Numerical range of composition operators on a Hilbert space of Dirichlet series

Catherine Finet a,∗, Hervé Queffélec b

a Institut de Mathématique, Université de Mons-Hainaut, “Le Pentagone”, Avenue du Champ de Mars, 6, 7000 Mons B, Belgium
b UFR de Mathématiques, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France

Received 12 December 2002; accepted 27 May 2003

Submitted by R.A. Brualdi

Abstract

We study the numerical range of composition operators on a Hilbert space of Dirichlet series with square-summable coefficients. We first describe the numerical range of “nice” composition operators (as invertible, normal and isometric ones). We also focus on the zero-inclusion question for more general symbols.

© 2003 Elsevier Inc. All rights reserved.

AMS classification: 47B38; 47A12

Keywords: Composition operator; Numerical range; Dirichlet series

1. Introduction

We work with H, the Hilbert space of Dirichlet series with square-summable coefficients, equipped with the norm ∥f∥ = (∑∞ n=1 |an|2)1/2 if f(s) = ∑∞ n=1 anzn−s belongs to H. By the Cauchy–Schwarz inequality, the functions in H are all holomorphic on the half-plane C1/2 = {s ∈ C, Re s > 1/2}. Thus H appears as a Hilbert space of analytic functions on the half-plane C1/2, with reproducing kernel Kα (a ∈ C1/2), i.e. f(a) = ⟨f, Ka⟩ and Ka(s) = ζ(s + iπ), where ζ denotes the Riemann zeta-function (observe that ζ(s + iπ) > 1 for a, s ∈ C1/2) (cf. [13]). The space H can be viewed as a Dirichlet series analog of the Hardy space H2 of functions.
For the Hardy space, it follows from the Littlewood subordination principle [16] that any analytic self-map \(\phi : D \to D \) induces a bounded "composition operator" on \(H^2 \) by the formula: \(C_\phi(f) = f \circ \phi \). Such operators have been intensively studied during the two last decades [16]. In particular, their numerical range has been studied in [4,5,14]. A rather complete description of this numerical range when \(\phi \) is an automorphism of \(D \) (equivalently, when \(C_\phi \) is invertible) has been obtained.

We will proceed to a similar study for the composition operators on \(H \) (see [9] for an enumeration of the results). For the space \(H \), mainly due to the fact that not any analytic function in a half-plane can be represented as a Dirichlet series, the situation is different. Yet, Gordon and Hedenmalm [10] have obtained the following Dirichlet series analog of the classical Littlewood subordination principle, where we denote by \(C_\theta \) the half-plane \(C_\theta = \{ s \in \mathbb{C}, R s > \theta \} \).

Theorem 1. An analytic self-map \(\phi : \mathbb{C}_{1/2} \to \mathbb{C}_{1/2} \) induces a bounded composition operator \(C_\phi : f \mapsto f \circ \phi \) on \(H \) if and only if

1. \(\phi \) is "representable" i.e. \(\phi(s) = c_0 s + \varphi(s) \), where \(c_0 \) is a non-negative integer, and where the analytic function \(\varphi \) can be written as a convergent Dirichlet series \(\sum_{n=0}^{\infty} c_n n^{-s} \) for \(R s > \theta \) (in short \(\varphi \in \mathcal{D} \)).
2. \(\phi \) is "extendable" with "controlled range", namely \(\phi \) has an analytic extension to \(\mathbb{C}_0 \), still denoted by \(\phi \), and such that
 (a) \(\phi(\mathbb{C}_0) \subseteq \mathbb{C}_0 \) if \(c_0 \geq 1 \).
 (b) \(\phi(\mathbb{C}_0) \subseteq \mathbb{C}_{1/2} \) if \(c_0 = 0 \).

Let us mention that the cases \(c_0 \geq 1, c_0 = 0 \), are significantly different. It will be also convenient to extract from Theorem 4.2 of the Gordon–Hedenmalm paper [10] the following lemma.

Lemma 2. Let \(\phi(s) = c_0 s + \varphi(s) : \mathbb{C}_0 \to \mathbb{C}_0, \varphi(s) = \sum_{n=1}^{\infty} c_n n^{-s} \). Then

1. If \(\varphi(s) = c_1 \), we have \(R c_1 \geq 0 \).
2. If \(\varphi \) is not constant, we have \(R c_1 > 0 \).

Proof. Theorem 4.2 of [10] states, more generally, that if \(\phi : \mathbb{C}_\theta \to \mathbb{C}_v \), then \(\phi : \mathbb{C}_\theta \to \mathbb{C}_{v-c_0 \theta} \) if \(\phi \) is constant, and \(\phi : \mathbb{C}_\theta \to \mathbb{C}_{v-c_0 \theta} \) if \(\phi \) is not constant. Applying this with \(\theta = v = 0 \) gives:

1. If \(\varphi(s) = c_1 \), then \(c_1 \in \overline{\mathbb{C}_0} \), i.e. \(R c_1 \geq 0 \).
2. If \(\varphi \) is not constant, then \(R \varphi(s) > 0 \) if \(R s > 0 \). Let \(c_q (q \geq 2) \) be the first non-zero coefficient of \(\varphi \); adjust \(t \in \mathbb{R} \) so that \(c_q q^{-it} = -|c_q| \), and take \(s = \sigma + it \), with \(\sigma > 0 \) so large that \(\sum_{n>q} |c_n| n^{-\sigma} \leq \frac{1}{2} |c_q| q^{-\sigma} \). Then we have
Let us recall the following results of Bayart [2].

Theorem 3. For a bounded composition operator $C_\phi : \mathcal{H} \to \mathcal{H}$, the following are equivalent:

1. C_ϕ is invertible,
2. C_ϕ is Fredholm,
3. $\phi(s) = s + ik$, where k is a real number.

Theorem 4. Let $C_\phi : \mathcal{H} \to \mathcal{H}$ be a bounded composition operator. Then:

1. C_ϕ is normal if and only if $\phi(s) = s + c_1$, where $\Re c_1 \geq 0$.
2. $\phi(s) = c_0 s + \phi(s)$, and if the Dirichlet series of ϕ converges uniformly for $Re s \geq 0$, C_ϕ is isometric if and only if $\phi(s) = c_0 s + ik$, where $c_0 \geq 1$ and $k \in \mathbb{R}$.

These theorems show that in some sense the situation is poorer in the case of \mathcal{H} than in the case of H^2. On the other hand, as we shall see, new phenomena appear, like weighted shifts; and some interesting (open) questions emerge.

2. **Main results**

Let us first recall some general facts; if H is a complex (separable) Hilbert space and $T : H \to H$ is a bounded operator, the numerical range of T is the set: $W(T) = \{ \langle Tf, f \rangle; \| f \| = 1 \}$.

The numerical range is known to have the following general properties:

(a) it contains every eigenvalue of T (obvious),
(b) it lies in the disk $|w| \leq \| T \|$ (obvious),
(c) its closure contains the spectrum of T (easy),
(d) it is convex (Toeplitz–Hausdorff theorem), therefore Lebesgue measurable,
(e) it is even a Borel set [1],
(f) for compact T, it is closed if and only if it contains 0 [6].
This set is often difficult to describe, but it encodes much information on T, and (to quote Bourdon and Shapiro) “plays a role in spectral location similar to that of the Gershgorin sets in matrix theory”. We now start the study of the numerical range for composition operators on the space H. We shall always assume that ϕ is not the identity map of C range for composition operators on the space H of the Gershgorin sets in matrix theory”. We now start the study of the numerical

Proposition 5. Suppose that ϕ is a constant $c_1 \in \mathbb{C}_{1/2}$(i.e. $c_0 = 0$). Then, W is the closed elliptic disk with foci at 0 and 1 and major axis of length

$$\|K_{c_1}\| = \left(\zeta(2)\|c_1\|\right)^{1/2}.$$

Proof. We have $C_\phi(f) = f(c_1) = (f, K_{c_1})\mathbf{1}$, i.e. C_ϕ is the rank-one operator $\mathbf{1} \otimes K_{c_1}$; since the two-dimensional subspace V generated by $\mathbf{1}$ and K_{c_1} is reducing for C_ϕ, W is the same as $W(A)$, where A is the restriction of C_ϕ to V; and it is well-known [12] that $W(A)$ is the closed elliptic disk with foci at α and β, and major axis of length $\frac{\sqrt{1 - |\langle f, g \rangle|^2}}{\sqrt{1 - |\langle f, f \rangle|^2}} = c = \|K_{c_1}\| > 1$. We see that $|\langle f, g \rangle| = \sqrt{c^2 - 1}$ and that $\sqrt{1 - |\langle f, f \rangle|^2} = c = \|K_{c_1}\|$, and this gives the result. □

Proposition 6. Suppose that $\phi(s) = s + c_1$, with $c_1 \neq 0$. Then:

(a) If $c_1 > 0$, $W = [0, 1]$. If $\Re c_1 > 0$ and $c_1 \notin \mathbb{R}$, W is a closed polygon containing the origin in its interior.

(b) If $\Re c_1 = 0$, $W = D \cup \{n^{-c_1}, n \geq 1\}$, where D is the open unit disk.

Proof. (a) Clearly, C_ϕ is (on the canonical basis of H) the diagonal operator with eigenvalues n^{-c_1}, therefore $W = \left\{ \sum_{n=1}^{\infty} \lambda_n n^{-c_1}; \lambda_n \geq 0, \sum_{n=1}^{\infty} \lambda_n \leq 1 \right\}$.

If $c_1 > 0$, we have $W = [0, 1]$ by convexity. If $\Re c_1 > 0$ and $\Im c_1 \neq 0$, there are points n^{-c_1} in each of the four quadrants, so that by convexity, 0 belongs to the interior of W; moreover, W is the convex hull of the sequence (n^{-c_1}) that spirals monotonically towards zero, and it is closed (for example since ϕ is compact and since 0 $\in W$), therefore [14] it is a closed polygon.

(b) Write $c_1 = ik$, k real and $\neq 0$, and set $E = \left\{ n^{-ik}, n \geq 1 \right\}$.

Since $|n+1|^{-ik} - n^{-ik}| \leq \frac{|k|}{n}$, $(n+1)^{-ik} - n^{-ik}$ tends to zero, and E is dense in the unit circle, which implies:
\[D \subset \text{co}E \subset W \] (1)

(where co denotes the convex hull).

Indeed, take \(re^{i\theta} \in D \), set \(\epsilon = 1 - r \) and take \(e^{i\omega}, e^{i\beta} \in E \) such that \(\alpha < \theta < \beta \) and \(\beta - \alpha \leq \epsilon \). Define \(\rho, 0 < \rho < 1 \), by \(\rho e^{i\theta} = \lambda e^{i\omega} + (1 - \lambda)e^{i\beta} \), i.e. \(\rho e^{i\theta} \) is the intersection point of the segments \([0, e^{i\omega}]\) and \([e^{i\omega}, e^{i\beta}]\). Then: \(1 - \rho = \lambda \left(1 - e^{i(\alpha - \theta)} \right) + (1 - \lambda)(1 - e^{i(\beta - \theta)}) \), so that \(1 - \rho \leq \lambda |\alpha - \theta| + (1 - \lambda)|\beta - \theta| \leq (\lambda + 1 - \lambda)\epsilon = 1 - r \). This shows that \(\rho \geq r \). But, as in (a), we know that \(0 \in \text{co}W \); by the convexity of \(W \), we see that \(\rho e^{i\theta} \in W \), since \(\rho e^{i\theta} \in [e^{i\omega}, e^{i\beta}] \), and that \(re^{i\theta} \in W \), since \(re^{i\theta} \in [0, e^{i\omega}] \); this proves (1). Since \(W \subset D \), it remains to show that if \(w = \sum_1^{\infty} \lambda_n n^{-i\theta} \in \partial D \), with \(\lambda_n \geq 0 \) and \(\Sigma \lambda_n = 1 \), then \(w \in E \). But if \(p^{-ik} \neq q^{-ik} \) and \(\lambda p, \lambda q \neq 0 \), we have \(|\lambda_p p^{-ik} + \lambda_q q^{-ik}| < \lambda_p + \lambda_q \), and \(|w| < 1 \). Therefore, if \(\lambda_n \neq 0 \), \(w = n^{-i\theta} \in E \). \(\square \)

Proposition 7. Suppose that \(\phi(s) = c_0 s + c_1 \), with \(c_0 \geq 2 \). Then:

(a) If \(c_1 = ik, k \in \mathbb{R} \), one has \(W = D \cup \{1\} \). And this remains true if \(\phi \) is any symbol such that \(\phi \) is a non-surjective isometry of \(\mathcal{H} \) into itself.

(b) If \(\Re c_1 > 0 \), one has \(W = \text{co}(D(0, r) \cup \{1\}) \), where \(r < 1 \) is given by the relation

\[
(\star \star) \quad r = \sup \left\{ \sum_{h=0}^{\infty} a_h a_{h+1} 2^{-\epsilon_h n}; a_h \geq 0, \sum_0^{\infty} a_h^2 = 1 \right\}, \quad \gamma_1 = \Re c_1.
\]

(c) In particular, we always have \(0 \in \text{co}W \).

Proof. (a) Denote by \(S \) the unilateral shift on a separable Hilbert space, with an orthonormal basis \(e_1, e_2, \ldots \), i.e.: \(S(e_n) = e_{n+1} \) for all \(n \geq 1 \). Then, \(W(S) = \{ \sum_1^{\infty} x_n e_{n+1}; \sum_1^{\infty} |x_n|^2 = 1 \} \), and it is well-known that \(W(S) = D \), the open unit disk. More precisely, if \(S_n \) is the \(n \)-dimensional shift defined by \(S(e_1) = e_2, \ldots, S(e_{n-1}) = e_n, S(e_n) = 0 \), then \(W(S_n) = D \left(0, \cos \frac{n}{n+1} \right) \), and \(W(S_n) \subset W(S) \) for each \(n \) \[12\]. We will show that

\[W \supset W(S). \]

Indeed, define inductively a sequence \((\lambda_n)_{n\geq1} \) of integers by: \(\lambda_1 = 2; \lambda_{n+1} = \lambda_n^2 \); take \(f(s) = \sum_1^{\infty} b_n s^{-\lambda_n} \), with \(\sum_1^{\infty} |b_n|^2 = 1 \).

Then, \(\|f\| = 1 \), and \(C_\phi f(s) = \sum_2^{\infty} b_n s^{-\lambda_n^{-1}} \lambda_n^{-1} = \sum_2^{\infty} b_n s^{-\lambda_n^{-1}} \lambda_n^{-1} \), so that \((C_\phi f, f) = \sum_2^{\infty} b_n b_n^{-\lambda_n^{-1}} \lambda_n^{-1} = \sum_1^{\infty} b_n b_n^{-\lambda_n^{-1}} \lambda_n^{-1} \). Let now \(w \in W(S) \), i.e. \(w = \sum_1^{\infty} x_n e_{n+1}, \Sigma_1^{\infty} |x_n|^2 = 1 \). Define \((b_n) \) by \(b_n = x_n e^{i\theta_n} \), where \(\theta_1 \in \mathbb{R} \) is arbitrary and \(\theta_n - \theta_{n+1} = k \log \lambda_n \). We get \(w = \sum_1^{\infty} b_n b_n^{-\lambda_n^{-1}} \lambda_n^{-1} \), which proves (2). Therefore (recall that \(I = (C_\phi I, I) \) always belongs to \(W \), \(W \) contains \(D \cup \{1\} \). Moreover, if \(f(s) = \sum_1^{\infty} a_n s^{-\lambda_n} \in \mathcal{H} \) and \(\|f\| = 1 \), then \(|(C_\phi f, f)| \leq |a_1|^2 + \sum_2^{\infty} |a_n|^2 \leq (1 - |a_1|^2)^{-1} \).
\[(\sum_{2}^{\infty} |a_{n}|^{2})^{1/2} (\sum_{2}^{\infty} |a_{n'}|^{2})^{1/2} \leq |a_{1}|^{2} + 1 - |a_{1}|^{2} = 1, \] the first inequality being strict unless \(|a_{n'}| = \alpha|a_{n}|\) for all \(n \geq 2\). But then, \(|a_{n'}| = \alpha^{k}|a_{n}|\) for all \(n \geq 2\).

If \(f(s) = a_{1}, \ (C_{\phi} f, f) = a_{1}a_{1}^{*} = 1\). Otherwise, \(a_{n} \neq 0\) for some \(n \geq 2\), and since \(a_{n_{0}} \to 0\) as \(k \to \infty\), we must have \(\alpha < 1\). But then, the second inequality is strict, i.e.:
\[|C_{\phi} f, f| = |a_{1}|^{2} + \alpha \sum_{n \geq 2} |a_{n}|^{2} < |a_{1}|^{2} + 1 - |a_{1}|^{2} = 1.\]
This proves the reverse inclusion \(W \subset D \cup \{1\}\). Suppose now that \(C_{\phi}\) is a non-surjective isometry of \(\mathcal{H}\).

Following a suggestion of Matache, we use the Wold decomposition of \(C_{\phi}\); recall that, for a non-surjective isometry \(T : H \to H\), one defines \(N_{\infty} = \bigcap_{i} T^{n}(H)\), the space of infinitely divisible vectors; \(N = (T H)\) \(\neq \{0\}\), the wandering subspace; and that one then has the orthogonal decompositions \(H = N_{\infty} \oplus N_{0}\), where \(N_{0} = \bigoplus_{i=0}^{\infty} T^{i}(N)\) [15]. Suppose moreover that \(N_{\infty} = C e, \ \|e\| = 1\), and that \(T e = e\). Then, we claim that
\[W(T) = D \cup \{1\}.\] (3)

In fact, \(W(T) = \text{co}(W(T/N_{\infty}) \cup W(T/N_{0}))\). Since \(T e = e\), we see that \(W(T/N_{\infty}) = \{1\}\). And if \(x = \sum_{j \geq 0} T^{j}(x_{j}) \in N_{0}\), with \(\|x\|^{2} = \sum_{j \geq 0} \|x_{j}\|^{2}\), we see that \((T x, x) = \sum_{j \geq 0} \|x_{j}\|^{2}, T^{j}(x_{j})) = \sum_{j \geq 0} \|T^{j}x_{j}\|^{2} = \sum_{j \geq 0} \|x_{j + 1}\|^{2}\). And, as for the case of the scalar unilateral shift \(S\), we conclude that \(W(T/N_{0}) = D \ (W(T/N_{0}) \text{ is included in } D \text{ and contains the numerical range of } S)\). It follows that \(W(T) = \text{co}([1] \cup D) = D \cup \{1\}\), proving (3). (Recall that \(\text{co}\) denotes the convex hull.) We will see that, in our case, we have \(N_{\infty} = \mathcal{C}^{1}\), with \(C_{\phi}(1) = 1\). In fact, since \(C_{\phi}\) is an isometry, one has \(c_{0} \neq 0\), and since this isometry is non-surjective, one has \(c_{0} \geq 2\). If \(\phi^{n}\) is the \(n\)-th iterate of \(\phi\), one clearly has \(\phi^{n}(s) = c_{0}^{n}s + \sum_{h \geq 1} c_{h}^{(n)} h^{-r}\). Let now \(f \in N_{\infty}\). For each \(n \geq 1\), we can write \(f = g_{n} \circ \phi^{n}\), where \(g_{n}(s) = \sum_{h \geq 1} a_{h}^{(n)} h^{-r} \in \mathcal{H}\). Clearly, then (cf. [10]), one has \(g_{n} \circ \phi^{n}(s) = \sum_{h \geq 1} a_{h}^{(n)} h^{-r}(s) = \sum_{h \geq 1} a_{h}^{(n)} h^{-r} c_{h}^{(n)} = a_{1}^{(n)} + \sum_{j \geq 2} \beta_{j}^{(n)} h^{-r}\), for appropriate coefficients \(\beta_{j}^{(n)}\). Since \(2^{n} \to \infty\) as \(n \to \infty\), this shows that \(f = g_{n} \circ \phi^{n}\) has no point in its Dirichlet spectrum, except possibly the point one. This proves that \(N_{\infty} = \mathcal{C}^{1}\), therefore \(W(C_{\phi}) = D \cup \{1\}\) by (3). Observe that one ignores whether there exist non-surjective isometric composition operators \(C_{\phi}\) for which \(\phi(s) \neq c_{0}s + ik\).

(b) Denote by \(Y\) the set of integers \(\geq 2\) which are not perfect \(c_{0}\)-powers: \(n \in Y\) iff \(n \neq m^{c_{0}}, m \in \mathbb{N}\). For each \(n \in Y\), denote by \(H_{n}\) the closed subspace of \(\mathcal{H}\) generated by the vectors \(n^{-s}, (n^{c_{0}})^{-s}, \ldots\), i.e.:
\[H_{n} = \overline{\text{span}} \{n^{k}s\}^{-s}, k \geq 0\].

Since each integer \(n \geq 2\) can be uniquely written as \(q = n^{k}s\), with \(n \in Y\) and \(k \geq 0\), we have the orthogonal decomposition
\[(\bullet \bullet \bullet) \ \mathcal{H} = \mathcal{C}^{1} \oplus \left(\bigoplus_{n \in Y} H_{n}\right)\].
Observe that each H_n is stable under C_ϕ, and that C_ϕ acts on each H_n as a weighted shift; in fact, if $n \in Y : C_\phi((n^\phi)^{-\tau}) = (n^{\phi + \epsilon_1})^{-\tau}$, which indicates that, for fixed n, the restriction C_ϕ / H_n is the weighted forward shift S_n acting on a Hilbert space K, with orthonormal basis $(e_h)_{h \geq 0}$ by

$$S_n(e_h) = w_h e_{h+1}, \quad \text{with } w_h = n^{-\phi + \epsilon_1}, \ h \geq 0.$$

If $x = \sum_0^\infty x_h e_h \in K$, we have $\langle S_n x, x \rangle = \sum_0^\infty w_h x_h x_{h+1}$ and we see that $W(S_n)$ is circularly symmetric, as in the proof of (a); $\langle S_n(e_0), e_0 \rangle = 0$, therefore $0 \in W(S_n); S_n$ is compact (it is Hilbert–Schmidt), therefore (see (f) of this section) $W(S_n)$ is a closed disk $D(0, r_n)$, where the sequence $(r_n)_{n \in Y}$ clearly decreases, since

$$r_n = \sup \left\{ \sum_0^\infty x_h x_{h+1} n^{-\phi + \epsilon_1}; \sum_0^\infty x_h^2 = 1, x_h \geq 0 \right\}.$$

Let now $f \in H$, with $\|f\| = 1$. In view of (**★★**), write $f = f_1 + \sum_{n \in Y} f_n$, with $f_1 \in C, f_n \in H_n, |f_1|^2 + \sum_{n \in Y} \|f_n\|^2 = 1$.

Let us put $\lambda_1 = |f_1|^2, \lambda_n = \|f_n\|^2, g_n = \frac{f_n}{\|f_n\|}$ if $n \in Y$. We have:

$$\langle C_\phi f, f \rangle = |f_1|^2 + \sum_{n \in Y} \langle S_n f_n, f_n \rangle = \lambda_1 + \sum_{n \in Y} \lambda_n \langle S_n g_n, g_n \rangle \in \overline{co} \left(1 \cup \bigcup_{n \in Y} W(S_n) \right)$$

$$= \overline{co} \left(1 \cup \bigcup_{n \in Y} D(0, r_n) \right) = \overline{co} (1 \cup D(0, r_2))$$

since $r_n \leq r_2$ if $n \in Y$.

This clearly ends the proof of Proposition 7. □

For more on the numerical range of weighted shifts (see [17]). Propositions 5–7 have shown that, for symbols $\phi(s) = c_0 s + \varphi(s)$ where φ is constant, we always have $0 \in W$, and even $0 \in W$ if $\phi(s) \neq s + c_1, c_1 > 0$. We shall extend those results for more general symbols; we begin with the following simple proposition, which will be improved later. Recall that we exclude the trivial case $\phi(s) = s$, and that we write W for $W(C_\phi)$.

Proposition 8. For any symbol ϕ, we have $0 \in \overline{W}$.

First proof. Since $\phi \neq Id_\mathcal{H}$, there exists a such that $\Re a = \frac{1}{2}$ and $\phi(a) \neq a$. Let $\epsilon > 0$ and set $\alpha = a + \epsilon$, and $f_\epsilon = \frac{K_\alpha}{\|K_\alpha\|}$, where K_β is the reproducing kernel of \mathcal{H} at β.

Then, $w_\epsilon = \langle C_\phi f_\epsilon, f_\epsilon \rangle \in W$, and $w_\epsilon = \frac{1}{\zeta(2, \alpha_\epsilon)} \langle K_{\alpha_\epsilon}, K_{\phi(a_\epsilon)} \rangle = \frac{\zeta(\phi(a_\epsilon) + \pi \epsilon)}{\zeta(2, \alpha_\epsilon)} =: N_\epsilon$.
Since \(\phi(a) \neq a \), we have \(\phi(a) + \overline{a} = \phi(a) + 1 - a \neq 1 \), and \(N_\epsilon \) tends to the finite value \(\zeta(\phi(a) + \overline{a}) \) as \(\epsilon \to 0 \), whereas the denominator \(D_\epsilon \) tends to \(\zeta(1) = \infty \). Therefore, \(w_\epsilon \to 0 \), and \(0 \in W \).

Second proof. If \(C_\phi \) is not invertible, \(0 \) belongs to the spectrum of \(C_\phi \) and therefore to \(W \), by property (c) of the numerical range recalled at the beginning of this section. If \(C_\phi \) is invertible, it follows from Bayart’s Theorem 3 in the Introduction that \(\phi(s) = s + ik \), where \(k \in \mathbb{R} \); but then, by (b) of Proposition 6, \(0 \) belongs not only to the closure of \(W \), but to its interior. \(\square \)

We will now prove a much more precise result, implying Proposition 8 as a special case:

Theorem 9. Let \(\phi \) be the symbol of a composition operator on \(\mathcal{H} \). Then:

(a) Either \(\phi(s) = s + c_1, c_1 > 0 \). Or \(0 \) belongs to the interior of \(W \).

(b) If \(\phi(s) \neq s + c_1, c_1 > 0 \), \(W \) is closed as soon as \(C_\phi \) is compact.

Proof. Observe first that (b) is an immediate consequence of (a), modulo property (f) recalled at the beginning of this section. If \(\phi(s) = s + c_1, c_1 > 0 \), we know that \(C_\phi \) is compact and that \(W = \{0\} \). We can now assume that \(\phi \) is not of this form; write \(\phi(s) = c_0s + \psi(s) \), where \(c_0 \in \mathbb{N} \) and \(\psi \in \mathcal{D} \). We shall treat separately the cases \(c_0 = 0, c_0 = 1, c_0 > 2 \).

Case 1. \(c_0 = 0 \). Then, \(\phi = \psi \in \mathcal{D} \), and according to a well-known result [7, p. 131] of the theory of analytic, almost-periodic functions, a Dirichlet series \(\psi(s) = \sum_{n=1}^{\infty} \alpha_n n^{-s} \), absolutely convergent in a half-plane \(\Re s > \theta \), will be injective on no vertical strip \(\alpha < \Re s < \beta \) of this half-plane; we can therefore (we also assume that \(\phi \) is not constant, this case having been treated in Proposition 5) find \(a \) and \(b \in \mathbb{C}_{1/2} \) with \(a \neq b \) and \(\phi(a) = \phi(b) \). This shows that \(C_\phi^* (K_a - K_b) = K_{\phi(a)} - K_{\phi(b)} = 0 \), so that, since moreover \(C_\phi \) is injective, \(\phi \) being non-constant, we have:

\[
0 \text{ is an eigenvalue of } C_\phi^*; 0 \text{ is not an eigenvalue of } C_\phi.
\]

Let us now recall that an eigenvalue \(\lambda \) of an operator \(T \) on a Hilbert space is normal if \(\ker(T - \lambda I) = \ker(T^* - \overline{\lambda} I) \neq 0 \). It is known [5] that every eigenvalue of \(T \) lying on the boundary of \(W(T) \) is normal. And (4) shows that \(0 \) is not a normal eigenvalue of \(C_\phi^* \); therefore, \(0 \in \text{Int}(W(C_\phi^*)) = \text{Int}(\overline{W}) \), where here the bar indicates conjugation; and \(\overline{0} = 0 \in \text{Int}W = W \).

On the other hand, \(\phi \) may very well be injective if \(c_0 > 0 \). For example:

\[
\text{If } c_0 \geq \sum_{n=1}^{\infty} |c_n| \log n > 0, \text{ then } \phi \text{ is injective on } C_0.
\]
In fact, we then have $\Re \phi(s) > 0$ on the convex open set C_0. Similarly, ϕ is injective on $C_{1/2}$ if $c_0 \geq \sum_{i=1}^{\infty} |c_n| n^{-1/2} \log n$.

Case 2. $c_0 \geq 2$. It follows from [10] that, for $n \geq 2$, one has $n^{-\phi(s)} = (n^{c_0})^{-s} n^{-c_1}$.

Case 3. \(c_0 = 1 \). Write $\phi(s) = s + c_1 + c_2 q^{-s} + \cdots$, with $c_2 \neq 0$. (The case $\phi(s) = s + c_1, R_1 = 0$, $c_1 \neq 0$, has already been treated in Proposition 6.) For $n \geq 2$, we have:

\[
R \phi(s) = n^{-s} n^{-c_1} \prod_{r > q} e^{-c_r r^{-s}} \log n \]

\[
= n^{-s} n^{-c_1} \prod_{r > q} \left(1 + \sum_{e, b \geq 1} (-c_e \log n)^b \frac{(r, b^{-1})}{j_r!} \right) \]

\[
= n^{-s} n^{-c_1} \left(1 - c_q \log n \ q^{-s} + \cdots \right). \]

Now take, for an arbitrary integer $p \geq 1 : f(s) = a(q^p)^{-s} + b\left(q^{p+1}\right)^{-s}$, where $|a|^2 + |b|^2 = 1$. We see that

\[
(C_{\phi}f)(s) = a(q^p)^{-s} q^{-pc_1} \left(1 - c_q \log q^p q^{-s} + \cdots \right) + b \left(q^{p+1}\right)^{-s} q^{-(p+1)c_1} \left(1 - c_q \log q^{p+1} q^{-s} + \cdots \right), \]

so that

\[
(C_{\phi}f, f) = |a|^2 q^{-pc_1} + |b|^2 q^{-(p+1)c_1} - c_q a \bar{b} \log q^p q^{-pc_1} \]

\[
= q^{-pc_1} \left(|a|^2 + |b|^2 q^{-c_1} - pc_q a \bar{b} \log q \right). \]

Here, it is convenient to recall the

Lemma 10 [11]. Let $A : \mathbb{C}^2 \to \mathbb{C}^2$ be represented on the canonical basis of \mathbb{C}^2 by the matrix $A = \begin{bmatrix} \lambda_1 & 0 \\ a & \lambda_2 \end{bmatrix}$, with $\lambda_1 \neq \lambda_2$. Then, the numerical range of A is the closed elliptic disk D with foci λ_1 and λ_2, and minor axis of length $|a|$.

It follows in particular that

\[
|\lambda_1| + |\lambda_2| < |a|, \quad \text{then } 0 \in \mathcal{E}.
\] (6)

In fact, if \(\alpha \geq |a| \) is the length of the major axis of \(\mathcal{E} \), \(z \in \mathcal{E} \) if and only if \(|z - \lambda_1| + |z - \lambda_2| < \alpha\).

Let now \(A_p : \mathbb{C}^2 \to \mathbb{C}^2 \) be represented by the matrix

\[
A_p = \begin{bmatrix} 1 & 0 \\ -pcq \log q & q^{-c_1} \end{bmatrix}.
\]

The previous relation \(\langle C_{\phi} f, f \rangle = q^{-pc_1} (|a|^2 + |b|^2 q^{-c_1} - pcq a\bar{b} \log q), |a|^2 + |b|^2 = 1 \), indicates that, for each integer \(p \geq 2 \), we have

\[
W \supset q^{-pc_1} W(A_p).
\]

From Lemma 2, we know that \(\Re c_1 > 0 \), since \(\psi \) is not constant. We can therefore take \(p \) large enough to ensure that \(1 + |q^{-c_1}| < p|c_q| \log q \). Then, (6) shows that \(0 \in \mathcal{W}(A_p) \), and (7) shows that \(0 \in \mathcal{W} \), which ends the proof of Theorem 9. \(\square \)

Remark 11. In view of (b) in Theorem 9, it is interesting to know when the operator \(C_{\phi} \) is compact. In [2,3,8] the compactness of such composition operators is studied.

References

