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a b s t r a c t

This paper presents a new 4D hyperchaotic system which is constructed by a linear
controller to the 3D Rabinovich chaotic system. Some complex dynamical behaviors such
as boundedness, chaos and hyperchaos of the 4D autonomous system are investigated
and analyzed. A theoretical and numerical study indicates that chaos and hyperchaos
are produced with the help of a Liénard-like oscillatory motion around a hypersaddle
stationary point at the origin. The corresponding bounded hyperchaotic and chaotic
attractors are first numerically verified through investigating phase trajectories, Lyapunov
exponents, bifurcation path and Poincaré projections. Finally, two complete mathematical
characterizations for 4D Hopf bifurcation are rigorously derived and studied.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Hyperchaos is characterized as a chaotic systemwithmore than one positive exponent [1], this implies that its dynamics
are expended in several different directions simultaneously. Thus, hyperchaotic systems have more complex dynamical
behaviors than ordinary chaotic systems. At the same time, due to its theoretical and practical applications in technological
fields, such as secure communications, lasers, nonlinear circuits, neural networks, generation, control, synchronization,
hyperchaos has recently become a central topic in nonlinear sciences research (see e.g. [1–7] as well as their references).
On the one hand, the ultimate boundedness of a chaotic system is very important for the study of the qualitative behavior

of a chaotic or hyperchaotic system. If one can show that a chaotic or hyperchaotic systemunder consideration has a globally
attractive set, one knows that the system cannot have equilibrium points, periodic or quasi-periodic solutions, or other
chaotic or hyperchaotic attractors existing outside the attractive set. This greatly simplifies the analysis of dynamics of the
system. However, the estimate of the ultimate boundedness of a chaotic system is still a very difficult task [8–10]. Due
to their complexity, the study of the ultimate boundedness of hyperchaotic systems is a more difficult task. So far, their
ultimate boundedness has not been systematically studied [7,11]. On the other hand, the hyperchaos theory is still in its
infancy. Very little has been achieved on hyperchaotic systems. The dynamics of the hyperchaotic systems have not been
completely understood by mathematicians until now. For example, some dynamical behaviors such as boundedness, Hopf
bifurcation and chaotic property of the 4D hyperchaotic system are still at the exploratory stage. Therefore, it is necessary
to make a new study for the hyperchaotic system. This situation motivates us to further study the properties of chaos and
hyperchaos and some subtle characteristics of 4D Hopf bifurcation of the new hyperchaotic systemwhich is generated from
the chaotic system, so as to benefit more systematic studies of 4D quadratic systems, and to reveal the true geometrical
structures of the lower-dimensional chaotic and hyperchaotic attractors.
The Rabinovich differential system, which was firstly introduced in [12], is defined by{ẋ = hy− ax+ yz

ẏ = hx− by− xz
ż = −dz + xy,

(1.1)
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(a) z–x–y space. (b) x–z–w space.

Fig. 1. Hyperchaotic attractor of the Rabinovich system (2.1) with a = 4, b = d = 1, h = 6.75, and k = 2.

where (x, y, z)T ∈ R3. It has a chaotic attractor for some values of parameters, for example, a = 4, b = d = 1, 4.84 ≤ h ≤ h0,
for some h0 ≥ 4.92, and this attractor looks similar with the chaotic attractor of the Lorenz system. As comparing with the
famous Lorenz system [13,14], the Rabinovich system resembles many of its properties and it was stated in the book [15]
that both the Rabinovich system and the Lorenz system can be considered as particular cases of the so-called generalized
Lorenz system. There have been extensive investigations on dynamical behaviors of the Rabinovich system [12,16,17].
In this paper, a new hyperchaotic is generated from the 3D Rabinovich system via adding a linear controller to it and

its basic dynamics and properties are investigated, such as the stability of the system and the geometry of the attractor.
The corresponding bounded hyperchaotic and chaotic attractor is first numerically verified through investigating phase
trajectories, Lyapunov exponents, bifurcation path and Poincaré projections. Two complete mathematical characterizations
for 4DHopf bifurcation are also rigorously derived and studied. The fact that chaos and hyperchaos are created via a Liénard-
like oscillatory motion around a hypersaddle stationary point at the origin is shown by numerical experiments. The 4D
system preserves some properties of the 3D system, such as the z-axis symmetry and the attractor’s double-lobe structure.
The rest of this paper is organized as follows. In Section 2, the newhyperchaotic system is introduced and its boundedness

is also proved. The stability of the systemand the geometry of the attractor are discussed, and the dynamical behaviors of this
hyperchaotic system such as Lyapunov exponents, fractal dimension and chaotic behaviors are also analyzed in Section 3. In
Section 4, by using the normal form theory and symbolic computations, two complete mathematical characterizations for
the 4D Hopf bifurcations are derived and investigated. Finally, conclusions are drawn in Section 5.

2. A new hyperchaotic system

2.1. Formulation of the system

The proposed dynamical system is given by the following Rabinovich equations linearly extended to 4D:
ẋ = hy− ax+ yz
ẏ = hx− by− xz + w
ż = −dz + xy
ẇ = −ky,

(2.1)

where k is positive constant parameter, determining the chaotic and hyperchaotic behaviors and bifurcations of the system.
Thus, the controllerw hasmade the chaotic system (1.1) a 4Dhyperchaotic system (2.1),whichhas four Lyapunov exponents.
When (a, b, d, h, k) = (4, 1, 1, 6.75, 2), the four Lyapunov exponents are

λLE1 = 0.3066, λLE2 = 0.0582, λLE3 = −0.000, λLE4 = −6.3642,
and the Lyapunov dimension is DL = 3.0573.Moreover, numerical simulations have verified that system (2.1) indeed has a
hyperchaotic attractor when (a, b, d, h, k) = (4, 1, 1, 6.75, 2), as depicted in Fig. 1. Fig. 2 shows the Poincaré mapping on
the x− z plane and power spectrum of the time series x(t) for this hyperchaotic system.

2.2. Boundedness

Theorem 2.1. Suppose a > 0, b > 0, d > 0, h > 0 and k > 0. Then all orbits of system (2.1), including hyperchaotic orbits, are
trapped in a bound region.
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Fig. 2. (a) Poincaré mapping on the x–z plane and (b) power spectrum of time series x(t) for the hyperchaotic Rabinovich system (2.1) with a = 4,
b = d = 1, h = 6.75, and k = 2.

Fig. 3. Graphical illustration of varying eigenvalues.

Proof. Construct the following Lyapunov function:

V (x, y, z, w) = x2 + 2y2 + (z − 3h)2 +
2
k
w2. (2.2)

Along the orbits of system (2.1), one has
1
2
V̇ (x, y, z, w) = −ax2 − 2by2 − dz2 + 3dhz

= −ax2 − 2by2 − d
(
z −

3h
2

)2
+
9dh2

4
.

Let d0 > 0 be sufficiently large, so that for all (x, y, z, w) satisfying V (x, y, z, w) = d1 with d1 > d0, one has

ax2 + 2by2 + d
(
z −

3h
2

)2
>
9dh2

4
.

Consequently, on the surface {(x, y, z, w)|V1(x, y, z, w) = d1} with d1 > d0, one has V̇ (x, y, z, w) < 0, which implies that
the setΩ = {(x, y, z)|V (x, y, z, w) ≤ d1} is a trapping region of all solutions of system (2.1). Thus, all orbits of system (2.1)
are bounded. The proof is thus completed. �

Remark 2.1. From boundedness and two positive Lyapunov exponents, it follows that system (2.1) with (a, b, d, h, k) =
(4, 1, 1, 6.75, 2) indeed has a hyperchaos attractor.
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3. Dynamical behaviors of the hyperchaotic system

This section further investigates the dynamical behaviors of the hyperchaotic system (2.1), including dissipativity,
equilibria and stability, structure of attractor, Lyapunov exponents, and bifurcation diagrams.
First, Figs. 6–10 show some typical dynamical behaviors of the system.

3.1. Dissipativity

For system (2.1), it is noticed that ∇V = ∂ ẋ
∂x +

∂ ẏ
∂y +

∂ ż
∂z +

∂ẇ
∂w
= −(a + b + d). Obviously, when system (2.1) can have

dissipative structure, with an exponential contraction rate: dVdt = −(a+ b+ d)V . That is, a volume element V0 is contracted
by the flow into a volume element V0e−(a+b+d)t in time t . This means that each volume containing the system orbit shrinks
to zero as t → ∞ at an exponential rate, −(a + b + d), which is independent of x, y, z and w. Therefore, all system orbits
are ultimately confined to some subset of zero volume, and the asymptotic motion settles on some attractors.

3.2. Equilibria

It is clear that system (2.1) (and thus its solution) is invariant under the transformation T (x, y, z, w)→ (−x,−y, z,−w).
This means that any orbit that is not itself invariant under T must have its ‘‘twin’’ orbit in the sense of this transformation.
System (2.1) has the origin as the only stationary point for all positive parameters values. The Jacobian matrix of

Eqs. (2.1) is given by:

J =

 −a h+ z y 0
h− z −b −x 1
y x −d 0
0 −k 0 0

 . (3.1)

The characteristic equation |J − λI| = 0 at the origin can be written as

(λ+ d)[λ3 + (a+ b)λ2 + (ab− h2 + k)λ+ ak] = 0, (3.2)
which gives λ = −d and

∆(λ) = λ3 + (a+ b)λ2 + (ab− h2 + k)λ+ ak = 0. (3.3)
Let A = a + b, B = ab + k − h2 and C = ak. Then, according to the Routh–Hurwitz criterion, the real parts of all the roots
λ in∆(λ) = 0 are negative if and only if A > 0, C > 0 and AB− C > 0. From these inequalities, one obtains a > 0, b > 0,
k > 0 and h2 < ab+ bk

a+b .
Based on the above discussion, the following property is verified.

Theorem 3.1. Let a > 0, b > 0, d > 0 and k > 0. Then system (2.1) has a unique equilibrium O(0, 0, 0, 0). Furthermore, the
necessary and sufficient condition for equilibrium O to be local asymptotical stable is h2 < h0 ≡ ab+ bk

a+b .

Theorem 3.2. Let a > 0, b > 0, d > 0, k > 0 and h2 < 8
9ab. Then the equilibrium O of system (2.1) is globally uniformly and

asymptotical stable. Moreover, system (2.1) is neither chaotic nor hyperchaotic.
Proof. Define the following Lyapunov function

V (x, y, z, w) =
1
2
(x2 + z2)+ y2 +

w2

k
. (3.4)

From a > 0, b > 0 and h2 < 8
9ab, one reduces that matrix[

a −3h/2
−3h/2 2b

]
is positive matrix. Its time derivative along the orbit of system (2.1) is

V̇ (x, y, z, w) = −ax2 − 2by2 + 3hxy− dz2 < 0

and by setting{
(x, y, z, w)|V̇ (x, y, z, w) = 0

}
= {(x, y, z, w)|x = 0, y = 0, z = 0, w ∈ R}

which does not contain a nontrivial trajectory of system (2.1). The Krasnoselskii theorem implies that system (2.1) is
globally uniformly and asymptotically stable about the origin. Furthermore, system (2.1) has neither chaotic attractor nor
hyperchaotic attractor. The proof is thus completed. �

For h2 < h0 the solutions of Eq. (3.2) are three roots with negative real part λ1, λ2, λ3 and λ4, where λ3 = −d. At
the critical point h =

√
h0, the roots λ1 and λ2 both disappear and give birth to a pair of purely imaginary. <(λ1) = 0,

d<(λ1)
dh |h=

√
h0 =

(a+b)3/2(a2b+ab2+bk)1/2

(a+b)3+ak
> 0, λ2 = −(a+ b) < 0.
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Fig. 4. (a) Solution and nullcline of system (3.5) for a = 4, b = 1, d = 1, k = 1/2 and h = 3. (b)–(d) Solutions and nullcline of system (2.1) for a = 4,
b = 1, d = 1, k = 1/2: (b) h = 2.5; (c) h = 3.4; (d) h = 10. Normalization: y′ = y

√
h2(a− 1)/[ad(h2 − ab)], w′ = w

√
27ah2(a− 1)/[4d(h2 − ab)3].

This result indicates, in accordance with the Hopf theorem [18], the birth of a limit cycle at h0, which grows in size with
h2, and has initial period given by T = 2π/=(λ1), where =(λ1) = [ak(a

2b+ab2+bk)]1/2

(a+b)3+ak
. The basic role of this limit cycle on the

system dynamics will be explained in Section 3.3. The limit cycle persists even when the parameter h goes beyond a certain
critical point h2 = h1, where the imaginary part of λ1 disappears and its real part remains positive and bifurcates, giving
rise to a new real eigenvalue λ4 > 0, as shown in Fig. 3. Note that for h2 > h1 the origin is a hypersaddle stationary point,
with λ1 > λ4 > 0 > λ3 > λ2.
Instead of calculating the roots exactly, one can get simpler relations by observing that the cubic polynomial in Eq. (3.3)

can be written as λ[λ2 + (a + b)λ + (ab − h2)] + (λ − a)k. The bracketed expression is just the polynomial appearing in
the characteristic equation of the 3D Rabinovich system, which has the roots λ01 = (1/2){−[(a− b)

2
+ 4h2]1/2 − (a+ b)}

and λ02 = (1/2){[(a − b)2 + 4h2]1/2 − (a + b)}. One can write the following identity: λ(λ − λ01)(λ − λ
0
2) + (λ − a)k ≡

(λ−λ1)(λ−λ2)(λ−λ4) = 0. After identifying coefficients of equal powers of λ and arranging the resulting equations, one
get the following approximate solutions:

λ1 ≈ λ
0
1 −

(λ01 − a)k
λ01(λ

0
1 − λ

0
2)
,

λ2 ≈ λ
0
2 −

(λ02 − a)k
λ02(λ

0
2 − λ

0
1)
.
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The third eigenvalue is λ3 = λ03 = −d and the fourth one, introduced by the new variablew, is given by:

λ4 =
ak
λ1λ2

≈
ak

ab− h2
.

As an example, for a = 4, b = 1, d = 1, h = 6.75 and k = 2 one has: λ01 = −9.41 and λ
0
2 = 4.41. The exact and approximate

values for system (2.1) are λ1 = −9.33 ≈ −9.12, λ2 = 4.12 ≈ 4.12 and λ4 = 0.21 ≈ 0.19. The proximity of the 3D and 4D
eigenvalues is the reason for some common features shared by the two systems. It also makes clear the main role of λ4 in
the hyperchaotic behavior. Indeed, for the above parameters the eigenvectors corresponding, respectively, to λ1, λ2, λ3 and
λ4 are: v1 = [0.78,−0.61, 0,−0.13]T , v2 = [0.60, 0.72, 0,−0.35]T , v3 = [0, 0, 1, 0]T , v4 = [−0.16,−0.10, 0, 0.98]T . The
related 3D eigenvectors are v01 = [0.78,−0.63, 0]

T , v02 = [0.63, 0.78, 0]
T , v03 = [0, 0, 1]

T . Note that v4 lies almost entirely
along thew axis, and the (x, y, z) subspace preserves the eigenvector structure of the original 3D Rabinovich system.

3.3. Structure of the attractor

To identify the nature of the limit cycle described so far, one first observes that it occurs next to the intersection of the
hypersurface x = hy/a + yz/a (given by dx/dt = 0) and the hypersurface z = xy/d (given by dz/dt = 0). Using these
relations in system (2.1) one obtains the reduced system

dy
dt
= w − by+

dh2y
ad− y2

−
h2y3

(ad− y2)2
dw
dt
= −ky

(3.5)

which is a generalized Liénard equation. The nontrivial solutions of system (3.5) converge to a limit cycle, corresponding to a
clockwise motion around the origin, over the humps of the nullcline (found by setting dy/dt = 0), as illustrated in Fig. 4(a).
This result indicates that the presence of the extra variable w caused the incorporation of a Liénard-like dynamics into the
4D Rabinovich system.
The nullcline is a useful reference curve for studying the geometric structure of the attractor. In the 4D space, it is the

locus of points satisfying dx/dt = dy/dt = dz/dt = 0, described by the equations

w = by−
dh2y
ad− y2

+
h2y3

(ad− y2)2
,

z = xy/b,
x = dhy/(ad− y2).

Consider Fig. 4(b)–(d). In the case of small k and h2 the solutions of system (2.1) remain very close to the lateral branches of
the nullcline. Numerical calculations using the Jacobian matrix (3.1) at points along these branches give two negative real
eigenvalues and a complex conjugate pair with negative real part — this explains the damping oscillations along the orbit
shown in Fig. 4(b). One of the real eigenvectors is practically tangential to the nullcline and orthogonal to the eigenspace
spanned by the other three eigenvectors. For large enough h2 the real part of the complex eigenvalues changes fromnegative
to positive. Accordingly, the limit cycle carries a contracting–expanding spiral that whirls transversely around the lateral
branches of the nullcline [Fig. 4(c)]. The trajectory is switched from the half-space y < 0 to the half-space y > 0, and vice
versa, as a result of the underlying Liénard-like dynamics combined with the spiral-like flow, thus forming the two lobes of
the 4D attractor. Fig. 5 shows a 3D view of the trajectory shown in Fig. 4(c). For h2 even higher, the attractor goes flattened
and confined close to the hypersaddle stationary point at the origin, giving rise to chaos and hyperchaos [Fig. 4(d)].
In the case of large k the trajectory reaches the neighborhood of the origin at smaller h2 values. For this reason, system

(2.1) usually displays chaotic behavior in the low h2 region where the related 3D system is stable.

3.4. Small k disturbance

It may be interesting to consider the 3D Rabinovich system as arising from the 4D system in the limit k → 0, with
initial conditionw(0) = 0. In this case, the 4D Rabinovich system with (a, b, d, h, k) = (4, 1, 1, 6.75, 0) has four Lyapunov
exponents λLE1 = 0.4627, λLE2,3 = 0.000, λLE4 = −6.4634. The small k disturbs, which leads that λLE2 or λLE3 leaves
naught and becomes positive number or negative number. Fig. 6 shows that the very small positive k causes λLE2 from zero
to positive value, and transits 4D chaotic system into 4D hyperchaotic system.

3.5. Lyapunov exponents and bifurcation diagrams

In the two sections below, some properties of the new 4D system are discussedwith k varying. And the simulation results
are further obtained by using Matlab Tools.
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3.5.1. Fix a = 4, b = d = 1, h = 6.75 and vary k
When k ∈ (0, 7] varies, the corresponding Lyapunov exponent spectrum of system (2.1) are shown in Fig. 7. The

bifurcation diagramwith respect to k ∈ (0, 7] is given in Fig. 8. It can be observed that the bifurcation diagramwell coincides
with the spectrum of Lyapunov exponents. Fig. 7 shows that system (2.1) is hyperchaotic for a very wide range of k, and the
system can also evolve into chaotic orbits and periodic orbits. From Figs. 7 and 8, the dynamical behaviors of system (2.1)
can be clearly observed. When k ∈ (0.1, 4.4), the first and the second largest Lyapunov exponents are both positive, which
implies that system (2.1) is hyperchaotic. When k ∈ (4.4, 6.2), it is only one Lyapunov exponent that is bigger than zero,
which means that system (2.1) is chaotic. When k ∈ (6.2, 6.6), the first largest Lyapunov exponents are almost equal zero.
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When k ∈ (6.6, 7], the first three largest Lyapunov exponents are almost equal zero. Thus, when k ∈ (6.2, 7], system (2.1)
is either periodic or quasi-periodic.

3.5.2. Fix a = 4, b = d = 1, k = 2 and vary h
When h ∈ [2, 17] varies, the corresponding Lyapunov exponent spectrum of system (2.1) are shown in Fig. 9. The

bifurcation diagram with respect to h ∈ [2, 17] is given in Fig. 10. It can be observed that the bifurcation diagram well
coincides with the spectrum of Lyapunov exponents. Fig. 9 shows that system (2.1) is hyperchaotic for a very wide range
of h, and the system can also evolve into chaotic orbits and periodic orbits. From Figs. 9 and 10, the dynamical behaviors of
system (2.1) can be clearly observed. When h ∈ [2, 4), (16.4, 7] the first largest Lyapunov exponents are zero, which implies
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that system (2.1) is periodic. When h ∈ (4, 5.4), (7.7, 8.0), (11.9, 13), (13.8, 16.4), it is only one Lyapunov exponent that is
bigger than zero, whichmeans that system (2.1) is chaotic. When h ∈ (5.4, 7.7), (8, 11.9), (13, 13.8), the first and the second
largest Lyapunov exponents are both bigger than zero, which implies that system (2.1) is hyperchaotic.

4. 4D Hopf bifurcation

This section employs the higher-dimensional Hopf bifurcation theory and applies symbolic computations to perform the
analysis of parametric k variations with respect to dynamical bifurcations.
First, consider the existence of Hopf bifurcation.

Theorem 4.1 (Existence of Hopf Bifurcation). Suppose that a > 0, b > 0, k > 0 and k > h2 − ab > 0 hold. Then, as k varies
and passes through the critical value k0 = (h2 − ab)(a + b)/b, system (2.1) undergoes a Hopf bifurcation at the equilibrium
O(0, 0, 0, 0).

Proof. Suppose that Eq. (3.2) has a pure imaginary root λ = iω, (ω ∈ R+, i2 = −1). Substituting it into Eq. (3.2) yields

ak− (a+ b)ω2 + iω(ab− h2 + k− ω2) = 0.

It follows that

ω2 = ab− h2 + k = 0, ω2 = ak/(a+ b).

Solving the above equations gives

ω =
√
a(h2 − ab)/b, k = k0 = (h2 − ab)(a+ b)/b,

under the condition k > h2 − ab > 0. Substituting k = k0 into Eq. (3.2), one obtains

λ1 = iω, λ2 = −iω, λ3 = −(a+ b), λ4 = −d,

whereω =
√
a(h2 − ab)/b. Thus, when k > h2−ab > 0 and k = k0, the first condition for Hopf bifurcation [18] is satisfied.

From Eq. (3.2) and k > h2 − ab > 0, it follows that

<(λ′(k0))|λ=iω =
−b3

a(h2 − ab)+ b2(a+ b)2
6= 0.

Therefore, the second condition for a Hopf bifurcation [18] is also met. Consequently, Hopf bifurcation exists. �

Remark 4.1. When k ≤ h2 − ab, system (2.1) has no Hopf bifurcation at the equilibrium O(0, 0, 0, 0).

In the following, the stability and expression of the Hopf bifurcation of system (2.1) is investigated, by using the normal
form theory [19,20], some rigorous mathematical analysis and symbolic computations.

Theorem 4.2. Let a > 0, b > 0, k > h2 − ab > 0 and L ≡ h2(2a− 2b− d)+ 2b2(2a− d). Then periodic solutions of system
(2.1) from Hopf bifurcation at O(0, 0, 0, 0) have the following properties:

(i) if L < 0 holds, bifurcating periodic solutions exist for sufficient small 0 < k − k0 < k − (h2 − ab)(a + b)/b. Moreover,
periodic solutions of system (2.1) from Hopf bifurcation at O(0, 0, 0, 0) is non-degenerate, subcritical and unstable;

(ii) if L > 0 holds, bifurcating periodic solutions exist for sufficient small 0 < k0 − k < (h2 − ab)(a + b)/b − k. Moreover,
periodic solutions of system (2.1) from Hopf bifurcation at O(0, 0, 0, 0) is non-degenerate, supercritical and stable;

(iii) the period and characteristic exponent of the bifurcating periodic solution are:

T =
2π
ω0
(1+ τ2ε2 + O(ε4)), β = β2ε

2
+ O(ε4),

where ω0 =
√
a(h2 − ab)/b and

τ2 =
a

4(b2 + 2ab2 + ah2)

[
2b2[2ah4 + bh2(a(4b+ d)− 2a2 − bd)+ 2ab3(d− 2a)]

4ah2 + bd2 − 4a2b

+
(h2 + b2)[2b2(2a− d)− h2(d+ 2b− 2a)][a2b(b− 1)+ b4 + 2ab3 + ah2]

((a+ b)2b− 1)(4ah2 + bd2 − 4a2b)

]
,

β2 = −
ab2(h2 − ab)[h2(2a− d− 2b)+ 2b2(2a− d)]

(b3 + 2ab2 + ah2)[bd2 + 4a(h2 − ab)]
, ε2 =

k− k0
µ2
+ O[(k− k0)2],

µ2 = −
a(h2 − ab)[a(h2 − ab)+ b2(a+ b)2][h2(2a− d− 2b)+ 2b2(2a− d)]

2b(b3 + 2ab2 + ah2)[bd2 + 4a(h2 − ab)]
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(iv) the expression of the periodic solution of system (2.1) from Hopf bifurcation is

 xyz
w

 =



ab sin
(
2π t
T

)
−

√
ab(h2 − ab) cos

(
2π t
T

)
ah sin

(
2π t
T

)
a2bh
2d

(a+ b)h
√
a(h2 − ab)/b cos

(
2π t
T

)


ε +

00K
0

 ε2 + O(ε3),

where K = − ab2h
2bd2+8a(h2−ab)

[
ad2−2a(h2−ab)

d cos( 4π tT )− (2a+ d)
√
a(h2 − ab)/b sin( 4π tT )

]
.

Proof. Let k > h2 − ab > 0, k = k0 = (h2 − ab)(a+ b)/b and t1 =
√
a(h2 − ab)/b. By straightforward computations with

the help of Mathematica 5.0, one can obtain

v1 =

−bt1 − abi−ahi
0

h(a+ b)t1

 , v3 =

001
0

 , and v4 =

 −h
b
0

h2 − ab

 ,
which satisfy

Av1 = it1v1, Av3 = −dv3, Av4 = −(a+ b)v4.

For system (2.1), define

P = (<v1,−=v1, v3, v4) =

 −bt1 ab 0 −h
0 ah 0 b
0 0 1 0

h(a+ b)t1 0 0 h2 − ab

 , (4.1)

and

(x, y, z, w)T = P(x1, y1, z1, w1)T .

Thus, 
ẋ1 = −t1y1 + F1(x1, y1, z1, w1)
ẏ1 = t1x1 + F2(x1, y1, z1, w1)
ż1 = −dz1 + F3(x1, y1, z1, w1)
ẇ1 = −(a+ b)w1 + F4(x1, y1, z1, w1),

(4.2)

where

F1(x1, y1, z1, w1) =
(h2 − ab)[a(b2 + h2)y1 − t1b2x1]z1

ht1(b3 + 2ab2 + ah2)
,

F2(x1, y1, z1, w1) =
[h(b3 + 2ab2 + ah2)w1 + ab2(h2 − b)y1 + abt1(b2 + h2)x1]z1

ah(b3 + 2ab2 + ah2)
,

F3(x1, y1, z1, w1) = −(hw1 + bt1x1 − aby1)(bw1 + ahy1),

F4(x1, y1, z1, w1) = −
(a+ b)[a(h2 + b2)y1 − b2t1x1]z2

b3 + 2ab2 + ah2
.

Furthermore,

g11 =
1
4

[
∂2F1
∂x21
+
∂2F1
∂y21
+ i

(
∂2F2
∂x21
+
∂2F2
∂y21

)]
= 0,

g02 =
1
4

[
∂2F1
∂x21
−
∂2F1
∂y21
− 2

∂2F2
∂x1∂y1

+ i
(
∂2F2
∂x21
−
∂2F2
∂y21
+ 2

∂2F1
∂x1∂y1

)]
= 0,

g20 =
1
4

[
∂2F1
∂x21
−
∂2F1
∂y21
+ 2

∂2F2
∂x1∂y1

+ i
(
∂2F2
∂x21
−
∂2F2
∂y21
− 2

∂2F1
∂x1∂y1

)]
= 0,

G21 =
1
8

[
∂3F1
∂x31
+

∂3F1
∂x1∂y21

+
∂3F2
∂x21∂y1

+
∂3F2
∂y31
+ i

(
∂3F2
∂x31
+

∂3F2
∂x1∂y21

−
∂3F1
∂x21∂y1

−
∂3F1
∂y31

)]
= 0.
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Meanwhile, one has

h111 =
1
4

(
∂2F3
∂x21
+
∂2F3
∂y21

)
=
1
2
a2bh, h211 =

1
4

(
∂2F4
∂x21
+
∂2F4
∂y21

)
= 0,

h120 =
1
4

(
∂2F3
∂x21
−
∂2F3
∂y21
− 2i

∂2F3
∂x1∂y1

)
= −

1
2
abh(a+ t1i),

h220 =
1
4

(
∂2F4
∂x21
−
∂2F4
∂y21
− 2i

∂2F4
∂x1∂y1

)
= 0.

By solving the following equations:

Dw11 = −h11 and (D− 2it1I)w20 = −h20,

where

D =
(
−d 0
0 −(a+ b)

)
, h11 =

(
h111
h211

)
, h20 =

(
h120
h220

)
,

one obtains

w11 =

a2bh2d
0

 , w20 =

−abh(a+ t1i)2(d+ 2t1i)
0

 .
Furthermore,

G1110 =
1
2

[(
∂2F1
∂x1∂z1

+
∂2F2
∂y1∂z1

)
+ i

(
∂2F2
∂x1∂z1

−
∂2F1
∂y1∂z1

)]
=
1
2

[
−b3t21 + ab

2(h2 − ab)
ah(b3 + 2ab2 + ah2)

+ i
t1ab(h2 + b2)− abt1(h2 + b2)

ah(b3 + 2ab2 + ah2)

]
,

G2110 =
1
2

[(
∂2F1
∂x1∂w1

+
∂2F2
∂y1∂w1

)
+ i

(
∂2F2
∂x1∂w1

−
∂2F1
∂y1∂w1

)]
= 0,

G1101 =
1
2

[(
∂2F1
∂x1∂z1

−
∂2F2
∂y1∂z1

)
+ i

(
∂2F2
∂x1∂z1

+
∂2F1
∂y1∂z1

)]
=
1
2

[
−b3t21 − ab

2(h2 − ab)
ah(b3 + 2ab2 + ah2)

+ i
t1ab(h2 + b2)+ abt1(h2 + b2)

ah(b3 + 2ab2 + ah2)

]
,

G2101 =
1
2

[(
∂2F1
∂x1∂w1

−
∂2F2
∂y1∂w1

)
+ i

(
∂2F2
∂x1∂w1

+
∂2F1
∂y1∂w1

)]
= 0,

g21 = G21 +
2∑
k=1

(2Gk110ω
k
11 + G

k
101ω

k
20)

= −ab
[
(h2 − ab)(h2(2a− d− 2b)+ 4ab2 − 2b2d)

(d2 + 4t21 )(b3 + 2ab2 + ah2)

+ i
t1(2ah4 + bh2(a(4b+ d)− bd− 2a2)+ 2ab3(d− 2a))

h(d2 + 4t21 )(b3 + 2ab2 + ah2)

]
.

Based on the above calculation and analysis, one can compute the following quantities:

C1(0) =
i
2ω0

(
g20g11 − 2 |g11|2 −

1
3
|g02|2

)
+
1
2
g21 =

1
2
g21,

µ2 = −
< C1(0)
α′(0)

= −
a(h2 − ab)[a(h2 − ab)+ b2(a+ b)2][h2(2a− d− 2b)+ 2b2(2a− d)]

2b(b3 + 2ab2 + ah2)[bd2 + 4a(h2 − ab)]
,

τ2 = −
= C1(0)+ µ2ω′(0)

ω0

=
a

4(b2 + 2ab2 + ah2)

[
2b2[2ah4 + bh2(a(4b+ d)− 2a2 − bd)+ 2ab3(d− 2a)]

4ah2 + bd2 − 4a2b

+
(h2 + b2)[2b2(2a− d)− h2(d+ 2b− 2a)][a2b(b− 1)+ b4 + 2ab3 + ah2]

((a+ b)2b− 1)(4ah2 + bd2 − 4a2b)

]
,
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β2 = 2< C1(0) = −
ab2(h2 − ab)[h2(2a− d− 2b)+ 2b2(2a− d)]

(b3 + 2ab2 + ah2)[bd2 + 4a(h2 − ab)]
,

where

ω0 =
√
a(h2 − ab)/b, α′(0) = <(λ′(k0)) =

−b3

a(h2 − ab)+ b2(a+ b)2
,

ω′0(0) =
(h2 + b2)

√
ab(h2 − ab)

2(h2 − ab)[a(h2 − ab)+ b(a+ b)2]
.

Note α′(0) < 0. From a > 0, b > 0 and k > h2 − ac > 0, one obtains that if h2(2a− 2b− d)+ 2b2(2a− d) < 0 holds, it
follows thatµ2 > 0 and β2 > 0, which imply that the Hopf bifurcation of system (2.1) atO(0, 0, 0, 0) is non-degenerate and
subcritical, and the bifurcating periodic solution exists for k > k0 and is unstable; if h2(2a−2b−d)+2b2(2a−d) > 0 holds,
it follows that µ2 < 0 and β2 < 0, which imply that the Hopf bifurcation of system (2.1) at O(0, 0, 0, 0) is non-degenerate
and supercritical, and the bifurcating periodic solution exists for k < k0 and is stable.
Furthermore, the period and characteristic exponent are:

T =
2π
ω0
(1+ τ2ε2 + O(ε4)), β = β2ε

2
+ O(ε4),

where ε2 = k−k0
µ2
+ O[(k − k0)2]. And the expression of the bifurcating periodic solution is (except for an arbitrary phase

angle):

X = (x, y, z, w)T = P(x1, y1, z1, w1)T = PY ,

where the matrix P is defined as in (4.1),

x1 = < u, y1 = = u, (z1, w1)T = w11 |u| + <(w20u2)+ O(|u|3),

and

u = εe
2itπ
T +

iε2

6ω0
[g02e−

4itπ
T − 3g20e

4itπ
T + 6g11] + O(ε3) = εe

2itπ
T + O(ε3).

By tedious computations, one can obtain

 xyz
w

 =



ε

[
ab sin

(
2π t
T

)
−

√
ab(h2 − ab) cos

(
2π t
T

)]
εah sin

(
2π t
T

)
ε
a2bh
2d
+ ε2K

ε(a+ b)h
√
a(h2 − ab)/b cos

(
2π t
T

)


+ O(ε3),

where K is defined as in Theorem 4.2.
Based on the above discussion, the results of Theorem 4.2 are indeed established. �

In order to verify the above theoretical analysis, let a = 4, b = d = 1, and h = 6.75. and k = 1300. According
to Theorem 4.1, one has k0 = 166.25. Then, from Theorem 4.2, one can get L = 241.8125 > 0, which imply that the
Hopf bifurcation of system (2.1) at O(0, 0, 00) is non-degenerate and supercritical, a bifurcating periodic solution exists for
k < k0 = 166.25, and the bifurcating periodic solution is stable. In fact, Hopf bifurcation occurs when k < k0 = 166.25, as
shown in Fig. 11 (a)–(b).

5. Conclusions

In this paper, a 4D hyperchaotic system has been constructed by linearly adding a new variable to the 3D Rabinovich
system. Some complex dynamical behaviors such as boundedness, chaos and hyperchaotic of the 4D autonomous system
are investigated and analyzed. The corresponding bounded hyperchaotic and chaotic attractor is first numerically verified
through investigating phase trajectories, Lyapunov exponents, bifurcation path and Poincaré projections. The geometric
structure of the attractor is also investigated. A theoretical and numerical study indicates that chaos and hyperchaos are
produced with the help of a Liénard-like oscillatory motion around a hypersaddle stationary point at the origin. Meanwhile,
by using the normal form theory, two complete mathematical characterizations for 4D Hopf bifurcation are rigorously
derived and studied. In particular, the ultimate bound for the new hyperchaotic system and the geometric structure of the
attractor are investigated in detail. It will benefit future theoretical analysis and practical applications of new hyperchaotic
systems. It is hoped that the investigation of the paper will shed some light to more systematic studies of 4D quadratic
systems.
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Fig. 11. Phase portraits of system (2.1) with a = 4, b = d = 1, h = 6.75 and k = 166.
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