
a

ngary

r

wer
in all
ll
of the
niform
s
ated

nt

burgh.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Algebra 274 (2004) 662–688

www.elsevier.com/locate/jalgebr

On orthogonal invariants in characteristic 2

M. Domokosa,b,∗,1 and P.E. Frenkelc,2

a Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O. Box 127, 1364 Budapest, Hu
b School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, King’s Buildings,

Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK
c Institute of Mathematics, Budapest Technical University, POB 91, 1521 Budapest, Hungary

Received 27 February 2003

Communicated by Alexander Premet

Abstract

Working over an algebraically closed base fieldk of characteristic 2, the ring of invariantsRG

is studied, whereG is the orthogonal groupO(n) or the special orthogonal groupSO(n), acting
naturally on the coordinate ringR of them-fold direct sumkn ⊕ · · · ⊕ kn of the standard vecto
representation. It is proved forO(2), O(3) = SO(3), SO(4), andO(4), that there exists anm-linear
invariant withm arbitrarily large, which is not expressible as a polynomial of invariants of lo
degree. This is in sharp contrast with the uniform description of the ring of invariants valid
other characteristics, and supports the conjecture that the same phenomena occur for an. For
general evenn, newO(n)-invariants are constructed, which are not expressible as polynomials
quadratic invariants. In contrast with these results, it is shown that rational invariants have a u
description valid in all characteristics. Similarly, ifm � n, thenRO(n) is generated by the obviou
invariants. For alln, the algebraRG is a finitely generated module over the subalgebra gener
by the quadratic invariants, and for oddn, the square of anySO(n)-invariant is a polynomial of
the quadratic invariants. Finally we mention that for evenn, ann-linear SO(n)-invariant is given,
which distinguishes betweenSO(n) andO(n) (just like the determinant in all characteristics differe
from 2).
 2004 Elsevier Inc. All rights reserved.
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1. Preliminaries

1.1. The orthogonal group

Let k stand for an algebraically closed field of characteristic 2. Recall that the
bilinear formβ of a quadratic formq on a finite dimensionalk-linear space is defined by

β
(
v(1), v(2)

) def= q
(
v(1) + v(2)

)− q
(
v(1)

)− q
(
v(2)

)
. (1)

Note thatβ is an alternating bilinear form (which implies, but is not equivalent
symmetry in characteristic 2). The quadratic formq is said to be non-degenerate
β(v, ·)= 0 andq(v)= 0 together implyv = 0.

Denote coordinates inkn by x1, . . . , xν , y1, . . . , yν if n = 2ν or by x1, . . . , xν ,
y1, . . . , yν , z if n= 2ν+1. The orthogonal groupO(n) is the group of linear isomorphism
of kn that leave the standard non-degenerate quadratic form

q
def= x1y1 + · · · + xνyν (n= 2ν),

respectively

q
def= x1y1 + · · · + xνyν + z2 (n= 2ν + 1)

invariant. Of course, they leave the polar form

β
(
v(1), v(2)

)= x
(1)
1 y

(2)
1 + y

(1)
1 x

(2)
1 + · · · + x(1)ν y(2)ν + y(1)ν x(2)ν (2)

of q invariant as well. Note that up to base change,q is the only non-degenerate quadra
form onkn.

The formβ is non-degenerate if and only ifn is even. Forn= 2ν + 1,

kerβ
def= {

v: β(v,w) = 0 for allw
}

is thez axis.
The symplectic groupSp(2ν) is the group of linear isomorphisms ofk2ν that leave the

standard symplectic formβ invariant. SoO(2ν)� Sp(2ν)� SL(2ν). In factO(n)� SL(n)

for all n. The algebraic groupO(n) is connected for oddn and has two components fo
evenn. For all n, the component containing the identity is the special orthogonal g
SO(n) (this can be taken as the definition ofSO(n)). Thus,SO(2ν + 1) = O(2ν + 1),
whereasSO(2ν) is a subgroup of index 2 inO(2ν).

Call a vectoru non-singularif q(u) �= 0. For a non-singular vectoru, we writeTu for
thereflectiondefined by

Tuv
def= v− β(v,u)

u.

q(u)
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It is well known thatO(n) is generated by reflections, andSO(n) is the set of elements tha
are expressible as a product of an even number of reflections.

For n = 2ν + 1, eachA ∈ O(2ν + 1) acts as the identity on thez axis and acts
symplectically on the factor spacek2ν+1/kerβ . This gives a homomorphismφ :O(2ν+1)
→ Sp(2ν) which is in fact an isomorphism (of groups, but not of algebraic groups).
[11, Theorem 11.9] for a proof.

1.2. Invariants

We write R or Rn×m for the algebra of polynomials in the coordinates of
indeterminaten-dimensional vectorsv(1), . . . , v(m). We writeK or Kn×m for the field
of rational functions. AG in the superscript indicates the subalgebra (sub-field) forme
the functions invariant under the subgroupG of GL(n) acting onm-tuples of vectors in the
obvious way. Let

Q(i) def= q
(
v(i)

)=
{
x
(i)
1 y

(i)
1 + · · · + x

(i)
ν y

(i)
ν ,

x
(i)
1 y

(i)
1 + · · · + x

(i)
ν y

(i)
ν + z(i)

2
,

B(ij) def= β
(
v(i), v(j)

)= x
(i)
1 y

(j)

1 + y
(i)
1 x

(j)

1 + · · · + x(i)ν y(j)ν + y(i)ν x(j)ν . (3)

Let

D(i1,...,in) def= det
[
v(i1), . . . , v(in)

]
be the determinant of the matrix that hasv(i1), . . . , v(in) as its columns. ThenQ(i), B(ij),
D(i1,...,in) are multi-homogeneous elements ofR

O(n)
n×m .

(By the multi-degree of a monomial in the polynomial ringRn×m we meanα =
(α(1), . . . , α(m)), whereα(i) is the total degree of the monomial in the variables belong
to v(i). The action ofO(n) preserves this multi-degree, therefore,R

O(n)
n×m is spanned by

multi-homogeneous elements. A multi-homogeneous invariant of multi-degree(1, . . . ,1)
will be calledmulti-linear.)

It is a classical fact that over a field of characteristic zero, the algebraRO(n) is
generated by the scalar productsB(ij) of the indeterminate vectors under considerat
and the algebraRSO(n) is generated by the scalar products and the determinants. T
the so-called “first fundamental theorem” for the (special) orthogonal group; it has
discussed along with the analogous results for the other classical groups in He
Weyl’s work [12]. De Concini and Procesi [2] gave a characteristic free treatme
the subject, in particular, they proved that the first fundamental theorem for the (sp
orthogonal group remains unchanged in odd characteristic. Concerning character
Richman [8] proved later that the algebraRG for the groupG preserving the bilinea
form x

(1)
1 x

(2)
1 + · · · + x

(1)
n x

(2)
n is generated in degree 1 and 2. However, though this g

preserves the quadratic formx2
1 + · · · + x2

n, it is not the so-called ‘orthogonal group’
characteristic 2: the quadratic formx2

1 + · · · + x2
n is the square of a linear form, hence

degenerate. So the question about vector invariants of the orthogonal group remain
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in characteristic 2, when the behavior of invariants turns out to be very much differen
Section 2.

2. Indecomposable invariants of high degree

The results in this section make the following conjecture plausible: for any fixedn� 2
(respectivelyn � 3), there exist arbitrarily large values ofm and m-linear invariants
fm ∈ R

O(n)
n×m (respectivelyRSO(n)

n×m ) such thatfm cannot be expressed as a polynomia
invariants of lower degree. We prove this forn � 4. The paper [3] contained a mo
sophisticated proof for theSO(4) case. It was first pointed out in this paper that spe
orthogonal invariants behave much differently in characteristic 2.

In the general case, we have no proof of the conjecture, but in Section 2.4 we
prove at least that the algebraRO(n)

n×m is not generated by theQ(i) andB(ij) if n� 2 andm
is large enough (compared ton). This is obvious for oddn, since ifm� n, thenD(1···n) is
not expressible as a polynomial in theQ(i) andB(ij), but it is non-trivial for evenn.

2.1. The two-dimensional case

To treat the two-dimensional case, observe that the matrix

A=
(
a11 a12
a21 a22

)

is orthogonal if and only if

(a11x + a12y)(a21x + a22y)= xy,

that is,a11a21 = a12a22 = 0 anda11a22 + a12a21 = 1. So

O(2)=
{(

a 0
0 1/a

)
: a ∈ k∗

}
∪
{(

0 a

1/a 0

)
: a ∈ k∗

}
,

where the first of the two terms isSO(2).
Therefore, a polynomial is invariant underSO(2) if and only if all its terms have the

same number ofx ’s andy ’s. It follows that the algebra ofSO(2)-invariant polynomials is
generated by quadratic elements:

R
SO(2)
2×m = k

[
x(i)y(j): i, j = 1, . . . ,m

]
.

That is not the case withO(2)-invariants. AnSO(2)-invariant isO(2)-invariant exactly
if it is invariant under

( 0 1
1 0

)
, that is, exactly if it is a linear combination overk of (multi-

homogeneous) polynomials of the form

x(i1) · · ·x(is)y(i1) · · ·y(is) =Q(i1) · · ·Q(is )
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x(i1) · · ·x(is)y(j1) · · ·y(js) + y(i1) · · ·y(is)x(j1) · · ·x(js) def= B(i1,...,is |j1,...,js ).

(Note that the new notation is in accordance with the notationB(ij) introduced before.)

Proposition 2.1.

(i) Assume that the indicesi1, . . . , is , j1, . . . ,js are all different. Then theO(2)-invariant
B(i1,...,is |j1,...,js ) is not expressible as a polynomial in invariants of lower degree.

(ii) Assume that each of the indices1, . . . , m occurs among the indicesi1, . . . , is ,
j1, . . . , js the same number of times as it occurs among the indicesi ′1, . . . , i ′s ,
j ′

1, . . . ,j ′
s . Then the multi-homogeneousO(2)-invariant

B(i1,...,is |j1,...,js) +B(i′1,...,i′s |j ′
1,...,j

′
s )

(if non-zero) is expressible as the product of twoB ’s of lower degree.
(iii) Assume that the indicesi1, . . . , is , j1, . . . , js are not all different. Then theO(2)-

invariantB(i1,...,is |j1,...,js) is expressible as a polynomial in invariants of lower degr

Proof. (i) Let α denote the multi-degree ofB(i1,...,is |j1,...,js). Soα(i) = 1 if i is one of the
indicesi1, . . . , is , j1, . . . ,js ; andα(i) = 0 otherwise.

We only need to prove thatB(i1,...,is |j1,...,js ) is not expressible as a linear combinat
of products with two factors each, each factor being of lower multi-degree and being
someB or some product ofQ’s. Note that such a product (of two factors) is alwa
multi-homogeneous; its multi-degree isα if and only if both factors areB ’s (of lower
multi-degree) with no repetition of indices and with{i1, . . . , is, j1, . . . , js} as the disjoint
union of the two index-sets. But such a product is always the sum oftwo B ’s of multi-
degreeα. Therefore, any linear combination of such products, when expressed as a
combination of theB ’s of multi-degreeα, gives rise to coefficients that add up to zero. T
statement follows.

(ii) The assumption can be formulated by writingI + J = I ′ + J ′ for the multi-sets
I = {i1, . . . , is}, J = {j1, . . . , js}, I ′ = {i ′1, . . . , i ′s}, andJ ′ = {j ′

1, . . . , j
′
s}. It follows that

I = E +G, J = F +H , I ′ = E +H , andJ ′ = F +G with suitable multi-setsE, F , G,
andH . That implies|E| = |F |, |G| = |H |, and

B(E|F)B(G|H) = B(E+G|F+H) +B(E+H |F+G) = B(I |J ) +B(I ′|J ′).

(iii) Using (ii), we may assumei1 = j1. Then

B(i1,...,is |j1,...,js) =Q(i1)B(i2,...,is |j2,...,js). ✷
The following theorem is an easy consequence.
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Theorem 2.2.

(i) The algebraRO(2)
2×m is generated by the invariants

Q(i) and B(i1,...,is |j1,...,js ),

where1 � i �m and1 � i1 < · · ·< is < j1 < · · ·< js �m, respectively.
(ii) The system of generators in(i) is minimal. Indeed, any system of multi-homogene

generators of the algebraRO(2)
2×m must contain the invariantsQ(i) ( possibly multiplied

by non-zero constants), and must contain invariants of multi-degreeα for all 0–1
sequencesα = (α(1), . . . , α(m)) that contain an even number of1’s.

2.2. The three-dimensional case

Let us interpretk3 assl(2) via

v =
(
x

y

z

)
↔

(
z x

y z

)
= V.

Thenq(v)= xy + z2 = detV . So, for anyT ∈ SL(2),

AdT : sl(2)→ sl(2), V �→ T V T −1,

is orthogonal. It is easily seen that every orthogonal transformation is of this form. S
i1, . . . , is ∈ {1, . . . ,m}, the polynomial

Tr(i1,...,is )
def= Tr

(
V (i1) · · ·V (is)

)
isO(3)-invariant:Tr(i1,...,is ) ∈ R

O(3)
3×m .

Proposition 2.3. If the indicesi1, . . . , is are all different, then Tr(i1,...,is ) is not expressible
as a polynomial inO(3)-invariants of lower degree.

Proof. We may assumes =m andi1 = 1, . . . , is = s. We first assume thats is even; say
s = 2σ .

If we replace every occurrence of all the variablesz(i) in anO(3)-invariant by zero,
then we get anO(2)-invariant, sinceA⊕ 1 ∈O(3) if A ∈O(2). The degree is unchange
or decreased. Therefore, it suffices to prove that theO(2)-invariant

Tr(1,...,2σ) |z=0

= Tr

((
0 x(1)

y(1) 0

)(
0 x(2)

y(2) 0

)
· · ·
(

0 x(2σ−1)

y(2σ−1) 0

)(
0 x(2σ)

y(2σ) 0

))
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= Tr

((
x(1)y(2)

y(1)x(2)

)
· · ·
(
x(2σ−1)y(2σ)

y(2σ−1)x(2σ)

))

= B(1,3,...,2σ−1|2,4,...,2σ)

is not expressible as a polynomial inO(2)-invariants of lower degree. That was t
statement of Proposition 2.1(i).

Assume now thats is odd. Assume indirectly that

Tr(1,...,s) =
∑
j

aj bj , (4)

whereaj , bj ∈ RO(3) are multi-homogeneous invariants of strictly positive degree.
may assume thatajbj is s-linear for all j . Denote byπ :R3×s → R3×(s−1) the algebra
homomorphism induced by the embeddingsl(2)m−1 → sl(2)m, (V (1), . . . , V (s−1)) �→
(V (1), . . . , V (s−1), I ), whereI stands for the identity matrix. Obviously,π maps a multi-
homogeneous polynomial of multi-degree(α1, . . . , αs−1, αs) to a multi-homogeneou
polynomial of multi-degree(α1, . . . , αs−1). Since I is fixed by theSL(2)-action, we
have thatπ(RO(3)

3×s ) ⊆ R
O(3)
3×(s−1). Applying the mapπ to (4), we get thatTr(1,...,s−1) =∑

π(aj )π(bj ). The degree ofaj and bj is at least 2 for allj , hence eachπ(aj ) and
eachπ(bj ) is either zero or a homogeneousO(3)-invariant of positive degree. Therefor
Tr(1,...,s−1) can be expressed by invariants of lower degree. Buts − 1 is even, so this
contradicts what we have already proven.✷
Theorem 2.4. A minimal system of generators ofRO(3)

3×m is

{
Q(j), Tr(i1,...,is )

∣∣ 1 � j �m; 2 � s �m; 1 � i1 < · · ·< is �m
}
.

Proof. The groupSL(2) acts ongl(2), the space of 2× 2 matrices, by conjugation. Deno
by gl(2)m (respectivelysl(2)m) the m-fold direct sum of copies ofgl(2) (respectively
sl(2)), endowed with the diagonalSL(2)-action. Denote byP the coordinate ring o
gl(2)m, and recall thatR is the coordinate ring ofsl(2)m. Restriction of functions from
gl(2)m to sl(2)m induces a surjective algebra homomorphismϕ :P → R. Clearly we
haveϕ(PSL(2)) ⊆ RO(3). Now (gl(2)m, sl(2)m) is a good pair ofSL(2)-varieties in the
sense of [4]. This follows for example from [4, Proposition 1.3b], sincesl(2)m is an
m-codimensional linear subspace in the good varietygl(2)m, defined as the zero locu
of m linear SL(2)-invariants ongl(2)m, hencesl(2)m is a good complete intersection
gl(2)m. As a consequence of general properties of modules with good filtrations (c
we get that the restriction ofϕ to the ring of invariantsPSL(2) is surjective ontoRO(3).
In particular, a generating system ofPSL(2) is mapped to a generating system ofRO(3).
Using the result of [5], a minimal system of generators ofPSL(2) was determined in [3]
This is mapped byϕ to the generating system ofRO(3) stated in our theorem. So the on
thing left to show is that the above generating system is minimal. Since it consists of
homogeneous elements with pairwise different multi-degree, it is sufficient to prov
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none of them can be expressed by invariants of strictly lower degree. This is clear forQ(j),
and this is the content of Proposition 2.3 forTr(i1,...,is ). ✷
2.3. The four-dimensional case

To treat the four-dimensional case, we interpretk4 asgl(2) via

v =


x1
x2
y1
y2


 ↔

(
x1 x2
y2 y1

)
= V.

Thenq(v)= x1y1 + x2y2 = detV . So, for anyS,T ∈ SL(2), the transformation

gl(2)→ gl(2), V �→ SV T −1,

is orthogonal. We get a homomorphismϕ : SL(2) × SL(2) → O(4) which is easily seen
to be injective; its image is a six-dimensional irreducible subgroup ofO(4), so it must be
SO(4). This interpretation ofSO(4) was used in [3] to show that the algebraRSO(4)

4×m is not
generated by its elements of degree< m− 1. A simpler proof can be given by means
the following construction.

Let i1, . . . , is; j1, . . . , js ∈ {1, . . . ,m}. The determinant

∣∣∣∣∣∣∣∣∣∣

V (i1) V (j1)

V (i2) V (j2)

. . .
. . .

V (is−1) V (js−1)

V (js) V (is )

∣∣∣∣∣∣∣∣∣∣
is SO(4)-invariant. Assume that the indicesi1, . . . , is ; j1, . . . , js are all different. The
2s-linear component of the above determinant is also invariant, denote it by

F = F (i1,...,is |j1,...,js) ∈ R
SO(4)
4×m .

Proposition 2.5. If the indicesi1, . . . , is ; j1, . . . , js ∈ {1, . . . ,m} are all different, then
F (i1,...,is |j1,...,js ) is not expressible as a polynomial in SO(4)-invariants of lower degree.

Proof. If we replace every occurrence of all the variablesx
(i)
2 and y(i)2 in an SO(4)-

invariant by zero, then we get anO(2)-invariant, since ifA ∈ O(2) thenA ⊕ ( 1 0
0 1

)
and

A⊕ ( 0 1
1 0

)
are both inO(4) (whereA acts on thex1, y1 coordinate plane) and one of the

must be inSO(4). The degree is unchanged or decreased. Therefore, it suffices to
that theO(2)-invariant

F (i1,...,is |j1,...,js)
∣∣

x2=y2=0
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is not expressible as a polynomial inO(2)-invariants of degree< 2s. That is the 2s-linear
component of the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(i1) x(j1)

y(i1) y(j1)

x(i2) x(j2)

y(i2) y(j2)

. . .
. . .

. . .
. . .

x(is−1) x(js−1)

y(is−1) y(js−1)

x(js) x(is)

y(js) y(is)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is nothing butB(i1,...,is |j1,...,js ). The statement follows from Proposition 2.1(i).✷
Corollary 2.6. Any system of multi-homogeneous generators of the algebraR

SO(4)
4×m must

contain the invariantsQ(i) (possibly multiplied by non-zero constants), and must contain
invariants of multi-degreeα for all 0–1 sequencesα = (α(1), . . . , α(m)) that contain an
even number of1’s.

To treat the full orthogonal groupO(4), consider the sum

G=G(i1,...,is |j1,...,js ) = F (i1,...,is |j1,...,js ) + σF (i1,...,is |j1,...,js),

whereσ represents the cosetO(4)\SO(4). Obviously,G is invariant underO(4).

Proposition 2.7. If the indicesi1, . . . , is ; j1, . . . , js ∈ {1, . . . ,m} are all different, then
G(i1,...,is |j1,...,js) is not expressible as a polynomial inO(4)-invariants of degree less tha
2s − 2.

Proof. The substitution

x
(it )
2 = y

(it )
2 = 0 (t = 1, . . . , s),

x
(jt )
2 = y

(jt )
2 = 0 (t = 1, . . . , s − 2),

V (js−1) =
(

0 0
1 0

)
, V (js) =

(
0 1
0 0

)

turns anyO(4)-invariant into anO(2)-invariant, since we may embedO(2) into O(4) by
identifyingA ∈O(2) with A⊕ ( 1 0

0 1

) ∈O(4) (whereA acts on thex1, y1 coordinate plane)

and the subspace ofk4×m defined by the above equations is stable underO(2). The degree
is unchanged or decreased. Therefore, it suffices to prove that theO(2)-invariant thatG
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turns into is not expressible as a polynomial inO(2)-invariants of degree< 2s − 2. Now
F turns into the(2s − 2)-linear component of the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(i1) x(j1)

y(i1) y(j1)

x(i2) x(j2)

y(i2) y(j2)

. . .
. . .

. . .
. . .

x(is−1) 0 0
y(is−1) 1 0

0 1 x(is)

0 0 y(is)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is nothing butx(i1)x(i2) · · ·x(is−1)y(is)y(j1) · · ·y(js−2). Since the representativ
σ :x1 ↔ y1 of O(4)\SO(4) commutes with the substitution under consideration,σF

is turned into y(i1)y(i2) · · ·y(is−1)x(is)x(j1) · · ·x(js−2) and thereforeG is turned into
B(i1,i2,...,is−1|is ,j1,...,js−2). The statement follows from Proposition 2.1(i).✷
2.4. The even-dimensional case

We turn to the even-dimensional case in general. To a monomial depending
vectorsv(1), . . . ,v(m) in a multi-linear fashion we shall associate the 2× ν matrix(

σ1 · · · σν
τ1 · · · τν

)

called thetypeof the monomial, whose entryσt is the number of occurrences ofxt as a
factor of the monomial, andτt is the number of occurrences ofyt . So

m= σ1 + τ1 + · · · + σν + τν.

Lemma 2.8. Denote byp the sum of all monomials that depend on the two-dimensi
vectorsv(1), . . . , v(6) in a sextilinear fashion and have type

( 3
3

)
. Thenp is a unimodular

invariant: p ∈ R
SL(2)
2×6 .

Proof. Invariance under (
c

1/c

) (
c ∈ k∗)

is obvious as all terms inp are invariant. It suffices to check invariance under

Ac =
(

1 c

1

)
and AT

c =
(

1
c 1

)
(c ∈ k).
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By symmetry, it is sufficient to deal withAc. The transformed polynomial

pc
(
v(1), . . . , v(6)

)= p
(
Acv

(1), . . . ,Acv
(6))

is a linear combination of sextilinear monomials whose type
( σ
τ

)
(whereσ + τ = 6)

satisfies the inequalityσ � 3 � τ . The coefficient of such a monomial iscτ−3
(
τ
3

)
. That

is 1 if τ = 3 and zero otherwise. Sopc = p. ✷
Letm� 2(3ν − 1), and denote byf ∈R2ν×2(3ν−1) �R2ν×m the sum of all monomial

that depend in a multi-linear fashion on the first 2(3ν−1) indeterminate vectors (and do n
involve the rest), and the two rows of whose type coincide, each row being a permu
of (2,3,3, . . . ,3) (one 2 and(ν − 1) 3’s).

Theorem 2.9.

(i) The polynomialf is an orthogonal invariant.
(ii) The polynomialf is not expressible as a polynomial in theQ(i) andB(ij).

Proof. (i) Let A−T denote the inverse transpose of the matrixA. It suffices to check
invariance under the subgroup formed by transformations of the form

Â=
(
A

A−T

) (
A ∈ GL(ν)

)
and under the reflectionx1 ↔ y1, as these generateO(2ν). (This follows easily from
the fact thatO(2ν) is generated by reflections. Indeed,x1 ↔ y1 can be turned into a
arbitrary reflection via conjugation by somêA, since{Â | A ∈ GL(ν)} acts transitively on
{v ∈ kn | q(v)= 1}.)

Invariance underx1 ↔ y1 is obvious as the terms inf simply undergo a permutatio
(of order 2). Now look atÂ. We may restrictA to a system of generators ofGL(ν).

Invariance under

Âi,c :xi �→ cxi, yi �→ c−1yi (i ∈ {1, . . . ,m}, c ∈ k∗)

is obvious as each term inf is invariant.
By symmetry, it suffices to check invariance under

Âc :x1 �→ x1 + cx2, y2 �→ cy1 + y2 (c ∈ k).

To this end, writef asf = g + h whereg is the sum of those terms inf that have only
3’s in the first two columns of their types, andh is the sum of the other terms.

We use the above lemma to prove thatg is in fact invariant not just under̂Ac, but under
both of the transformationsx1 �→ x1+cx2 andy2 �→ cy1+y2. By symmetry, it is sufficien
to deal withx1 �→ x1 + cx2. Let us breakg up into sub-sums in the following way. Tw
terms shall be in the same sub-sum if and only if the six vector variables whosex1 or x2
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coordinate is involved are the same for the two terms, and each of the other 2(3ν − 1)− 6
vector variables involved is involved in the two terms via the same coordinate. Eac
sum will then consist of

(6
3

)
terms whose sum is invariant underx1 �→ x1 + cx2 by the

above lemma.
We are left with the task of proving thath is invariant underÂc. To this end, let us

breakh up into sub-sums in the following way. Two terms shall be in the same sub-s
and only if the ten vector variables whosex1, x2, y1 or y2 coordinate is involved are th
same for the two terms, and each of the other 2(3ν − 1) − 10 vector variables involve
is involved in the two terms via the same coordinate. Each sub-sum will then cons
2
(10

5

)(5
2

)2
terms whose sum is invariant underÂc, as we shall now check. In other word

we have to check that the sumr of all monomials that depend in a decilinear fashion on
four-dimensional vectorsv(1), . . . ,v(10) and have type

( 2 3
2 3

)
or
( 3 2

3 2

)
is invariant underÂc.

The transformed polynomial

rc
(
v(1), . . . , v(10))= r

(
Âcv

(1), . . . , Âcv
(10))

is a linear combination of decilinear monomials whose type
( σ1 σ2
τ1 τ2

)
satisfiesσ1 + σ2 =

τ1 + τ2 = 5. The coefficient of such a monomial is

cσ2−3+τ1−2
(
σ2

3

)(
τ1

2

)
+ cτ1−3+σ2−2

(
τ1

3

)(
σ2

2

)
= cσ2+τ1−5

((
σ2

3

)(
τ1

2

)
+
(
τ1

3

)(
σ2

2

))
.

That is 1 if{τ1, σ2} = {2,3} and zero otherwise. Sorc = r.
(ii) Sincef is multi-linear, the only way for the proposition to be false would be if

were a polynomial in theB(ij). So it suffices to show thatf is not a symplectic invarian
We show that it is not invariant under the symplectic transformation

T :x1 �→ x1 + y1.

Write f asf = g̃ + h̃ whereg̃ is the sum of those terms inf that have threex1’s and
threey1’s among their factors, and̃h is the sum of those that have twox1’s and twoy1’s.
Lemma 2.8 tells us that̃g is invariant underT . On the other hand, we show thath̃ is not. It
suffices to show that the sum of all monomials that depend on the two-dimensional v
v(1), . . . ,v(4) in a quadrilinear fashion and have type

( 2
2

)
is not invariant. That is clear sinc

the coefficient of the monomialx(1)y(2)y(3)y(4) will be 1+1+1 = 1 after applyingT . ✷
Remark 2.10. Replacing the pair(3,2) in the construction off by (2t −1,2t −2), wheret
is an arbitrary natural number, we get a multi-linear orthogonal invariant in 2((2t −1)ν−1)
vector variables. Fort > 1, the resulting invariant is not a polynomial of the quadra
invariants.
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3. Two remarks

3.1. On the odd-dimensional case

As a contrast to the previous section, we prove the following theorem. It
consequence of the first fundamental theorem for the symplectic groupSp(2ν), which holds
in its usual form in any characteristic (including 2), as was proved in [2, Section 6]. U
our notation, the first fundamental theorem for the symplectic group in characteristic
that the algebraRSp(2ν)

2ν×m is generated by theB(ij).

Theorem 3.1. The invariantf ∈ R
O(2ν+1)
(2ν+1)×m is expressible as a polynomial in theQ(i) and

B(ij) if and only if the variablesz(1), . . . ,z(m) occur inf only with even exponents.

For example, iff is the square of a (polynomial) invariant, thenf is expressible as
polynomial in theQ(i) andB(ij).

Proof. “Only if” is trivial; we prove “if”. The proof relies on the relationship betwee
O(2ν+ 1) andSp(2ν) that was described in Section 1.1: the subalgebra ofR generated by
thex andy variables is stable with respect to the action ofO(2ν + 1), and this action can
be identified with the natural action ofSp(2ν) onR(2ν)×m.

Assume hypothesis. Viewf as a polynomial in the variablesz(i), and consider a term

z(1)
2α1 · · ·z(m)2αmp(x(1)1 , . . . , x(1)ν , y

(1)
1 , . . . , y(1)ν , . . . . . . , x

(m)
1 , . . . , x(m)ν , y

(m)
1 , . . . , y(m)ν

)
of highest degree inf . Thenp must be invariant underSp(2ν), and the first fundamenta
theorem for the symplectic group [2] says thatp must be expressible as a polynomial
theB(ij).

Replacef by the polynomial

f1 = f −Q(1)α1 · · ·Q(m)αmp.

If f1 is expressible in the desired form, then so isf . Of course,f1 is againO(2ν + 1)-
invariant, thez(i) occur with even exponents only, and a highest-degree term off has
disappeared. The new terms inf1 are of lower degree. Iterating this procedure, we ar
at the polynomial 0 after a finite number of steps.✷
3.2. SO(2ν) versusO(2ν)

Concerning the even-dimensional case, it is not completely trivial thatR
SO(2ν)
2ν×m �=R

O(2ν)
2ν×m

(m� 2ν). An easy proof is possible using a general theorem of Rosenlicht [9, Theor
and the fact thatSO(2ν) is a perfect group (i.e., is generated by commutators o
elements). We now give an explicit construction of a 2ν-linear polynomial inR2ν×2ν
that is invariant underSO(2ν) but not underO(2ν)—just like the determinant in an
characteristic different from 2.
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We writeSO(2ν,C) for the special orthogonal group defined over the complex fiel
the quadratic formq = x1y1 + · · · + xνyν . (We continue to writeSO(2ν) for the group
defined over the fieldk of characteristic 2.) The polar formβ of q is given by the same
formulas (1) and (2) of Section 1.1 as over the fieldk.

Lemma 3.2. If the polynomialf in the coordinates of the indeterminate2ν-dimensional
vectorsv(1), . . . , v(m) has integer coefficients and is invariant under SO(2ν,C), then—
when viewed as a polynomial overk—it is invariant under SO(2ν).

An analogous statement and proof holds for the groupsO(n,C) andO(n) instead of
SO(2ν,C) andSO(2ν).

Proof. For a vectoru ∈ C2ν or u ∈ k2ν , q(u) �= 0, we writeTu for the reflection in the
hyperplane orthogonal tou:

Tuv
def= v − β(v,u)

q(u)
u.

Being invariant underSO(2ν,C) or SO(2ν) means being invariant under the product
any two reflections:

f
(
TuTwv

(1), . . . , TuTwv
(m)
)= f

(
v(1), . . . , v(m)

)
for u,w ∈ C2ν or u,w ∈ k2ν , q(u)q(w) �= 0. Coefficients of both sides may be view
as rational functions with coefficients inZ or Z/(2) of the vector variablesu andw, and
SO-invariance off boils down to formal equality of pairs of such rational functions. Si
formal equality overZ implies that overZ/(2), the lemma is proved.✷

We shall use the symbol∗ to mean any one of the two lettersx andy.

Proposition 3.3. Consider the2ν-linear polynomial

∑
B(i1i2)B(i3i4) · · ·B(i2ν−1i2ν )

with integer coefficients, where theB ’s are defined by(3) overZ, and the sum is extende
over those permutationsi1, . . . , i2ν of the indices1, . . . ,2ν that satisfyi1 < i2, i3 < i4, . . . ,
i2ν−1 < i2ν and i1 < i3 < · · ·< i2ν−1. The coefficient of the monomial∗(1)j1

· · · ∗(2ν)j2ν
is 1 if

∗j1, . . . ,∗j2ν is a permutation ofx1, . . . , xν, y1, . . . , yν and is even otherwise.

Proof. The product

B(i1i2)B(i3i4) · · ·B(i2ν−1i2ν )

is the sum of those monomials∗(1)j1
· · · ∗(2ν)j2ν

that satisfyji1 = ji2, ji3 = ji4, . . . , ji2ν−1 = ji2ν
and have anx and ay corresponding to each of these pairs of indices. So the sum
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are looking at is a linear combination of those 2ν-linear monomials that have the sam
number—say,τt—of xt ’s andyt ’s among their factors, for each value oft . The coefficient
of such a monomial isτ1! · · · τν !, since a monomial occurs as many times as its factors
be grouped into pairs of the form{xt, yt }. That coefficient is 1 ifτ1 = · · · = τν = 1 and
even otherwise. ✷

Subtract the determinantD(1···(2ν)) from the above sum (considering both to be defin
overZ). The result is a polynomial with even coefficients, denote it by 2∆.

Theorem 3.4. The polynomial∆, viewed as a polynomial overk, is invariant under SO(2ν)
but not underO(2ν).

Proof. Invariance underSO(2ν) follows from Lemma 3.2 as∆ is invariant under
SO(2ν,C).

Let ∗j1, . . . , ∗j2ν be a permutation ofx1, . . . , xν , y1, . . . , yν . By Proposition 3.3, the

coefficient of the monomial∗(1)j1
· · · ∗(2ν)j2ν

in the polynomial∆ is 0 if the permutation is
even and is 1 if it is odd. It follows that∆ is not invariant under the reflectionx1 ↔ y1
(not even if viewed overk), since this transforms the monomials corresponding to
permutations into those corresponding to even ones.✷

4. Separation of orbits

The results in this section are analogous to those for characteristic different from
proofs use Witt’s theorem [11, Theorem 7.4], standard facts concerning reductive g
and basic algebraic geometry.

Let us introduce the notation

A=An×m = k
[
Q(i),B(ij): 1 � i �m, 1 � i < j �m

]
.

Note that we have shown in Section 2.4 thatA �=RO(n) for evenn and largem. The same
is obvious for oddn andm� n asD(1···n) ∈RO(n) \A.

4.1. The null-cone

Recall that the null-cone corresponding to a graded algebra of polynomials is defi
be the locus of common zeros of its homogeneous elements of positive degree.

Theorem 4.1. The null-cones corresponding to the three algebrasR
SO(n)
n×m �R

O(n)
n×m �An×m

are the same.

Proof. Suppose that the point(v(1), . . . , v(m)) belongs to the null-cone ofA; that is, the
vectorsv(1), . . . , v(m) satisfy the equationsQ(i) = 0 andB(ij) = 0. The subspace they sp
is then totally singular (i.e., hasq ≡ 0). Let W be a maximal totally singular subspa
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containing them. It follows from Witt’s theorem that the dimension ofW is ν = [n/2], and
that there exists a maximal totally singular subspaceW1 such that

kn =W ⊕W1 ⊕ kerβ.

For 0 �= t ∈ k, letAt ∈O(n) stand for the special orthogonal transformation that multip
vectors inW by t , vectors inW1 by 1/t , and vectors in kerβ by 1. Any f ∈ R

SO(n)
n×m is

invariant underAt , so

f
(
tv(1), . . . , tv(m)

)= f
(
v(1), . . . , v(m)

)
.

This holds for arbitraryt �= 0, so it must also hold fort = 0. This means that the poin
(v(1), . . . , v(m)) is contained in the null-cone ofRSO(n). ✷
Corollary 4.2. The algebrasRO(n) andRSO(n) are finitely generated asA-modules.

Proof. LetG stand forO(n) or SO(n). ThenG is a reductive algebraic group, so Nagat
theorem [7, Theorem 3.4] says thatRG is finitely generated as an algebra.

Consider a homogeneous elementh ∈ RG. By Theorem 4.1 and Nullstellensatz,h has a
power in the ideal ofR generated by theQ(i) and theB(ij). It follows by [7, Lemma 3.4.2
thath has a power in the ideal ofRG generated by theQ(i) and theB(ij).

Applying that to each elementh of a finite system of homogeneous generators of
algebraRG shows that the ideal ofRG generated by theQ(i) and theB(ij) contains all
elements ofRG that are homogeneous of high enough degree. SoRG, as anA-module,
is generated by elements of degree lower than some numberd . These form a finite
dimensional vector space, so a finite number of them will suffice.✷
4.2. Algebro-geometric lemmas

We recall some well-known facts from algebraic geometry. The word ‘variety’ be
stands for an irreducible affine algebraic variety overk (the characteristic ofk is 2 in our
applications, but the following general statements are valid ifk is an arbitrary algebraicall
closed field). WriteK[X] for the algebra of polynomial functions onX, and writeK(X)

for the field of rational functions onX. Let f :X → Y be a dominant morphism o
varieties. Then the comorphismf ∗ identifiesK(Y ) with the subfieldf ∗K(Y ) of K(X).
The morphismf is said to beseparable, if K(X)� f ∗K(Y ) is a separable field extensio
We need the following criterion for separability, see, for example, [1, (17.3) Theorem
morphismf is separable if and only if there is a non-singular pointx onX such thatf (x)
is non-singular inY , and the differentialdxf :TxX → Tf (x)Y atx is surjective.

Lemma 4.3. Letf :X → Y be a dominant, separable morphism of varieties. Suppose t
h is a rational function onX, such that for some non-empty Zariski open subsetU of X,
the restrictionh|U is constant along the fibers off |U . Thenh is the pull-back of a rationa
function onY , that is, h ∈ f ∗K(Y ).



678 M. Domokos, P.E. Frenkel / Journal of Algebra 274 (2004) 662–688

affine
tions)

bra
t

4

om 2,
Proof. Take a principal affine open subsetV in X, whereh|V is regular, andh|V is
constant along the fibers off |V . Thenh is purely inseparable overf ∗K(Y ) by [1, (18.2)
Proposition, p. 78]; that is,hp

s
is contained inf ∗K(Y ) for some natural numbers. Thus

h itself is contained inf ∗K(Y ), becausef is separable by our assumption.✷
More can be said whenY is normal. See for example [1, (18.3), p. 79]:

Lemma 4.4. Let f :X → Y be a surjective morphism of varieties, and assume thatY is
normal. Suppose thath is a polynomial function onX, such thath is the pull-back of
a rational function onY , i.e., h is contained inf ∗K(Y ). Thenh is the pull-back of a
polynomial function onY , that is, h ∈ f ∗K[Y ].

Proof. See, for example, [1, (18.3), p. 79], and note that since we are dealing with
varieties, ‘regular functions’ in the sense of [1] (i.e., everywhere defined rational func
are the same as ‘polynomial functions.’✷
4.3. Rational invariants

We now look at the fieldKO(n), which is much easier to deal with than the alge
RO(n). Note thatKO(n) is the fraction field ofRO(n) (this follows easily from the fact tha
SO(n) is perfect).

Theorem 4.5.

(i) The fieldKO(2ν)
2ν×m is generated by the algebraically independent invariants

Q(i)
(
1 � i � min(m,2ν)

)
and B(ij) (1� i < j �m, i � 2ν).

(ii) For m< 2ν we haveKSO(2ν)
2ν×m =K

O(2ν)
2ν×m . For m� 2ν, the fieldKSO(2ν)

2ν×m is a quadratic

extension ofKO(2ν)
2ν×m , generated for example by the invariant∆ constructed in

Theorem3.4.
(iii) The fieldKSO(2ν+1)

(2ν+1)×m is generated by the algebraically independent invariants

Q(i)
(
1 � i � min(m,2ν)

)
, B(ij) (1 � i < j �m, i � 2ν),

D(1,...,2ν,l) (2ν + 1 � l �m).

The description in (ii) ofKSO(2ν)
2ν×m for m � 2ν will be made complete in Theorem 4.1

where we determine the quadratic polynomial overK
O(2ν)
2ν×m that∆ satisfies.

Note that the theorem is valid in any characteristic. In any characteristic different fr
the third statement remains valid ifSO(2ν + 1) is replaced byO(2ν + 1) andD(1,...,2ν,l)

is replaced byB(2ν+1|l). The proof given below, appropriately modified, goes through.
The proof is via the following propositions.
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Proposition 4.6. Letm be any positive integer, and let(β(ij)) be any alternatingm× m

matrix of rankr � n. Then there exist vectorsu(1), . . . , u(m) ∈ kn with

β
(
u(i), u(j)

)= β(ij) (i, j = 1, . . . ,m).

Proof. It is well known that(β(ij)) is cogredient toJ ⊕0 = ( 0 I
I 0

)⊕0 with J of sizer × r

(sor is always even). The proposition obviously holds for the latter matrix, and the ge
case follows by base change.✷
Proposition 4.7. Let m � n. Let (β(ij)) be anym × m alternating matrix, and let
q(1), . . . , q(m) ∈ k. Then there exist vectorsv(1), . . . , v(m) ∈ kn with

β
(
v(i), v(j)

)= β(ij) (i, j = 1, . . . ,m) and q
(
v(i)

)= q(i) (i = 1, . . . ,m).

Proof. As always, we setν = [n/2]. Choose vectorsu(1), . . . , u(m) ∈ k2ν as in the previous
proposition.

Considern= 2ν + 1 first. Note that the standard quadratic formq is ontok on any line
parallel to kerβ (thez-axis). Therefore, there exist vectorsv(i) ∈ k2ν+1 that are mapped t
theu(i) by the projection

k2ν+1 → k2ν+1/kerβ = k2ν

and haveq(v(i))= q(i).
Now let n = 2ν. First suppose thatm = n andu(1), . . . , u(m) is a basis ofkn. Define a

new quadratic formq∗ by the formula

q∗
(

m∑
i=1

λiu
(i)

)
=

m∑
i=1

λ2
i q

(i) +
∑

1�i<j�m

λiλjβ
(ij).

Let β∗ stand for the polar form ofq∗. Then

β∗(u(i), u(j))= q∗(u(i) + u(j)
)− q∗(u(i))− q∗(u(j))= β(ij) = β

(
u(i), u(j)

)
,

therefore,β∗ ≡ β . It follows thatq∗ is non-degenerate. Sincek is algebraically closed, a
non-degenerate quadratic forms are equivalent. So there is a linear isomorphismA : kn →
kn such thatq(Au)= q∗(u) for all u ∈ kn. It of course follows that

β
(
Au′,Au′′)= β∗(u′, u′′)= β

(
u′, u′′)

for all u′, u′′ ∈ kn (that is,A ∈ Sp(n)). Definev(i) =Au(i) (i = 1, . . . ,m). Then

β
(
v(i), v(j)

)= β
(
u(i), u(j)

)= β(ij) and q
(
v(i)

)= q∗(u(i))= q(i),

i.e.,v(1), . . . ,v(m) have the desired properties.
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Suppose finally thatn = 2ν but u(1), . . . , u(m) do not spankn. Choose some vecto
0 �= u(0) ∈ 〈u(1), . . . , u(m)〉⊥. Choose a linear functionf : kn → k with f (u(0)) �= 0. Define
the new quadratic formq∗ by the formula

q∗ = q + λf 2,

with someλ ∈ k that givesq∗(u(0)) �= 0. The quadratic formf 2 has 0 as its polar form
soq∗ hasβ . It follows thatq∗ is non-degenerate. We therefore have a linear isomorp
A : kn → kn such thatq(Au) = q∗(u) for all u ∈ kn. Of courseA ∈ Sp(n). The vectors
Au(i) have

β
(
Au(i),Au(j)

)= β
(
u(i), u(j)

)= β(ij).

Note also thatAu(0) ∈ 〈Au(1), . . . ,Au(m)〉⊥ andq(Au(0)) �= 0. The latter ensures thatq
is ontok on any line parallel tokAu(0). So there are vectorsv(i) ∈ Au(i) + kAu(0) with
q(v(i))= q(i). They have all desired properties.✷

We shall need the following consequence of Witt’s theorem.

Proposition 4.8.

(i) For n = 2ν and arbitrarym, there exists a non-empty open setU ⊂ kn×m with the
following property: if

(
v(1)

′
, . . . , v(m)

′) ∈ U and
(
v(1)

′′
, . . . , v(m)

′′) ∈ U

satisfy

Q(i)′ =Q(i)′′ (1 � i � 2ν), B(ij) ′ = B(ij) ′′ (1 � i < j �m, i � 2ν),

then there is an orthogonal transformationA such thatAv(i)
′ = v(i)

′′
for every

1 � i �m.
(ii) Whenm< n = 2ν, the assertion(i) holds withA taken from the special orthogon

group SO(2ν).
(iii) For n= 2ν+1 and arbitrarym, there exists a non-empty open setU ⊂ kn×m with the

following property: if

(
v(1)

′
, . . . , v(m)

′) ∈ U and
(
v(1)

′′
, . . . , v(m)

′′) ∈ U

satisfy

Q(i)′ =Q(i)′′ (1 � i � 2ν), B(ij) ′ = B(ij) ′′ (1 � i < j �m, i � 2ν),

D(1,···,2ν,l)′ =D(1,···,2ν,l)′′ (2ν + 1 � l �m),
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then there is an orthogonal transformationA such thatAv(i)
′ = v(i)

′′
for every

1 � i �m.

Proof. For (i) and (iii), anm-tuple of vectors shall be contained inU exactly if the images
of the first min(m,2ν) vectors are linearly independent inkn/kerβ . Those first min(m,2ν)
vectors will always span a subspaceW with W ∩ kerβ = 0. If

(
v(1)

′
, . . . , v(m)

′) ∈U and
(
v(1)

′′
, . . . , v(m)

′′) ∈U

satisfy the conditions stated in the proposition, then Witt’s theorem providesA ∈ O(n)

with

Av(i)
′ = v(i)

′′ (
i = 1, . . . ,min(m,2ν)

)
.

If m> 2ν, we need to show that this equality also holds for 2ν < i �m.
(i) As β is non-degenerate andv(1)

′′
, . . . ,v(2ν)

′′
is a basis ofk2ν , it suffices to show tha

β
(
v(i)

′′
,Av(j)

′)= β
(
v(i)

′′
, v(j)

′′)
(5)

for 1 � j �m and 1� i � 2ν. This is equivalent to

β
(
Av(i)

′
,Av(j)

′)= β
(
v(i)

′
, v(j)

′)
,

which follows from the orthogonality ofA.
(iii) Equality (5) is proved as above, and shows thatAv(j)

′
andv(j)

′′
can differ only in

their z coordinates. Equality of thez coordinates will follow from

det
[
v(1)

′′
, . . . , v(2ν)

′′
,Av(j)

′]= det
[
v(1)

′′
, . . . , v(2ν)

′′
, v(j)

′′]
, (6)

since expanding both determinants by the last column gives the same terms excep
term containing thez coordinate of the last vector with the same non-vanishing 2ν × 2ν
minor as its coefficient on both sides.

Equality (6) is equivalent to

det
[
Av(1)

′
, . . . ,Av(2ν)

′
,Av(j)

′]= det
[
v(1)

′
, . . . , v(2ν)

′
, v(j)

′]
,

which follows from orthogonality ofA.
(ii) We impose an additional condition onU : the orthogonal subspace to the subsp

spanned by the components of anm-tuple (m < 2ν) in U should contain a non-singula
vector. It is easy to see thatU still contains a non-empty Zariski open subset ink2ν×m.
Indeed, whenm = 2ν − 1, the orthogonal subspace to the subspace spanned b
linearly independent components of anm-tuplev ∈ k2ν×m is spanned by a vector who
coordinates arem×m minors ofv, therefore the condition that this vector is non-singu
is expressed as the non-vanishing of a polynomial function onk2ν×m. (U is clearly non-
empty; for example, a basis of the subspace orthogonal to some non-singular ve
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contained inU .) To handle the casem < 2ν − 1 as well, note that the image of a no
empty Zariski open subset ofk2ν×(2ν−1) under the projection map ontok2ν×m contains a
non-empty open subset ofk2ν×m.

Now take fromU them-tuplesv′, v′′ satisfying the conditions stated in the propositi
By Witt’s theorem we haveA ∈ O(2ν) with Av′ = v′′. There is a non-singular vectoru
orthogonal to the subspace spanned by the components ofv′. The reflectionTu fixesv′. So
bothA andATu mapv′ to v′′, and one of them is contained inSO(2ν). ✷
Proof of Theorem 4.5. (i) and (iii). Write f for the regular map defined onkn×m that
has the invariants in the theorem as its coordinates. Form � 2ν, Proposition 4.7 show
that f is surjective. Ifm � 2ν, f is still dominant, for if we prescribe valuesq(i), β(ij)

and (in the odd-dimensional case)d(1,...,2ν,l) with det(β(ij))2νi,j=1 �= 0, then the vector

v(1), . . . , v(2ν) provided by Proposition 4.7 will give a basis inkn/kerβ = k2ν , and this
ensures the existence ofv(2ν+1), . . . ,v(m) such that the coordinates off take the prescribe
values on them-tuplev(1), . . . ,v(m). This proves algebraic independence of the invaria
in the theorem.

We now show thatf is separable. Consider the point(e(1), . . . , e(m)) in kn×m given by
the first min(m,2ν) vectors of the standard basis ofkn andm− min(m,2ν) zero vectors
We claim that the differential off at this point is onto. The partial derivatives are
follows:

∂Q(i)

∂x
(i)
t

= y
(i)
t ,

∂Q(i)

∂y
(i)
t

= x
(i)
t , (7)

all other partials ofQ(i) being zero. So then×m matrix formed by the partials ofQ(i) has
e(i) with x andy coordinates interchanged as itsith column, all other columns being zer
Also,

∂B(ij)

∂x
(i)
t

= y
(j)
t ,

∂B(ij)

∂y
(i)
t

= x
(j)
t ,

∂B(ij)

∂x
(j)
t

= y
(i)
t ,

∂B(ij)

∂y
(j)
t

= x
(i)
t , (8)

all other partials ofB(ij) being zero. So then×m matrix formed by the partials ofB(ij)

hase(i) with x and y coordinates interchanged as itsj th column and hase(j) with x

andy coordinates interchanged as itsith column, all other columns being zero. We eas
see that all thesen×m matrices are linearly independent. Our claim follows in the ev
dimensional case; in the odd-dimensional case we observe that these(2ν+1)×m matrices
have nothing but zeros in their last lines, so it suffices to prove that the last lines
(2ν + 1)× m matrices formed by the partials of theD(1,...,2ν,l) are linearly independen
This is obvious, since

∂D(1,...,2ν,l)

(l′) = δ
(l)

(l′) for 2ν + 1 � l, l′ �m.

∂z
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Now let h ∈ K
O(n)
n×m (considered as a function onkn×m). Thenh is constant along th

orbits ofO(n), so Proposition 4.8 shows thath is constant along the fibers off (at least
on some non-empty open set). By Lemma 4.3,h is the pull-back of a rational function.

(ii) Whenm< 2ν, the same argument as above works:h ∈K
SO(2ν)
2ν×m is constant along th

fibers off defined above by Proposition 4.8(ii), so by Lemma 4.3,h is a rational function
in theQ(i), B(ij).

For the casem � 2ν, note thatKO(2ν) is the fixed point set of the two-element gro
O(2ν)/SO(2ν) acting onKSO(2ν), hence the degree of the field extensionKSO(2ν) |KO(2ν)

is 1 or 2. By Theorem 3.4, it must be a quadratic extension generated by∆. ✷
4.4. The casem� n

The results of this section show that the conjectured exotic orthogonal invarian
appear only if the number of vector variables is sufficiently large, namely, ifm> n.

Theorem 4.9. Let n = 2ν or n = 2ν + 1, and let m � 2ν. Then the algebraRO(n)
n×m

is generated by the
(
m+1

2

)
algebraically independent invariantsQ(i) and B(ij). When

m< 2ν = n, we haveRSO(2ν)
2ν×m =R

O(2ν)
2ν×m .

Proof. Let f : kn×m → k(
m+1

2 ) stand for the regular map that has theQ(i) andB(ij) as its
coordinates. Choose anyh ∈ R

O(n)
n×m (or h ∈ R

SO(2ν)
2ν×m whenm< 2ν). Theorem 4.5 says tha

h is the pull-back of a rational function. Buth is a polynomial, and Proposition 4.7 sa
thatf is surjective. By Lemma 4.4,h is the pull-back of a polynomial function.✷
Theorem 4.10. Letm = n = 2ν + 1. LetD stand forD(1···n). Then the algebraRO(n)

n×m is

generated by the
(
n+1

2

)+ 1 invariantsQ(i), B(ij) andD, the ideal of algebraic relation
between whom is generated by the single elementG defined as

G=D2 − 1

2

∣∣∣∣∣∣∣∣
2Q(1) B(12) · · · B(1n)

B(21) 2Q(2) · · · B(2n)

...
...

. . .
...

B(n1) B(n2) · · · 2Q(n)

∣∣∣∣∣∣∣∣
.

(See Proposition4.11for the meaning of1/2 here.)

We break the proof up into several propositions.

Proposition 4.11. The determinant in the definition ofG, when interpreted as a polynomi
over Z in the variablesQ(i) and B(ij), has even coefficients. SoG is defined as a
polynomial overZ anda fortiori overk.

Proof. Each expansion term in the determinant either has a factor from the diagon
therefore has an even coefficient, or is a product of off-diagonal entries and can be
with the transposed term (note thatB(ij) = B(ji)). ✷
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Proposition 4.12. The polynomialsQ(i), B(ij) andD satisfy the relation

(−1)νD2 − 1

2

∣∣∣∣∣∣∣∣
2Q(1) B(12) · · · B(1n)

B(21) 2Q(2) · · · B(2n)

...
...

. . .
...

B(n1) B(n2) · · · 2Q(n)

∣∣∣∣∣∣∣∣
= 0

overZ anda fortiori overk.

Proof. Working overQ, the matrix of the polar formβ of the quadratic form

q = x1y1 + · · · + xνyν + z2

is

M =
(

0 1
1 0

)
⊕ · · · ⊕

(
0 1
1 0

)
⊕ (2).

For arbitraryV ∈ Qn×n with ith columnv(i), we have

V TMV = (
β
(
v(i), v(j)

))n
i,j=1.

Taking determinants gives

(−1)ν · 2 · (detV )2 = det
(
β
(
v(i), v(j)

))n
i,j=1.

The proposition follows, sinceβ(v(i), v(i))= 2q(v(i)). ✷
The following proposition deals with the hypersurface{G = 0} in the affine space

k(
n+1

2 )+1, with coordinates denoted byQ(i), B(jl), D (1� i � n, 1� j < l � n).

Proposition 4.13. The hypersurface{G= 0} in k(
n+1

2 )+1 is normal.

Proof. A hypersurfaceH (the zero locus of a single polynomial in an affine space
normal if and only if the set of singular points has codimension� 2 in H ; this follows
for example from Seidenberg’s criterion for normality [10, Theorem 3], together
Macaulay’s unmixedness theorem (cf. [6, Theorem 17.6]).

WriteG as

G=D2 − (
Q(1)F (1) + · · · +Q(n)F (n) + F (0)),
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whereF (i) is theith principal(n− 1)× (n− 1) minor of the matrix




2Q(1) B(12) · · · B(1n)

B(21) 2Q(2) · · · B(2n)

...
...

. . .
...

B(n1) B(n2) · · · 2Q(n)


 ,

andF (0) is the sum of those terms in the determinant of this matrix that have no f
from the diagonal, and have at leastν + 1 factors from above the diagonal.

In particular,

∂G

∂Q(i)
= F (i) (i = 1, . . . , n).

We claim that the locus of common zeros ofG, F (1) andF (n) is of codimension 3 in
k(

n+1
2 )+1. Equivalently, the locus of common zeros ofF (1) andF (n) is of codimension 2

in the hyperplane{D = 0}. (To see the equivalence note that projection from the direc
of theD coordinate axis onto the coordinate hyperplane{D = 0} maps the hypersurfac
{G= 0} bijectively onto the hyperplane{D = 0}.) The polynomialsF (1) andF (n) depend
only on the variablesB(ij), and their vanishing on a common hypersurface in the a
space{D = 0} would mean having the defining polynomial of that hypersurface
common factor. Therefore it suffices to show thatF (1) andF (n) have no common factor
as polynomials in theB(ij). To this end, we impose the order

B(12) > B(23) > · · · > B(n−2|n−1) > B(n−1|n)
> B(13) > · · · > B(n−3|n−1) > B(n−2|n)

· · · · · · · · ·
> B(1|n−1) > B(2|n)

> B(1|n)

on the variables and the corresponding lexicographic order on the monomials. Th
leading monomial ofF (1) is (B(23)B(45) · · ·B(n−1|n))2, and the leading monomial ofF (n)

is (B(12)B(34) · · ·B(n−2|n−1))2. The leading monomials have no common factors, he
F (1) andF (n) have no common factors. So the locus of common zeros ofG, F (1) andF (n)

is of codimension 3. The singular locus of{G = 0} is contained in that locus, so it ha
codimension� 2 in {G= 0}, which is therefore normal.✷
Proof of Theorem 4.10. Consider the map

f : kn×n → k(
n+1

2 )+1

that has theQ(i), theB(ij), andD as its coordinates. It follows from Propositions 4.12 a
4.7 that the image off is the hypersurface{G= 0} (we need that the characteristic is 2,
the values of theQ(i) and theB(ij) determine the value ofD on {G= 0}).
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Choose anyh ∈R
O(n)
n×n . Theorem 4.5 says thath is the pull-back of a rational function o

{G= 0}. Buth is a polynomial, so, by Lemma 4.4 and Proposition 4.13,h is the pull-back
of a polynomial. ✷

We now turn to the description of the algebra of special orthogonal invariants in the
m= n= 2ν. We shall write

∑
BB · · ·B for the 2ν-linearO(2ν,C)-invariant

∑
B(i1i2)B(i3i4) · · ·B(i2ν−1i2ν )

defined overZ that was proved in Proposition 3.3 to agree withD =D(1···(2ν)) modulo 2.

Theorem 4.14. Let m = n = 2ν. Let ∆ stand for the SO(2ν)-invariant constructed in
Theorem3.4. Then the algebraRSO(n)

n×m is generated by the
(
n+1

2

)+ 1 invariantsQ(i), B(ij)

and∆, the ideal of algebraic relations between whom is generated by the single el
Γ defined as

Γ =∆2 −∆
∑

BB · · ·B

+ 1

4


(∑BB · · ·B

)2 − (−1)ν

∣∣∣∣∣∣∣∣
2Q(1) B(12) · · · B(1n)

B(21) 2Q(2) · · · B(2n)

...
...

. . .
...

B(n1) B(n2) · · · 2Q(n)

∣∣∣∣∣∣∣∣


 .

(See the proof for the meaning of1/4 here.)

Proof. The proof is rather similar to that of Theorem 4.10. WriteL for the expression

(∑
BB · · ·B

)2 − (−1)ν

∣∣∣∣∣∣∣∣
2Q(1) B(12) · · · B(1n)

B(21) 2Q(2) · · · B(2n)

...
...

. . .
...

B(n1) B(n2) · · · 2Q(n)

∣∣∣∣∣∣∣∣
,

soL is a polynomial ofQ(i), B(ij) with integral coefficients.
First interpretQ(i), B(ij), ∆ as polynomials overZ in thex, y variables. Recall that∆

was defined overZ by

∆= 1

2

(∑
BB · · ·B −D

)
,

whereD =D(1···(2ν)). Set

∆̄= 1(∑
BB · · ·B +D

)
.

2
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It is a polynomial with integral coefficients in thex, y variables by Proposition 3.3, hen
so is

∆∆̄= 1

4

((∑
BB · · ·B

)2 −D2
)

= 1

4
L

(the second equality is proved in the same manner as Proposition 4.12). Note that∆+ ∆̄=∑
BB · · ·B. It follows thatQ(i), B(ij), ∆ (considered as polynomials overZ in thex, y

variables) satisfy the relation

∆2 −∆
∑

BB · · ·B +L/4 = 0. (9)

We claim that the coefficients ofL are divisible by four, soL/4 is a polynomial in the
variablesQ(i), B(ij) with integer coefficients. Indeed, multiply the relation∆∆̄= L/4 by
4 and consider it modulo 2: the left-hand side becomes zero, so we obtain on the
hand side an algebraic relation overk holding betweenQ(i), B(ij) (defined overk). But
Q(i), B(ij) are algebraically independent inRSO(n)

n×m by Theorem 4.5, so this relation mu
be trivial. This means that all coefficients ofL (as a polynomial in theQ(i),B(ij)) are even.
Taking now the relation 2∆∆̄= L/2 modulo 2 and repeating the same argument we ob
our claim. So (9) is an algebraic relation with integral coefficients holding betweenQ(i),
B(ij), ∆ (considered as polynomials overZ in thex, y variables).

It follows immediately that (9) makes sense and holds as a relation overk; that is, the
relationΓ = 0 makes sense and holds inRSO(n)

n×m .
Consider now the map

f : kn×n → k(
n+1

2 )+1

that has theQ(i), theB(ij), and∆ as its coordinates. It follows from the relationΓ = 0

and Proposition 4.7 that the image off is the hypersurface{Γ = 0} in k(
n+1

2 )+1. (For
surjectivity, we also need that the cosetO(2ν) \ SO(2ν) interchanges∆ and∆̄, so a point
(Q,B,∆) is in the image off if and only if (Q,B, ∆̄) is in the image off .) Choose
any h ∈ R

SO(n)
n×n . Theorem 4.5 says thath is the pull-back of a rational function on th

hypersurface{Γ = 0}. But h is a polynomial, so, by Lemma 4.4 and Proposition 4
below,h is the pull-back of a polynomial. ✷
Proposition 4.15. Consider the affine spacek(

n+1
2 )+1, with coordinates denoted byQ(i),

B(jl), ∆ (1� i � n, 1 � j < l � n). Then the hypersurface{Γ = 0} in k(
n+1

2 )+1 is normal.

Proof. Just as in Proposition 4.13, it suffices to prove that the singular locus
codimension� 2 in the hypersurface.

Calculate

∂Γ =
∑

BB · · ·B and

∂∆
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inceton,
∂Γ

∂Q(n)
= 1

2

∣∣∣∣∣∣∣∣
2Q(1) B(12) · · · B(1|n−1)

B(21) 2Q(2) · · · B(2|n−1)

...
...

. . .
...

B(n−1|1) B(n−1|2) · · · 2Q(n−1)

∣∣∣∣∣∣∣∣
=Q(1)F (1) + · · · +Q(n−1)F (n−1) + F (0),

where F (i) is the ith principal (n − 2) × (n − 2) minor of the last determinant fo
i = 1, . . . , n− 1, andF (0) also depends only on theB(ij).

We claim that the locus of common zeros ofΓ , ∂Γ/∂∆ and ∂Γ/∂Q(n) is of

codimension 3 ink(
n+1

2 )+1. Equivalently, the locus of common zeros of∂Γ/∂∆ and
∂Γ/∂Q(n) is of codimension 2 in the hyperplane{∆= 0}. It suffices to show that∂Γ/∂∆
and ∂Γ/∂Q(n) have no common factors as polynomials in theQ(i) and theB(ij). As
∂Γ/∂∆ depends only on theB(ij), so will any common factor, but then, in order to divi
∂Γ/∂Q(n), it must divide eachF (i). But we have shown in the proof of Proposition 4.
thatF (1) andF (n−1) (there denoted byF (1) andF (n) sincen there was odd and theF ’s
were(n− 1)× (n− 1) minors of ann× n matrix) have no common factors. So the loc
of common zeros ofΓ , ∂Γ/∂∆ and∂Γ/∂Q(n) is of codimension 3. The singular locus
{Γ = 0} is contained in that locus, so it has codimension� 2 in {Γ = 0}, which therefore
is normal. ✷
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