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Abstract

Strichartz estimates for rotating fluids have already been used to show that the velocity fields
converge, as the Rossby number goes to zero, to a solution of a nearly two-dimensional Navier—
Stokes system.

Using a similar method, it is possible to get results of convergence also in the non-viscous case—to
solutions of a nearly two-dimensional Euler system. The initial data do not need to be well prepared,
and the limit can be as singular as a vortex patch or a Yudovich solution.

0 2004 Elsevier SAS. All rights reserved.
Résumé

Des estimations de Strichartz pour les fluides tournants ont déja été utilisées pour montrer que les
champs de vitesses convergent, lorsque le nombre de Rossby tend vers zéro, vers une solution d’un
systeme de Navier—Stokes quasi bidimensionnel.

En utilisant une méthode analogue, il est possible d’obtenir des résultats de convergence aussi
dans le cas non visqueux—vers des solutions d’un systeme d’Euler quasi bidimensionnel. Il n'est
pas nécessaire que les données initiales soient bien préparées, et la limite peut étre aussi singuliére
qu’une poche de tourbillon ou une solution de Yudovich.
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1. Introduction

We consider the system of rapidly rotating, non-viscous, incompressible fluids extended
in the whole space,

atu£(t7-x) + M&‘(t7-x) ° Vuﬁ(ta -x) + u&‘(tv-x) X 63/‘9 = _vpé‘(tv-x)a
divue(t,x) =0, 1)
ug(0,x) = uo,¢(x),

for (¢, x) € [0, To[ x R3, where:

e e3is the unit vector along the vertical direction,
e ¢ is the Rossby number, a small positive parametet (0< 1),

and where, for each,

e ug. is a smooth divergence-free initial datum,
o T, is the maximal time of existence of the corresponding smooth solutiarp,).

The system (1) is the Euler system of perfect incompressible fluids with an additional
term, u, x e3/e, which appears when Coriolis forces are taken into account. For a justi-
fication of this model and further physical motivations, we refer to books of geophysical
fluid dynamics [16,19].

We are interested here in proving estimategpand convergence properties:of as
¢ — 0, whenug . tends to a field whose regularity is critical. This problem has already been
studied in the viscous case [5,6] using Strichartz, dispersive estimates, and we follow the
same method. In the first version of this paper, we used another dispersive inequality, which
we stillinclude because its proof may be found interesting (see Section 6). However, as was
pointed out by the referee, the method of Chemin, Desjardins, Gallagher and Grenier [5]
does not depend on a non-zero viscosity—we will see in Section 5 that it is much simpler
and finally gives a better estimate.

In the sequel of this introduction, we explain at length, before stating the results, in
which spaces of the initial data are supposed to belong, because these spaces are a bit
peculiar. The general ideas of the proof are given in Section 2. The remaining sections
contain the technical details.

1.1. A case for mixed initial data

First assume that, for eaehug . € H" (R%)3 for some large'. The local existence and
uniqueness of smooth solutions of (1) can be proved without difficulty after elimination
of the pressure. Ifi is a divergence-free vector field amtl= I — VA~1div is Leray’s

projector onto divergence-free vector fields, then

P(uxe3) =—A"1V x dzu.
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Hence, the system (1) is equivalent to:

{ due + P(ue - Vug) + 2A(D)u, =0, @

Ugli=0 = UQ,e = PMO,&

with A defined by:

__ D (Ps g _E (5_3 ))
= X = X
AD =1 (|D|f) d ( AN
for all f € L2(R%)3. Whene tends to zero, the solutions of (2) are expected to converge
towards some divergence-free vector field that belongs to the kernel of the penalization
operatorA. In L2(R%)3, there is no such field other than zero, so investigating the limit for
initial dataug . € H" (R%)3 is not very appealing.

However, any divergence-free vector fiaiddepending only on the first two variables
(x1, x2) = x5, (“h” will stand for “horizontal” throughout the paper) may be written:

—321//5
Ve = ( 01 )
v3

&

for some scalar functiogr, = v (x;), So that

ve xez 1 e 1
=—| 02ve | = =Vs.
0 &

& &

Therefore(u,, p.) = (v, pe — Ve /€) satisfies the evolution equation in (1) if and only if
(ve, pe) Satisfies:

0tV + Vg - Vv, = =V pg.

So we will suppose that the initial dai@ . are made up of two smooth parts—a two-
dimensional oneg . and a three-dimensional oigg .. Then the solutions of (1) can be
split accordinglyu, = v, + ¢., where

Btvf + vf . thf = —V} pe,
diné‘ =0,

8,1)53 + vf . thf =0, (3)
Vgli=0 = V0,e
and
{ 01 + P(ve - Ve + e - Vo + b - V) + %A(D)% =0, (4)
¢8|t=0 = ¢O,£ = P¢0,8'

If vo e — vo, thenuv, should tend to a solution of:
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8tvh + " ~thh =—-Vip,

divy" =0

’ 5
93+ V3 =0, )
v];=0 = vo,

while ¢,, on the other hand, should in some sense tend to zero.

Our goal is to prove such results of convergence whdars a solution of (5) such
thatv = (v1,v?) is a vortex patch (that is, when rgf is the characteristic function of
a bounded”'+* domain, with O< s < 1) or even a Yudovich solution (when ng is only
supposed to be bounded, with some decrease at infinity) of the underlying two-dimensional
Euler system.

1.2. Functional spaces

The estimates that we get @ in Section 4 are uniform with respect tg this is
possible only in functional spaces constructed/GnFor the sake of simplicity, we have
chosen the classical Sobolev spaces, although slightly sharper results can be expressed with
Besov spaces [10].

There is a complication with the two-dimensional parts of the velocity fields. Indeed,

a two-dimensional divergence-free velocity field whose curl is bounded and compactly
supported does not, in general, belong. It can be shown [4] that appropriate spaces
for Yudovich solutions are the affine spaces L2(R?)2, where

x|

2
a(xl,xz) ! (—x )/rg(t)dr,
0

A

with g € ch(Rg). Sucho are smooth stationary solutions of the two-dimensional Euler
system—that is,

0,0 = P(o -Vo)=0,

where P still denotes Leray’s projector, but in dimension two—and behave ljke,1 at
infinity; moreover,Vo belongs toH" (R?) for all r € R.
So we will look for solutions of (3) and (5) such that

vgz(g>+f)g and v:(%)—i—ﬁ,

with 7, and? in spaces included i2, and rewrite the systems (3) and (5) as follows:

3" + P Vot + 3" - V,0) =0,
ﬁgh:o = 58,8 = Pﬁga’ (6)
dvd+ vl v =0,

3 3
vg |t=0 = ong,
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and
athﬁh + P(t;h : Vhﬁhh + 9" V,0)=0,
- DR
05 o o 2o Y
v3|,=o = vg’.
1.3. Results

The two theorems stated below actually follow from a more general but quite technical
proposition (see Section 2). Each time, the initial data are regular but their regularity de-
generates, as their two-dimensional parts converge either to a vortex patch (Theorem 1) or
to a field ino + L?(R?%)? whose curl is essentially bounded (Theorem 2). No assumption of
convergence (or even boundedness) is madgpenso the data may be very ill prepared.

In our statementsg; = k%p(k -) denote the usual mollifiers, for dlle R*. From now
0r21, er will also make abuses of notation like writiag+ L2 instead of(c + L2(R?)2) x
L%(R?).

Theorem 1 (vortex patches)Let D be a bounded domain of clags+*, with s € 10, 1.
Leta < 4+o0. Letvg € o + L2 be a divergence-free vector field such that

vgelip and rotvg = 20,1p + 0.1p2 p.

where$2g,; € C*(D) and ¢, € C* N L*(R?\ D).
Suppose that

UQ,e = Pp—1/156 * V0 + @0,¢,
with

ol gs+72 S

for somex < 1/24.
Then solutions, = v, + ¢ of (1) existinL X, (R*; o + H*T1Y2(R?)) @ LX.([0, Te[;
HS+7/2), with

T, >Ininine™! ase — 0; (8)

moreovery, — v in Ly (RT; 0 + L?), wherev is the vortex patch solution gf), and

¢ — 0in LL (RT; Lip).

The system (3) is a two-dimensional Euler system)@and a linear transport equation
on vf. Therefore, its solutions are global. So the maximal times of existence of (1) and
(4) coincide; they tend to infinity, as we will see, owing to a dispersive phenomenon. The
growth of the lifespans, however, is very slow.
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In the case of Yudovich solutions, we have to reduce the rate of regularization and also
assume that = 0.

Theorem 2 (Yudovich solutions)Leta < +oo. Letvg € o + L?(R?) be a divergence-free
vector field such that

v3=0 and rotv)el>®nL"
Chooses € 10, 1[, thenk(e) < exp((Ine~1)#), and suppose that

UQ,e = Pk(s) * V0O + P0,¢>
with

||¢0,8 I Hs+7/2 S e

for somex < 1/24ands € 10, 1.
Then solutions; = v, + ¢, of (1) existinLS (R*; o + HTY2(R?)) @ L3 ([0, Ty [;
H5H7/2) with

T. > Inlne”! ase — 0O;

moreovery, — vin Ly (R o + L?), wherev is the Yudovich solution ), and¢, — 0
in LE (R*; Lip).

Note that a “In” could have been suppressed in (8), had we supp@seco. So the
speed of convergence has not really improved.

These results are similar to the ones that we have already got about the quasigeostrophic
and incompressible limits [10,11], and their proof relies on the same techniques. The de-
compositionu, = v, + ¢, indeed, is analogous to decompositions of solutions of the
Boussinesq system into a quasigeostrophic part and an oscillating part, and of solutions
of the compressible Euler system into an incompressible part, a compressible part and an
acoustic part. For fluids extended on the whole space, three-dimensional, oscillating, com-
pressible and acoustic parts are all subject to dispersive effects, so that Strichartz estimates
can be used to show that they all tend to zero.

In the case of non-viscous compressible fluids, the Strichartz estimates are just those
available on solutions of the wave equation [15]. They were first exploited by Ukai [22] to
deal with ill-prepared initial data, and afterwards the method has been extended to viscous
fluids [7,8]. In the other two cases, the possibility of getting suitable dispersive inequalities
was not so obvious; previous works either dealt with well-prepared initial data [3,18] or
concerned viscous fluids [5,6].

Recall finally that methods and results are different on the torus, where there is no
dispersion but resonances [1,2,13].
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2. Sketch of the proof

An important role will be played by the curl of',

2. & 9102 — v}, 9)

and its derivatives in the directions indicated by a collection of vector fields. A system
of continuous vector field$ = {w*; u=1,..., M} on R? is admissible[4,14] if the
function [W] d=Gfmin(|w”|; w=1 ..., M) is bounded away from zero. Givere ]0, 1,

we denote by (W, §2) the quantity:

M M
120z + [IW1 Y oo + Y llwilles + Y [diviw )] (10)

n=1 n=1

cs—1

If W is admissible an& (W, £2) < oo, thens2 is in some wayC* in at least one direction
(typically, the direction tangent to a vortex patch of clas8s™). We suppose below that
£20, has this sort of regularity.

Proposition 1. Let Wp = {wg; w=1 ..., M} be an admissible system ©f vector fields
onR?2, with s € 10, 1[. Suppose that

o ~
UQ,e =vV0,e + ¢O,£ = <0> + vo,e + ¢O,€’

where, for some constafy > 1, independent of,
00,6l L2(r2) + 1820, ]l L < Co,
and
100,e ll prs+11/2m2) + 0, [l gs+7/2 < Coe ™

with o < 1/24. Suppose also

M
Co> llolle + Vo || gsvze, + [[Wol ™ oo + Y [wh |
n=1

C s

and denote by, and 55 constants such that
Jdiv(t 20.) | a < Ce

and

~

[¥6.e Iuip < Ce-
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Trlen for all p € 14,1/(6x)[, there is a constant (independent oy, 1o, Co, Ce
and C;) such that the lifespans of the smooth solutionglgfare bounded from below as
follows: for all y €10, 1/p — 6« and for alle < 1 such thatne™ > C,,

T.>7" & Clc In Ilrr:(’:fci)) _ an

with

m(e,y) d=efmin<g>’, IniV>.

e

Moreover, solutions of3) and (4) satisfy

[ok @] < In(e+ C)et ety 12
and

[03@)]p < Celet ¥ 13
forall r >0, and

‘
f e )] 0" < Y00 1)

0
for all € [0, T.].

If C. andC, are such thaTg(V) — 400 ase — 0, so thatp, — Qin Llloc(RﬁL; Lip), this
proposition can be exploited to show convergence results on arbitrarily large intervals of
time.

First let us place ourselves under the assumptions of Theorem 1. For a fiefelike
rotvg, one can construct an admissible system of (t@d)vector fields,Wp, such that

X;(Wo, 20) < +oo. Then we have for allofy € Wo:

[ div(wh rot(p,-1/156 * vg))|

Ccs-1 = ||d|V(wg (p€—1/156 * QO)) cs—1
"
0

< |div(wg 20) | ¢o-1,

independently of. So Proposition 1 applies witfi, + C. < Co. Hence, is bounded in
Lip(R?) on any finite time-interval, uniformly with respect#opand therefore the solutions
of (3) tend inL®.(R™; o 4 L) to a solution of (5). Indeed, the differentef two solutions

loc
of (6), v, andv,,, satisfies:

y8" + Pt - V8" 48" . Vil 46" Voh) =0,

83+l - vsR4 5" Vo2 =0,
8l1=0 = V0,6, — V0,e5
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sincevg, = p,-1156 % Vo — vo IN o + L2, it is easy to see that— 0 in L.(RT; L?) as
£1, €2 — 0, by Gronwall’'s lemma.

Under the assumptions of Theorem 2,u{§)1has no tangential regularity, but we may
always takeWp = {wd, w3} with w} = (1, 0) andw3 = (0, 1) and then write, fopr = 1, 2,

| div(wg rot(pxce)  v5)) | o2 = [div(wg (pice) * rotvg)) | a

< [l oxce)  rotug |

Sk(e)* [rotvg |,
< Coev(ln e~y .

So this time Proposition 1 applies with, = Coexp(s(Ine~1)#) and, sincejg,E =0, with
Cs arbitrarily small. Therefore

1 Ing™v
T > n -
CCo In(e+ Coesne™D")

]

which meansT, > Inine~1 for ¢ sufficiently small. After that the convergence in
L%’C(RJF; o + L?) can be proved exactly as Yudovich’s theorem itself [4, Chapter 5].

Now we present the main lines of the proof of Proposition 1; the details are spread in
the remaining sections.

First (in Section 3), we recall how the striated regularity is propagated; there is nothing
new in this part, only the standard two-dimensional theorgofortex patches [4] written
with the notation of the three-dimensional ones [14]. This gives the estimate (12) in a
straightforward manner.

Let us note:

t

Vo = [k, a

0

and
Ho(t) = (e+ Co)¥ ™.
Since, in view of (12),

VO < H (1),

we have:

[3®] i < 198 Hupefé Vo lloe & < & gV < E H,(1). (15)
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This proves (13). In Section 4, we will use (12) and (13) to get:

|51 | e3¢ H, (1)eCeHegC fo I’ (1)

Hs+HLY2(R2) + ||¢8 (t)i Hs+7/2 <

by classical energy methods. (From what follows, it could seem that an estimatenof
H519/2 should suffice, but in fact we have to estimatein H*11%2 in order to estimate
¢ in HS+7/2.)

Finally we define the projector8; and P_1 on L2(R3)3 by:

Pi1(D) _1 Pu+ti
_ = — x
w1(D)u =S| Pu D u

for all u € L2(R3)3. Remark that

—é—| x Pr1(§)i(§) = £iP11(§)i (%)

for all £ € R3\ {0}; therefore,

. D3
| — (P1¢ps — P_1¢¢).

A(D)¢pe = A(D)(P1ge + P_16¢) = D]

As P11 P11 = Py1 andPiq P+ =0, we deduce from (4) that

{ 0 Pragpe & L (32 Prade = —Pr1(ve - Voo + e - Vepe + e - V),
Pi1¢e|i=0 = P+1¢0.c-

So, by Corollary 3—the dispersive result, proved in Section 5—and the tame estimate (29),
we get:

t t
/ e o' S eY/PetYP (Ilcbo,s pgs-572 + f |ve (@) - Vope ()] 1572 O
0 0
t t
+ / e (1) - Vepe (1) || yossyo A" + f e (1) - Vue(@)| 54572 dr’)
0 0

t
1/p,1-1 2
Se Ipl=tp (”(bOs | gs+52 + / ||¢s (" H Hs+T/2 dr’
0

t

+ /(H Ve (1) HLoo + H V(1) H Hs+7/2(R2)) H¢e (" H Hs+7/2 dt,)

0

foralle > 0andallr < Ts.
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Therefore, using (16), we see that

t
/ [ e 0] 0 < €277 H (1) He O Jo e @) l1uip
0

< g/ p—6a H, ([)eas He(t)

as long agfé ll¢e (") lILip d” < 1, for some possibly new constaditinside H,. This proves
(14), because

H, (1)eCeHe) < gy

is equivalent to (11), and so concludes the proof of Proposition 1.

3. Propagation of the striated regularity

Taking the rotational oﬁ,vf + P(vé’ - V) =0, itis readily seen tha®, is preserved
along the lines of flow:

&

3th+vh V2, =0, 17)
$2¢|r=0 = £20, =rotvg.

Definew! as the solution of

{ 9wk + vé’ Vuk =wl - Vvé’, (18)

wéL|t=O = wg.
As Wy is admissible W, () is admissible at any time with the estimate:
-1 _
I[We®] 7| oo S TWol ™| €Y@ < Coe®, (19)

and, consequently, the static estimate stays also valid for all times:

40l S Vol + 140 ]+ 1220 o+

Xs(We(2), £2¢ (t))>
Co

< Co+ Coe™ + Coln(e+ X, (We(t), 2:(1))). (20)

Xs(We (), -Qa(t))>
182 ()] L

< Co+ Coe + Coln<e+

We have used

1520 2 < |58 ] 261" < Coee, 1



342 A. Dutrifoy / J. Math. Pures Appl. 84 (2005) 331-356

which follows directly from (6), and
[£2:®]| ;o < Co, (22)

which is due to (17). Owing to (17) and (18), din' $2) is preserved along the lines of
flow, so

| div(wk (1) $2: (1))

o1 S CeeVE D, (23)
The remaining term in (10) is estimated thanks to the inequality,

H wh - va

o S I v “Lip | w

o + | div(wt 2,)

cs—1»

which shows that the velocity inherits the striated regularity of its curl [9, Section 2.4.1]
and leads to:

t t
[wi®] e S Cot / Jod @) | [ wt @) ] o 0" + / div(wt ) 2:()) | oo di,
0 0

so that
|wl @) ] o S (Co+ Co€”Ve 1)l Ve, (24)
Putting (19), (22)—(24) together gives:
X5 (We (), 2:(1)) S (Co+ C + Co)e” Ve
hence, substituting in (20), we get:
ok @) Lip S Co+ Coe“" + Co(In(e+ Co + C; + Cot) + Ve (1)),

from which we deduce (12) by Gronwall’'s lemma.

4. Energy estimates

We begin with estimates ofy.
SinceA(&)u(§) - u(¢) =0 for all € £ 0, we have by Plancherel’'s formula:

(A(D)u,u),,=0
for all u € L2. Therefore, we get from (4):

G (1) 2 < ll ol 2&l0 1V lioedr” (25)
L L
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and, by derivation of (4),

t

[Vée@ |2 S1Voel,2 +/(||Vve(f’) 1o + [V @] o) [ Ve 20
0

t
+ / [ 2| P20 ()] o . (26)
0

A consequence of (25) is that

60 )] 2 < Cos—el 19 lioe &' g} 19420 M

Cos~eVs 0 gleHe®)

N

<& 9 H, (1)l He®, (27)

More generally, in order to obtain estimatesHri for r > 0, we use Littlewood—Paley
theory [4,20,21]. The operators,, are defined by:

p@™"D)f ifm=0,
Amf =1 x(UDNDf if m=-1,
0 if m< -2,
wherey € C8°(IR<+) is equal to 1 near the origin, so that

def

0&) = x(1€1/2) — x (1€1) (28)

is supported in an annulus. Far> —1, we write:

1
éat”Am(ps”iz + (vs VAnpe + ¢e - VA pe + A (e - V), Am¢8)L2
= ([Ue -V, A e, Amd’s)Lz + ([¢s -V, Aploe, Am¢6)L27
which implies

t

| Amde®] 2 < | Ambor |2+ / | A (Be(t') - Voeh)] 2 0"

0

t t
+ / o) -V, Am]epe ()] 20 + / [t - V. Am]ee ()] - dt';
0 0
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then we multiply both sides by”?st7/2 | take the2-norm and use the following lemmas:

Lemma 1. If a € o + H'(R2) N L(R?), with Va € H"(R?), and b € H"(R3) =
H"(R2 x R), then

labllar S llallzee bl g + 161l 2lIVall gr w2 (29)
and

[ la- v, Anlb] )02 e S IVallieliblar + 1Vl 20 Vall gr gz (30)

m=—1

Lemma2.If a,b € H"(R?) N Lip(RY), then

@ ta -V, Amlb| 2) 2 12 S UVallz bl ar + 195 ] L llal -

m=-1

Once these two lemmas will have been proved, we will have:

t
e @) | yss7/2 S Ndo.e | sz + f e @] 2 [ V00D | yesoragay A
0

t

+ / ([ Voe)|| oo + [V o) [0 @) | sz’ (31)

0

Proof of Lemma 1. The productub is decomposed as follows:

+00 +o00
ab= " Swi2aAwb+ Y Sy_1bAya,
m'=-=1 m'=1

with the notation:

m<n—1
So we see that
+00 m+N
Am(@b)= D Au(Swa2alwb)+ D Au(Sw-1bAwa)
m'=m—N m’=min(1,m—N)

for some integeV depending only ory. Therefore, we have:
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400
2" | Am(@b)| 2 $2" > llalixll Awbll 2
m'=m—N

m+N
4 2mr Z ”Sm/—lan;“;ﬁa lAmwallr2w2

m’=min(1, m—N)
+00
Sllallzes Y 22" | Ayb ] 2
m'=m—N
m+N
bl Y 272N A Val 2@z
m’=min(1, m—N)
thanks to a classical Bernstein’s inequality [4, Lemma 2.1.1],
||A /(IHLZ(RZ) < 2- m’ |IA /VCI”LZ(RZ), (32)

and one of its anisotropic generalizations [12, Lemma 5.2],

ISw-1bl 2 < 2" ISw-1bll 2, (33)

where the noranh %3 is defined on the functiong = f(x, x3) by:

1/2
12, = 07N | e = H </|f(-,x3)|2dx3>
R

Then (29) follows by Young'’s inequality:

L®(R?)

labllgr = [ (2" | An@b) | 2) 02 4|2
Slallze [ @ )E S 2| @7 1 Anbl2) 0> o 2

1Bl 2| @Yy [ @™ 1AW Val 22) 1 4 2
Sllallizeellbllar + 101 21 Vall gr g2 -

The proof of (30) goes along the same lines:

m—+N
la-V.Aulb=" > [(Sw-10)-V.An]Auwb

m'=m—N
+00
+cm + Z [(Am’a) -V, Am]Sm’+2bv

m’=min(0,m—N)
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where:

d_ef{ [(A_1a) -V, AplS1b ifm—N< -1,
fo— 0

otherwise.

+00
Z [(Sm’—la) -V, Am]Am’b )

m'=m—N L2/ m=—1

m+N +00
(2"" > 2—’"||vsm/_1a||mc||VAm/b||Lz)
m'=m—N

Firstly, we have:

‘ (zmr

<

m+N

12

m=—11112

m+N +00
5 IVal|l L ( Z Um—m")(r—1) om (rl)||Am/Vb||L2>

m'=m—N

m=—11112

SIVallLe Vol gr-1;
here we have used the inequality,
ILf, Amlg] 2 S27" IV fllzeligll 2, (34)

which is true for anyf € Lip, g € L? andm > —1. Secondly, using (34) of,, we get:

And thirdly, we have:

<2mr

<

| @ llemll2) 2 4|2 S I Vall oo 151 2.
+oo +0o0
Yo [Awa) -V, An]Swiab )

m’=min(0,m—N) L2/ m=-1

400
2mr A,a S ’ Vb 0,
( > lAwaleg S ||Lx]1§3>

m’=min(0, m—N)

12

+00

m=—1112

+00
<

~

+oo
( 3 z<mm>’2’"’||Amea||Lz<Rz>||Vb“L2)

m’=min(0, m—N)

m=—1112

SIVOI20Vall gr w2y
owing to (32) and (33) again.O

Proof of Lemma 2. The proof may safely be omitted, as it is similar to (and easier than)
that of the second part of Lemma 10O

Now we turn to the estimates of higher ordersipn
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Lemma3.If a € o + H"(R?) N Lip(R2) andb € H" (R?) N Lip(R?), then
12" 1a - V. Awlb]| 2) 2 1|2 S IVallz bl + 1951 2 [ Vall gra.

Proof. Again, the proof is very much the same as the proof of (3@).

Thanks to this lemma and Lemma 2 (with= 2) and proceeding like we have just done
for ¢, we get from (6) the estimate:

t

[5e®]| 51172 S N0.e | rs+1v2 + / (Joe @) i + o lLip) [ B @) | yosazz A
0

1
+ / [ve @) ip VO Il gsav2 0,
0

SO

t
H 138(1‘)” Lri112 < (Coe_"‘ + Co/” Ve (t) ”Lip dt’) efé llve (") llLip dt'+Cot
0

< e H, (1)ele He O, (35)
Introducing this in (26) yields:
| e )] ;1 < e~ He (1)eCe He ) eC Jg g (luip '
which gives, substituted in (31) with (35),

=3 H, (1)eCe He () gC o 19 (llLip d”

=]

Hs+71/2 <

5. Dispersive estimates
Here is the main dispersive inequality.

Proposition 2. If C c R3is an annulus centered at the origin ande C*°(R3) is sup-
ported inC, the functionk defined by

K(t,7) = / YEE R G 21 ;eRS, (36)

3
R
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satisfies
|k (. 9]« <CT2In(e+1). (37)

Proof. If ¢ is the function defined by (28) fdr € R, the series

M

Y @ "E)YE)

m=—o0
converges tay (£) in L1 for someM > 0. So
M
” K('L', ) ”Loo < Z ” Km(fa ) ”Loo
m=—0oQ
with
L &g .
Kn(r.2) & / (@ " ey ()T g,
R

The proof of estimate (3.4) in the preprint of Chemin, Desjardins, Gallagher and Grenier
[5, p. 9] gives readily:

|| Km(T’ ) ” L < C/”l)[,”Ll m|n(2m, 7_1/2)7 (38)
the constan€’ being independent of, r andy. Hence:

Llogy T=1/2

K@) e <CIWI D 2"+ C MWl Y2(M — [logy T Y2]),

m=—0oQ

which gives (37). O
The idea of the proof of (38) is that integrating by parts in one horizontal direction gives:

|Km (@) | oo ST Y210 11,

independently ofz (it does not give directly a dispersive estimateorbecause the first
derivative ofés/|&| with respect to any horizontal direction vanishes wiga: 0), while

[Km (. )| oo S 2" 191l 2

by a Bernstein’s inequality. Alternatively, a dispersive inequality for low vertical frequen-
cies can be proved thanks to the variatioregf|&| with respect tct3 (see Lemma 4 in
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Section 6). This method leads to Proposition 3 which, though usable, is less good than
Proposition 2: one finally gets:

[K @] < CT7H2
instead of (37).
Starting from Proposition 2, the Strichartz estimates can be deduced in the following

classical way.

Corollary 1. LetC c R2 be an aAnnqus centered at the origin. lret [2, +00] and let £,
be C* functions such thatuppf,, ¢ 2"C for all m € Z.

Then
£\ 12 AN\ 127
S (23'" max(l > In<e+ —)) | finll 17 (39)
& &

forallt e Rt and alle > O.

-t D3
+iL D3

&5 7

Proof. Plancherel’s formula implies:

. D
165580 £ 2 = Il £l 2 (40)

for all r ande. Below we show that

4t D3 £\ Y2 t
|e= ™ £, ||LOON23”‘ma><1 8) In<e+g>||fm||L1, (41)

so (39) will follow from (40) and (41) by interpolation.
Lety € Cg°(R3) equal to 1 orC and vanishing near the origin. Then

D3

il D8

€

m|-‘

L
I's

D'w

(27" D) fm
(D)(fm(27™)),

Jm v
U (

n«|~

_3
D]

thanks to the homogeneity 6§/|£1, so

|55 o <227 [ B 2l Sl

Now (41) follows either from Proposition 2 (if > ¢) or by integrations by parts (if< ¢,
in which case deriving the phase costs nothing).

Corollary 2. For all p > 4r/(r — 2), with the same notation as in Corollatly we have

€555 fullp g < €422 £y (42)
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Proof. The proof is aI' T* argument [5,6], which we recall only for the convenience of

the reader.
Let p suchthat Ip+1/p=1and

BEw e c(RY x R3); 191,57 <1}

Then
o0
.+ D
”eﬂtléﬁs ”L"(U = sup (eiéﬁsf l’[’(t))
lI/eBo
° D
= sup [ (fu, €T DY DW(D),,
lI/eBO
<N fimllp2e,

with ¢ as in the proof of Corollary 1 and

o0
.4 D
« % sup /e*'glfsw( MDY (1) dr
veBB 12
0
We have
o0 o
ii& —js D3
a? = sup /eﬂw V(2 mD)lI/(t)dt/ 'S0y (27 D)W (s) ds
veBB b L2

(v @ " Dyw (1), jE'Tmp(z "D)W (s)),, ds dr

lv@™"Dyw o], v@

Lr

—1/2 1-2/r
t— t—

x (23’” ma><< | S') In(e+ | S')) ds dt,
£ £

applying Corollary 1 withf,, = ¥ (27" D)W (s). Hence, by the Holder inequality,

[lve
0
_ -1/2 . 1-2/r
X (max(l, —|t sl) In<e+ I s')) ds
& &

()[2 g 23m(172/r)

: (43)

Ly
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because
[v @ DW O 1ppry < [F 2| # Ol iz

Finally (42) follows from (43) by Young’s inequality, as the norm of the function

e G

in LP/2 is bounded byCs%?. 0O

Coroallary 3. For all p > 4, there is a constanf such that iff, g satisfy

{ of S =g
fli=o = fo,
then
Ifllzp sy < Csl/p(||f0||Hs+5/2 + ||g||L,1(H»f+5/2))~ (44)

Proof. Duhamel’s formula gives

’hl“‘

t
A f (1) = €F'F ﬁ'mfo+[ T A g (1) dr,
0

with A,, ©'o2" D) for all m € Z, so
00
Zm(s-'_l)”Amf”Ltp(L;O) < gL/ pom(s+5/2) (”Ame”LZ +/H Amg(t’) ”L2 dt’).
0

So we get the part of (44) corresponding to high frequencies:

@21 ) 2ol | < T PN Am )3 Tl o 1
<@ P08 fllz) ol o 2

S Y21 foll sy + gl 2 giss72))-

Since fo € L? andg € LY(L2) imply f(t) € L? for all ¢, the low frequencies can be
treated as follows:
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IA—1fllpp ) < | [ (1Am Fllz=) 2] L
<A FIe), 2 olo |
SeVP (Il foll g2 + gl 2 p2)-

This completes the proof of (44).0

6. Another dispersiveinequality

To conclude, here is the alternative method which we spoke about in the introduction
and after Proposition 2 in the previous section.

Lemma 4. LetC c R3 be an annulus centered at the origin and of radiand b, with
0 < a < b. Then there is a constant> 0 such that, for anyy € C*°(R3) supported in

G ECn {5 R Jga <),
the functionk defined by(36) satisfies
|K ()] <CT7H3 (45)
The constanC may depend oa, b, r andys, but not ont.

Proof. Seté), = (1, 2). Choosing eventually < a/4, we may suppose that/15/4 <
|&n] < b if & € suppyr; let Cn C R? be the (closed) annulus centered at the origin and of
radii a+/15/4 andb.

Integrating first with respect t& gives

K(T,Z)=/f(1;$h,zs)é11sl+izzsz dé1 déo,

Ch
with
~ T ——f +iz3¢
K829 % | y@, oe Vo= dc.

R

Therefore, thanks to the compactnesfg)f we only have to show that, for 931,? e C,
there is a neighborhood &f, notedV(S;?) and a constant = r(a, b, £) > 0 such that,
for anyy € C>®(R3) supported irC,,

< Cor ™13, (46)

”E(“ " ')”Lm(V(g,?)xR)
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the constan€y possibly depending om, b, r, ¥ andé}?.
Fix g,? € Cp. Lety :Rt — R be a smooth function equal to 1 A, 1] and vanishing
outside[0, 2]. Then set, using a new variabfe= (y;, y3) € RZ x R,

ur (&, ) =¥ (1val/r) ¥ (E2+ i, €),

wherer > 0 is to be determined, and

1 1
f(;“,y)=§< - +y3>~
JE w2zl
Finally let:
KP(r,y) = / ¥ (Iysl/r)uy (g, )€ de
R
and
K@z, y)= / (L= (1ysl/r))ur (g, )ETED de.
R
Remark that
K(t: 8,23 =KP (1, ) + K2 (z,y) (47)
at

o <3 1 >
= - a_+— )
g (E” Y
provided|&, — &0 <r.

The ordinary methods of non-stationary or stationary phase do not yield any time-decay
on I?Sl) (t, y) for smally. Indeed, it is elementary to check (see (51) and (52) below) that

of _9%f 3
Q(O’ 0)_W(O’ 0)=0.

However, since

83
%(o, 0 = —3/[e%]° %0,

more refined methods, described by Hérmander [17, p. 234], yield the following: there
existC* real valued functiona(y) andg(y) near 0, depending only (j,f such that
I KV, ) - (uo,,Ai(ozrz/:g)r_l/3 + ul,rAi’(a12/3)t_2/3)

” Lo° < Cl,rr_la (48)
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whereAi denotes the Airy function [17, p. 213-215] amgl- (y), u1,-(y) € C3°, providing
that the support ofz, y) — ¥ (|yal/r)u,(¢, y) is sufficiently close to 0—which means

that (48) is valid if O< r < rg, for some constanty depending only or&ﬁ’. From this we
conclude that

” I?;(fl) (fv ) ” L < 61,}'7:_1/3 (49)
if 0 <r <rg, because

Aix) < |x|”Y4 and AV'(x) < x4

when|x| is large.
On the other hand,

K2 @, )] oo <Capt™t (50)
if 0 < <min(a/4, a®/100). Indeed, for eacli, y) such that
(L= (Iysl/r))ur &, y) #0,

we then have:

|€/?+yh|2a€5—2r>%(«/l_5—2)>%

in addition of|y3| > r and|¢| < r. Since

’ 1 - - — < ¢
VZ+e2 el e+ e+ 2+t 2
for all ¢ > 0, this implies:
‘af@ )‘ ' l —+ ¢ (51)
ac | T a y3—
o 19 + ynl2 + ¢2 12 + ynl (1E0 + yu 2+ £2)32
3r2
e —
2087 + v
96r
>r(1- 22
( a3>
>r/25.

So (50) follows from a simple integration by parts(d,):
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_ B eirf/
KDz, y) = / (1- w(|y3|/r))ur<c,y)(%)(@y) de
R
I P u, _urf” itf ()
-2 R/(l B (- 155 )@,
and
2 f 3¢ 33
—(,y)=— + 52
920 = T P4 % T (&0t et (22 2)

is clearly bounded on supg, oncer is fixed so tha(é,? + yh| >a/4.
So we get (46) from (47), (49) and (50), choosing= min(ro, a/4, a®/100) and
VED =BE. . O

Lemma5. For anyr > 0, let

G ECn s R jgl>r),

and suppose this time thgt € C*°(R3) is supported irf”:;.
Thenk, always defined b§B6), satisfies

|k < Cr V2

Proof. This is a particular case of Lemma 1 in the preprint of Chemin, Desjardins, Gal-
lagher and Grenier [5, p. 5].0

Proposition 3. For anyy € C*°(R3) supported inC, there is a constant such that(45),
with K defined by(36), is valid.

Proof. Let ¢ : Rt — R be, again, a smooth function equal to 1[d 1] and vanishing
outside[0, 2]. First, chooseg such that (45) is true if supp C C,, (Lemma 4), then write

- (2 - (2
w<s>=w( "53')w<s>+(1—w( "53'))1#(5)

1o 1o
and apply Lemma 5 with =rg/2. O

This proposition may then be used instead of Proposition 2, with slightly weaker results.
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