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Abstract

Working over an algebraically closed base figldf characteristic 2, the ring of invarian®®
is studied, where&5 is the orthogonal grou® (n) or the special orthogonal groupQ(n), acting
naturally on the coordinate ring of the m-fold direct sumk” @ --- @ k" of the standard vector
representation. It is proved f@? (2), O (3) = SQ(3), SO4), and O (4), that there exists am-linear
invariant withm arbitrarily large, which is not expressible as a polynomial of invariants of lower
degree. This is in sharp contrast with the uniform description of the ring of invariants valid in all
other characteristics, and supports the conjecture that the same phenomena occus.féiorll
general even, new O (n)-invariants are constructed, which are not expressible as polynomials of the
quadratic invariants. In contrast with these results, it is shown that rational invariants have a uniform
description valid in all characteristics. Similarly,sif < n, thenRP ™ is generated by the obvious
invariants. For alk, the algebraR® is a finitely generated module over the subalgebra generated
by the quadratic invariants, and for odd the square of angQ(n)-invariant is a polynomial of
the quadratic invariants. Finally we mention that for eweran n-linear SQ(n)-invariant is given,
which distinguishes betwe&0Q(n) andO (n) (just like the determinant in all characteristics different
from 2).
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1. Preliminaries
1.1. The orthogonal group

Let k£ stand for an algebraically closed field of characteristic 2. Recall that the polar
bilinear formg of a quadratic forng on a finite dimensional-linear space is defined by

B®, @) d:efq(vu) +1@) = g (V) = g (v?). 1)

Note thatp is an alternating bilinear form (which implies, but is not equivalent to,
symmetry in characteristic 2). The quadratic fogmis said to be non-degenerate if
B(v, ) =0 andg (v) = 0 together implyw = 0.

Denote coordinates ik” by x1,...,xy, ¥1,...,y, if n=2v or by x1,...,x,,
Y1, ..., Y, 2 If n=2v+1. The orthogonal group (n) is the group of linear isomorphisms
of k" that leave the standard non-degenerate quadratic form

def
g =x1y1+--+x,yn m=2v),

respectively

def
a4 w2 =20+1)
invariant. Of course, they leave the polar form
(@2 D@2
}g(v(l)’ U(Z)) in )yi ) _|_yi )xi ) +"'+x1(;1))’152) +y1(;1)x52) )

of ¢ invariant as well. Note that up to base changés the only non-degenerate quadratic
form onk”.
The formpg is non-degenerate if and onlysifis even. Fon =2v + 1,

kerp d:ef{v: B (v, w) =0 for all w}

is thez axis.

The symplectic group2v) is the group of linear isomorphisms b’ that leave the
standard symplectic forg invariant. So0 (2v) < Sp2v) < SL2v). InfactO (n) < SL(n)
for all n. The algebraic group (n) is connected for odd and has two components for
evenn. For alln, the component containing the identity is the special orthogonal group
SQn) (this can be taken as the definition $0n)). Thus,SO2v + 1) = O0(2v + 1),
whereasSQ(2v) is a subgroup of index 2 i® (2v).

Call a vectom non-singularif g (1) # 0. For a non-singular vectar, we write 7,, for
thereflectiondefined by

T, v defy _ plv.u) u.
qu)
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Itis well known thatO (n) is generated by reflections, aB(n) is the set of elements that
are expressible as a product of an even number of reflections.

Forn =2v + 1, eachA € O(2v + 1) acts as the identity on the axis and acts
symplectically on the factor spa&é”*+1/ kerp. This gives a homomorphisg: O (2v + 1)
— Sp2v) which is in fact an isomorphism (of groups, but not of algebraic groups). See
[11, Theorem 11.9] for a proof.

1.2. Invariants

We write R or R,x,, for the algebra of polynomials in the coordinates of the
indeterminate:-dimensional vectors@, ..., v \We write K or K, x,, for the field
of rational functions. AG in the superscript indicates the subalgebra (sub-field) formed by
the functions invariant under the subgratipf GL(n) acting orv-tuples of vectors in the
obvious way. Let
0 cizefq(v(i)) _ xil)yil) + ... +x£’)y§'),

Ay 02

BUn d:efﬁ(v(w, vD) = x Oy 4y O D Dy gy Dy (D) 3)
Let
Dlisin) dzefde{v(il), o v]
be the determinant of the matrix that ha&’, ..., v as its columns. The@®, B,

D(irin) are multi-homogeneous elementsrjf".

(By the multi-degree of a monomial in the polynomial rif,, we meana =
@@, ..., a"™), wherea” is the total degree of the monomial in the variables belonging
to v, The action of0(n) preserves this multi-degree, therefor,"") is spanned by
multi-homogeneous elements. A multi-homogeneous invariant of multi-détyee, 1)
will be calledmulti-linear.)

It is a classical fact that over a field of characteristic zero, the alg&t&) is
generated by the scalar produd8’”) of the indeterminate vectors under consideration,
and the algebr&SA™ is generated by the scalar products and the determinants. That is
the so-called “first fundamental theorem” for the (special) orthogonal group; it has been
discussed along with the analogous results for the other classical groups in Hermann
Weyl's work [12]. De Concini and Procesi [2] gave a characteristic free treatment to
the subject, in particular, they proved that the first fundamental theorem for the (special)
orthogonal group remains unchanged in odd characteristic. Concerning characteristic 2,
Richman [8] proved later that the algebR¥’ for the groupG preserving the bilinear
form xil)xiz) +- x,§1>x,<,2> is generated in degree 1 and 2. However, though this group
preserves the quadratic forxrf + -+ x,f, it is not the so-called ‘orthogonal group’ in
characteristic 2: the quadratic foraf + - - - + x2 is the square of a linear form, hence is
degenerate. So the question about vector invariants of the orthogonal group remains open
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in characteristic 2, when the behavior of invariants turns out to be very much different, see
Section 2.

2. Indecomposableinvariantsof high degree

The results in this section make the following conjecture plausible: for any fixe@
(respectivelyn > 3), there exist arbitrarily large values of and m-linear invariants
fm € RO™ (respectivelyR>>™) such thatf,, cannot be expressed as a polynomial in
invariants of lower degree. We prove this fer< 4. The paper [3] contained a more
sophisticated proof for th8Q(4) case. It was first pointed out in this paper that special
orthogonal invariants behave much differently in characteristic 2.

In the general case, we have no proof of the conjecture, but in Section 2.4 we shall
prove at least that the algebR{") is not generated by th@® and B/ if n > 2 andm

is large enough (compared ). This is obvious for odd, since ifm > n, thenD™™ is
not expressible as a polynomial in tigg” and B/, but it is non-trivial for evem.

2.1. The two-dimensional case

To treat the two-dimensional case, observe that the matrix

A= (011 012)
a1 a2
is orthogonal if and only if

(a11x + a1oy)(azix + a22y) = xy,

that is,a11a21 = a12a22 = 0 andai1a22 + a12a21 = 1. So

a 0, % 0 a). *
oo={(3 2 Yace|ol(S o) acr]

where the first of the two terms 8$0(2).

Therefore, a polynomial is invariant und8)2) if and only if all its terms have the
same number of’s andy’s. It follows that the algebra d8Q(2)-invariant polynomials is
generated by quadratic elements:

sQ2 Do) s
R2><qm) =k[x(’)y(/). i,j=1, ,m]
That is not the case withy (2)-invariants. AnSQ(2)-invariant isO (2)-invariant exactly

if it is invariant under(? 7), that is, exactly if it is a linear combination ovierof (multi-
homogeneous) polynomials of the form

X . ,x(is)y(il) .. ,y(is) — Q(il) .. Q(i.\)



666 M. Domokos, P.E. Frenkel / Journal of Algebra 274 (2004) 662—-688

and

2 L@y 0D) Ly U9 00690 G L G B8F gl il ).

(Note that the new notation is in accordance with the notaliéi introduced before.)
Proposition 2.1.

(i) Assume thattheindicés, ...,i, j1, ..., Jjs; are all different. Then th@® (2)-invariant
Bl1-isli-Js) is not expressible as a polynomial in invariants of lower degree.

(i) Assume that each of the indicés ..., m occurs among the indiceg, ..., iy,
Jji, ..., Js the same number of times as it occurs among the indiges. ., i/,
Jj1» -+ -+ Jg- Then the multi-homogeneos2)-invariant

(if non-zerq is expressible as the product of tuBds of lower degree.
(i) Assume that th_e ‘indi(':es, .oy is, j1, ..., js are not all different. Then th@® (2)-
invariant B(1-isli1.-.Js) js expressible as a polynomial in invariants of lower degree.

Proof. (i) Let « denote the multi-degree @(1-isli1.Js) Soa) =1 if i is one of the
indicesiy, ...,is, j1, ..., js; anda”) = 0 otherwise.

We only need to prove thag(1islisJs) s not expressible as a linear combination
of products with two factors each, each factor being of lower multi-degree and being either
some B or some product ofQ's. Note that such a product (of two factors) is always
multi-homogeneous; its multi-degree dsif and only if both factors areB’s (of lower
multi-degree) with no repetition of indices and with, .. ., is, j1, ..., js} as the disjoint
union of the two index-sets. But such a product is always the sutw@’s of multi-
degreex. Therefore, any linear combination of such products, when expressed as a linear
combination of theB’s of multi-degreex, gives rise to coefficients that add up to zero. The
statement follows.

(i) The assumption can be formulated by writidg+ J = I’ + J’ for the multi-sets
I={i1,....ish J={j1,.... jsh, I' ={iy,....i}}, andJ = {j], ..., j}. It follows that
I=FE+G,J=F+H,I'=E+ H,andJ' = F + G with suitable multi-set&, F, G,
andH. That implies|E| = |F|, |G| = |H|, and

BUEIP) gGIH) _ g(E+GIF+H) | p(E+H|F+G) _ g(UI]) 4 g(I'lJ").

(i) Using (i), we may assume; = j;. Then

Bltnisit ) = UD) Bliznislizeds)

The following theorem is an easy consequence.
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Theorem 2.2.

(i) The aIgebraRO(z) is generated by the invariants

2xm
Q(’) and B(il ~~~~~ is|j1yees Js) ,

wherel<i<mandl<ii<---<iy<j1<--- < js <m,respectively.

(i) The system of generators (i) is minimal. Indeed, any system of multi-homogeneous
generators of the algebrﬂzox(,zrf must contain the invariant®”) (possibly multiplied
by non-zero constantsand must contain invariants of multi-degreefor all 0-1

sequences = («'V, ..., «") that contain an even number b.
2.2. The three-dimensional case

Let us interprek® assl(2) via

() - G0

Z
Theng (v) = xy + z2 = detV. So, for anyl € SL(2),
AdT:sl(2) > sl(2, VeTVT

is orthogonal. It is easily seen that every orthogonal transformation is of this form. So, for
i1,...,is €{1,...,m}, the polynomial

Trlizesis) d:efTr(Vul) )

03
3xm*

is O (3)-invariant:Trli1-i) ¢ R
Proposition 2.3. If the indicesiy, .. ., i, are all different then Tf1-s) is not expressible
as a polynomial inO (3)-invariants of lower degree.

Proof. We may assume=m andi; =1, ..., iy = s. We first assume thatis even; say,
s=20.

If we replace every occurrence of all the variab}és in an O (3)-invariant by zero,
then we get ar0 (2)-invariant, sinceA @ 1 € O(3) if A € O(2). The degree is unchanged
or decreased. Therefore, it suffices to prove thatali@)-invariant

T 0 x@D 0 x®@ 0 x@-D 0 1@
_r<<y(1) 0)(y(2) 0)'”(y(2"‘1) 0 )(y(z") 0))
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_T xDy@ x(20=1)y(20)
=1Ir y(l)x(z) ce y(Zo—l)x(Zo)

— B(1,3,...,20—1|2,4,...,20)

is not expressible as a polynomial ifi(2)-invariants of lower degree. That was the
statement of Proposition 2.1(i).
Assume now that is odd. Assume indirectly that

Tr(l ----- S) = Za/b/’ (4)

wherea;, b; € R® are multi-homogeneous invariants of strictly positive degree. We
may assume that;b; is s-linear for all j. Denote byr : R3xs — R3x(s—1) the algebra
homomorphism induced by the embeddisig2)”~1 — s((2), (VD, ..., vE-D) >
(v, ..., v6=D 1), wherel stands for the identity matrix. Obviously, maps a multi-
homogeneous polynomial of multi-degrées, ..., as—1, ;) to a multi-homogeneous
polynomial of multi-degregas, ..., as—1). Since I is fixed by theSL(2)-action, we
have thatr (R$.>) € R\ o)
Y m(aj)m(bj). The degree of;; andb; is at least 2 for allj, hence eachr(a;) and
eachm (b;) is either zero or a homogeneo@g3)-invariant of positive degree. Therefore,
Tr-s=D can be expressed by invariants of lower degree. Butl is even, so this
contradicts what we have already proverm

3 ;

Theorem 2.4. A minimal system of generators B " is

{Q(j), Trlinis) 1<js<m; 2<s<m; 1<ig <<y gm}.

Proof. The groupSL(2) acts ongl(2), the space of Z 2 matrices, by conjugation. Denote

by gl(2)"™ (respectivelys((2)™) the m-fold direct sum of copies o§l(2) (respectively
5[(2)), endowed with the diagon&L(2)-action. Denote byP the coordinate ring of
gl(2)™, and recall thatR is the coordinate ring of[(2)™. Restriction of functions from
gl(2)™ to sl(2)™ induces a surjective algebra homomorphigmP — R. Clearly we

have p(PSY2) c R9®, Now (gl(2)", sI(2)™) is a good pair ofSL(2)-varieties in the
sense of [4]. This follows for example from [4, Proposition 1.3b], siat@)” is an
m-codimensional linear subspace in the good varigtg)”, defined as the zero locus

of m linear SL(2)-invariants ongl(2)™, hences((2)" is a good complete intersection in
gl(2)™. As a consequence of general properties of modules with good filtrations (cf. [4])
we get that the restriction af to the ring of invariants?S4? is surjective ontaR?®.

In particular, a generating system BPY? is mapped to a generating systempr#®.

Using the result of [5], a minimal system of generatorsP6H? was determined in [3].
This is mapped by to the generating system & stated in our theorem. So the only
thing left to show is that the above generating system is minimal. Since it consists of multi-
homogeneous elements with pairwise different multi-degree, it is sufficient to prove that
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none of them can be expressed by invariants of strictly lower degree. This is cleav for
and this is the content of Proposition 2.3 fofizi), O

2.3. The four-dimensional case

To treat the four-dimensional case, we intergfeasgl(2) via

X1

=] - ( xz)zv
y1i y2 n

y2

Theng (v) = x1y1 + x2y2 = detV. So, for anyS, T € SL(2), the transformation
al(2 = gl(2), V> SVT

is orthogonal. We get a homomorphigmSL(2) x SL(2) — O(4) which is easily seen
to be injective; its image is a six-dimensional irreducible subgrou@ @), so it must be
SQ4). This interpretation o6Q(4) was used in [3] to show that the algeb?ggf) is not
generated by its elements of degreen — 1. A simpler proof can be given by means of
the following construction.

Leti1,...,is; j1,..., js €{1,...,m}. The determinant

vy yGo
vy  yG2)
VoD yen
V(]s) V(i:)
is SQ4)-invariant. Assume that the indices, ..., is; j1, ..., js are all different. The

2s-linear component of the above determinant is also invariant, denote it by

F = F(il ~~~~~ is|j1yees Js) c qu4)

xm *

Proposition 2.5. If the indicesiy, ..., i; ji,..., js € {1,...,m} are all different then
Flv-is1i-J5) js not expressible as a polynomial in &@-invariants of lower degree.

Proof. If we replace every occurrence of all the variabkiZQ and y;“ in an SQ4)-
invariant by zero, then we get an(2)-invariant, since ifA € 0(2) then A ® ((1) 2) and

AD (‘l) é) are both inO (4) (whereA acts on thexp, y1 coordinate plane) and one of them
must be inSO4). The degree is unchanged or decreased. Therefore, it suffices to prove
that theO (2)-invariant

F(ils---,is‘jls ----- Is)|
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is not expressible as a polynomial @(2)-invariants of degree: 2s. That is the 2-linear
component of the determinant

PAGY) x G
y (i) oy (o) ‘
x (2 x (2
y(i2) y(2)

s U
ylis—) yUs=1)
£ ) )

y(js) y(i:)
which is nothing butB(2:--isli1-Js)  The statement follows from Proposition 2.1(i)0

Coroallary 2.6. Any system of multi-homogeneous generators of the algeﬁggf) must
contain the invariant2@ (possibly multiplied by non-zero constan@nd must contain
invariants of multi-degreer for all 0-1 sequences = (P, ..., «™) that contain an
even number df’s.

To treat the full orthogonal grou@ (4), consider the sum

i1500ns is|j1sesds) — p 1, islji, . Ji i1seesls| J1smens i
G:G(l s1J1seesJs) _F(l slj1 ]\)+O—F(1 slj1 ]\),

whereo represents the coséx(4)\SQ4). Obviously,G is invariant undeiO (4).

Prpposition 2.7. If the indicesiy, ..., i; j1,...,Jjs € {1,...,m} are all different then
GlvislitJs) s not expressible as a polynomial d(4)-invariants of degree less than
2s — 2.

Proof. The substitution

Wy 0 (=1,

xé"") :yé"") =0 (t=1,...,5s—2),

; 00 ; 0 1
Us-1) — Us) —
vi=(29)- v=(3 o)

turns anyO (4)-invariant into anO (2)-invariant, since we may embe@(2) into O (4) by
identifying A € O (2) with A& ((1) 9 € 0(4) (whereA acts on ther1, y1 coordinate plane),
and the subspace of*™ defined by the above equations is stable ur@2). The degree
is unchanged or decreased. Therefore, it suffices to prove th& Peinvariant thatG
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turns into is not expressible as a polynomialdrg2)-invariants of degree: 2s — 2. Now
F turns into the2s — 2)-linear component of the determinant

x (1) <UD
y(i) ' ylin) ‘
x(i2) x (2
y(i2) y(i2)
x Us—1) 0 0
yis-1 1 0
0 1 x (i)
0 0 yUis)

which is nothing butx(x(2 ... x(s-1y )00 ... yUs-2)  Since the representative
o:x1 < y1 of O(4H\SQ4) commutes with the substitution under consideratioft,

is turned into y(@y(2 ...y x@)x (). .. U2 and thereforeG is turned into
Bz, islis j1.s-2)  The statement follows from Proposition 2.1(i)o

2.4. The even-dimensional case

We turn to the even-dimensional case in general. To a monomial depending on the
vectorsy® | ..., v in a multi-linear fashion we shall associate the 2 matrix

(

o1
1

Oy
Ty

)

called thetypeof the monomial, whose entry, is the number of occurrences of as a
factor of the monomial, ang is the number of occurrences gf So

m=o1+11+---+o,+ 1.
Lemma 2.8. Denote byp the sum of all monomials that depend on the two-dimensional
vectorsv™, ..., v® in a sextilinear fashion and have tyi¢€). Thenp is a unimodular

invariant p RSXL(GZ).

Proof. Invariance under

(C 1/c> (c ek?)

is obvious as all terms ip are invariant. It suffices to check invariance under

_ 1 ¢ T_ 1
AC_< 1) and AC_(C 1) (cek).
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By symmetry, it is sufficient to deal with .. The transformed polynomial
pc(v(l), o, v(s)) = p(Acv(l), o, ACU(G))

is a linear combination of sextilinear monomials whose tyfj¢ (whereo + v = 6)
satisfies the inequality < 3 < t. The coefficient of such a monomial <i§—3(§). That
is 1if r =3 and zero otherwise. Sg. = p. O

Letm > 2(3v — 1), and denote by € Ry, x23v—1) < Ry xm the sum of all monomials
that depend in a multi-linear fashion on the fir682— 1) indeterminate vectors (and do not
involve the rest), and the two rows of whose type coincide, each row being a permutation
of (2,3,3,...,3) (one 2andv — 1) 3s).

Theorem 2.9.

(i) The polynomialf is an orthogonal invariant.
(i) The polynomialf is not expressible as a polynomial in tigg” and B4/,

Proof. (i) Let A~T denote the inverse transpose of the mattixlt suffices to check
invariance under the subgroup formed by transformations of the form

A= (A A—T> (A € GL®))

and under the reflection; <> y1, as these generai@(2v). (This follows easily from
the fact thatO (2v) is generated by reflections. Indeed, <> y; can be turned into an
arbitrary reflection via conjugation by sorde since{A | A € GL(v)} acts transitively on
fvek"q)=1}.)
Invariance undek1 <> yi1 is obvious as the terms ifi simply undergo a permutation
(of order 2). Now look atd. We may restrictd to a system of generators GiL(v).
Invariance under

~

Ajcixi— cxi, yi>c Yy, (iefl,....m}, c€k¥)

is obvious as each term ifiis invariant.
By symmetry, it suffices to check invariance under

~

Acix1—> x1+cx2, Yy2—>cy1+y2 (c€k).

To this end, writef as f = g + h whereg is the sum of those terms ifi that have only
3's in the first two columns of their types, ahds the sum of the other terms.

We use the above lemma to prove tpas in fact invariant not just undet.., but under
both of the transformationg + x1 + cx2 andysz — cy1 + y2. By symmetry, it is sufficient
to deal withxy — x1 + cx2. Let us breakg up into sub-sums in the following way. Two
terms shall be in the same sub-sum if and only if the six vector variables whaser,
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coordinate is involved are the same for the two terms, and each of the ¢&er2) — 6
vector variables involved is involved in the two terms via the same coordinate. Each sub-
sum will then consist o(g) terms whose sum is invariant under — x1 + cx» by the
above lemma.

We are left with the task of proving that is invariant underd.. To this end, let us
breakh up into sub-sums in the following way. Two terms shall be in the same sub-sum if
and only if the ten vector variables whasg x2, y1 or y> coordinate is involved are the
same for the two terms, and each of the oth€v2- 1) — 10 vector variables involved
is invol\éed in the two terms via the same coordinate. Each sub-sum will then consist of
2(%)(3)° terms whose sum is invariant undér, as we shall now check. In other words,
we have to check that the sunof all monomials that depend in a decilinear fashion on the
four-dimensional vectors™, ..., v® and have typ¢ > g) or (g 2) is invariant under..

The transformed polynomial

rc(v(l), ey v(lo)) = r(Acv(l), cens Acv(lo))

is a linear combination of decilinear monomials whose t{(ﬁ}e‘g) satisfieso; + o2 =
71 + 72 = 5. The coefficient of such a monomial is

)9 (- (D O

Thatis 1 if{z1, 02} = {2, 3} and zero otherwise. SQ =r.

(ii) Since f is multi-linear, the only way for the proposition to be false would b¢ if
were a polynomial in the8)), So it suffices to show thaf is not a symplectic invariant.
We show that it is not invariant under the symplectic transformation

T:x1— x1+ 1.

Write f as f = g + h whereg is the sum of those terms ifi that have threa;’s and
threeys’s among their factors, anklis the sum of those that have twg's and twoy;’s.
Lemma 2.8 tells us that is invariant undef’. On the other hand, we show thais not. It
suffices to show that the sum of all monomials that depend on the two-dimensional vectors
v ..., v® in a quadrilinear fashion and have typga) is not invariant. That is clear since

the coefficient of the monomial? y@y® y@ will be 1+ 1+ 1 =1 after applying’. O

Remark 2.10. Replacing the pai(3, 2) in the construction of by (2 — 1, 2" —2), wheret

is an arbitrary natural number, we get a multi-linear orthogonal invarian{@i 2 1)v — 1)
vector variables. For > 1, the resulting invariant is not a polynomial of the quadratic
invariants.
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3. Tworemarks
3.1. On the odd-dimensional case

As a contrast to the previous section, we prove the following theorem. It is a
consequence of the first fundamental theorem for the symplectic §m@p), which holds
in its usual form in any characteristic (including 2), as was proved in [2, Section 6]. Using
our notation, the first fundamental theorem for the symplectic group in characteristic 2 says

that the algebrakzsf(f;) is generated by thg(/),

Theorem 3.1. The invariantf R(Ozﬁ”zgi)m is expressible as a polynomial in th#? and
B if and only if the variables ™, ..., z™ occur in f only with even exponents.

For example, iff is the square of a (polynomial) invariant, thgris expressible as a
polynomial in theQ”) and B'/).

Proof. “Only if” is trivial; we prove “if”. The proof relies on the relationship between
0O (2v + 1) andSp(2v) that was described in Section 1.1: the subalgeb génerated by
thex andy variables is stable with respect to the actiong®v + 1), and this action can
be identified with the natural action &f1(2v) on R2,)xm-

Assume hypothesis. Viey as a polynomial in the variable§’, and consider a term

12051 20 1 1 1 1
Z D p(xi),...,xg),yi),...,yg), ...... ,xim),...,xgm),yim),...,ygm))

of highest degree irf. Thenp must be invariant unde3p(2v), and the first fundamental
theorem for the symplectic group [2] says thatust be expressible as a polynomial in
the B(/),

Replacef by the polynomial

o Qm
fi=f =W oM™ p

If f1 is expressible in the desired form, then sofisOf course,f1 is againO (2v + 1)-
invariant, thez® occur with even exponents only, and a highest-degree terih lohs
disappeared. The new terms jin are of lower degree. Iterating this procedure, we arrive
at the polynomial 0 after a finite number of steps

3.2. SQ2v) versuso (2v)

Concerning the even-dimensional case, it is not completely trivialliﬁ%ﬁ;) #* RZOV(XZ;E
(m > 2v). An easy proof is possible using a general theorem of Rosenlicht [9, Theorem 2]
and the fact thaSQ2v) is a perfect group (i.e., is generated by commutators of its
elements). We now give an explicit construction of &lhear polynomial inR2, 2,
that is invariant unde6SQ(2v) but not underO (2v)—just like the determinant in any
characteristic different from 2.
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We write SQ2v, C) for the special orthogonal group defined over the complex field by
the quadratic forny = x1y1 + --- + x,y,. (We continue to writeSQ2v) for the group
defined over the field of characteristic 2.) The polar forg of ¢ is given by the same
formulas (1) and (2) of Section 1.1 as over the field

Lemma 3.2. If the polynomialf in the coordinates of the indetermina2e-dimensional
vectorsv™, ..., v has integer coefficients and is invariant under (8@ C), then—
when viewed as a polynomial ovierit is invariant under SQv).

An analogous statement and proof holds for the graps, C) and O (n) instead of
SQ2v, C) andSQ2v).

Proof. For a vectom € C? or u € k?”, q(u) # 0, we write T}, for the reflection in the
hyperplane orthogonal to:

def B(v,u)
V— —U.
q )

Being invariant unde8Q2v, C) or SO2v) means being invariant under the product of
any two reflections:

f(Tuva(l), s, Tuva(m)) = f(v(l), s, v(m))
for u, w € C? or u, w € k%, q(u)g(w) # 0. Coefficients of both sides may be viewed
as rational functions with coefficients i or Z/(2) of the vector variables andw, and
SGinvariance off boils down to formal equality of pairs of such rational functions. Since
formal equality ovefZ implies that ovefZ/(2), the lemma is proved. O
We shall use the symbelto mean any one of the two lettersandy.
Proposition 3.3. Consider thev-linear polynomial

Z Bli1i2) glizia) | pliay-1i2y)

with integer coefficients, where tlBss are defined by3) overZ, and the sum is extended

over those permutations, . . ., iz, of the indiced, . .., 2v that satisfyi; < i, iz <ia,...,

ioy_1 < iz andi1 < iz < --- < izy_1. The coefficient of the monomi (1) . *;.2”) is 1 if
. - . . v

*j, ..., %, ISapermutation oky,...,x,, y1,...,y, and is even otherwise.

Proof. The product
Bliui2) glisia) . plizv-1i2v)

is the sum of those monomiats” - - - 2" that satistyjiy, = Jjip, Jis = Jigy - - -» Jing_1 = Jin

2
and have arx and ay correspondmg to each of these pairs of indices. So the sum we
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are looking at is a linear combination of those-lthear monomials that have the same
number—sayr;—of x;'s andy,’s among their factors, for each valuerofThe coefficient

of such a monomialis;! - - - 7!, since a monomial occurs as many times as its factors can
be grouped into pairs of the forif,, y;}. That coefficientis 1 ifr; =--- =1, =1 and
even otherwise. O

Subtract the determinaifit™(2") from the above sum (considering both to be defined
overZ). The result is a polynomial with even coefficients, denote it By 2

Theorem 3.4. The polynomialA, viewed as a polynomial ovét is invariant under SQv)
but not undero (2v).

Proof. Invariance underSQ2v) follows from Lemma 3.2 asA is invariant under
SQ2v, C).

Let xj, ..., *j,, be apermutation afy, ..., x,, y1, ..., y». By Proposition 3.3, the
coefficient of the monomia»k(i) . -*(if) in the polynomialA is O if the permutation is
even and is 1 if it is odd. It follows that is not invariant under the reflection < y1
(not even if viewed ovek), since this transforms the monomials corresponding to odd
permutations into those corresponding to even ones.

4. Separation of orbits

The results in this section are analogous to those for characteristic different from 2. The
proofs use Witt’s theorem [11, Theorem 7.4], standard facts concerning reductive groups,
and basic algebraic geometry.

Let us introduce the notation

A= Apm =k[QV, B 1<i<m, 1<i<j<m].

Note that we have shown in Section 2.4 thag RC™ for evenn and largen. The same
is obvious for odd: andm >n asD@™ e RO \ A,

4.1. The null-cone

Recall that the null-cone corresponding to a graded algebra of polynomials is defined to
be the locus of common zeros of its homogeneous elements of positive degree.

Theorem 4.1. The null-cones corresponding to the three algemég,,’f) > R,,Ox(ﬁ,) = Anxm
are the same.

Proof. Suppose that the poirit®, ..., »™) belongs to the null-cone of; that is, the
vectorsv™D | ..., v satisfy the equation®® = 0 andB/) = 0. The subspace they span
is then totally singular (i.e., hag = 0). Let W be a maximal totally singular subspace
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containing them. It follows from Witt's theorem that the dimensioofs v = [n/2], and
that there exists a maximal totally singular subspé#gesuch that

K'=W @ W1 & kerp.

For0+#£ 1t €k, let A, € O (n) stand for the special orthogonal transformation that multiplies
vectors inW by ¢, vectors inWq by 1/¢, and vectors in keg by 1. Any f € R,?S;’) is
invariant underd,, so

f(tv(l), e tv('")) = f(v(l), e, v(’")).

This holds for arbitrary # 0, so it must also hold for = 0. This means that the point
D, ..., v')is contained in the null-cone &S . o

Corollary 4.2. The algebrask©™ and RSO™ are finitely generated agd-modules.

Proof. Let G stand forO (rn) or SQ(n). ThenG is a reductive algebraic group, so Nagata’'s
theorem [7, Theorem 3.4] says that is finitely generated as an algebra.

Consider a homogeneous elemert R®. By Theorem 4.1 and Nullstellensatzhas a
power in the ideal ok generated by th@ ) and theB ). It follows by [7, Lemma 3.4.2]
thatk has a power in the ideal ®¢ generated by th@ ) and theB/).

Applying that to each elemerit of a finite system of homogeneous generators of the
algebraR® shows that the ideal oR¢ generated by th@® and theB) contains all
elements ofRY that are homogeneous of high enough degreerRSpas anA-module,
is generated by elements of degree lower than some numb€&hese form a finite-
dimensional vector space, so a finite number of them will suffice.

4.2. Algebro-geometric lemmas

We recall some well-known facts from algebraic geometry. The word ‘variety’ below
stands for an irreducible affine algebraic variety ovéthe characteristic of is 2 in our
applications, but the following general statements are validdfan arbitrary algebraically
closed field). WriteK [ X] for the algebra of polynomial functions af, and writeK (X)
for the field of rational functions orX. Let f:X — Y be a dominant morphism of
varieties. Then the comorphisifi* identifiesK (Y) with the subfieldf*K (Y) of K(X).

The morphisny is said to beseparableif K(X) > f*K(Y) is a separable field extension.
We need the following criterion for separability, see, for example, [1, (17.3) Theorem]: the
morphismf is separable if and only if there is a non-singular paimin X such thatf (x)

is non-singular int’, and the differentiad, f : T, X — Ty ()Y atx is surjective.

Lemma4.3.Let f: X — Y be a dominantseparable morphism of varieties. Suppose that
h is a rational function onX, such that for some non-empty Zariski open sulbsetf X,

the restrictionk|y is constant along the fibers ¢fl;. Thenk is the pull-back of a rational
function ony, thatis h € f*K(Y).
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Proof. Take a principal affine open subs€tin X, whereh|y is regular, andh|y is
constant along the fibers ¢f|y. Thenh is purely inseparable ovef*K (Y) by [1, (18.2)
Proposition, p. 78]; that isy”’ is contained inf*K (¥) for some natural number Thus
h itself is contained inf*K (Y), becausef is separable by our assumption

More can be said wheli is normal. See for example [1, (18.3), p. 79]:

Lemma 4.4. Let f: X — Y be a surjective morphism of varietjieend assume thak is
normal. Suppose that is a polynomial function ork, such thats is the pull-back of
a rational function onY, i.e,, & is contained inf*K (Y). Thenh is the pull-back of a
polynomial function orY, thatis 4 € f*K[Y].

Proof. See, for example, [1, (18.3), p. 79], and note that since we are dealing with affine
varieties, ‘regular functions’ in the sense of [1] (i.e., everywhere defined rational functions)
are the same as ‘polynomial functions(o

4.3. Rational invariants

We now look at the fieldk ™, which is much easier to deal with than the algebra
RO™  Note thatk 2™ is the fraction field ofR?™ (this follows easily from the fact that
SQn) is perfect).

Theorem 4.5.

(i) The fieldk 2® is generated by the algebraically independent invariants

2vxm

09 (1<i<minn,2v)) and BW (1<i<j<m,i<2v).

(i) For m < 2v we haveK502" = k9@ For m > 2v, the fieldk 522" is a quadratic

2vxm 2vxm*
extension oszov(Xzfn), generated for example by the invariamt constructed in
TheorenB.4.

(i) The fieIdK(Szf(ﬂ;;l,L is generated by the algebraically independent invariants

0" (1<i<min(m,2v)),  BYW (1<i<j<m, i<2v),

The description in (ii) ofKZSVOX(fn”) for m > 2v will be made complete in Theorem 4.14
where we determine the quadratic polynomial ok ) that A satisfies.

X

Note that the theorem is valid in any characteristic.ﬂin any characteristic different from 2,
the third statement remains valid$i0(2v + 1) is replaced byo (2v + 1) and D%-2v.D
is replaced by @11 The proof given below, appropriately modified, goes through.

The proof is via the following propositions.
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Proposition 4.6. Let m be any positive integeand let(8%)) be any alternatingn x m
matrix of rankr < n. Then there exist vectorg?, ..., u™ e k* with

B uP) =g (G, j=1,...,m).

Proof. Itis well known that(8@/) is cogredient to/ & 0 = (? 6) @ 0 with J of sizer x r
(sor is always even). The proposition obviously holds for the latter matrix, and the general
case follows by base changen

Proposition 4.7. Let m < n. Let (%)) be anym x m alternating matrix and let
g, ...,q" e k. Then there exist vectotg?, ..., v e k" with

B D)= (G j=1...,m) and q(v?)=4¢" (i=1,...,m).
Proof. As always, we set = [n/2]. Choose vectors?, ..., u™ € k?" asin the previous
proposition.
Considem = 2v + 1 first. Note that the standard quadratic fajris ontok on any line

parallel to kep (thez-axis). Therefore, there exist vectard’ € k2’ +! that are mapped to
theu® by the projection

and havey(v)) = ¢®.

Now letn = 2v. First suppose that = andu®, ..., ™ is a basis ok". Define a
new quadratic forng* by the formula

q* (Z x,-u(”) = ix?q@ + ) mxpY.
i=1 i=1 1<i<j<m
Let g* stand for the polar form af*. Then
B D, uD) = g* (w® + uD) = g*(u®) — g* (V) = B = p(u?, u),
therefore 8* = 8. It follows thatg™* is non-degenerate. Sinéds algebraically closed, all

non-degenerate quadratic forms are equivalent. So there is a linear isomorphi&m>
k™ such thay (Au) = g*(u) for all u € k". It of course follows that

,B(Au’, Au//) :ﬁ*(u/’ u//) Z,B(M/, u//)
forall u’,u” € k" (thatis,A € Sp(n)). Definev® = Au® (i=1,...,m). Then
B®. D) = B(u®, D) = g4 and g(u?) = g*(u®) = 4,

i.e., v, ..., v have the desired properties.
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Suppose finally that = 2v but u®, ... 4™ do not spark”. Choose some vector
0#£u@® e @w®, ..., u™)L Choose alinear functiofi: k" — k with f (@) # 0. Define
the new quadratic form* by the formula

q*=q+xrf?

with somex € k that givesg*(u?) # 0. The quadratic forny? has 0 as its polar form,

sog* hasg. It follows thatg™* is non-degenerate. We therefore have a linear isomorphism

Ak" — K" such thaty (Au) = ¢*(u) for all u € k". Of courseA € Spn). The vectors
Au® have

B(AuD, AuD) = B(u®, uD) = D,
Note also thatdu© e (Au®, ..., Au™)+ andq(Au'?) 5 0. The latter ensures that
is ontok on any line parallel t&Au®. So there are vectors” € Au® + kAu® with
g(®) =g, They have all desired propertiess
We shall need the following consequence of Witt's theorem.

Proposition 4.8.

(i) For n = 2v and arbitrary m, there exists a non-empty open getc k"> with the
following property if

(v(l)/, ey v(’")/) eU and (v(l)”, ey v(’”)//) ceU
satisfy
00" = 00" 1<i<2), BW =pW" (1<i<j<m, i<2),
then there is an orthogonal transformatiof such thatAv® = v®” for every
1<i<m.
(i) Whenm < n = 2v, the assertior(i) holds withA taken from the special orthogonal
group SQ2v).
(iiiy Forn =2v+1and arbitrarym, there exists a non-empty open setc k"> with the
following property if
(v(l),, e v(m),) eU and (v(l)/,, e v(m)”) eU
satisfy
00 = 0" 1<ig2y), BW =BW" (1<i<j<m, i<2v),

pA2 D' — pAe2vD™ ) L1 << m),
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then there is an orthogonal transformation such thatAv®’ = v®” for every
1<i<m.

Proof. For (i) and (iii), arvn-tuple of vectors shall be containediihexactly if the images
of the first minim, 2v) vectors are linearly independentiity/ kers. Those first mim, 2v)
vectors will always span a subspaéewith W nkerg = 0. If

(v(l)/, e v(m)/) eU and (v(l)”, e, v('")”) eU

satisfy the conditions stated in the proposition, then Witt's theorem providesO (n)
with

AV =07 (i =1, minGm, 20)).

If m > 2v, we need to show that this equality also holds for2i < m.
(i) As B is non-degenerate ané®”, ..., v@)" is a basis ok?”, it suffices to show that

ﬁ(v(n”, Av(/')’) =,3(u(i)", v(j)”) (5)
for1< j <mand 1< i < 2v. This is equivalent to
’B(Av(i)/’ Au(-")/) — IB(U(I')/’ v(j)’)’

which follows from the orthogonality of\.
(iii) Equality (5) is proved as above, and shows that”) andv”)” can differ only in
their z coordinates. Equality of thecoordinates will follow from

det[v(l)/,, e U(ZU)N, Av(j)l] = det[v(l)”, e U(ZU)N, v(j)/,], (6)

since expanding both determinants by the last column gives the same terms except for the
term containing the coordinate of the last vector with the same non-vanishing 2v
minor as its coefficient on both sides.

Equality (6) is equivalent to

deI[Av(l),’ o AV Av(j)/] = det[v(l)/, @) v(j),],

which follows from orthogonality ofd.

(il) We impose an additional condition dn: the orthogonal subspace to the subspace
spanned by the components of mrtuple ¢z < 2v) in U should contain a non-singular
vector. It is easy to see that still contains a non-empty Zariski open subseki*™.
Indeed, whenm = 2v — 1, the orthogonal subspace to the subspace spanned by the
linearly independent components of anrtuple v € k"> is spanned by a vector whose
coordinates are: x m minors ofv, therefore the condition that this vector is non-singular
is expressed as the non-vanishing of a polynomial functioh®n™. (U is clearly non-
empty; for example, a basis of the subspace orthogonal to some non-singular vector is
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contained inU.) To handle the case < 2v — 1 as well, note that the image of a non-
empty Zariski open subset &f'*@"=1 under the projection map ontd”*” contains a
non-empty open subset bf" <",

Now take fromU them-tuplesv’, v” satisfying the conditions stated in the proposition.
By Witt's theorem we haved € O(2v) with Av’' =v”. There is a non-singular vectar
orthogonal to the subspace spanned by the componentsTdie reflectiort}, fixesv’. So
both A and AT, mapv’ to v”, and one of them is contained802v). O

Proof of Theorem 4.5. (i) and (iii). Write f for the regular map defined def < that
has the invariants in the theorem as its coordinatessFear 2v, Proposition 4.7 shows
that f is surjective. Ifm > 2v, f is still dominant, for if we prescribe valueg?, g/

v, ..., v@) provided by Proposition 4.7 will give a basis kfi/ kerg = k2", and this
ensures the existenced® ™D, ... v such that the coordinates gftake the prescribed
values on then-tuplev, ..., v This proves algebraic independence of the invariants
in the theorem.

We now show thaff is separable. Consider the poiat?, ..., ¢™) in k¥**™ given by
the first minim, 2v) vectors of the standard basis/df andm — min(m, 2v) zero vectors.
We claim that the differential off at this point is onto. The partial derivatives are as
follows:

30V 309 7
@ Y O )
9x, 9y

all other partials of2”) being zero. So the x m matrix formed by the partials @@ has
¢ with x andy coordinates interchanged asiite column, all other columns being zero.
Also,

g B» W 9B O 9B W 9 B» _ L0 @)
0@ T @ T G ~ o 5 "Mt
X; Vi 0x; ay;

all other partials of8/) being zero. So the x m matrix formed by the partials a8 /)
hase”) with x and y coordinates interchanged as jith column and hag') with x

andy coordinates interchanged asith column, all other columns being zero. We easily
see that all these x m matrices are linearly independent. Our claim follows in the even-
dimensional case; in the odd-dimensional case we observe that#vesé) x m matrices

have nothing but zeros in their last lines, so it suffices to prove that the last lines of the
(2v + 1) x m matrices formed by the partials of th&:-2") are linearly independent.
This is obvious, since

1,....,2v,1
gD@2v.D) :8(1)

/
220 ) for2v+ 1<, <m.
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Now leth Knox(f’n) (considered as a function afi*™™). Thenh is constant along the

orbits of O (n), so Proposition 4.8 shows thatis constant along the fibers g¢f (at least
on some non-empty open set). By Lemma 4.8 the pull-back of a rational function.

(i) Whenm < 2v, the same argument as above works: Kzsvox(,z:) is constant along the
fibers of f defined above by Proposition 4.8(ii), so by Lemma 4.% a rational function
inthe 9®, BU7,

For the casen > 2v, note thatk ") is the fixed point set of the two-element group
0(2v)/SQ2v) acting onk S92) hence the degree of the field extensiop®?") | K (@)
is 1 or 2. By Theorem 3.4, it must be a quadratic extension generatad byl

4.4. Thecaser <n

The results of this section show that the conjectured exotic orthogonal invariants can
appear only if the number of vector variables is sufficiently large, namelysifn.

Theorem 4.9. Letn = 2v or n = 2v 4+ 1, and letm < 2v. Then the algebraR,?X(';f

is generated by thg”;") algebraically independent invariant®® and B@). When
SQ2v) _ RO(ZV)

2vxm 2vxm*

m < 2v = n, we haveR

Proof. Let /:k"<" — k("3") stand for the regular map that has &’ and B/ as its
coordinates. Choose amye R*" (or h e Rgvoii‘;) whenm < 2v). Theorem 4.5 says that
h is the pull-back of a rational function. Buétis a polynomial, and Proposition 4.7 says
that f is surjective. By Lemma 4.4, is the pull-back of a polynomial function.

Theorem 4.10. Letm = n = 2v + 1. Let D stand forD>"_ Then the algebra&r”") is

generated by th¢'3%) + 1 invariants 0, B and D, the ideal of algebraic relations
between whom is generated by the single elerGet¢fined as

200 pl2 ... pdn
, 1 B@Y 20@ ... p@»
G=D"—
2| -
BH g2 ... 20®)

(See Propositiod.11for the meaning o1/2 here)
We break the proof up into several propositions.

Proposition 4.11. The determinant in the definition 6f, when interpreted as a polynomial
over Z in the variablesQ® and B@), has even coefficients. S@ is defined as a
polynomial ovelZ anda fortiori overk.

Proof. Each expansion term in the determinant either has a factor from the diagonal and
therefore has an even coefficient, or is a product of off-diagonal entries and can be paired
with the transposed term (note thaf/) = BU)). o
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Proposition 4.12. The polynomial®®, B/) and D satisfy the relation

20 B2 ... pn
1|B@ 20@ ... p@n
(-1)'D?—Z . . |=0
2| : :
BnD g2 ... 20m

overZ anda fortiori overk.

Proof. Working over@Q, the matrix of the polar forng of the quadratic form

g=x1y1+---+x,3 +2°

01 01
w=(9 g)ee(f §)e@

For arbitraryV e Q"*" with ith columnv”), we have

VMY = (B0 ).

Taking determinants gives

(—=1)" - 2- (detv)? =det( (v, v"))"

i,j=1°
The proposition follows, sincg(v®, v) =24(w?). O

The following proposition deals with the hypersurfa@gg@ = 0} in the affine space
k('3D+1 with coordinates denoted by ®, BUD, D (1<i <n, 1< j <l <n).

Proposition 4.13. The hypersurfacéG = 0} in k(ngl)“ is normal.

Proof. A hypersurfaceH (the zero locus of a single polynomial in an affine space) is
normal if and only if the set of singular points has codimensio in H; this follows
for example from Seidenberg’s criterion for normality [10, Theorem 3], together with
Macaulay’s unmixedness theorem (cf. [6, Theorem 17.6]).

Write G as

G = D2 _ (Q(l)F(l) 4t Q(n)F(n) + F(O)),
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whereF @ is theith principal(n — 1) x (n — 1) minor of the matrix

200 pd2 ... pn
B2D 20@ ... p@»
BUL B0 ... 20

and F© is the sum of those terms in the determinant of this matrix that have no factor
from the diagonal, and have at least 1 factors from above the diagonal.
In particular,

G 0
a0®

(i=1,...,n).

We claim that the locus of common zeros @f F and F™ is of codimension 3 in
k('3D+1, Equivalently, the locus of common zeros BfY and F® is of codimension 2

in the hyperplanéD = 0}. (To see the equivalence note that projection from the direction
of the D coordinate axis onto the coordinate hyperplébe= 0} maps the hypersurface
{G = 0} bijectively onto the hyperplangd = 0}.) The polynomials¥® and F® depend
only on the variables3/, and their vanishing on a common hypersurface in the affine
space{D = 0} would mean having the defining polynomial of that hypersurface as a
common factor. Therefore it suffices to show ttat and F™ have no common factors

as polynomials in the“/), To this end, we impose the order

B12 o p@23® _ ... o p0-2n-1) _ p-1n)
> B(lg) > e > B(”—3\"—1) -~ B(n—2|n)

- Bn-1 _  p@m
- g

on the variables and the corresponding lexicographic order on the monomials. Then the
leading monomial oD is (B@¥ B9 ... pr=1in)2 and the leading monomial @t

is (B12BB4 ... pin=2n-1)2 The |eading monomials have no common factors, hence
FOD and F™ have no common factors. So the locus of common zeres ¢tV and F™

is of codimension 3. The singular locus @ = 0} is contained in that locus, so it has
codimensior 2 in {G = 0}, which is therefore normal. O

Proof of Theorem 4.10. Consider the map
Fon o g+
that has thed®, the B@/), andD as its coordinates. It follows from Propositions 4.12 and

4.7 that the image of is the hypersurfacgG = 0} (we need that the characteristic is 2, so
the values of the?”) and theB/) determine the value db on {G = 0}).
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Choose anyt € R,?X(;’). Theorem 4.5 says thatis the pull-back of a rational function on
{G = 0}. Butk is a polynomial, so, by Lemma 4.4 and Proposition 44l13,the pull-back

of a polynomial. O

We now turn to the description of the algebra of special orthogonal invariants in the case
m =n = 2v. We shall write}_ BB - - - B for the 2»-linear O (2v, C)-invariant

Z Blii2) glsia) | piav-1i2y)

defined ovefZ that was proved in Proposition 3.3 to agree with= D@(2) modulo 2.

Theorem 4.14. Let m = n = 2v. Let A stand for the SQ@v)-invariant constructed in
TheorenB.4 Then the algebr&>2" is generated by th¢'31) + Linvariants Q®, B

and A, the ideal of algebraic relations between whom is generated by the single element
I' defined as

F:AZ—AZBB---B

20 B2 ... pan
21) @ (2n)
1 2 ; B¢ 20 ..« B
+3 (ZBB---B) — o
Brb g2 .. 20

(See the proof for the meaninghf4 here)

Proof. The proof is rather similar to that of Theorem 4.10. Wiitéor the expression

200 B2 ... g
) B@) 20@ ... p@

(> BB--B) - (-1 T
P e R Y )

soL is a polynomial of0”, BU/) with integral coefficients.
First interpretQ, B@) | A as polynomials oveZ. in thex, y variables. Recall that
was defined over. by

A:%(ZBBWB—D),

whereD = D& (2) Set
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Itis a polynomial with integral coefficients in the y variables by Proposition 3.3, hence
SO is

AA:%((ZBBWB)z—DZ):%L

(the second equality is proved in the same manner as Proposition 4.12). Natejthéit=
Y. BB---B. It follows that 0, B@), A (considered as polynomials ov&rin the x, y
variables) satisfy the relation

AZ—AZBB...B+L/4=0. (9)

We claim that the coefficients df are divisible by four, sd./4 is a polynomial in the
variablesQ¥), B with integer coefficients. Indeed, multiply the relatism = L /4 by
4 and consider it modulo 2: the left-hand side becomes zero, so we obtain on the right-
hand side an algebraic relation oveholding betweernp), B/ (defined over). But
0", BU) are algebraically independent RFX™ by Theorem 4.5, so this relation must
be trivial. This means that all coefficients bf(as a polynomial in th@®, B()) are even.
Taking now the relation 2 A = L/2 modulo 2 and repeating the same argument we obtain
our claim. So (9) is an algebraic relation with integral coefficients holding betw#gn
BU) A (considered as polynomials ov&rin thex, y variables).

It follows immediately that (9) makes sense and holds as a relationkotieat is, the
relationI” = 0 makes sense and holds}hjg,’f).

Consider now the map

f : kn><l‘l — k(nzl)-‘rl

that has thep”, the B@), and A as its coordinates. It follows from the relatigh= 0
and Proposition 4.7 that the image gfis the hypersurfacél” = 0} in k("2)+L. (For
surjectivity, we also need that the cogg2v) \ SO2v) interchangesi and A, so a point
(0, B, A) is in the image off if and only if (Q, B, A) is in the image off.) Choose
any h € Rnsf(n"). Theorem 4.5 says thét is the pull-back of a rational function on the
hypersurfacg " = 0}. But & is a polynomial, so, by Lemma 4.4 and Proposition 4.15
below, 4 is the pull-back of a polynomial. O

Proposition 4.15. Consider the affine spadd’2)+1, with coordinates denoted b@®,
BUD A (1<i<n,1<j<I<n). Thenthe hypersurfadd” = 0} in k("3 is normal.

Proof. Just as in Proposition 4.13, it suffices to prove that the singular locus has
codimensior 2 in the hypersurface.
Calculate

—:ZBBMB and



688 M. Domokos, P.E. Frenkel / Journal of Algebra 274 (2004) 662—-688

20 B2 ... pam-D
or 1| B@  20@ ... p@n-1
00 ~ 2| P

Bn-UD  p@-12 ... 290-D

— Q(l)F(l) I Q(n—l)F(’l—l) + F(O),

where F® s the ith principal (n — 2) x (n — 2) minor of the last determinant for
i=1,...,n—1,andF© also depends only on th&/).

We claim that the locus of common zeros of, 9I'/dA and dI'/9Q®™ is of
codimension 3 ink("3)+1. Equivalently, the locus of common zeros &f"/3A and
ar/3Q™ is of codimension 2 in the hyperplafa = 0}. It suffices to show tha I/ A
anddI"/aQ"™ have no common factors as polynomials in #9€) and theB@). As
dI" /3 A depends only on th8 @), so will any common factor, but then, in order to divide
dr/aQ", it must divide eachF® . But we have shown in the proof of Proposition 4.13
that FO and F*~1 (there denoted by ™ and F™ sincen there was odd and thg’s
were(n — 1) x (n — 1) minors of amm x n matrix) have no common factors. So the locus
of common zeros of ", 31"/d.A anddI"/d Q™ is of codimension 3. The singular locus of
{I" =0} is contained in that locus, so it has codimensiof in {I" = 0}, which therefore
isnormal. O
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