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Abstract 

In order to intercept the future targets that are characterized by high maneuverability, multiple interceptors may be launched 
and aimed at single target. The scenario of two missiles P and Q intercepting a single target is modeled as a two-pursuit sin-
gle-evader non-zero-sum linear quadratic differential game. The intercept space is decomposed into three subspaces which are 
mutually disjoint and their union covers the entire intercept space. The effect of adding the second interceptor arises in the inter-
cept space of both P and Q (PQ-intercept space). A guidance law is derived from the Nash equilibrium strategy set (NESS) of the 
game. Simulation studies are focused on the PQ-intercept space. It is indicated that 1) increasing the target’s maneuverability 
will enlarge PQ-intercept space; 2) the handover conditions will be released if the initial zero-effort-miss (ZEM) of both inter-
ceptors has opposite sign; 3) overvaluation of the target’s maneuverability by choosing a small weight coefficient will generate 
robust performance with respect to the target maneuvering command switch time and decrease the fuel requirement; and 4) co-
operation between interceptors increases the interception probability. 
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1. Introduction1 

The future targets such as tactical ballistic missile 
(TBM), supersonic cruise missile (SCM) and un-
manned aerial vehicle (UAV) are characterized by low 
observability and high maneuverability. The intercep-
tor does not have substantial advantage in speed, ma-
neuverability and agility against these targets. How-
ever, successfully intercepting such a target demands a 
very small miss distance or even a direct hit. 

In order to successfully intercept such targets, two 
types of efforts can be made: 1) increasing the sin-
gle-shot kill probability (SSKP) by improving naviga-
tion, guidance and control systems; 2) utilizing multi-
ple missiles to intercept single target. This paper fo-
cuses on the end-game guidance problem of intercept-
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ing single target with two interceptors. 
Differential game theory is based on classical game 

theory and optimal control theory and is utilized to 
study the optimal strategies in games of two or multi-
ple players, which is also applied to guidance law de-
velopment. In the differential game model, the inter-
ceptor tries to minimize the miss distance and the tar-
get tries to maximize it. The Nash equilibrium strategy 
set (NESS) is the optimal guidance strategies for both 
players. Gutman and Leitmann [1] studied such formu-
lation of a scenario with the assumption that two play-
ers have constant velocities, constant maximum accel-
erations and ideal dynamics. The scenario was later 
extended to include first-order pursuer dynamics [2-3] 
and evader dynamics [4], and yielded the bounded dif-
ferential game guidance laws DGL/0 and DGL/1, re-
spectively. A vector form of differential game guidance 
law with the first-order pursuer and evader dynamics 
taken into account was studied by Chen [5] and that 
with uncertainty was discussed by Wang [6]. The effects 
of lateral acceleration limits on the homing perform-
ance were investigated by Hou [7]. Shinar, et al. pro-
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posed guidance law DGL/C [8-9] with the delay of the 
target’s acceleration estimation and DGL/E [10] with 
time-varying velocities and acceleration limits and 
later, with both the delay and time-varying properties 
combined, they developed DGL/EC [11]. Li, et al. [12-13] 
proposed a differential game guidance law for a 
low-altitude endoatmospheric interceptor with a for-
ward reaction control system (RCS) and aerodynamic 
tail control surfaces. Under the conditions of large 
initial flight path error and long intercept time, with 
the angular nonlinearity taken into consideration, a 
guidance law with nonlinear differential game formu-
lation was proposed by Liu, et al. [14]. 

However, the guidance laws presented in the above 
papers are based on the single-pursuer single-evader 
differential game formulation. In the end-game guid-
ance problem with multiple interceptors and single 
target, the formulation becomes multiple-pursuer sin-
gle-evader game. The problem of protecting a target 
aircraft from a homing missile by launching a defend-
ing missile was formulated as zero-sum multi-
ple-players game model by Perelman, et al. [15], from 
which a cooperative linear quadratic differential game 
guidance law was yielded. The attacking missile is 
chasing the evading target that at some point launches 
a defending missile to intercept the incoming threat. 
Shima [16] proposed optimal cooperation pursuit-  
evasion strategies for the same aircraft protecting 
problem, assuming that the incoming missile is using a 
known linear guidance law and with linear kinematics, 
linear dynamics and perfect information. However, this 
aircraft protecting problem is different from the multi-
ple-pursuit single-evader problem. A general model 
and solution of multiple-pursuit single-evader game 
were given by Foley [17] and Lin [18], et al.  gave the 
distributed non-zero-sum Nash strategies. This paper 
focuses on the end-game guidance problem of inter-
cepting single target with two missiles. The engage-
ment is modeled as non-zero-sum two-pursuit sin-
gle-evader game formulation and a guidance law is 
derived from NESS of the game. Effective navigation 
gains and information sharing are also studied. The 
homing performance of the proposed guidance law is 
tested based on Monte Carlo simulation. 

2. Problem Formulation 

The problem dealt in this paper consists of three en-
tities, interceptors P and Q and target T. The missiles 
chase the evading target while the target maneuvers to 
escape. The engagement between the missile P (Q) and 
target T is denoted as PT (QT). A roll controlled inter-
ceptor is considered in this paper. For the relatively 
short time interval of the end-game (with small 
changes in the flight direction), the motion of such an 
interceptor can be separated into two perpendicular 
channels and the guidance problem can be treated as 
planar in each of these channels [12, 14, 19-20]. A sche-

matic view of the planar end-game geometry is shown 
in Fig. 1, where XIOIYI is a Cartesian inertial reference 
frame. The speed, normal acceleration and flight-path 
angle are denoted by V, a and γ, respectively. The 
range between the adversaries is r and λ is the angle 
between line-of-sight (LOS) and XI axis. The subscript 
“0” denotes initial. The mathematical model is outlined 
below based on the following assumptions [1-4, 12-14]: 

1) Planar engagement; 
2) Constant speed; 
3) Perfect information structure; 
4) Small angle deviation linearization; 
5) Without account for gravity; 
6) Ideal dynamics of adversaries, i.e. zero-lag. 

 
Fig. 1  End-game geometry between missiles and target. 

Remark 1 [10, 21]  The Assumption 3) includes two 
parts: the designers of both missiles have perfect 
knowledge of the engagement parameters and both 
missiles can accurately measure all of the state vari-
ables. Although in reality, the target, i.e. TBM, has no 
information about the interceptor’s state variables, it 
may carry out a very close realization of the optimal 
interception avoidance strategy if it maneuvers ran-
domly. Thus, the second part of Assumption 3) repre-
sents the worst case for the interceptor. 

Based on Assumptions 2) and 4), the final time of 
the engagement PT and QT can be computed for any 
given initial conditions of the end-game: 

 f, T T,0 TP P P P,,0 0T P( cos cos )t r V Vϕ ϕ= +  (1) 

 f, T T,0 TQ Q Q Q,,0 0T Q( cos cos )t r V Vϕ ϕ= +  (2) 
where the subscripts “PT” and “QT” represents the 
parameters of T with respect P and Q, φ denotes the 
leading angle, defined as 

 P P PTϕ γ λ= −  (3) 

 Q Q QTϕ γ λ= −  (4) 

 PT T PTϕ γ λ= +  (5) 

 QT T QTϕ γ λ= +  (6) 
Assume that the engagement QT is ended before PT, 

i.e. 
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 f, ,PT TQft t>  (7) 
allowing the final time of the game to be defined by 

 f f ,PTt t=  (8) 
The linearized relative motion normal to the initial 

LOSPT,0 and LOSQT,0 is expressed as 

 
PT T PT,0 P P,0

QT T QT,0 Q Q,0

cos cos
cos cos

y
y

a a
a a

ϕ ϕ

ϕ ϕ

= −⎧⎪
⎨ = −⎪⎩  (9) 

where yPT (yQT) denotes the relative displacement be-
tween P (Q) and T, normal to LOSPT,0 (LOSQT,0). 

In order to reflect the disappearance of missile Q 
after the terminal of engagement QT, the 
zero-effort-miss (ZEM) zQ is forced to remain constant 
for tf,QT < t < tf,PT by forcing ÿQT = 0 [15]. Thus, the rela-
tive motion equations are rewritten as 

 
PT T PT,0 P P,0

QT T QT,0 Q Q,0

cos cos
( cos cos ) ( )
a a
a a

y
y t

ϕ ϕ

ϕ ϕ δ

= −⎧⎪
⎨ = −⎪⎩  (10) 

where 

 
f ,QT

f ,QT

1
( )

0

t t
t

t t
δ

⎧⎪= ⎨ >⎪⎩

≤
 (11) 

Thus, the game can be treated under unified time 
with final time defined in Eq. (8) and the time-to-go 
can be defined by 

 go ft t t= −  (12) 
The relative motion in Eq. (10) can be expressed by 

a compact form as time-invariant, vector differential 
equation: 

 P P Q Q T Tu u u= + + +x Ax B B B  (13) 
where u is the acceleration command, the state vector 
is 

 PT PT QT QT
T [ ]y yy y=x  (14) 

and 

 

P,0
P

PT,0
Q T

Q,0 QT,0

00 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

cos
,

0
0

0 0
0 cos

,
0 0
cos co( ) ( ) st t

ϕ

ϕ

δ ϕ δ ϕ

⎡ ⎤
⎢ ⎥

⎧ ⎡ ⎤
⎪ ⎢ ⎥−⎪ ⎢ ⎥=⎪ ⎢ ⎥
⎪ ⎢ ⎥

⎣ ⎦⎪
⎨

⎡ ⎤ ⎡ ⎤⎪
⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪ = =⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎩

A = B

B B

 (15) 

ZEM is the miss distance if players will not apply 
any further acceleration commands. Using the transi-
tion matrix associated with Eq. (13), the ZEM vector is 
defined as 

 f , ) )( (t tt=z DΦ x  (16) 

where T
P Q[ ]z z=z  with zP and zQ representing 

ZEM of P and Q, and the transition matrix is 

 

go

f
go

1 0 0
0 1 0 0

( )
0 0 1
0

,

0 0 1

t

t
t

t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Φ  (17) 

and 

 
1 0 0 0
0 0 1 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D  (18) 

The dynamic of ZEM vector is 

 P P Q Q T T( ) ut u u+= +z B B B  (19) 
where 

 

P f P

Q f Q

T f T

= ,
=

( )
( )

( )

,

= ,

t
t

t
t

t t

⎧
⎪
⎨
⎪
⎩

B Φ BD
D

D

B Φ B

B Φ B
 (20) 

The missiles P and Q are assumed to be the same 
and intercept the target independently. The objective of 
each missile is to choose its control so as to minimize 
the miss distance while the objective of the target is to 
maximize the minimum value of these two miss dis-
tances. The players’ control variables are limited by 
imposing integral quadratic constraints. Thus, the per-
formance criteria are 

 
f2 2

P P f P0
( )

2
d

2
1 t

J z t u tα
= + ∫  (21) 

 
f2 2

Q Q f Q0
( )

2
d

2
1 t

J z t u tα
= + ∫  (22) 

 
f2 2 2T T

T P f Q f T0
min{ ( ), ( )}

2
d

2
t

uJ tz t z t
α β

= − + ∫  (23) 

where the weights α, αT, and βT are all positive. This 
differential game defined by Eqs. (19)-(23) is referred 
to as G . 

3. Nash Equilibrium Strategies 

The admissible controls for P, Q and T are taken as 
the set of piecewise continuous functions. An NESS 
for G  is defined as follows. 

Definition 1 [18]  The admissible strategy set ( *
P ,u  

* *
Q T,u u ) is a NESS for G  if 

 
* * * * *

P P Q T P P Q T( , , ) ( , , )J uJu u u u u≤  (24) 

 
* * * * *

Q P Q T Q P Q T( , , ) ( , , )J u u u u u uJ≤  (25) 

 
* * * * *

T P Q T T P Q T( , , ) ( , , )J u u u u u uJ≤  (26) 
for all admissible uP, uQ and uT. 

In order to apply the existence theory, JT is required 
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to be a continuous function, which is obviously not the 
case for the game G . This difficulty is overcome by 
redefining the target’s performance criteria as 

f2 2 2T T
T P f T

0
Q f[ ( ) (1 ( ))

2
] d ,

2

t
t zJ z t u t

α β
κ κ= − + − + ∫

 0 1κ≤ ≤  (27) Obviously, the criteria Eq. (27) is equivalent to Eq. 
(23) if the variable κ satisfies 

 

2 2
P f Q f

2 2
P f Q f

2 2
P f Q f

( ) ( )

( )= ( ),0

( ) ( )

0

= 1

1

z t z t

z t z t

z t z t

κ σ σ

⎧
⎪⎪
⎨

>

⎪
⎪ <⎩

≤ ≤  (28) 

The differential game defined by Eqs. (19)-(22) and 
Eq. (27) is referred to as G . 

The Hamiltonian of the game G  is 

 

T 2
P P P

T 2
Q Q Q

T 2
T T T T

1( )
2
1( )
2
1( )
2

u

u

H t

H t

H t uβ

⎧ = +⎪
⎪
⎪ = +⎨
⎪
⎪

= +⎪⎩

λ z

λ z

λ z

 (29) 

with the adjoint variables satisfying 

 

P P f

Q Q f

T T T f

( ) ( )
( ) ( )

( ) ( )

t t
t t

t t

α
α

α

⎧ =
⎪ =⎨
⎪ = −⎩

zλ Λ

λ Λ

zΛ

z

λ  (30) 

and open-loop optimal controllers to be 

 

* T
P P P
* T
Q Q Q

* T
T T T T

u

u

u β

⎧ = −
⎪⎪ = −⎨
⎪

= −⎪⎩

λ B

λ B

λ B
 (31) 

where 

 

P

Q

T

0
0 0

0
0

0
1

1

0

1

0

κ
κ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

Λ

Λ

Λ

 (32) 

Substituting the open-loop optimal controllers (31) 
into Eq. (19) and integrating from t to tf, the linear but 
coupled algebraic equations of z(tf) is obtained: 

 f( ) ( )t t=z Fz  (33) 
where

f T T T 1
P P P Q Q Q T T T T

3 2 2 2
go Q,0 T QT,0 T T PT,0 QT,0 T

3 3 2 2
go T PT,0 QT,0 T go P,0 T PT,0 T

[ + ) ]

3 (1 ] (1 )cos cos ]3
cos co

( d

cos [ ) ( ) cos [

( ( ) ) cos ( coss )3

t

t

t

t t

t

t

β τ

α ϕ α κ δ ϕ β α κ ϕ ϕ β

Θ α κδ ϕ ϕ β α ϕ α κ ϕ β

−= + + =

⎡ ⎤+ − − −
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

∫F I B B Λ B B Λ B B Λ

 
(34)

 

3 2 2 3 2 2 2
go P ,0 T PT ,0 T go Q,0 T QT ,0 T

2 2 2 2
T PT ,0 QT ,0 T

[ 3 cos ( cos ) ]{3 cos [ (1 ) ( )cos )] }

[ (1 ) ( )cos cos ]

t t t

t

Θ α ϕ α κ ϕ β α ϕ α κ δ ϕ β

α κ κ δ ϕ ϕ β

= + − + − − −

−  (35) 

A sufficient condition for the existence of NESS is 

 0Θ ≠  (36) 
The closed form solution is obtained by substituting 

Eq. (33) into Eq. (30) and then into Eq. (31): 

 

* T
P P P
* T
Q Q Q

* T
T T T T T

( )

( )

( )

t

t

u t

u

u

α

α

α β

⎧ = −
⎪⎪ = −⎨
⎪

=⎪⎩

Fz

Fz

Fz

B Λ

B Λ

B Λ
 (37) 

Definition 2  The intercept space S  is a set of 
z(t), i.e. 

 }({ )t= zS  (38) 
Definition 3  The P-intercept space PS  is a subset 

of S  satisfying  

 

T
P P Q( ) ( )( ( )) 0

0

{ ( ) | ( ) ,

1}

t tt

κ

−=

∀

<z Fz zΛ FΛ

≤ ≤

S
 (39) 

Definition 4  The Q-intercept space QS  is a sub-

set of S  satisfying  

     

T
Q P Q( )) ( )( ( )) 0

0

{ ( ) | ( ,

1}

t tt

κ

−=

∀

>z Fz zΛ FΛ

≤ ≤

S
 (40) 

Definition 5  The PQ-intercept space PQS  is a 
subset of S  satisfying 

 
PQ

T
P Q

( )

( ( )) ( )( ( )

{ | 0

)

,

}0

1t

t t

κ= ∃

− =

z

Fz FzΛ Λ

≤ ≤S
 (41) 

Obviously, PS , QS  and PQS  are disjoint and 
their union covers the entire intercept space S , i.e. 

 P Q P PQ Q PQ= = = ∅∩ ∩ ∩S S S S S S  (42) 
and 

 P Q PQ=∪ ∪S S S S  (43) 
Theorem 1  If the inequality in Eq. (36) is satisfied 

for all 0 1κ≤ ≤ , and 
1) P( )t ∈z S , then Eq. (37) is a NESS for game G  
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when 1κ = . 
2) Q( )t ∈z S , then Eq. (37) is a NESS for game G  

when 0κ = . 
3) PQ( )t ∈z S , then Eq. (37) is a NESS for game G  

when κ  satisfies T
P Q( ( )) ( )( ( )) 0t t− =Λ ΛFz Fz . 

Proof  The strategy in Eq. (37) is a NESS for the 
game G  if inequalities in Eq. (36) are satisfied. Thus, 

 
* * * * *

P P Q T P P Q T( , , ) ( , , )J uJu u u u u≤  (44) 

 
* * * * *

Q P Q T Q P Q T( , , ) ( , , )J u u u u u uJ≤  (45) 

 
* * * * *

T P Q T T P Q T( , , ) ( , , )u u u u uJ uJ ≤  (46) 
To show that Eq. (37) is a NESS for G , one only 

needs to verify the inequality in Eq. (26). 
1) In the P-intercept space PS , the strategy Eq. (37) 

guarantees T
P Q( ( )) ( ) ( ( )) 0t t− <Λ Λ Fz F z , namely, 

2
P f( )z t < 2

Q f( )z t . As 0 1κ≤ ≤ , then 

 
2 2
P f Q f(1 ) ( ) (1 ) ( )z t z tκ κ− −≤  (47) 

Adding f2 2
P f T T0
( d)

t
u tz tκ β− ∫  to both sides of Eq. 

(47) and multiplied by 1 2− , one obtains 

 

f

f

2 2 2T T
P f Q f T

2 2T T
P T

0

0
f

[ ( ) (1 )
2

( )] d

d

2

( )
2 2

t

t

z t u tt z

tz u t

α β
κ κ

α β

− + − +

− +

∫

∫

≤

 (48) 

As 2 2
P f Q f( ) ( )z t z t< , Eq. (48) is equivalent to 

 
* * * *

T P Q T T P Q T( , , ) ( , , )J u uJu u u u≤  (49) 
when 1κ = , 

 
* * * * * *

T P Q T T P Q T( , , ) ( , , )J u uJu u u u=  (50) 
From Eq. (46) and Eqs. (49)-(50), we get 

 
* * * * *

T P Q T T P Q T( , , ) ( , , )J u u u u u uJ≤  (51) 
2) In the intercept space QS , the strategy Eq.(37) 

guarantees T
P Q( ( )) ( ) ( ( )) 0 ,t t− >Λ ΛFz Fz namely, 

2 2
P f Q f( ) ( )z t z t> . As 0 1κ≤ ≤ , then 

 
2 2
P f Q f(1 ) ( ) (1 ) ( )z t z tκ κ− −≥  (52) 

Adding f2 2
Q f T T0

( d)
t

u tz tκ β− ∫  to both sides of Eq. 

(52) and multiplied by 1 2− , one obtains 

 

f

f

2 2 2T T
P f Q f T

2 2T T
Q T

0

0
f

[ ( ) (1 )
2

( )] d

d

2

( )
2 2

t

t

z t u tt z

tz u t

α β
κ κ

α β

− + − +

− +

∫

∫

≤

 (53) 

As 2 2
P f Q f( ) ( )z t z t> , Eq. (53) is equivalent to 

 
* * * *

T P Q T T P Q T( , , ) ( , , )J u uJu u u u≤  (54) 
when 0κ = , 

 
* * * * * *

T P Q T T P Q T( , , ) ( , , )J u uJu u u u=  (55) 
From Eq. (46) and Eqs. (54)-(55), we get 

 
* * * * *

T P Q T T P Q T( , , ) ( , , )J u u u u u uJ≤  (56) 
3) In the intercept space PQS , there exists 0 ≤  

1κ ≤  such that the optimal strategy in Eq. (37) satis-
fies T

P Q( ( )) ( )( ( )) 0t t− =Λ ΛFz Fz , i.e. 2
P f( )=z t  2

Q f( )z t . 
Then, for that κ , 

 
* * * * * *

T P Q T T P Q T( , , ) ( , , )J u uJu u u u=  (57) 
Let the missiles P and Q play the strategy in Eq. (37) 

and the target play any admissible strategy Tu . One of 
three possibilities may arise and each is considered 
individually. 

If 2 2
P f Q f( ) ( )z t z t> , then 

 
2 2
P f Q f(1 ) ( ) (1 ) ( )z t z tκ κ− −≥  (58) 

Adding f2 2
Q f T T0

( d)
t

u tz tκ β− ∫  to both sides of Eq. 

(58) and multiplied by 1 2− , one obtains 

 

f

f

2 2 2T T
P f Q f T

2 2T T
Q T

0

0
f

[ ( ) (1 )
2

( )] d

d

2

( )
2 2

t

t

z t u tt z

tz u t

α β
κ κ

α β

− + − +

− +

∫

∫

≤

 (59) 

As 2 2
P f Q f( ) ( )z t z t> , Eq. (59) is equivalent to 

 
* * * *

T P Q T T P Q T( , , ) ( , , )J u uJu u u u≤  (60) 
From Eq. (46), Eq. (57) and Eq. (60), we get 

 
* * * * *

T P Q T T P Q T( , , ) ( , , )J u u u u u uJ≤  (61) 
Cases 2 2

P f Q f( ) ( )z t z t<  and 2 2
P f Q f( ) ( )z t z t=  also lead 

to the result  

 
* * * * *

T P Q T T P Q T( , , ) ( , , )J u u u u u uJ≤  (62) 
Theorem 1 is proved.  
Remark 2  As shown before, the intercept spaces 
PS , QS  and PQS  are mutually disjoint and their 

union covers the entire initial state space. In space PS , 
the target T plays against missile P only and ignores Q; 
the missile P generates a smaller miss distance. In 
space QS , the target T plays against missile Q only 
and ignores P; the missile Q generates a smaller miss 
distance. In space PQS , the target T plays against both 
missiles; the effect of adding the second interceptor 
arises here. A general result is given in Ref. [17]; 
however, it did not show that the three spaces are dis-
joint and their union covers the entire space. The re-
sults given here is focused on the interception problem 
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of single target with two missiles, and Definitions 2-5 
show that the three sub-intercept spaces are mutually 
disjoint and their union covers the entire initial state 
space. 

In the following sections, the focus will be on the 
guidance law yielded from NESS and its implication. 

4. Guidance Strategies 

The guidance law can be yielded from the NESS in 
Eq. (37) and rewritten in the classical form 

 

* 2
P P go

* 2
Q Q go

* 2
T T go

( )

( )

( )

t t

t t

t t

u

u

u

⎧ =
⎪⎪ =⎨
⎪

=⎪⎩

zN

z

z

N

N
 (63) 

where PN , QN  and TN  are effective navigation 
gain vectors 

 

T
P P P

T
Q Q Q

T
T T T T T

α

α

α β

⎧ = −
⎪⎪ = −⎨
⎪

=⎪⎩

N B Λ F

N B Λ F

N B Λ F
 (64) 

and 

 
2
gotF = F  (65) 

However, when it is implicated, κ  should be cal-
culated first. The parameter κ  should be chosen as 1 
or 0 for the case ZEM vector ( )tz  belonging to the 
P-intercept space or Q-intercept space, respectively; if 

PQ( )t ∈z S , κ  is the solution of T
P( ( )) (t −z ΛF  

Q )( ( )) 0t =FzΛ . 

4.1. Intercept space decomposition 

The intercept space defined in Definitions 3-5 is 
computed and shown in Fig. 2. The intercept space is 
decomposed into three subspaces: PS , QS  and PQS . 
It can be seen that as been proved before, the three 
sub-intercept spaces are mutually disjoint and their 
union covers the entire intercept space. A comparison 
about intercept space decomposition for different Tβ  
is shown in Figs. 2-3. The PQ-intercept space enlarges 
with Tβ  decreasing. The parameter Tβ  represents 
the maneuverability of the target. A smaller weight Tβ  
means a higher expected maneuvering capability of the 
target relative to that of the interceptors. Thus, the 
added second interceptor affects a larger region when 
the target has a high maneuverability. Figure 4 shows 
the κ  value. The combination of it and Eq. (63) will 
determine the guidance law. In the space PQS , κ  
increases with Q P| |z z . 

 

Fig. 2  Intercept space decomposition: T 3β = . 

 
Fig. 3  Intercept space decomposition: T 1.5β = . 

 
Fig. 4  κ value distribution: T 1.5β = . 

4.2. Effective navigation gain 

The effective navigation gain given in Eq. (64) is a 
function of κ  and shown in Fig. 5. Denote the ith 
term of the vector N  as ( )iN . The terms P (1 )N  
and Q( 2 )N  are responsible for intercepting the target, 
i.e. decreasing P ( )z t  and Q ( )z t , respectively. The 
term P (2)N  is responsible for assisting the missile Q 
to intercept the target, i.e. decreasing Q ( )z t ; the term 

Q(1)N  is for assisting the missile P to intercept the 
target, i.e. decreasing P ( )z t . Both terms represent the 
coupling effects in navigation gain of the other missile. 

T (1 )N  and T ( 2 )N  are responsible for avoiding the 
interception of P and Q, respectively. When 1κ = , the 
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terms P ( 2 )N  and T ( 2 )N  are equal to zero, which 
verifies that the target plays against interceptor P only. 
However, both terms of effective navigation gain of 
interceptor Q, Q(1)N  and Q( 2 )N  are non-zero, 
that is to say, the interceptor Q tries to decrease Q ( )z t  
and, at the same time assist P to decrease P ( )z t . The 
similar results can be obtained when 0κ =  for inter-
ceptor Q. When 0 1κ< < , i.e. 0.5κ = , the coupling 
terms of both P and Q are nonzero, which means both 
of them assist each other to reduce ZEM. The parame-
ter κ  governing the effort distribution on reducing 
one’s own ZEM and assisting to reduce the other mis-
sile’s ZEM. The results that the target has high maneu-
verability are also shown in Fig. 6. The effective navi-
gation gain increases with the target’s maneuverability. 
The term assisting the other missile to reduce ZEM 
becomes larger than the term reducing one’s own ZEM 
when 1κ =  for Q and 0κ =  for P. This result 
shows that the effect of the adding interceptor in-
creases with the maneuverability of the target and us-
ing two-missile or multi-missiles to intercept sin-
gle-target is meaningful when the missile does not have 
significant maneuverability advantage over the target. 

 
Fig. 5  Effective navigation gains: T 3β = . 

 
Fig. 6  Effective navigation gains: T 1.5β = . 

4.3. Game space structure 

Equation (33) gives the relationship between the 
current ZEM vector and the terminal ZEM vector. Us-
ing this relationship, the optimal trajectories can be 
calculated for a given terminal ZEM vector. The family 
of the optimal trajectories fills the game space and is 
shown in Fig. 7. The norm of the terminal ZEN vector 
is set to be 1 m, i.e. f|| ( ) || 1t =z . As shown in the fig-
ure, ZEMs reduce with time, no matter from which 
sub-intercept space the interception starts. However, 
the handover condition will be released if P 0( )z t  and 

Q 0( )z t  have different signs. The reason is that, in this 
condition, when the target maneuvers to escape one 
interceptor, its effort actually reduces the ZEM of the 
other missile. Note that the results are yielded without 
considering the control saturation. The performance 
under control saturation is studied by simulation in 
Section 6. 

 

Fig. 7  Game space structure: T 3β = . 

5. Cooperation Guidance 

The cooperation between different interceptors has 
not been taken into account in Sections 2-4. However, 
a higher estimation precision may be obtained by shar-
ing information between interceptors. In this section, 
the sharing information and cooperative guidance are 
analyzed. It is assumed that the relative position be-
tween the interceptors is known by each interceptor to 
a very high accuracy and the measured information 
about that target can be shared without any delay. As 
stated in Remark 1, in reality, the target, i.e. TBM, has 
no information about the interceptors’ states. In this 
case, both optimal control and differential game theo-
ries predict that the optimal missile avoidance maneu-
ver has such a “bang-bang” structure as changing the 
maneuvering direction randomly [9-10, 21]. The target 
random change of maneuvering direction is approxi-
mated by white noise through an integrator [22-23] 

 T su u=  (66) 
where su  is a zero-mean white Gaussian noise proc-
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ess with power spectral density max 2
T f( ) /a t . 

The measurement equation of interceptor P is 

 

T
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The symbol X, Y represent the position of the players,  
v represents measurement noise, and σ is standard de-
viation of the measurement errors. 

The linearization of the measurement equation is 

 ,P ,P ,Pk k k k= +xz H v  (70) 
where 

 
T

PT T TPT Q Q[ ]k r rλ λ=x  (71) 
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The linearized measurement equation of interceptor 
Q can also be obtained as 

 ,Q ,Q ,Qk k k k= +xz H v  (74) 
where 
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 ,Q 4 1~ ( , )k N ×0v R  (78) 
Combination of Eq. (70) and Eq. (74) can generate 

the total measurement equation 

 k k k k= +xz H v  (79) 
where 

 
T T T

,P ,Q[ ]k k k=z z z  (80) 

 
T T T

,P ,Q[ ]k k k=H H H  (81) 

 
T T T

,P ,Q[ ]k k k=v v v  (82) 
By the combination of Eq. (13), Eq. (66) and Eq. (80) 

and using Kalman filter, the state of the engagement 
can be obtained. 

6. Simulation 

In the simulation, the initial ZEM vector z(t0) is se-
lected in the PQ-intercept space. Both interceptors 
utilize the guidance presented in this paper (denoted as 
CLQDG). The target utilizes “bang-bang” maneuver-
ing strategy, i.e. it maneuvers with the maximum ac-
celeration and changes its direction at a random time 
(tgo)sw. The accelerations of the target and interceptors 
are assumed to be bounded. Simulation parameters are 
given in Table 1. 

Table 1  Simulation parameters 

Initial  
parameter 

Guidance  
parameter 

State  
parameter 

0P, 93γ = ° ,

0Q, 86γ = ° ,

0T, 90γ = − ° ,

T,0P 92λ = °

QT,0 88λ = °

 
810α = , 
8

Q 10α = , 

T =1.5β , 

P Q 2.5 km/sV V= = , 

T 3.0 km/sV = , 

2max
T 2 s00 m/a = , 

2max max
P Q 300 m/sa a= =  

6.1. Performance of guidance law  

The profiles of ZEM and acceleration are shown in 
Figs. 8-9 for (tgo)sw = 1.2 s. The results when the tar-
gets utilize linear quadratic differential game (LQDG) 
guidance law are also shown in the figures. Seen from 
Fig. 9, the accelerations of interceptors P and Q are not 
only a function of one’s own ZEM but also influenced 
by ZEM of the other missile. As a result, the ZEM 
vector moves to the origin P Q( , ) (0,0) mz z =  with 
the manner that Pz  almost equals Qz . 
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Fig. 8  ZEM vector profiles: T 1.5β = . 

 
Fig. 9  Acceleration profiles: T 1.5β = . 

6.2. Robustness to target maneuver 

As the target cannot obtain information about inter-
ceptors, it changes maneuver direction randomly. In 
different runs, (tgo)sw changes in a step of 0.06 s. The 
miss distance is shown as a function of target’s ma-
neuvering direction switch time in Fig. 10. The miss 
distance is defined as the minimum miss distance of P 
and Q. Results with target’s maneuverability estimation 
errors are also shown in the figure, with T =1.2β , 

T =1.5β  and T =1.8β  representing a correct estima-
tion, overestimation and underestimation of the target’s 
maneuverability, respectively. The divert velocity, 
which represents the energy needed for the interception, 
is shown in Fig. 11. In the overestimation condition, 
the effective navigation gains increase (seen from Figs. 
5-6), as a result a large acceleration command will be 

 
Fig. 10  Miss distance vs (tgo)sw. 

 
Fig. 11  Divert velocity vs (tgo)sw. 

utilized at the beginning of the engagement and the 
ZEM decreases quickly. This generates a robust per-
formance with respect to the target’s maneuvering 
command switch time and less fuel requirement. 
However, seen from sufficient condition of the exis-
tence of optimal solution in Eq. (36), Tβ  cannot be 
too small. 

6.3. Monte Carlo simulation 

A 500-run Monte Carlo simulation study is used to test 
the performance of the proposed guidance law. In the 
simulation, the target maneuvering direction changes 
randomly and the simulated measurement noises are 

PT QT= =10 mr rσ σ  and PT QTλ λσ σ= =  31 10 rad−× . 
The integration step is set to be 0.1 ms and the guidance 
cycle is selected as 10 ms. Three guidance structures, i.e., 
the proposed guidance law with shared information 
(CLQDG/S), the proposed guidance law without shared 
information (CLQDG) and the LQDG guidance law, 
were compared in the simulation. Figure 12 shows the 
cumulative miss distance distributions. Seen from the 
figure, CLQDG realizes the same miss distance with 
higher probability, which can release the need of the le-
thal radius of warhead. The sharing information increases 
the precision of the Kalman filter, as well as the intercep-
tion probability. However, this increase is not very obvi-
ous. The sharing information  

 
Fig. 12  Cumulative miss distance distributions. 
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is very useful when one of the infrared sensor or radar 
sensors of the interceptors is fault. 

7. Conclusions 

1) The interception of single target with two inter-
ceptors is modeled as a non-zero-sum two-pursuer sin-
gle-evader game. The game is solved with optimal 
control and game theory. 

2) The intercept space is decomposed into three 
subspaces: P-intercept space with target playing with 
interceptor P, Q-intercept space with target playing 
with interceptor Q and PQ-intercept space with target 
playing with both interceptors. They are mutually dis-
joint and their union covers the entire intercept space. 

3) A guidance law yields from the NESS of the game. 
The effective navigation gain of each missile becomes 
a vector influenced by ZEM of both interceptors. The 
effective navigation gains increase with target’s ma-
neuverability and the PQ-intercept space enlarges, too. 

4) If the initial ZEMs of both interceptors have op-
posite sign and both target and missiles utilize the 
guidance strategies proposed in this paper, the hand-
over condition between the midcourse and terminal 
phase will be released. 

5) A proper overestimation of target’s maneuverabil-
ity can generate robust performance with respect to the 
target’s maneuvering command switch time and de-
crease the fuel requirement. 

6) Monte Carlo simulation shows that the proposed 
guidance law realizes the same miss distance with 
higher probability. 
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