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Quinones are essential building blocks of respiration, a universal process dedicated to efficient harvesting of
environmental energy and its conversion into a transmembrane chemiosmotic potential. Quinones differentiate
mostly by their midpoint redox potential. As such, γ-proteobacteria such as Escherichia coli are characterized by
the presence of demethylmenaquinone (DMK) with an intermediate redox potential between low-potential
(menaquinone) and high-potential (ubiquinone) quinones. In this study, we show that demethylmenaquinol
(DMKH2) is a good substrate for nitrate reductase A (NarGHI) in nitrate respiration in E. coli. Kinetic studies per-
formed with quinol analogs on NarGHI show that removal of the methyl group on the naphthoquinol ring im-
pacts modestly the catalytic constant but not the KM. EPR-monitored redox titrations of NarGHI-enriched
membrane vesicles reveal that endogeneous demethylmenasemiquinone (DMSK) intermediates are stabilized
in the enzyme. The measured midpoint potential of the DMK/DMKH2 redox couple in NarGHI (E′m,7.5 (DMK/
DMKH2) ~−70 mV) is significantly lower than that previously measured for unbound species. High resolution
pulsed EPR experiments demonstrate that DMSK are formed within the NarGHI quinol oxidation site. Overall,
our results provide the first characterization of a protein-bound DMSK and allows for comparison for distinct
use of three quinones at a single Q-site in NarGHI.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Living organisms have developed multiple strategies to harvest
environmental energy and convert it into a transmembrane chemios-
motic potential used for ATP synthesis. In the overwhelming majority
of cases, this is achieved by electron transport chains which are fuelled
by electrochemical disequilibria between reducing and oxidizing sub-
strates present in the extracellular environment or generated by cell
metabolism [1]. Prokaryotes can use a diverse range of organic and inor-
ganic substrates to donate or accept electrons at various electrochemical
potentials [2]. For instance, the gut bacterium Escherichia coli possess a
number of respiratory complexes supporting growth on a variety of al-
ternative terminal electron acceptors to oxygen such as nitrate, nitrite,
fumarate, dimethyl sulfoxide or trimethylamine N-oxide [3,4]. With
the exception of specific types of acetogenesis and methanogenesis, all
bioenergetic chains rely on the use of small, lipophilic quinone mole-
cules diffusing across themembrane and constituting the so-called qui-
none pool connecting respiratory complexes. In most cases, quinones
receive or donate electrons from or to one-electron carriers such as
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hemes or FeS centers. However, dependingon their environmentwithin
Q-sites of respiratory complexes, they can act as one-electron or two-
electron redox couples with the congruent stabilization of semiquinone
intermediates [5]. Importantly, prokaryotes make use of low-potential
and/or high-potential quinones to define preferred electron routes
towards terminal electron acceptors. In this context, E. coli synthesizes
three different respiratory quinoneswhich differ not only by their chem-
ical structure (Fig. 1A–B), but also with respect to their two-electron
midpoint redox potential value E′m,7 (Q/QH2): a low-potential quinone
(menaquinone or MK with an E′m,7 =−70 ± 10 mV), a high-potential
one (ubiquinone orUQwith an E′m,7=+100±10mV) and an interme-
diate one (demethylmenaquinone or DMK with an E′m,7 = +36 or
−7 mV depending on the literature [6,7]). DMK differs from MK by
the lack of the methyl group at the C2 position of the quinone ring
(Fig. 1A). Considering the required redox potential difference between
the reductant and the oxidant for chemiosmosis, high-potential UQ is
the preferred electron carrier in aerobic respiration, whereas low-
potential quinones (MK andDMK) aremainly involved in anaerobic res-
piration. However, DMK has been recently recognized to be involved in
aerobic respiration as well in E. coli [8]. The proportion of UQ, MK and
DMK in the E. coli quinone pool varies depending on the nature of the
electron acceptor, the growth phase, and the available carbon source
[9–13], contributing to maintain metabolic flexibility in response to en-
vironmental changes.

The ability of some facultative anaerobes from the γ-proteobacteria
class such as E. coli to synthesize both low-potential and high-potential
quinones opened up the possibility to investigate in vivo the specificity
of quinone utilization by respiratory complexes. The respiratory nitrate
reductase complex (NarGHI) from E. coli is an excellent model for
studying these questions since it was shown to oxidize both MKH2

and UQH2, but, surprisingly, not DMKH2 [13,14]. This heterotrimeric
cytoplasmically-oriented complex is composed of (i) a nitrate-
reducing subunit NarG containing a Mo-bis-PGD cofactor and a
[4Fe–4S] cluster, (ii) an electron-transfer subunit NarH carrying four
FeS clusters, and (iii) a membrane anchor subunit NarI containing two
b-type hemes termed bD and bP according to their distal and proximal
positions with respect to the nitrate reducing site [15]. We have
demonstrated that NarGHI stabilizes menasemiquinone (MSK) and
ubisemiquinone (USQ) intermediates at a single quinol oxidation site
QD located within the NarI subunit close to heme bD [16–19]. Moreover,
the use of high resolution pulsed EPRmethods in combinationwith isoto-
pic enrichment strategies allowed us to resolve a strongly asymmetric
binding mode of MSK at the QD site (referred to as MSQD) via the
A B

C D

Fig. 1.Molecular structure of respiratory isoprenoid quinones synthesized byE. coli and of their a
bacterium has n= 8 prenyl units. C) 1,4-NQ andmenadione. D) Working model of MSQD bindi
crystal structure of NarGHI in complex with pentachlorophenol (PDB ID: 1Y4Z) as a template [
formation of a single short hydrogen bond to the heme bD axial ligand
His66 [20,21] and the same binding mode likely occurs for USQ [16]
(Fig. 1D).

In this work, we describe the participation of DMK in NarGHI-
supported respiration using an E. coli strain that contains DMK as its
sole respiratory quinone. Our results demonstrate that DMK is a sub-
strate to NarGHI and that the absence of a methyl group at the C2 posi-
tion of the quinone ring has a moderate effect on its utilization by the
enzyme. Furthermore, the use of DMK is coupled with stabilization
within the NarGHI QD site of a demethylmenasemiquinone (DMSK) in-
termediate displaying peculiar redox and spectroscopic properties. The
ability of this respiratory complex to utilize all three natural quinones in
E. coli offers the unique possibility to investigate structure–function re-
lationships of quinone reactivity.
2. Material and methods

2.1. Bacterial strains, plasmids and growth conditions

The E. coli strains and plasmids used in this study are described in
Table 1. E. coli strains were routinely grown aerobically in Luria Broth
medium at 37 °C supplemented with antibiotics when necessary. The
ubiE gene was inactivated in MG1655 and in the nitrate reductase-
deficient JCB4023 strain using P1 transduction from the JW5581 strain
of the Keio collection [23]. The kanamycin-resistance cassette was fur-
ther eliminated from the MG1655ubiE transductant strain with the
use of the pCP20 plasmid encoding the FLP recombinase. Using the
same procedure, the ubiA (resp. menA) gene involved in the initial
steps of UQ (resp. DMK) biosynthesis was inactivated in the MG1655
strain. The MG1655ubiA strain was used subsequently for inactivation
of the ubiE gene. Growth was also performed at 37 °C in defined mini-
mal medium supplemented with 137 mM glycerol (unless stated else-
where in the text) used as sole carbon source either aerobically or in
anaerobic conditions using gas tight hungate tubes under Ar atmo-
sphere. For anaerobic growth under nitrate-respiring conditions, nitrate
was added at 100mM final concentration and used as terminal electron
acceptor. The minimal medium is composed of potassium phosphate
buffer (100 mM) adjusted at pH 7.4, ammonium sulfate (15 mM),
NaCl (9 mM), magnesium sulfate (2 mM), sodium molybdate (5 μM),
Mohr's salt (10 μM), and calcium chloride (100 μM). After filtration,
casaminoacids (0.5%) and thiamine (0.01%) were added just before
use together with antibiotics, if necessary.
bD

H66
MK-8

nalogs used in thiswork. A)MK-n andDMK-n, and B)UQ-n. Themajor species found in the
ng mode in E. coliNarGHI based on our previous spectroscopic work [20,21] and using the
22]. His66 coordinates heme bD and hydrogen bonds with MSK.



Table 1
Bacterial strains and plasmids used in this study.

Strain or plasmid Relevant genotype Reference

Strains
MG1655 Parental strain Lab collection
MG1655ubiE MG1655, ΔubiE L. Loiseau
MG1655ubiEA MG1655, ΔubiE::CmR, ΔubiA::KanR L. Loiseau
MG1655menA MG1655, ΔmenA L. Loiseau
JCB4023 RK4353, ΔnapA–B, narG::ery, ΔnarZ::Ω, SpcR [24]
JCB4023ubiE JCB4023, ΔubiE::KanR This study
JW5581 BW25113, ΔubiE::KanR Keio collection

Plasmids
pCP20 encodes FLP-recombinase, CmR, AmpR [25]
pVA700 pJF119EH, Ptac-(narGHJI), AmpR [26]
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Overproduction of NarGHI was achieved using the pVA700 plasmid
[26]. E. coli strains transformed with the pVA700 plasmid were grown
semi-aerobically in Terrific Broth at 37 °C as described in [18] supple-
mented by 0.2 mMof isopropyl 1-thio-β-D-galactopyranoside to induce
the narGHJI expression.

2.2. Preparation of membrane fractions

Purified E. coli inner membrane vesicles (IMVs) were prepared as
described in [18], using a buffer containing 100 mM MOPS and 5 mM
EDTA at pH 7.5, frozen in liquid N2 and stored at −80 °C until use.
Deuterium-exchanged samples were prepared using the same mem-
brane extraction protocol with a buffer containing 2H2O (99.9%, pur-
chased from Sigma Aldrich). Protein concentration in IMVs was
measured by themethod of Lowry et al. [27] whereas NarGHI quantita-
tion in NarGHI-enriched IMVs was achieved using rocket immunoelec-
trophoresis as described in [28,29]. NarGHI concentration was
estimated between 80 and 280 μM, depending on preparations.

2.3. Enzyme assays and quinone analysis

Nitrate reductase activity was measured spectrophotometrically
using quinol analogs as electron donors [30,31]. Quinol:nitrate oxidore-
ductase activity was followed at 360 nm in an anaerobic chamber at
25 °C. Menadiol and 1,4-naphthoquinol (1,4-NQ) were used as analogs
of MKH2 and DMKH2, respectively (Fig. 1C), and 1.8 and 2 mM−1 cm−1

were considered for their respective molar extinction coefficient value.
Steady-state kinetic studies were performed as follows. Assays were
carried out in N2-saturated 100 mM MOPS, 5 mM EDTA, pH 7.5, using
2 mL cuvettes. Zinc-reduced quinol was added to a buffer-filled cuvette
followed by the NarGHI-enriched IMV suspension. After equilibration,
the reaction was initiated by the addition of saturating amount of ni-
trate (15 mM) and thorough mixing in the cuvette. The stability of the
reduced quinone in ethanolic solutionwas assessed by recording optical
spectra before and after the assays in the anaerobic chamber. No change
was observed under these conditions. The activity was measured using
twelve different quinone concentrations up to 250 μM. Each measure-
ment was repeated six times. Experimental kinetic data were fitted to
Michaelis–Menten equations by non-linear least squares using
OriginPro 8.1 (OriginLab Corporation, Northhampton, MA).

To analyze the quinone content of IMVs, quinones were extracted
from IMVs (160–400 μg proteins) in glass tubes with 1.8 mL methanol
and 1.2 mL petroleum ether (60 °C boiling range) as described in [32].
UQ-10 was added as an internal standard before the extraction
and dried lipid extracts were analyzed byHPLC coupled to electrochem-
ical detection (HPLC-ECD) as described in [32] except that the potentials
used on the 5011A detection cell were E1,−800mV and E2, +800mV.
The peaks corresponding to MK and DMK were integrated and
the values were directly compared to estimate the MK/DMK ratio
(see SI information).
2.4. Redox titrations and EPR spectroscopic studies

Redox titrations of IMVswere carried out anaerobically as previously
described [18]. The following redox mediators were used at 10 μM final
concentrations: 2,6-dichloroindophenol (+217 mV), 2,5-dimethy-p-
benzoquinone (+180 mV), 1,2-naphthoquinone (+145 mV), phena-
zinemethosulfate (+80 mV), phenazine ethosulfate (+55 mV), meth-
ylene blue (+11 mV), resorufine (−51 mV), indigocarmine
(−125 mV), anthraquinone 2,6-disulfonate (−184 mV) and
phenosafranine (−252 mV). All redox potentials are given in the text
with respect to the standard hydrogen electrode. Cw EPR measure-
ments were performed on a Bruker ElexSys E500 spectrometer. Low-
temperature X-band EPR spectra were recorded using a standard
rectangular Bruker cavity (ST 4102) fitted to an Oxford Instruments
Helium flow cryostat (ESR900). The semiquinone content was quanti-
tated relative to the Fe3S4 cluster (FS4) content measured in a fully ox-
idized sample using double integration of their respective EPR signal
recorded in non-saturating conditions. Plotted against the ambient
redox potential E, this spin intensity ratio RSQ was fitted to a theoretical
curve corresponding to two successive one-electron redox processes:

RSQ ¼ Rocc

1þ eα E−E1ð Þ þ eα E2−Eð Þ ð1Þ

whereα=F/RT. E1 and E2 are themidpoint potentials of the n=1Q/SQ
and SQ/QH2 couples, respectively, R and F are the molar and Faraday
constants, respectively, and T is absolute temperature. Rocc is the
occupancy level of the QD site. It corresponds to the fraction of the site
occupied by either Q, SQ or QH2. The midpoint potential of the n = 2
Q/QH2 couple, which corresponds to the maximal amount of SQ, is
Em = (E1 + E2) / 2. The SQ stability constant KS defined with respect
to the conproportionation reaction is:

KS ¼ SQ½ �2
Q½ � QH2½ � ¼ eα E1−E2ð Þ: ð2Þ

Differences in the binding constants of Q (KQ) and QH2 (KQH2) man-
ifest as a shift in the Em from that of free Q/QH2 given by

Em boundð Þ−Em freeð Þ ¼ α=2 � ln KQH2=KQ
� �

: ð3Þ

The affinity of the site for SQ is a determinant of E1 and E2 but not of
Em.

Analysis of microwave progressive power saturation data was car-
ried out by computer fitting to the empirical equation

I ¼ AP1=2

1þ P=P1=2

� �b=2
ð4Þ

where I is the peak-to-peak amplitude of the radical EPR signal, P is the
microwave power, P1/2 is the microwave power at half-saturation, b is
the inhomogeneity parameter and A is a normalization constant [33].
The b value depends on the degree of inhomogeneous broadening of
the EPR line which is determined by the ratio of the Lorentzian spin
packet width and the Gaussian envelope width. Thus, b varies from
1.0 for the inhomogeneous to 2.0 for the homogeneous case. When
log (I/P1/2) is plotted versus log P, two linear regions are obtained that
intersect at P = P1/2 and the curve tends to a slope of b/2 under condi-
tions of saturation.

2.5. HYSCORE spectroscopy

2D HYSCORE experiments were carried out using a Bruker EleXsys
E580 spectrometer equipped with an Oxford Instruments CF 935 cryo-
stat. This four-pulse experiment (π/2-τ-π/2-t1-π-t2-π/2-τ-echo) was
employed with appropriate phase-cycling schemes to eliminate



742 J. Rendon et al. / Biochimica et Biophysica Acta 1847 (2015) 739–747
unwanted features from the experimental electron spin echo envelopes.
The intensity of the echo after the fourth pulse wasmeasured with var-
ied t2 and t1 and constant τ. The length of a π/2 pulse was 16 ns and of a
π pulse 32 ns. HYSCORE data were collected at 90 K in the form of 2D
time-domain patterns containing 256 × 256 points with steps of
16 ns. Spectra were recorded at a magnetic field corresponding to the
maximum intensity of the radical signal measured in a two-pulse field
sweep electron spin echo sequence (π/2-τ-π-τ-echo). Spectra were
processed using the Bruker Xepr software. Relaxation decays were
subtracted (fitting by polynomial functions) followed by zero-filling
and tapering with a Hamming window, before 2D Fourier transforma-
tion which finally gives the spectrum in frequency domain. Processed
data were then imported into Matlab (The MathWorks Inc., Natick,
MA) for plotting them. HYSCORE spectra are shown in absolute value
mode and are presented as contour plots together with the skyline pro-
jection on the two frequency axes.
3. Results

3.1. DMK is a substrate of NarGHI in nitrate respiration

The participation of DMK to NarGHI-supported growth was evaluat-
ed using the ubiE strains. Indeed, ubiE encodes a C-methyltransferase
which catalyzes not only the addition of a methyl group to the UQ pre-
cursor 2-octaprenyl-6-methoxy-1,4-benzoquinone (DDMQ-8) but also
to the respiratory DMK (Fig. S1).Whereas, under aerobic growth condi-
tions, the ubiE strain accumulates DDMQ-8 in addition to DMK as sole
respiratory quinone [32,34], DDMQ-8 was almost undetectable under
microaerophilic growth conditions (Fig. S2). While aerobic growth is
strongly impaired in absence of ubiE owing to the absence of UQ, unaf-
fected growth was observed under anoxic nitrate-respiring conditions
as compared to theparentalwild-type strain (Table S1). Identical results
were obtained in a ubiEA strain which does not synthesize any DDMQ-8
(Table S1), establishing that the capacity of the ubiE strain to respire ni-
trate is provided by DMK-8. To evaluate the exact contribution of
NarGHI to the DMK-supported growth under nitrate-respiring condi-
tions, the experiment was repeated in the nitrate reductase-deficient
JCB4023ubiE strain transformed with the pVA700 plasmid for which
the use of NarGHI complex is mandatory for growth. Similar results
were obtained with estimated generation time of 88 min for JCB4023/
pVA700 and 84 min for JCB4023ubiE/pVA700 (Fig. 2). Thus, DMK is a
substrate for NarGHI in nitrate respiration.
5 10 15 20 25
0,0

0,5

1,0

1,5

2,0

2,5

3,0

A
bs

or
ba

nc
e 

at
 6

00
 n

m

Time (h)

Fig. 2. DMK is a substrate for NarGHI in nitrate respiration. Growth curves of JCB4023
(squares) and JCB4023ubiE (circles) strains expressing NarGHI under nitrate-respiring
conditions. Growth was performed under carbon-sufficient conditions (glycerol
137 mM, filled symbols) or under carbon-limitation (glycerol 1 mM, empty symbols).
Growth curves represent the average of three independent cultures.
3.2. The NarGHI catalytic activity measured with the DMKH2 analog
1,4-naphthoquinol is comparable to that measured using the corresponding
methylated MKH2 analog menadiol

To assess the influence of themethyl group at C2 position of the qui-
none ring on quinol:nitrate oxidoreductase activity, kinetic parameters
for menadiol (MKH2 analog) and 1,4-NQ (DMKH2 analog) as substrates
were determined on NarGHI-enriched IMVs from the JCB4023/pVA700
strain. The reaction follows Michaelis–Menten kinetics with respect to
either quinol analogs. Table 2 summarizes the Km, kcat and kcat/Km data
obtained from three independent determinations. Kinetic parameters
for menadiol are similar to those previously published [30]. The Km

was identical for both quinol analogs demonstrating that the methyl
group is not a key element for the binding of quinol analogs to NarGHI.
However, the catalytic activity kcat for menadiol is nearly 4-fold higher
than that for 1,4-NQ. Thus, the kcat/Km parameters indicate that
menadiol is a better substrate for NarGHI compared to 1,4-NQ.

To further understand the difference in reactivity, the redox
potential of both quinol analogs are considered and reported in
Table 2. E′m,7.5 values of −30 and +36 mV can be indeed extrapolated
for menadiol and 1,4-napththoquinol frommeasurements of their E′m,7

in organic solvent and taking into account the pH difference and a var-
iation of −60 mV/pH unit [14,35] (Table 2). A higher redox potential
for 1,4-NQ is consistentwith a reduced catalytic activity kcat considering
the Em,7.5 ~−10 mV measured for the first electron acceptor, heme bD
(see Section 3.3).

3.3. DMSK intermediates are stabilized in NarGHI-enriched IMVs from a
ubiE strain

Theuse of DMKbyNarGHI raises the question of the ability of the en-
zyme to stabilize DMSK. To address this issue, NarGHI-enriched IMVs
were purified from the DMK-only JCB4023ubiE strain, titrated and stud-
ied by EPR spectroscopy. An intense radical signal with an average g
value gav ~2.0045 is detected in the 0 to−100mV range (Fig. 3). It is ap-
proximately 1.4 mT in overall peak-to-peak line width and exhibits a
partially resolved splitting. This signal is not present in NarGHI-
deficient IMVs prepared and titrated in similar conditions (Fig. 3D),
demonstrating that the radical is specifically associated with the
presence of NarGHI.

Careful examination of the radical EPR signal shape between 12 and
250 K reveals a relaxation behavior indicative of a non-composite signal
(data not shown). Its saturation profile, obtained by measuring the
peak-to-peak amplitude of the radical EPR signal at 150 K againstmicro-
wave power, is shown in Fig. 4. It was measured at two different posi-
tions on the EPR line as indicated in the inset of Fig. 4. At each
position, the saturation behavior is well fitted with a single saturation
curve calculated from Eq. (4) using identical half-saturation microwave
power P1/2 = 0.18 ± 0.02 mW and slightly different inhomogeneity
parameters b = 1.51 ± 0.02 and 1.35 ± 0.02, for the narrow and large
components, respectively (Fig. 4). This P1/2 value is typical of slow
relaxing semiquinone species [36] and is very close to the one
previously reported by us on NarGHI-bound MSK using a similar analy-
sis (i.e. P1/2 = 0.22 mW) [17]. In addition, this shows that the partially
resolved splitting arises from a single radical species. This observation
is corroborated by the unchanged shape of the radical EPR signal in
the 0 to −200 mV range. This is illustrated on Fig. 3 where DMSK EPR
Table 2
Kinetic parameters of NarGHI with menadiol and 1,4-NQ as substrates. Redox potential
values are taken from [14,35].

E′m,7.5 (Q/QH2)
(mV)

Km

(μM)
kcat
(s−1)

kcat/Km

(M−1.s−1)

Menadiol −31 71 ± 10 41 ± 2 5.8 × 105

1,4-NQ 34 65 ± 10 12 ± 1 1.8 × 105
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Fig. 5. EPR-monitored redox titrations of NarGHI-enriched IMVs obtained from the DMK-
only JCB4023ubiE strain. Thenormalized ratio of the g=2.0047DMSKEPR signal intensity
relative to that of FS4 (solid circles, left Y axis) and the normalized amplitudes of the gz
component of the distal (g ~3.34, squares, right Y axis) and proximal (g ~3.75, triangles,
right Y axis) hemes are plotted against the ambient redox potential. Solid lines are the
best fits of experimental data points corresponding to one or two successive n = 1
redox processes and resulting from a least squares fitting procedure using either Eq. (1)
or a n = 1 Nernst equation. Corresponding parameters are E′°7.5 (Fe3+/Fe2+) ~−10 and
~+50 mV for hemes bD and bP, respectively or are reported in Table 3 for DMK. The
inset shows the EPR spectrum of the two hemes poised at +226 mV. It was recorded at
12.5 K, 20 mW microwave power and 0.5 mT magnetic field modulation amplitude at a
frequency of 100 kHz. Baseline drift is due to the presence of adventitious Fe3+ giving
an isotropic signal at g = 4.3. The minor peak at g ~2.97 is associated to the presence of
cytochrome bo3 ubiquinol oxidase [37].
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spectra of samples redox-poised at −60 mV and −163 mV are shown
(Fig. 3A & B, respectively). Finally, the radical titrates as a bell-shaped
curve centered at ~−70mV as expected for low-potential quinone spe-
cies undergoing two successive one-electron transfer steps (Fig. 5).

Taken together, the EPR spectroscopic and redox properties of the
radical detected inmembrane fractions from the ubiE strain are fully con-
sistent with the radical arising from a single NarGHI-bound semiquinone
species. An identical radical EPR signal is also detected in aMG1655ubiEA
strain, excluding it to arise from the previously mentioned UQ precursor,
DDMQ-8 (Fig. S3). Therefore, the detected radical EPR signal is assigned
toNarGHI-boundDMSK intermediates.When the titration data arefitted
with theoretical curves based on Eq. (1), redox potential values E1,7.5
(DMK/DMSK) = −62 ± 7 mV and E2,7.5 (DMSK/DMKH2) = −86 ±
7mVare obtained giving E′m,7.5 (DMK/DMKH2)=−74mV, a theoretical
1E-3 0,01 0,1 1 10 100
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Fig. 4. Comparison of the microwave power saturation data of semiquinone signals re-
corded at 150 K in NarGHI-enriched IMVs from an E. coli JCB4023/pVA700 strain (squares,
MSK) or a JCB4023ubiE/pVA700 strain (triangles and circles, DMSK) redox poised at−105
or−60mV, respectively. For the later, the peak-to-peak amplitude I wasmeasured at two
positions on the EPR line as indicated in the spectrum shown in the inset (triangles, dotted
lines; filled circles, dashed lines). To compare power saturation data, amplitudes of each
data set were normalized to a value obtained by averaging the amplitudes of the three
data sets measured in nonsaturating conditions (≤10 μW). Data points were fitted using
Eq. (4) and P1/2 and b values as given in the text.
ratio [DMSK]max/[QD site] = 0.45 and a stability constant KS,7.5 = 2.5
(KS,7.5 in the range [1.5; 4.4]) calculated using Eq. (2) (Fig. 5 & Table 3).
Spin quantitation shows that themaximum relativeDMSK concentration
is 0.11±0.01 DMSK/Fe3S4 cluster (FS4) at pH7.5, leading to an occupan-
cy level Rocc,7.5 = 24 and Rocc,7.5 is in the range [19;32].
3.4. DMSK is formed at the NarGHI QD quinol oxidation site

To gain insight into its binding mode to NarGHI, the DMSK radical
species was studied using high resolution pulsed EPR methods at 90 K.
At this temperature, the nuclear environment of the radical can be spe-
cifically probed without spectral contamination from other faster
relaxing paramagnetic metal centers such as EPR-active cofactors in
NarGHI [20]. The (+,+) quadrant of the low frequency part of a repre-
sentative 14N HYSCORE spectrum of DMSK is depicted in Fig. 6 (left). It
exhibits the same correlation pattern as that observed for MSK (Fig. 6,
right) and previously analyzed by us [20] i.e. two narrow off-diagonal
peaks that correlate nuclear transition frequencies at 2.2 and 3.4 MHz.
According to our previous work, these frequencies are assigned to the
two double quantum transition frequencies νdq+ = 3.4 MHz and
νdq− = 2.2 MHz from a single 14N nucleus weakly coupled to DMSK.
No additional 14N resonance is detected on other HYSCORE spectra of
DMSK recorded at different τ values (not shown). Given that nuclear
frequencies are very sensitive to the chemical nature of the nucleus, to
its electrostatic environment and to the relative arrangement of the
interacting electron/nuclear system, we conclude that DMSK and MSK
interact with the same nitrogen-containing chemical group and in a
similar manner. Thereof, characteristics of the detected DMSK/14N in-
teraction (calculated isotropic hyperfine coupling constant Aiso

~0.8 MHz, quadrupole coupling constant κ and asymmetry parameter
η that verify the relationships κ2 (3 + η2) = 0.77 MHz2) are identical
to those calculated in our previous study of the 14N nucleus coupled to
MSK or USQ, which was assigned to the Nδ imidazole nitrogen of the
heme bD axial ligandHis66 (Fig. 1D) [16,20,22]. Altogether, these results
demonstrate unambiguously that the NarGHI QD site can stabilize and



Table 3
Comparison of the redoxproperties of NarGHI-bound or freeMK, DMK andUQat pH7.5. “Free” refers to redox propertiesmeasured in alcoholic solvent or in bacterialmembraneswhereas
“QD-bound state” refers to as measuredwhen stabilized at the QD site of NarGHI. Literature data obtained at pH 7 have been extrapolated at pH 7.5 using a pH dependency of−60mV/pH
unit for Em (Q/QH2). The procedure used to estimate the redox parameters of QD-bound USQ is given in the Supplementary data.

E1 (mV) E2 (mV) Em (mV) KS Rocc (%) Reference

DMSK Free – – +6, −39 – – [6,7]
QD-bound −62 ± 7 −86 ± 7 −74 ± 5 2.5a 24b This work

MSK Free – – −100 ± 10 – – [35,38]
QD-bound −40 ± 10 −150 ± 10 −95 ± 5 73c 12d [17]

USQ Free – – +70 ± 10 – – [35,39]
QD-bound −40 to +85 +35 to +160 +60 ± 5 4 × 10−4 to 7 n.d. [16]

a KS ∈ [1.5–4.4].
b Rocc ∈ [19–32].
c KS ∈ [33–158].
d Rocc ∈ [10–15].
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accommodate the semiquinone form of the three naturally-occurring
respiratory quinones.
3.5. Origin of the partially resolved structure on the DMSK cw EPR signal

Simulation of the DMSK cw EPR signal assuming that the partially
resolved structures arise from anisotropic g-tensor leads to g1 =
2.0092 ± 0.0005, g2 = 2.0049 ± 0.0005 and g3 = 2.0003 ± 0.0005.
Such g values are inconsistent with previously reported g-values of
naphthosemiquinone species which lie in the range from 2.0021 to
2.0070 [17]. Thus, we assigned the partially resolved structure to inter-
actions with another magnetic species, with a magnitude of ~15 MHz.
We then envisage successively two possible origins, namely a spin–
spin interactionwith the unpaired electron of another nearby paramag-
netic species, or a hyperfine coupling to a closely associated nuclear
spin. Regarding the former possibility, a ~15MHz coupling corresponds
to a distance of ~15Å between the interacting electron spins assuming a
purely dipolar through-space interaction and a point dipole model.
Whereas the NarH Fe4S4 clusters are expected to be too distant from
the QD site to give rise to such coupling, the contribution of the hemes
was assessed by examining their redox behavior through EPR-
monitored redox titrations. The two low-spin hemes exhibit highly
anisotropic spectra with gz values of approximately 3.75 and 3.35 for
heme bP and bD, respectively (Fig. 5, inset). Hemes bD and bP titrate as
a single component that fits to n=1Nernstian curvewithmidpoint po-
tential E′m,7.5 ~−10mV and+50mV, respectively (Fig. 5), in consisten-
cy with previously published data [37,40]. Importantly, the EPR
spectrum of NarGHI-bound DMSK is not affected by the redox state of
the two hemes. In particular, the splitting on the DMSK EPR signal is
clearly resolved in a sample redox poised at ~−163 mV (Fig. 3B) in
Fig. 6. Comparison of 14N HYSCORE spectra of DMSK (left) andMSK (right). Redox-poised
samples (−60 mV for DMSK, −105 mV for MSK) issued from NarGHI-enriched mem-
brane fractions from a JCB4023ubiE (DMK) (left) or from a JCB4023 (DMK + MK + UQ)
(right) E. coli strain were used. Experimental parameters are as given in Material and
methods, time between first and second pulses τ = 204 ns, microwave frequency
9.69 GHz, and magnetic field 345.2 mT.
which the two NarGHI hemes are in their EPR-silent reduced state
(Fig. 4). Moreover, a magnetic interaction between the radical and an-
other paramagnetic species would lead not only to much higher P1/2
value for DMSK than determined in the present work, but also would
distort the saturation curves such that Eq. (4) would no longer model
the data [41], a phenomenon that is clearly not observed here. We con-
clude that hemes bD and bP are not responsible for the partially resolved
structure of the DMSK EPR signal. Thus, we assign the latter to a hyper-
fine structure whichwould originate from one or several nearby 1H nu-
clei. Replacement of solvent water with 2H2O resulted only in a slight
decrease of the EPR line width without changing its overall shape
(Fig. 3C). The peak-to-peak line width of the central feature and the
half width at half height of the left and right peaks of the DMSK EPR sig-
nal decrease by 0.1mT, 0.04mT and 0.05mT, respectively, showing that
the observed splitting originates from non-exchangeable protons
coupled to DMSK. Moreover, the observed decrease of the line width
also reveals the existence of at least one exchangeable proton weakly
coupled to the radical, as previously shown for MSQD [21].

4. Discussion

4.1. DMKH2 is a substrate for nitrate respiration

Quinones are key players in energy-transducing processes which
occur in the overwhelming majority of living organisms. The principal
parameter distinguishing the different kinds of quinones is their mid-
point redox potential. In this context, what makes the facultative anaer-
obe γ-proteobacterium E. coli an ideal system to probe the reactivity of
quinones towards respiratory complexes is the coexistence of low- and
high−redox potential quinones, MK-8 and UQ-8, respectively. Further-
more, E. coli marks out by the existence of a third quinone (DMK-8) of
intermediate redox potential. In previous studies, the E. coli NarGHI
complex was shown to stabilize semiquinone intermediates of both
UQ-8 andMK-8with the corresponding E′m,7.5 of+60 and−90mV, re-
spectively [16–18]. The corresponding semiquinones were shown to be
located at a single QD-site within the NarI subunit and to have a similar
binding mode. Herein, we demonstrate that NarGHI can also make use
of DMK as respiratory quinone for nitrate respiration and stabilizes a
DMSK intermediate within its QD site.

In agreement with the fact that DMK-8 predominates under nitrate-
respiring conditions [12], this quinone allows efficient NarGHI-
supported respiration with unchanged generation time as compared
to wild-type strain. Whereas Wissenbach et al. reported that DMK-8
cannot support nitrate respiration in E. coli [11,13], our results show un-
ambiguously that DMK-8 is a good substrate for NarGHI. Hence, the
presence of the methyl group is not mandatory for efficient functioning
of NarGHI-supported respiration. This is further confirmed by our ob-
servation that 1,4-NQ (a DMKH2 analog) is only four-fold less efficient
than menadiol (MKH2 analog) as electron donor in enzymatic assays
for nitrate reduction. Interestingly, Tyson et al. reported that DMKH2 is
not a substrate for the periplasmic nitrate reductase Nap complex in
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E. coli [42]. Quinone requirements for NarGHI and Nap would then be
different, at least in E. coli. Indeed, nitrate respiration has been evi-
denced in the γ-proteobacterium Haemophilus parainfluenzae T3T1
[43] which contains (i) DMK as its sole respiratory quinone [44], (ii)
no homologue to the nar operon, and (iii) an operon encoding aNap en-
zyme. Overall, the ability of NarGHI to oxidize three types of quinols
likely contributes to the largemetabolic flexibility of E. coli upon sudden
changes of the environmental conditions, in particular oxygen
concentration.
4.2. A redox specific affinity of DMK to NarGHI

Using EPR-monitored redox titration experiments on NarGHI-
enriched IMVs from a ubiE strain, we demonstrate unambiguously
that DMSK is stabilized in NarGHI and resolve its redox properties. To
our knowledge, stabilization of DMSK in an energy-transducing enzyme
has not been reported so far. Whereas a E′m,7 (MK/MKH2) ~−70 ±
10 mV value of the n = 2 redox potential of menaquinones in organic
solution or in a bacterial membrane at pH 7 is commonly used in the lit-
erature [35,38,45], that of the DMK/DMKH2 couple has been recently
challenged [7]. Loss of the methyl group at the C2 position of the
menaquinone ring is expected to significantly increase the Em (Q/QH2)
valuewith respect to that of themethylated species [46,47]. Consistent-
ly, the midpoint potential of 1,4-NQ is ~65mV higher than that of men-
adione (Table 2) [14,35]. Regarding DMK, two different E′m,7 (DMK/
DMKH2) values have been reported from measurements carried out in
alcoholic solvent, namely +36 mV [6] and −9 mV [7]. Assuming that
the DMK pool in membranes has a similar E′m value and that the latter
changes by−60mV/pHunit as previouslymeasured [7], our data reveal
that the E′m, 7.5 (DMK/DMKH2) = −74 mV value for NarGHI-bound
species (Table 3) results from a negative shift Δ = −30 or −80 mV,
depending on the E′m,7 value considered for unbound DMK. A positive
shift of the same order of magnitude has been observed for USQ stabi-
lized at the quinone reduction site of either succinate–ubiquinone re-
ductase (Δ ~+20 mV) [48] or of the bc1 complex from yeast (Δ ~+24
to +54 mV) [49] or from Rhodobacter sphaeroides (Δ ~+60 mV) [50].
A redox-dependent differential binding of quinone at these sites has
been proposed as a possible explanation of this shift.Whereas a positive
shift predicts a stronger affinity of the hydroquinone form with respect
to the quinone form, the negative one observed for NarGHI-bound
DMSK indicates tighter binding of oxidized DMK than DMKH2 to the
QD site (15-fold or ~500-fold depending on the E′m,7 value considered
for unbound DMK) Eq. (3). Remarkably, this phenomenon is specific
to DMSK as no shift is observed neither for NarGHI-bound MSK [17,
38], nor for NarGHI-bound USQ [16] (Table 3). Since our 14N HYSCORE
investigations show that the three quinone species bind to the NarGHI
QD site via a similar His-SQ binding motif, it is likely that the
H-bonding pattern to these radicals is similar, at least to theO1 carbonyl
oxygen. This situation recalls that observed for quinones stabilized in
the Q site of cytochrome bd-I (CydAB) or in the modified Q site of the
FrdC E29L fumarate reductasemutant. These two respiratory complexes
have been shown to react with both menaquinols and ubiquinols.
Whereas their Q sites do not discriminate between benzoquinones
and benzoquinols (CydAB) [51], or ubiquinones and ubiquinols
(FrdC E29L) [52], a positive shift ~35–40 mV of Em is however resolved
for protein-bound naphthoquinols (CydAB) or menaquinols
(FrdC E29L) with respect to unbound species. In both protein Q sites,
MK and UQ appear to have a similar hydrogen bonding to one of their
quinone carbonyl group (as observed here for the three types of
NarGHI-bound semiquinones) as evaluated by FTIR difference spectros-
copy [52,53]. However, it has been hypothesized that differences in the
protonation of the two quinone species involve the other quinone car-
bonyl group and/or a nearby acidic residue. Whether this applies to
NarGHI-bound DMSK, MSK and USQ requires further investigations.
High resolution EPR experiments are currently performed in our labs
to attempt to resolve this issue. In particular, the possible differential
role of Lys 86 located at the entrance of the QD site is being assessed.

To evaluate the physiological impact of the redox-dependent differ-
ential binding of DMK in vivo, we anticipate that reducing the availabil-
ity of the carbon source with unchanged nitrate concentration would
unbalance the electron flux resulting in a more oxidized DMK Q pool.
Under such conditions, deletion of theubiE gene is expected to influence
the growth as compared to thewild-type strain. As seen in Fig. 2, lower-
ing down the glycerol concentration to 1mMnot only reduces the over-
all growth yield due to carbon limitation but significantly hampers the
growth of the ubiE strain as expected. Thereof, under such nutrient-
limited conditions, DMK utilization is not favored for NarGHI-
dependent nitrate respiration. To conclude, these in vivo results sub-
stantiate the redox-dependent differential binding of DMK inferred
from EPR-monitored redox titration experiments.

4.3. Evaluation of the functional consequences of the differential redox
properties of MK-8, DMK-8 and UQ-8 at the NarGHI QD site

Ourprevious characterization of NarGHI-boundMSKwas carried out
using a wild-type bacterial strain containing the three physiological re-
spiratory quinones [17]. In light of the present work, re-examination of
the previously recorded EPR spectra of MSK reveals that DMSK does not
contribute in this sample (see SI material). Thus, the MSK EPR redox
properties recalled in Table 3 can be reliably compared to those of
DMSK. Notably, the present work reveals that the NarGHI complex is
unique in being able to stabilize the semiquinone intermediate of all
three respiratory quinones from E. coli within a single QD-site. Thanks
to the availability of distinct redox properties for DMSK and MSK, we
questioned whether NarGHI exhibits distinct specificity towards the
considered quinones. A definitive answer cannot be provided in vivo
through assessment of the generation time since the resulting activity
of several electron transfer chains ending up with NarGHI are at play
under our growth conditions. Furthermore, MK-8-exclusive growth
cannot be performed, as DMK is the precursor of MK. Instead, we have
evaluated the theoretical kinetics of electron transfer at the QD site
based on the herein reported redox properties of bound DMSK and
MSK. A relative short distance of 5.7 Å can be estimated between the
carbonyl of the semiquinone involved in hydrogen-bonding with the
His66 residue and the porphyrin ring of heme bD. As a consequence,
based on theMoser–Duttonmodel (see SI text, Eq. S1) [55], very fast ki-
netics (between 4 and 15 ns−1) are expected to occur during the two
successive oxidation steps of MKH2 and DMKH2 at the QD site. The situ-
ation may even be more complicated for the utilization of UQ-8 by
NarGHI with an E′m,7.5 (UQ/UQH2) at the QD site measured at ~60 mV
(Table 3) [16]. Whereas the overlapping USQ signal originating from
other respiratory complexes precludes accurate determination of the
two n= 1 redox potential values, limit values can be given considering
either that USQD predominates or is very minor in the previously stud-
ied sample (see SI text and ref. [16]) ending up with KS values of 7 or
4 × 10−4, respectively. In the first case, much slower kinetics (between
50 and 130 μs−1) are calculated for the two successive oxidation steps
of UQH2 at the QD site. These values are nearly two-fold lower than
those measured for MKH2 and DMKH2. In the other opposite case, the
very low stability constant resulting from the inversion of the two
n = 1 redox potentials severely impacts the first oxidation step QH2/
SQwith an estimated value of 9 μs−1 while the second step is facilitated
at 4 ns−1. It is worth to mention that transmembrane electron transfer
between both hemes within NarI is severely hampered by the small
redox potential difference (Δ ~60 mV) between them further reduced
by the membrane potential Δψ ~130 mV [56]. With a distance of 8.7 Å
between both hemes, unoriented electron transfer kinetics is estimated
between 18 and 36 μs−1 depending on themidpoint potential values of
both hemes in the literature. Further experiments are required to eval-
uate whether this may constitute a limiting step for UQ utilization.
Overall, under highly reducing conditions, undistinguished kinetics is
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expected to occur with MK or DMK as substrate. In the case of UQ, one
can anticipate a less efficient use of this substrate which may corrobo-
rate the longer generation time obtained in a UQ-only strain under ni-
trate respiring conditions (Table S1).

4.4. Different stabilization of MSK and DMSK in the NarGHI QD site

The measured differences between the MSK and DMSK redox prop-
erties (Table 3) imply an approximately two-fold lower maximal DMSK
concentration compared to that of MSK (as calculated using Eq. (1) as-
suming the same occupation level). Spin quantitation experiments re-
veal that the maximal SQ spin concentration relative to that of FS4 is
similar for both species (i.e. 0.11 ± 0.01 DMSK/FS4 and 0.10 ± 0.01
MSK/FS4) [54]. Therefore, a two-fold higher QD site occupancy level of
DMK (19 to 32%) as compared to MK (10 to 15%) is calculated using
Eq. (1) (Table 3) [54]. This variation could be due to difference in the
availability of the two quinone types in the two preparations or to a dif-
ferential affinity of DMK for this site compared toMK consecutive to the
loss of the methyl group on the ring moiety. Finally, to understand the
molecular origin of the differences observed in the stability constant
for both MSK and DMSK, further detailed studies aimed at deciphering
the DMSK binding mode to the protein are currently underway in our
labs usingmultifrequency high resolution EPR techniques. In particular,
the origin of the hyperfine splitting observed on the DMSK EPR spec-
trum is currently being investigated.

5. Conclusions

In this work, we report the efficient use of DMK by E. coli in nitrate
respiration in vivo. Further, we demonstrate that DMSK intermediates
are stabilized in the NarGHI quinol oxidation site QD, allowing the first
redox characterization of a protein-bound DMSK.
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