Note

The volume of relaxed Boolean-quadric and cut polytopes

Chun-Wa Koa,1, Jon Leeb,*2, Einar Steingrimssonc,3

a 150 East 77th street, New York City 10021, USA
b Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA
c Matematiska Institutionen CTH & GU, 412 96 Göteborg, Sweden

Received 31 January 1995; revised 26 September 1995

Abstract

For \(n \geq 2 \), the \textit{boolean quadric polytope} \(Q_n \) is the convex hull in \(d:=\binom{n+1}{2} \) dimensions of the binary solutions \(x_i x_j = y_{ij} \), for all \(i < j \) in \(N := \{1, 2, \ldots, n\} \). The polytope is naturally modeled by a somewhat larger polytope; namely, \(Q_n \) the solution set of \(y_{ij} \leq x_i, \quad y_{ij} \leq x_j, \quad x_i + x_j \leq 1 + y_{ij}, \quad y_{ij} \geq 0, \) for all \(i, j \) in \(N \). In a first step toward seeing how well \(Q_n \) approximates \(P_n \), we establish that the \(d \)-dimensional volume of \(Q_n \) is \(2^{2n-4n!/(2n)!} \). Using a well-known connection between \(P_n \) and the 'cut polytope' of a complete graph on \(n + 1 \) vertices, we also establish the volume of a relaxation of this cut polytope.

1. Introduction

A natural approach to the unconstrained, quadratic-objective, binary program in \(n (\geq 2) \) variables

\[
\max \left\{ \sum_{i \in N} c_i x_i + \sum_{i < j \in N} d_{ij} x_i x_j : x_i \in \{0, 1\} \forall i \in N \right\},
\]

where \(N := \{1, 2, \ldots, n\} \), is to model the problem as a linearly constrained, linear-objective, binary program, through the use of (2) auxiliary binary variables \(y_{ij} \) which model the quadratic terms \(x_i x_j \). We obtain the equivalent program

\[
\max \sum_{i \in N} c_i x_i + \sum_{i < j \in N} d_{ij} y_{ij}
\]
subject to

\[y_{ij} \leq x_i \quad \forall i < j \in N, \quad (3) \]
\[y_{ij} \leq x_j \quad \forall i < j \in N, \quad (4) \]
\[y_{ij} \geq 0 \quad \forall i < j \in N, \quad (5) \]
\[x_i + x_j \leq 1 + y_{ij} \quad \forall i < j \in N, \quad (6) \]
\[x_i \in \{0, 1\} \quad \forall i \in N, \quad (7) \]
\[y_{ij} \in \{0, 1\} \quad \forall i < j \in N. \quad (8) \]

The boolean quadric polytope \(P_n \) is the convex hull (in real \(d := \binom{n+1}{2} \) space) of the set of solutions of (3)–(8). As the problem of solving (2)–(8) is NP-hard, it is natural to consider branch-and-cut methods based on (2)–(6). The relaxed feasible region (3)–(6) is denoted by \(\mathcal{Z}_n \). Padberg [5] has made a detailed study of \(P_n \) and \(\mathcal{Z}_n \) (also see [3, 6]).

It is natural to consider how good of an approximation \(\mathcal{Z}_n \) is to \(P_n \). The Chvátal–Gomory rank (see [7, 1]) of \(P_n \) with respect to \(\mathcal{Z}_n \) increases with \(n \), so in a certain combinatorial sense, \(\mathcal{Z}_n \) is a poor approximation of \(P_n \). In a different combinatorial sense \(\mathcal{Z}_n \) is quite close to \(P_n \); that is, the 1-skeleton of \(P_n \) is a subset of the 1-skeleton of \(\mathcal{Z}_n \) (the so-called Trubin Property) (see [5]). Another method has been proposed to study the closeness of pairs of nested polytopes, based on the volumes of the polytopes. Lee and Morris [4] have suggested the distance function

\[\rho_d(\mathcal{Z}_n, P_n) := \left(\frac{\text{vol}_d(\mathcal{Z}_n)}{\text{vol}_d(B^d)} \right)^{1/d} - \left(\frac{\text{vol}_d(P_n)}{\text{vol}_d(B^d)} \right)^{1/d}, \]

where \(B^d \) is the \(d \)-dimensional Euclidean ball, and \(\text{vol}_d \) denotes \(d \)-dimensional Lebesgue measure. For polytope pairs contained in \([0, 1]^d \), \(\rho_d \) is at most \(O(\sqrt{d}) \). In some interesting cases of sets of polytope pairs, \(\rho_d \) may increase more slowly than this upper bound, in other situations the bound is sharp (see [4]). In Section 2, as a step toward determining the asymptotic behavior of \(\rho_d(\mathcal{Z}_n, P_n) \), we calculate \(\text{vol}_d(\mathcal{Z}_n) \).

There is a well-known connection between \(P_n \) and the 'cut polytope' of a complete graph on \(n + 1 \) vertices. In Section 3, we determine the volume of a natural relaxation of this cut polytope.

2. The volume of a relaxed boolean-quadric polytope

Let \(\mathcal{Z}_n := 2 \mathcal{Z}_n \), that is, the polytope \(\mathcal{Z}_n \) magnified by a factor of 2. Clearly, \(\text{vol}_d(\mathcal{Z}_n) = 2^d \text{vol}_d(\mathcal{Z}_n) \). Padberg demonstrated that \(\mathcal{Z}_n \) is a lattice polytope (i.e., its extreme points are lattice points). For simplicity, we work with \(\mathcal{Z}_n \), which is defined by the inequalities

\[y_{ij} \leq x_i \quad \forall i < j \in N, \quad (9) \]
\[y_{ij} \leq x_j \quad \forall i < j \in N, \quad (10) \]
\[y_{ij} \geq 0 \quad \forall i < j \in N, \quad (11) \]
\[x_i + x_j \leq 2 + y_{ij} \quad \forall i < j \in N. \quad (12) \]
Our first step in calculating $\text{vol}_d(\mathcal{C}_a)$ is to reduce the problem to that of calculating the volume of a subset of \mathcal{Z}_n. Points in Euclidean d-space will be denoted by $(x, y) = (x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_{n-1})$. For $a \in \{0, 1\}^n$, let

$$C_a := \{(x, y) \in \mathcal{Z}_n : a \leq x \leq a + 1\},$$

where 1 is the n-vector $(1, 1, \ldots, 1)$. Clearly, \mathcal{Z}_n is the union of all such polytopes C_a. Furthermore, $\text{vol}_d(C_a \cap C_b) = 0$ for $a \neq b$, so $\text{vol}_d(\mathcal{Z}_n) = \sum_a \text{vol}_d(C_a)$.

Proposition 1. $\text{vol}_d(C_a) = \text{vol}_d(C_b)$ for all $a, b \in \{0, 1\}^n$.

Proof. It suffices to demonstrate that if binary n-vectors a and b differ in precisely one coordinate, then $\text{vol}_d(C_a) = \text{vol}_d(C_b)$. Suppose, without loss of generality, that $a_i = 0, b_i = 1$ for $i \neq j, a_j = 0, b_j = 1$. We define a map $\Phi_i : C_a \mapsto C_b$ as follows: Φ_i is a composition of coordinate maps $\{\phi_i, \phi_j, \phi_k, \phi_{ij}, \phi_{ki}, \phi_{ij} : 1 \leq k < i < j \leq n\}$, where

$$\phi_i(x_i) := 2 - x_i, \quad \phi_j(x_j) := x_j \quad \text{for} \ j \neq i, \quad \phi_k(x_k) := x_k, \quad \phi_{ij}(y_{ij}) := y_{ij}, \quad \phi_{ij}(y_{ij}) := x_j - y_{ij}, \quad \text{and} \quad \phi_{ki}(y_{ki}) := x_k - y_{ki}.$$

To see that the range of Φ_i is contained in C_b, we only need to consider ϕ_{ij}; the analysis for ϕ_{ki} is similar. Clearly,

$$\phi_{ij}(y_{ij}) = x_j - y_{ij} \leq x_j = \phi_j(x_j),$$

and

$$\phi_{ij}(y_{ij}) = x_j - y_{ij} \leq x_j - x_i - x_j + 2 = 2 - x_i = \phi_i(x_i).$$

Also,

$$\phi_i(x_i) + \phi_j(x_j) = 2 - x_i + x_j \leq 2 - y_{ij} + x_j = 2 + \phi_{ij}(y_{ij}).$$

Thus, we have shown that Φ_i is, indeed, a map from C_a into C_b. It is trivial to check that Φ_i is an involution. Consequently, Φ_i is bijective and unimodular, and thus measure preserving, so $\text{vol}_d(C_a) = \text{vol}_d(C_b)$. Now, given an arbitrary binary n-vector a, the composition of the maps in $\{\Phi_i : a_i = 1\}$ gives a measure preserving bijection from C_0 to C_a, so $\text{vol}_d(C_a) = \text{vol}_d(C_0)$. □

Corollary 2. $\text{vol}_d(\mathcal{Z}_n) = 2^n \text{vol}_d(C_0)$.

Let (S_n, \prec) denote the poset (partially ordered set) on $S_n := \{x_i : 1 \leq i \leq n\} \cup \{y_{ij} : 1 \leq i < j \leq n\}$ having $y_{ij} \prec x_i$ and $y_{ij} \prec x_j$. Let $e(S_n, \prec)$ denote the number of (linear) extensions of (S_n, \prec), i.e., the number of order-preserving bijections from S_n to $D := \{1, 2, \ldots, d\}$, where the order on D is the usual one.

Proposition 3. $\text{vol}_d(C_0) = e(S_n, \prec)/d!$

1 The map Φ_i is called a 'switching' and is a standard tool in the analysis of the 'cut polytope' (see [2, 6]).
Proof. By definition,

\[C_0 = \{(x, y) \in \mathcal{P}_n : 0 \leq x_i \leq 1 \ (1 \leq i \leq n)\}. \]

It follows that \(C_0 \) is defined by the inequalities (9)-(11) and

\[x_i \leq 1, \quad 1 \leq i \leq n, \]

with (12) rendered vacuous. \(C_0 \) is the order polytope (see [8]) of the poset \((S_n, \prec)\). The result follows by Corollary 4.2 of Stanley. \(\square \)

Theorem 4. \(e(S_n, \prec) = n! \cdot d! \cdot 2^n/(2n)! \).

Proof. We regard extensions of \((S_n, \prec)\) as permutations of the set \(S_n \). That is, given a bijection \(\pi : S_n \to D \), we represent \(\pi \) by the permutation \(\pi^{-1}(d) \pi^{-1}(d-1) \cdots \pi^{-1}(1) \). Define an ordered extension of \((S_n, \prec)\) to be an extension of \((S_n, \prec)\) such that \(x_i \) appears to the left of \(x_k \), for \(1 \leq i < k \leq n \). That is, we regard an ordered extension of \((S_n, \prec)\) as a permutation of \(S_n \) in which \(x_i \) appears to the left of \(x_k \), and \(y_{ik} \) appears to the right of both \(x_i \) and \(x_k \), for \(1 \leq i < k \leq n \). Clearly, the number of extensions equals \(n! \) times the number of ordered extensions.

Next, we proceed to count the number of ordered extensions of \((S_n, \prec)\). Suppose that \(\{y_{ii} : k + 1 \leq l \leq n\} \) have already been positioned, for some fixed \(i < k + 1 \). We see, now, how to place \(\{y_{ik} : 1 \leq l \leq k - 1\} \). The element \(y_{1k} \) should be placed to the right of \(x_k \). As there are already \(f_k := n - k + 1 + \binom{k}{2} \) elements of \(S_n \) placed after \(x_k \), there are \(f_k \) possible positions for \(y_{1k} \). Then, there are \(f_k + 1 \) possible positions for \(y_{2k} \), up through \(f_k + k - 1 \) possible positions for \(y_{k-1,k} \). In total, the number of ordered extensions is equal to

\[
\prod_{k=2}^{n} \prod_{i=0}^{k-2} (f_k + i) = \prod_{k=2}^{n} \frac{(f_k + k - 2)!}{(f_k - 1)!} = \prod_{k=2}^{n} \frac{(\binom{n-k+1}{2} - \binom{k}{2} - 1)!}{(\binom{n-k+1}{2} - \binom{k}{2})!} = \frac{2^n \cdot d!}{(2n)!}
\]

Hence, we get that \(e(S_n, \prec) = n! \cdot d! \cdot 2^n/(2n)! \). \(\square \)

Corollary 2, Proposition 3, and Theorem 4 now yield

Theorem 5. \(\text{vol}_d(\mathcal{P}_n) = 2^{2n - d} n!/(2n)! \).

We note that by Stirling’s formula, \(\text{vol}_d(\mathcal{P}_n) = 2^{-1/2}(e/n)^d(1 + o(1)) \). Hence, for example, if it could be shown that \(\text{vol}_d(2\mathcal{P}_n) = 2^{-1/2}(e/n)^d(1 + o(1)) \), then we could conclude that \(\rho_d(\mathcal{P}_n) \) behaves like \(\sqrt{d} \).
3. The volume of a relaxed cut-polytope of a complete graph

Let G be a simple undirected graph with vertex set $V(G) := \{0, 1, 2, \ldots, n\} = N \cup \{0\}$ and edge set $E(G)$. A cut of G is any set of edges that crosses a nontrivial partition of $V(G)$; that is, $F \subseteq E(G)$ is a cut if F is the set of edges with exactly one endpoint in some nonempty proper subset W of $V(G)$. Associated with every cut of G is its incidence vector $z \in \{0, 1\}^{E(G)}$. Let the cut polytope of G be the convex hull of the incidence vectors of cuts of G. For the complete graph K_{n+1}, we denote the cut polytope by \mathcal{P}_{n+1}. We immediately notice that \mathcal{P}_n and \mathcal{P}_{n+1} both have dimension $d = (\binom{n+1}{2})$. As has been observed by many authors (see [2]), there is a linear bijective transformation τ from \mathcal{P}_n to \mathcal{P}_{n+1}; namely,

$$x_i := z_{oi} \quad \forall i \in N,$$

$$y_{ij} := \frac{1}{2}(z_{oi} + z_{oj} - z_{ij}) \quad \forall i < j \in N.$$

We may apply this same transformation to the relaxed Boolean-quadric polytope and define $\mathcal{Q}_{n+1} := \tau(\mathcal{Q}_n)$, a natural relaxation of \mathcal{C}_{n+1}. The polytope \mathcal{Q}_{n+1} is the solution set of

$$z_{oi} - z_{oj} - z_{ij} \leq 0 \quad \forall i < j \in N,$$

$$- z_{oi} + z_{oj} - z_{ij} \leq 0 \quad \forall i < j \in N,$$

$$- z_{oi} - z_{oj} + z_{ij} \leq 0 \quad \forall i < j \in N,$$

$$z_{oi} + z_{oj} + z_{ij} \leq 2 \quad \forall i < j \in N.$$

Let $x := (x_1, x_2, \ldots, x_n)^T$, $z^0 := (z_{01}, z_{02}, \ldots, z_{0n})^T$, $z := (z^0, z^N)$, and define y and z^N so that y_{ij} occupies the same position in y as z_{ij} does in z^N, $i < j \in N$. In matrix terms, we can view the transformation τ as

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} I & 0 \\ \frac{1}{2}A^T & -\frac{1}{2}I \end{pmatrix} \begin{pmatrix} z^0 \\ z^N \end{pmatrix},$$

where A is a vertex-edge incidence matrix of K_n on vertex set N. The absolute value of the determinant of the transformation matrix is 2^{n-d}, so we can conclude the following result.

Theorem 6. $\text{vol}_d(\mathcal{Q}_{n+1}) = 2^n n! / (2n)!$.

Acknowledgements

The authors wish to thank Hasse Carlsson, Richard Stanley and an anonymous referee for suggesting variations/alternatives to the proof of Theorem 4.
References

