2(C, D) + δ2(A, Mn+1) − δ2(A, C).

Summing these inequalities,

∞∑
n=0

(δ2(A, Mn) − δ2(A, Mn+1))

�
(

1

2

∞∑
n=0

1

4n

)
δ2(C, D) +

∞∑
n=0

(δ2(A, Mn+1) − δ2(A, C)).

It is easy to see that these series are absolutely convergent. For example,

|δ2(A, Mn+1) − δ2(A, C)|
= (δ(A, Mn+1) + δ(A, C))|δ(A, Mn+1) − δ(A, C)|
�
(

2δ(A, C) + 1

2n+1
δ(C, D)

)
1

2n+1
δ(C, D).
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Thus

s0 � 2

3
δ2(C, D) +

∞∑
n=1

sn,

where sn = δ2(A, Mn) − δ2(A, C). By the same argument

sn � 2

3
δ2(C, Mn) +

∞∑
k=n+1

sk,

so that

δ2(A, D) − δ2(A, C) = s0

� 2

3
δ2(C, D) + s1 +

∞∑
k=2

sk

� 2

3
δ2(C, D) + 2

3
δ2(C, M1) + 2

∞∑
k=2

sk

= 2

3

(
1 + 1

4

)
δ2(C, D) + 2

∞∑
k=2

sk

= 2

3

(
1 + 1

4

)
δ2(C, D) + 2s2 + 2

∞∑
k=3

sk

� 2

3

(
1 + 1

4

)
δ2(C, D) + 2

(
2

3
δ2(C, M2) +

∞∑
k=3

sk

)
+ 2

∞∑
k=3

sk

= 2

3

(
1 + 1

4
+ 2

42

)
δ2(C, D) + 4

∞∑
k=3

sk,

etc. Since each Mk ∈ S we have sk � 0. Thus

δ2(A, D) − δ2(A, C)

� 2

3

(
1 + 1

4
+ 2

42
+ 4

43
+ 8

44
+ · · ·

)
δ2(C, D)

= 2

3

(
1 + 1

4

(
1 + 1

2
+ 1

4
+ 1

8
+ · · ·

))
δ2(C, D)

= 2

3

(
1 + 1

4
· 2

)
δ2(C, D) = δ2(C, D). �
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5. A comparison of means for A, B, C ∈ Pn

The authors of [2] establish that alm(A, B, C), defined as in (3), has many of the
properties that might be expected of the “geometric mean” of three pd matrices. In
particular, it has properties that we shall describe as consistency, permutation invari-
ance, and monotonicity. The geometric mean alm(A, B, C) is consistent in the sense
that when A, B, C commute the value is as we would expect for simultaneously diago-

nalizable matrices: alm(A, B, C) = (ABC)
1
3 . It is permutation invariant in the sense

that alm(A, B, C) is independent of the order in which A, B, C are listed. Finally, it is
monotone in the sense that it respects the natural order on Pn, whereby A � A′ means
that A′ − A is psd. Thus, if A, A′, B, B ′, C, C′ ∈ Pn and A � A′, B � B ′, C � C′,
then alm(A, B, C) � alm(A′, B ′, C′). We shall see that ls(A, B, C), defined as in our
Introduction, is consistent and permutation invariant and that there are good reasons
for believing that it is monotone as well. It is not usually the same as alm(A, B, C) yet
ls(A, B, C) may be seen as a reasonable alternative interpretation of the geometric
mean for three pd matrices.

First we point out that the convergence required in the definition of alm(�) follows
naturally from the geometric features of Pn discussed in previous sections. Conver-
gence always takes place and the limit alm(�) lies in the closure of conv(�). Note
that the closure of any convex subset of Pn is again convex. This follows from the
geodesic formula (16), for example. Since it involves sets, rather than points, in Pn,
the relation (3) requires some clarification—perhaps in terms of a Hausdorff metric.
Instead, we interpret it as in the following proposition, which also makes it clear that
alm(A, B, C) is permutation invariant.

Proposition 14. Given any A, B, C ∈ Pn set A0 = A, B0 = B, C0 = C and let Am =
Am−1#Bm−1, Bm = Bm−1#Cm−1, and Cm = Cm−1#Am−1, for each positive integer
m. Then for any choice of Zm ∈ conv({Am, Bm, Cm}) the sequence {Zm} converges
to a point alm(A, B, C) that is independent of the choice of Zm and lies in the closure
of conv({A, B, C}).

Proof. Let M0 = max{δ(A0, B0), δ(B0, C0), δ(C0, A0)}. It is convenient to note that
the diameter diam(conv({A0, B0, C0})), i.e. max{δ(X, Y ) : X, Y ∈ conv({A0, B0,

C0})}, isM0. To see this recall Proposition 7 and observe that if diam({X0, X1, Y0, Y1})
� M then δ(X, Y ) � M for any X ∈ [X0, X1] and Y ∈ [Y0, Y1]. Indeed, let X =
X0#tX1 and Y = Y0#sY1. We may assume that 0 � s � t � 1. By (20), d1 =
δ(X, Y0#tX1) � (1 − t)δ(X0, Y0) � (1 − t)M and d3 = δ(Y0#sX1, Y ) � sδ(X1, Y1)

� sM . By Proposition 3, d2 = δ(Y0#tX1, Y0#sX1) = (t − s)δ(Y0, X1) � (t − s)M .
Adding the three inequalities we obtain d1 + d2 + d3 � M; a fortiori, δ(X, Y ) � M .

By Proposition 6, M1 = max{δ(A1, B1), δ(B1, C1), δ(C1, A1)} � 1
2M0, and it

follows as above that diam(conv({A1, B1, C1})) = M1 � 1
2M0. Similarly we obtain

diam(conv({Am, Bm, Cm})) � 2−mM0. Evidently, if k > m we have Zk ∈
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conv({Am, Bm, Cm}) so that δ(Zm, Zk) � 2−mM0. Hence {Zm} is a Cauchy sequence
and converges in view of Proposition 10. The uniqueness of the limit follows from
the possibility of interlacing such Cauchy sequences and since all the sequences live
in conv({A0, B0, C0}), alm(A, B, C) lies in the closure. �

Remark. Recently Petz and Temesi (see [11, Theorem 2]) have given an elementary
proof of the convergence of sequences defining alm(�).

The following proposition justifies our definition of ls(A, B, C). We have chosen
to base it on the completeness of (Pn, δ) (and the semi-parallelogram law) rather than
on local compactness.

Proposition 15. Given any triangle � with vertices A, B, C ∈ Pn, the function
ss�(Y ) defined by (4) is strictly convex and achieves a unique (local and global)
minimum at the point we denote by ls(�).

Proof. By strict convexity of ss� we mean, of course, that for Y1 /= Y2 we have
ss�(Y1#t Y2) < (1 − t)ss�(Y1) + tss�(Y2) whenever 0 < t < 1. This is clear be-
cause the semi-parallelogram law (19) implies that each term of ss� is strictly (mid-
point) convex: e.g.

δ2(A, Y1#Y2) � δ2(A, Y1) + δ2(A, Y2)

2
− 1

4
δ2(Y1, Y2).

Let m = inf{ss�(Y ) : Y ∈ Pn}, and consider any Yk ∈ Pn such that ss�(Yk) → m

as k → ∞. Using the semi-parallelogram law again we see that

3

4
δ2(Yk, Yj ) � 1

2
(ss�(Yk) + ss�(Yj )) − ss�(Yk#Yj )

� 1

2
(ss�(Yk) + ss�(Yj )) − m.

Thus δ(Yk, Yj ) → 0 as k, j → ∞ and the Cauchy sequence converges via Proposi-
tion 10 to some limit Z. The function ss� is clearly continuous, so that ss�(Z) = m.
By strict convexity Z (= ls(�)) is the unique minimal point for ss�. �

Note that ls(A−1, B−1, C−1) = (ls(A, B, C))−1, since δ(X−1, Y−1) = δ(X, Y );
the mean alm(A, B, C) also respects matrix inversion, inheriting this property from
the corresponding property for two variables.

The following lemma will be useful in identifying the “gradient” for ss�. Given
functions f, g : (0, ∞) → R, X ∈ Pn and Y ∈ Sn, we write [D(f, g, X)](Y ) for the
limit

lim
t→0

〈f (X + tY ), g(X + tY )〉F − 〈f (X), g(X)〉F
t

, (26)
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provided this limit exists. Here 〈A, B〉F denotes the Frobenius inner product for
matrices A, B, i.e. 〈A, B〉F = ∑

i,j aij bij = trace(B∗A).

Lemma. If f, g : (0, ∞) → R are continuously differentiable then

[D(f, g, X)](Y ) = 〈f ′(X)g(X) + f (X)g′(X), Y 〉F ,

for any X ∈ Pn and Y ∈ Sn.

Proof. Writing the difference quotient in (26) as

〈f (X + tY ), g(X + tY )〉F − 〈f (X), g(X + tY )〉F
t

+ 〈f (X), g(X + tY )〉F − 〈f (X), g(X)〉F
t

,

we see that [D(f, g, X)](Y ) = 〈[Df (X)](Y ), g(X)〉F + 〈f (X), [Dg(X)](Y )〉F ,
where Df (X) and Dg(X) are Fréchet derivatives, as discussed in Section 2. Working
with respect to an orthonormal basis of eigenvectors for X we have, as in (12),

〈[Df (X)](Y ), g(X)〉F =
〈[

f (λi) − f (λj )

λi − λj

]
◦ Y, g(X)

〉
F

,

where X = diag{λk}. Since g(X) = diag{g(λk)},
〈[Df (X)](Y ), g(X)〉F = 〈diag{f ′(λk)} ◦ Y, g(X)〉F = 〈f ′(X)Y, g(X)〉F .

By the commutativity of the trace and the fact that f ′(X) and g(X) commute, we also
have 〈[Df (X)](Y ), g(X)〉F = 〈f ′(X)g(X), Y 〉F . Similarly, 〈f (X), [Dg(X)](Y )〉F
= 〈f (X)g′(X), Y 〉F . �

Condition (28) of the following proposition provides a useful criterion for Z =
ls(�). We first learned about it from [9], but it perhaps dates back to much earlier
work by Élie Cartan (see [3, Section 6.1.5]).

Proposition 16. Given A, B, C, Z ∈ Pn and � = {A, B, C}, the matrix

G(A, B, C, Z) = 2
(
Z− 1

2 log
(
Z

1
2 A−1Z

1
2
)
Z− 1

2 + Z− 1
2 log

(
Z

1
2 B−1Z

1
2
)
Z− 1

2

+ Z− 1
2 log

(
Z

1
2 C−1Z

1
2
)
Z− 1

2
)

is the gradient of ss�(Z) in the sense that, for any Y ∈ Sn,

lim
t→0

ss�(Z + tY ) − ss�(Z)

t
= 〈G(A, B, C, Z), Y 〉F . (27)

Hence, if Z = ls(�), G(A, B, C, Z) = 0; equivalently

log(A−1Z) + log(B−1Z) + log(C−1Z) = 0. (28)
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Proof. For convenience, set A1 = A, A2 = B, and A3 = C. We have (in view of
Proposition 3)

ss�(Z) =
3∑

k=1

∥∥∥∥log

(
A

− 1
2

k ZA
− 1

2
k

)∥∥∥∥
2

2

=
3∑

k=1

〈
log

(
A

− 1
2

k ZA
− 1

2
k

)
, log

(
A

− 1
2

k ZA
− 1

2
k

)〉
F

.

Using the lemma above we see that

lim
t→0

ss�(Z + tY ) − ss�(Z)

t

=
3∑

k=1

[
D

(
log, log, A

− 1
2

k ZA
− 1

2
k

)](
A

− 1
2

k YA
− 1

2
k

)

=
3∑

k=1

2

〈
log

(
A

− 1
2

k ZA
− 1

2
k

)(
A

− 1
2

k ZA
− 1

2
k

)−1

, A
− 1

2
k YA

− 1
2

k

〉
F

=
3∑

k=1

2 · trace

(
A

− 1
2

k YA
− 1

2
k log

(
A

− 1
2

k ZA
− 1

2
k

)
A

1
2
k Z−1A

1
2
k

)
.

Using commutativity of the trace, we may rewrite this as

3∑
k=1

2 · trace

(
YA

− 1
2

k log

(
A

− 1
2

k ZA
− 1

2
k

)
A

1
2
k Z−1

)

=
〈

2
3∑

k=1

A
− 1

2
k log

(
A

− 1
2

k ZA
− 1

2
k

)
A

1
2
k Z−1, Y

〉
F

.

The matrix functional calculus allows us to extend the logarithm function to matrices
with eigenvalues in C \ (−∞, 0] in such a way that similarity is respected, i.e.

log(SXS−1) = S log(X)S−1. (29)

Thus we may write

lim
t→0

ss�(Z + tY ) − ss�(Z)

t
=
〈

2
3∑

k=1

log(A−1
k Z)Z−1, Y

〉
F

,

so that

G(A, B, C, Z) = 2
3∑

k=1

log(A−1
k Z)Z−1. (30)
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To obtain the form of the gradient set out in the proposition, note that another appli-
cation of (29) shows that

log(A−1
k Z)Z−1 = Z− 1

2 Z
1
2 log(A−1

k Z)Z− 1
2 Z− 1

2

= Z− 1
2 log

(
Z

1
2 A−1

k Z
1
2

)
Z− 1

2 .

Finally, (30) shows that the vanishing of G(A, B, C, Z) is equivalent to (28). �

Numerical experiments reveal that, in general, alm(A, B, C) /= ls(A, B, C). In-
deed, alm(A, B, C) may differ from any of the weighted least square points ls(A, B,

C, wA, wB, wC) discussed below. Given weights wA, wB, wC ∈ [0, 1] with wA +
wB + wC = 1, we define ss�(Y, wA, wB, wC) as

wAδ2(A, Y ) + wBδ2(B, Y ) + wCδ2(C, Y ),

and Z = ls(A, B, C, wA, wB, wC) is the point such that ss�(Z, wA, wB, wC) �
ss�(Y, wA, wB, wC) for all Y ∈ Pn. It is easy (extending the argument of Proposition
15) to establish the existence of ls(A, B, C, wA, wB, wC) and its uniqueness. Note
that ls(A, B, C) = ls(A, B, C, 1/3, 1/3, 1/3).

Proposition 17. For any A, B, C ∈ Pn and weights wA, wB, wC ∈ [0, 1] with wA +
wB + wC = 1, the weighted least squares point ls(A, B, C, wA, wB, wC) lies in
the closure of conv({A, B, C}). In particular, ls(A, B, C) lies in the closure of
conv({A, B, C}).

Proof. Let S denote the closure of conv({A, B, C}) and let π denote metric projec-
tion onto S. Since A ∈ S, Proposition 13 ensures that δ(A, Y ) � δ(A, π(Y )) for
any Y ∈ Pn. The same argument applies to B and C, so that ss�(Y, wA, wB, wC) �
ss�(π(Y ), wA, wB, wC). Thus ls(A, B, C, wA, wB, wC) cannot lie outside S. �

The set of all weighted least squares points may be viewed as a surface spanning the
triangle [A, B] ∪ [B, C] ∪ [C, A] and lying within the closure of conv({A, B, C}).
We may call this the Cartan spanning surface, since the idea appears to go back to Élie
Cartan (see [3, Section 6.1.5]). Using the gradient formula of Proposition 16 (and its
analogues for ss�(Z, wA, wB, wC)) we may design effective computer algorithms for
approximating the various points ls(A, B, C, wA, wB, wC) on the Cartan spanning
surface. For example, we may modify the fixed point method of Moakher (discussed
below) to compute the Cartan surface. Thus Fig. 4 depicts the Cartan surface with
a colouring based on the weights wA, wB, wC : at the vertices, where wA, wB , or
wC equals 1, we see pure colours (red, green, or blue) whereas ls(A, B, C) is located
where the colours blend evenly (wA = wB = wC = 1/3). Fig. 4 also shows, as a small
black circle, the location of alm(A, B, C)—lying slightly off the Cartan surface (but
close to ls(A, B, C)) in this example.
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Fig. 4. The Cartan surface vs alm(A, B, C).

The case of �-commuting A, B, C presents a simpler picture, as the following
proposition makes clear.

Proposition 18. If A, B, C are �-commuting then the Cartan spanning surface coin-
cides with conv({A, B, C})and ls(A, B, C) = alm(A, B, C). IfX ∈ GLn is such that
�(A), �(B), �(C) commute, with � = �X, then

ls(A, B, C, wA, wB, wC) = �−1(�(A)wA�(B)wB �(C)wC ). (31)

In particular, if A, B, C commute then alm(A, B, C) = ls(A, B, C) = (ABC)
1
3 .

Proof. By Proposition 17 each point ls(A, B, C, wA, wC, wC) lies in the closure of
conv({A, B, C}) and, by Proposition 9, conv({A, B, C}) is isometric to the affine
triangle conv({log �(A), log �(B), log �(C)}). In such a Euclidian setting we know
that, for any wk ∈ [0, 1] with

∑
k wk = 1, and vectors x, xk ,

arcmin

(∑
k

wk‖x − xk‖2

)
=
∑

k

wkxk,

so that (31) follows. The construction converging to alm(A, B, C) (see Proposition
14) corresponds in conv({log �(A), log �(B), log �(C)}) to the successive selection
of affine triangles with vertices obtained at each stage as midpoints of the sides of
the previous stage. These triangles converge to (log �(A) + log �(B) + log �(C))/

3 so that alm(A, B, C) = �−1(exp((log �(A) + log �(B) + log �(C))/3)) =
�−1(�(A)1/3�(B)1/3�(C)1/3) = ls(A, B, C). �
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Note that one consequence of Proposition 18 is that both alm(�) and ls(�) are
“consistent” in the sense of the opening paragraph of this section. Our final task is to
examine evidence for our conjecture that ls(�) is also “monotone”.

In view of the invariance of δ under the congruence �
A

− 1
2

it is sufficient to study

Z = ls(�) when � = (I, B, C). Proposition 16 then tells us that Z is the unique
solution to

log(Z) + log
(
Z

1
2 B−1Z

1
2

)
+ log

(
Z

1
2 C−1Z

1
2

)
= 0.

Moakher has observed (see [10, Section 2.4.2]) that this means S = log(Z) is the
unique fixed point of any Fα with α ∈ (0, 1), where

Fα(X) = αX + (α − 1)
(

log
(

eX/2B−1eX/2
)

+ log
(

eX/2C−1eX/2
))

.

Moreover, it appears that, for an appropriate choice of α, Fα acts as if it were a con-
traction mapping so that the iterates Fm

α (X) converge to S = log(ls(�)) as m → ∞.
This technique allows the reliable computation of ls(�) in most cases and computer
experiments appear to support the conjecture that ls(�) is monotone. For example,
millions of “random” choices of � = (I, B, C) and �′ = (I, B ′, C), with B ′ � B

have resulted in Z = ls(�) and Z′ = ls(�′) with Z′ � Z in every case.
Note that (because log is matrix monotone) the conjecture Z′ � Z implies also

that S′ � S where S′ is the fixed point of

F ′
α(X) = αX + (α − 1)

(
log

(
eX/2(B ′)−1eX/2

)
+ log

(
eX/2C−1eX/2

))
.

Computer experiments suggest that Fα is monotone at S, i.e. that T � S implies
Fα(T ) � Fα(S) = S. If this could be established it would strongly support the
(weaker?) conjecture that S′ � S. To see this note first that F ′

α(X) � Fα(X) for all
X (because (B ′)−1 � B−1 and log is matrix monotone). Thus we would have T � S

implying F ′
α(T ) � Fα(T ) � S and, inductively, (F ′

α)m(T ) � S for all m. Since we
can probably choose some T � S such that (F ′

α)m(T ) →m S′ (T = S would be a
reasonable choice if B ′ is close to B), it would follow that S′ � S.

We are perhaps rather far from a proof of the conjecture, but we state it formally
as worthy of further study.

Conjecture. The mean ls(�) is monotone with respect to its arguments, i.e. if A, A′,
B, B ′, C, C′ ∈ Pn and A � A′, B � B ′, C � C′, then ls(A, B, C) � ls(A′, B ′, C′).

Further remarks. It is sufficient to show that Z � Z′ where Z = ls(A, B, C) and
Z′ = ls(A′, B, C). In view of Proposition 16 the gradients G(A, B, C, Z) and
G(A′, B, C, Z′) vanish and, since 1/x is matrix decreasing while log is matrix mono-
tone (see [4, Chapter V, especially pp. 114 and 135]), G(A′, B, C, Z) � G(A, B,

C, Z) = 0, i.e.−G(A′, B, C, Z) � 0. Since we have ss�(A′, B, C, Z′) < ss�(A′, B,

C, Z) (provided Z′ /= Z), and −G(A′, B, C, Z) � 0 is the direction of steepest
descent for ss�, we might expect that Z′ � Z.
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More precisely, let X be psd and let L(t) denote ls(A + tX, B, C). We wish to
show that L′(0) � 0. Consider the difference quotient

DQ(t) = G(A + tX, B, C, L(t)) − G(A + tX, B, C, L(0))

t
.

Since G(A + tX, B, C, L(t)) = 0 (Proposition 16) and −G(A + tX, B, C, L(0)) �
0 (when t > 0) by the last paragraph, this difference quotient is psd. On the other
hand, subject to appropriate smoothness conditions,

lim
t→0

DQ(t) = lim
t→0

G(A, B, C, L(t)) − G(A, B, C, L(0))

t
,

and, by the chain rule, this is [D4G(A, B, C, L(0))](L′(0)), where D4G denotes the
Fréchet derivative of G with respect to its fourth variable. Thus [D4G(A, B, C, L(0))]
(L′(0)) � 0 and we may try to evaluate D4G with a view to concluding that L′(0) � 0.
Note that we may write

G(A, B, C, Z) = 2
(
A− 1

2 log
(
A− 1

2 ZA− 1
2
)(

A− 1
2 ZA− 1

2
)−1

A− 1
2 + · · ·

)
,

so that it may be pertinent to analyze the Fréchet derivative D log(Y )Y−1.
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