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1. THE PHENOMENON 

The  proof that a proposed sorting method actually works frequently involves the 
observation that certain operations preserve the order introduced by previous 
operations. T h e  present paper gives a unified treatment of this order-preservation 
phenomenon.  A number  of  results about sorting networks and other sorting methods, 
previously proved in an ad hoc manner,  are immediate consequences of our theorems. 

T h e  following examples will serve to introduce the phenomenon. 

EXAMPLE 1. Consider a rectangular array of locations, with a number  placed in 
each location. To  sort a row of locations means to take the numbers occurring in that 
row and permute  them so that they are in ascending order from left to right. Similarly, 
sorting a column places the numbers  in that  column in ascending order from top to 
bottom. Figure 1 shows the effect of sorting the rows, and then the columns, of a 
3 • 3 array. 

T h e  reader will note that, in array (c), the rows are in ascending order. In  fact, 
whenever we sort the rows of an array, and then sort the columns, the rows remain 
in order. Thus,  we say that sorting the columns preserves the order in the rows. 

4 8 6 4 6 8 l 3 5 

9 7 1 I 7 9 2 6 8 

5 2 3 2 3 5 4 7 9 

(a) (b) (c) 
FIG. 1. Column sorting preserves row sorting. 

EXAMPLE 2. Suppose each of the locations 0, 1,..., n - -  1 contains a number.  Let  
p be a positive integer. For  i ---- 0, t,..., p - -  1, let Si be the sequence {kp + i t k is 
a nonnegative integer and kp + i < n}. Thus,  the p subsequences S i partition the 
sequence 0, 1,..., n - -  1 into "residue classes." T o  p-sort  means to sort each of the 
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sequences Si �9 Figure 2 shows the effect of 3-sorting a sequence, and then 2-sorting 
the result. In  general, if a p-sorted sequence is q-sorted, it remains p-sorted. Thus,  
for any positive integers p and q, q-sorting preserves p-sorting. This result, which 
was pointed out to us by D. E. Knuth,  is fundamental to the analysis of Shell's 
method of sorting [4]. 

7 4 2 8 0 9 6 l 3 5 

5 0 2 6 l 3 7 4 9 8 

l 0 2 3 5 4 7 6 9 8 

Fro. 2. 2-Sorting preserves 3-sorting. 

The  foregoing examples illustrate a phenomenon which we generalize as follows. 
Suppose we are given a finite set A (the locations). Let r : A --~ Z map A into the 
integers. For a E A, r is the value in location a. Let P be partial ordering relation 
over A. The  function r is consistent with P if 

xPy ~ r < r  

Let  F be a 1 - -  1 partial function from A into A. Let F k denote k-fold iteration of 

F; i.e., y = Fk(x) if there exist u I ..... uk-1 such that u 1 ----F(x), ui+ x = F(ui), 
i = 1, 2,..., k - -  2, and y ---- F(uk_l). The partial function F is called a shift if the 
following "acyclic property" holds: for all x ~ A and k > O, Fk(x) # x. A maximal 
sequence of locations Uo, u 1 .... , u z such that F ( u i )  = u i+  I , i = 0 ,  1 , . . . ,  l - -  l, is 
called a chain of the shift F. Observe that each location is in exactly one chain of F, 
and that the number  of such chains is [{x ~ A I for all y E A,  F ( y )  ~ x}l 1. 

We now give a formal definition which corresponds to the process of sorting the 
chains of F. Given r : A ~ Z and the shift F, a unique function CF : A ~ Z is 
determined by 

(i) Cr(x) <~ r x E d 

(ii) if X is the set of elements of a chain o f F  and a ~ Z, then 

I X ~ 4-1(a)[ = I X t'h r 

The  following property is the object of study in this paper. 

DEFINITION 1. L e t F  be a shift and P, a partial ordering. Fpreserves P (abbreviated 
F pr P)  if, whenever r is consistent with P, CF is also consistent with P. 

EXAMPLE 3. Let A be the set of vertices of a uniform binary tree in the plane. 
Define xPy if vertex y is in the subtree rooted at x, and define F by F(x) -~ y if x and y 

1 If S is a finite set, [ S ] denotes the number of elements in S. 
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y 
are at the same distance from the root, and x is immediately to the left of y. Then  
F pr P.  Figure 3 gives a function ~ consistent with P, and also gives r the result of  
sorting along the chains of F. 

A PHENOMENON IN THE THEORY OF SORTING 

(h @F 

FIG. 3. Sorting the levels of a uniform binary tree. 

2. CHARACTERIZATIONS OF THE PROPERTY F pr P 

T h e  object of this section is to determine necessary and sufficient conditions for 
the property F pr P to hold. 

I t  will be convenient to establish a notation for certain elementary operations on 
binary relations over A. I f  

R C A • A, R = {(x, y)  ] (x, y) r R} and R -a = {(y, x) [ (x, y) e R}. 

I f  B C A, R(B) = { y [ for some x e B, (x, y) E R}. The  expression xRy is synonymous 
with (x, y)  e R. The  composition R o S of relations R and S is defined by x(R o S) y if, 
for some z, xRz  and zSy.  The  relations R and S commute if R o S and S o R are 
equal. T h e  k-th power R k of R is determined by 

RO = {(x, x) I x e A) ,  

Rk+ I = R  k o R ,  k = 0 , 1 , 2  ... . .  

co cO 

We further define R + = 0k=t Rk and R* = Uk=0 R~. R+ is called the transitive 
closure of R, and R* is called the reflexive transitwe closure of R. 

I f  P is a partial ordering relation, define the relation C v by 

C v ---- {(x, y) ~ P I x :/= y, and 

(x, z) E P and (z, y) ~ P =~ x = z or y = z}. 
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For xCe y read "y covers x in P ."  Note that, if P = F*,  where F is a shift, then 
Ce =F. 

I f F  is a shift then F -1 is also a shift. If  P is a partial ordering relation then p-1 is 
also a partial ordering relation. It is an easy exercise to verify the following duality 
principle. 

LEMMA 1. F pr P if  and only if F -x pr p-1. 

The  following lemma prepares the way for our first characterization of the property 
F prP.  Let  F be a shift having the sequence 3'1 ,Yz ,...,Y,, as a chain. Let  
Y = Yl,  Y~ ,..., Yn �9 Let  ~ be an assignment. 

LEMMA 2. For any integer a, 

(i) t Y n  {x Ir ~< a}l = I Y m  {x [r ~ a}[ 

(ii) [ Y n  {x [r ~< a}[ >~j if and only g r  ~< a. 

TnEOm~M 1. Let F be a shift and let P be a partial ordering. Then F pr P if  and only if  

(a) xF+y =~ y/Px 

and 

(b) i , j  condition. Let the sequences x 1 , x 2 ,..., xm, and Yl ,Y~ ,...,Y,~ be distinct 
chains of F. Let X = {Xl, x2,... , xm} and Y = { Y l ,  Y2,..., Yn}. Then, for any i, j and 
Y C Y, x,Pyj and I Y [ = j ~ [ p - l ( ~  ~ X)I >/ i .  

Put  less formally, the i, j condition states that, if the i-th element of one chain 
precedes the j - th  element of another in P, then any j elements of the second chain 
are preceded in P by at least i elements of the first chain. 

Proof. Assume F pr P. 

Proof of (a). Let  6 : A --~ Z be 1 --  1 and consistent with P. Let  F be a shift. 
I f  xF+y, then Cv(x) < Cv(Y) (equality is ruled out since r is 1 - -  1). If  yPx then, 
s inceF pr P,  CF(Y) < Ce(x). These conditions are mutually exclusive, so xF+y =~ y]?x. 

Proof of (b). Suppose xiPyj, ] F I = J and Y _C Y. The  following assignment is 
consistent with P: 

l0 if x E p - i ( F )  
r = 1 otherwise. 

Then  I Y c ~ { y  I~(Y) = 0}1 ~ j  so (by Lemma 2) ~F(YJ) = 0. Since F p r P ,  
,~v(x~)=0.  Thus  (again by Lemma 2) ] X c ~ { y [ ~ v ( y ) = O } ] ~ i .  Hence 
] X ~ { y  ] ~ ( y )  = 0}[ = [ X ~ p -x (~) [  ~ i, and the i , j  condition is established. 
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Now, assuming (a) and (b) we prove F pr P by showing that, if r is consistent with 
P, then Cr is consistent with P. Suppose x :/= y and xPy. We prove CF(x) ~ Cr(y). 

(i) Suppose x and y are in the same chain of F. 

By condition (a) of the theorem, yJr+x, so xF+y and, since ~ is consistent wkh F 
(and hence consistent with F+), Cp(x) ~< r 

(ii) Suppose x ---- xi occurs in the chain xl,  x~ .... , xm and y = y~ occurs in the 

chain Yx, Y~ ,..-, Y~- 

I Y n { y  ]r ~ r > j .  

Hence I Y n { y  Ir ~< r ~ j -  Let Y = Y ~ { y  [r  ~< r By (b), 
[ p- l (~ )  ~ X [ ~ i. Since r is consistent with P, x e p - l (~ )  =~ r ~ r Thus 
[ X n {y [r ~< r = [ X c~ {y [r ~< r >~ i and (by Lemma 2) 
CF(x,) ~< ~v(Y~). 

The proof of Theorem i suggests the following method of constructing examples 
to show that F pr P is false in particular cases. Simply choose a set Y involved in a 
violation of the i, j condition, and set 

lO i fYeP- l ( ]7)  
r ---- otherwise. 

Then ~b is consistent with P, but CF is not. 
To prove that Ce is consistent with P, it suffices to prove that CF is consistent with 

Ce,  i.e., xCpy => ~r(x) ~ ~F(Y). Accordingly, a weakened form of the i , j  condition 
suffices to prove F pr P, and we obtain the following corollary, which proves useful 
in applications. 

COROLLARY 1. Let F be a shift and let P be a partial ordering. Then F pr P if and 

only if 

(a) xF+y ~ y]~x 

(b) Weak i , j  condition. Let the sequences x l ,  x2 ,..., xm and Yl ,Y~ .... , Yn be 
distinct chains ofF. Let X = {xl , x~ ,..., xm} and let Y = {Yl , Yz ,..., Yn}. Then, for any 
i , j  and ~C_ y,  x, Cvyj and [ Y[ = j  ~ t P-I(Y) c~ X I ~> i. 

COROLLARY 2. I f  F pr P then F* commutes with P. 

Proof. We must show the following: 

(i) if xPz and zF*y then, for some w, xF*w and wPy. 

(ii) if yF*z and zPx then, for some w, yPw and wF*x. 
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Proof of (i). I f  xF*z then the result follows by taking w = z, since the partial 
ordering P is reflexive, zF*x violates (a) of Theorem 1. Thus  we may assume that x 
and z lie in distinct chains o fF .  Let  x = xi in the chain x 1 , x 2 ,..., xm and let z = yj  
and y = Y k ,  j < k, in the chain Yl ,Y2 , . . . ,Y , .  Let X = {xl,...,x~} and 
Y = {Yl, Y2 ,..., Yn}. Then  we must  prove the existence of l / >  i such that x~Pyk. 
The  proof is by induction on j .  

Basis ( j  = 1). By Theorem 1, xiPy I implies that for every {Yk}, 

I P-I({Yk}) n X I > / i ,  

so there exists x I e P-l({yk} ) such that l / >  i. Thus  x~Pyk, as desired. 

Induction step. Assume the result for a l l j '  < j .  Set Y = {Yl ,...,YJ-1 ,Yk}. Since 
xiPyj, the i , j  condition tells us that E P - I ( Y )  n X [  > / i ,  so there exists xz, l > / i ,  
such that x, e P-I(Y). Then  either x~Py k and we are done, or xrPy/ for some 
j '  e {Yl ,.--, Y~-I}- In  the latter case, the result follows by induction hypothesis. 

Proof of (ii). We use the duality principle to accomplish a reduction to (i). Since 
F pr P, F -1 pr  p-1.  By the result just  proven, if xP-lz and z(F*)-ly then, for some w, 
x(F*) -1 w and w(P-1)y. Equivalently, if yF*z and zPx then, for some w, yPw and 
wF*x, and the proof is complete. 

Corollary 2 can be restated as follows: Construct a diagram with a node for each 
element of A, a solid arrow from x to y if xFy, and a wiggly arrow if xCpy. I f F  pr P, 
then it is possible to reach y from x by a (possibly null) walk along solid lines followed 
by a (possibly null) wiggly walk if and only if it is possible to reach y from x by a 
wiggly walk followed by a solid walk. 

EXAMPLE 4. Figure 4 specifies F by solid edges and Cp by wiggly edges. 

In  this case F*  commutes with P, but it is not true that F pr P, since the weak i, j 
condition is violated: x2Cey 2 but  P-a({y2,  Ys}) n {xl, x2} = {x2}, so that 

] P-I({Y2, Y3)) n {Xl, x2) I < 2. 

i l ) i2 ) Y3 

x I ) x 2 
FIo. 4. Two shifts. 
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COROLLARY 3. I f  F pr P then F* o p is a partial ordering relation. In fact, it is the 
largest partial ordering Q with the following property: I f  r is consistent with P then (~p is 
consistent with Q. 

We turn next to the important special case where P is the reflexive transitive closure 
of a shift. Call the shifts F and G compatible if there is no x such that x(F L) G)+x; 
i.e., there is no directed cycle of solid and wiggly edges. Clearly compatibility o fF  and 
G is a necessary condition for F pr G*, since no 1-1 assignment is consistent with 
both F and G* unless F and G are compatible. 

COROLLARY 4. Let F and G be compatible shifts. I f  F commutes with G then F pr G*. 

Proof. The proof will consist of a verification of the conditions of Corollary 1. 
Condition (a) is a special case of the compatibility condition. We proceed to the weak 
i , j  condition. In this case P = G*, so Cp is G. Let x l ,  x 2 ,..., xm and Ya ,Y~ ,...,Y~ 
be distinct chains of F, and suppose xiGy~. Let X ~-{Xa, x2 ..... x,~} and let 
Y = {YI, Y~ ,-.-, Y~}- By commutativity 

xi+lGy~+l if i + l  ~<m and j + l  ~<n 

and x~_lGya_l if i ~ 1 and j ~ 1. Let t = j -- i. By induction, x,Gyt+, provided 
1 ~ l ~ m and 1 ~< l + t ~ n. If t < 0 then x~_tGy 1. Commutativity demands 
that, for some z, x_tGz and zFy 1 . But, since Yl is the first element of a chain of F 
there is no z such that zFyl ,  and a contradiction is reached. Hence t />  0. Thus, for any 
set Y C y,  p-a(~)  D {x~_t ] yj �9 Y and j > t}, so that ] p - l ( ~ )  (-~ X ] ~ ] Y ] - -  t = 
j --  t = i. Hence the weak i, j condition is verified and the proof is complete. 

A major simplification of Theorem 1 is possible if we assume one further property. 
Call the shifts F and G independent if 

(F c~ G*) u (F* n G) = r 

The following theorem often makes it possible to determine by inspection whether 
F pr G* when F and G are compatible, independent shifts. 

THEOREM 2. 
equivalent: 

(a) 
(b) 

(c) 

(d) 

Let F and G be compatible, independent shifts. Then the following are 

F pr G*, 

G prF*,  

F* commutes with G*, 

F commutes with G. 
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Proof. Corollary 2 yields (a) => (c) and (b) =~ (c). From Corollary 4 we have 
(d) :~ (a) and (d) =~ (b). Hence we can complete the proof  by showing (c) => (d). 

The  proof  uses the following observations. 

(1) I f  H is a shift such that xH*y, y @ x and xJ4y, then there exists a z @ y such 
that x H z  and zH*y .  

(2) I f  H and K are compatible independent shifts such that xKy,  then there 
is no z such that x H * z  or z H * x  and y H * z  or zH*y.  

Now we must  prove xlFx 2 and x2Gx 4 ~ there exists z such that xiGz and zFx  4 . 
Since F*  and G* commute,  there exists x a such that xlG*x 3 and x3F*x 4 ; x 1 ~ x s 
and x 4 4: x3, since independence would otherwise be violated (cf. observation (2)). 

| @ | 

(!)., ~ ' | 
(a) (b) 

, 

I | 

(c) 
.0/ 

(d) 

(e) 

Key: , 

| 

@ x i r x j  ~ xiGxj 

G* @ x.(F*xj @ ~ @  Xj xj 

FIG. 5. Movie  o f  a proof. 
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I f  XlGX 8 and x3Fx4,  then x s is the required z. We show that any other situation 
produces a contradiction. Assume x ~ x  4 (the case xl(~x 3 is reduced to this case using 
the duality principle, with F -1 corresponding to G, and G -x to F).  Then  there exists 

x 5 ~ x 4 such that  x3Fx 5 and xsF*x  4 . 

Since x l G * x  a and x3Fx 5 , there exists x 8 such that x l F * x  6 and xeG*x 5 . x x = x 8 

violates independence, and x 2 = x 6 implies x4G*x 5 (since xaGx 4 and x6G*xs), which 
violates compatibility. 

Since x6G*x 5 and xsF*x  4 , there exists x 7 such that x~F*x7 and x~G*x 4 . x7 = x 4 

violates independence. Hence, since x2Gx4, xTG*x s . 

But xgF*x6,  xeF*x 7 and xTG*x 2 . This  is a violation of compatibility, and a contra- 
diction is reached. Thus  the proof is complete. 

Figure 5 gives a "movie"  of the proof. 

COROLLARY 5. Let  F and G be independent shifts. Then F pr G* i f  and only i f  

G p r F * .  

I t  is an open question whether the hypothesis of independence is required in 

Corollary 5. 

EXAMPLE 5. 
pairs: 

Let  A = {1, 2, 3}. Let  F and G be the following sets of ordered 

F = {(1, 2), (2, 3)} 

a = {(1, 2)). 

T h e n  the shifts F and G are not independent. Clearly F pr G* and G p rF* ,  but  
F o G  ~ G o F .  

3. APPLICATIONS 

Our first application is a result which generalizes Examples 1 and 2. Let  
A = A ( m  1 , m s ,..., rn~) be a k-dimensional rectangular array of locations, i.e., 

A ( m l ,  ms ,..., mk) = {1, 2 . . . .  , ml} • 2,..., ms} • "'" • {1, 2,..., mk}, 

where m 1 , m 2 ,..., m~ are positive integers. For any integer k-vector a = (a l ,  a2 ,..., ae) 
except the zero vector, define the shift Fa as follows: let x = (x 1 , x 2 ,..., xk) and 
Y = (Yl ,Ys ,...,Yk) be elements of A ( m l ,  m s .... , mk). Then  

x F a y  "r xi + ai = y i  , i = 1, 2,..., k. 



112 GALE AND KARP 

Now consider two fixed k-vectors a = (a l ,  a s ,..., ak), and b = (bl,  bz ,..., bk) , 
and let the dimensions (ml ,  m 2 .... , ink) of the array vary. 

THEOREM 3. The following are equivalent: 

(a) For all arrays A ( m l  , m 2 ,..., mk), Fa prFb*, and F b prFa*;  

(b) the vectors a and b lie in the same orthant; i.e., aib i >/O, i =- 1, 2,..., k. 

Proof. I f  there is a positive integer h such that a = Ab thenFa*  CF~* and, clearly, 
Fa prFo* and F~ prFa*.  The  conclusion follows similarly if b is a positive integer 
multiple of a. Otherwise, the shifts Fa and F~ are independent. F ,  and F b are incom- 
patible if and only if a ---- Ab, A < 0. In that case, F a prFb is false and, of course, a and 
b lie in different orthants. Otherwise, F ,  and Fb are independent and compatible. 
Thus  Theorem 2 applies, and Fa prFb* if and only i f F  a commutes with Fb.  In  this 
case commutativity means (x E A ( m  1 , m 2 ,..., mk) and x + a + b e A ( m l  , m s ,..., ink) ) => 

(x  + a e A ( m  a , m s ,..., mk) ~> x + b E A ( m l  , m s .... , mk) ). This is true for all 
m l ,  ms ,..., mk i f a  and b lie in the same orthant, and otherwise is false for all sufficiently 
large choices of ml ,  m 2 ,..., m k . 

COROLLARY 6 (Example 2). p-sorting preserves q-sorting. 

In  the two-dimensional case, we abbreviate F(0,1 ) by R, F(1.o ) by C, F(1.1 ) by D and 
F_(1,1 ) by T. The  chains of R correspond to rows of the array, the chains of C, to 
columns, the chains of D to diagonals and the chains of T to "ascending diagonals." 

COROLLARY 7. In  the following table, a x is present in the F, G position i f  and only 

i f  F pr G* for  all rectangular arrays. 

R 

C 

D 

T 

R C 

X X 

X X 

X X 

X 

D T 

X 

In  the following 2 • 2 array, the assignment r is consistent with C, while Cr ,  the 
result of T-sorting, is not. 

1 0 1 1 

1 0 0 0 
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In the following 3 • 3 array, the assignment ~b is consistent with D while 4 r ,  the 
result of T-sorting, is not. 

1 1 0 1 1 1 

1 1 1 1 0 1 

0 1 1 0 1 1 

Suppose we sort the rows, and then the columns, of a two-dimensional rectangular 
array. Since C pr R*, the resulting assignment is consistent with the partial ordering 
Q = C* o R* given by (u~, us) Q(Vl, v2) if u~ ~ v~ and u s ~ v s . Suppose we then 
sort the chains of T (the ascending diagonals). Since, for sufficiently large arrays, 
T pr C* is false, one might expect that T pr Q is also false. Indeed T p rQ  is false 
(for arrays with more than one row) if the number of columns exceeds the number of 
rows. But, surprisingly, if the number of columns is less than or equal to the number 
of rows, T pr Q. 

THEOREM 4. s Let A = A(d, e), d > 1. Then T p r Q  if and only if  d ~/ e. 

Proof. We apply Corollary 1. Condition (a) of that corollary clearly holds; so it 
remains only to consider the weak i, j condition. The  relation C o consists of all pairs 
of the form ((ul,  u2), (u 1 + 1, us)) or ((u~, us) , (ul ,  u 2 + 1)). Thus,  if xx, x s ,..., xm 
and Yl, Y~ ,..., Y~ are chains of T, either 

i = 1, 2,..., m 
(a) x lCoy  1 and xiQyj ~ x~Coyj j = 1, 2,..., n, 

or  

i = 1 , 2 , . . . , m  
(b) xi~~ j = 1, 2,..., n. 

Therefore it is only necessary to check the weak i, j condition between "consecutive" 
chains of T, since it holds vacuously otherwise. Let  x l ,  x s .... , x~ and Yl,  Y~ ,..-, Y,, 
be consecutive, i.e., XlCoy 1 . Let X = {xl,  xz ..... xm} and let Y = {Yl, Ys,..., yn}. 
Then  the sequence Q-l(yl) ,  Q-l(y2),..., Q-I(y,O is of one of the following forms 
(cf. Fig. 6): 

I. {Xl}, {x 1 , x2}, {x 2 , x3),..., {xm_ 1 , xm), {xm} 

I I .  {x~}, {x~, xs},..., {x~_l, xm} 
iii. {Xl, x~}, {xs, xs},..., {x~_l, xm} 
iv. {xl, xs}, {xs, x3},..., {xm_~, xm}, {xm}. 

2 Th i s  result  has been proved independent ly  by  D. E. Knu th .  
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FIG. 6. Four cases in the proof of Theorem 4. 

Moreover,  Case IV can arise only in the following way: x 1 = (d, 1), Yl = (d, 2) and 
d < e. In  Case IV, x~Coy I , but Q-l(yn) = {xm}. Thus,  taking i = 2, j --  1 and 

= {Yn}, the weak i, j condition is violated. 
In  the other eases, the weak i , j  condition is easily seen to be satisfied. In  Case I, 

x~Cpyj ~ i ~ j and, if ] Y ] = j, then ] Q - I ( ~ )  c~ X [ ~ j. Case I I  follows similarly. 
In  Case I I I ,  x iCoy  ~ =~ i ~ j  -]- 1 and, f o r j  ~ m - -  1, I Y I = J  ~ IQ- I (Y)  n X ] 
j -k- 1. Thus  the proof is complete. 

We next show how Theorems 1 and 2 can be used to prove the validity of certain 
methods for the construction of sorting networks. A sequence of shifts F 1 , F~ ,..., Fh 
is called a plan if 

(a) F a p r F l *  oF2* o --. ~  g = 2, 3,..., h 

and 

(b) FI*  oF2* o "-  oFn* is a total ordering of A. 

T h e  motivation for this definition is the following: Given a plan, we can sort the set of 
locations A by successively Fl-sorting, F2-sorting,...,Fn-sorting. Moreover, the 
chains of each F a can themselves be sorted according to plans, so that recursively 
defined sorting algorithms based on plans are possible. T h e  algorithms of Batcher [1] 
and Bose and Nelson [2] are of this type, and the following theorem can be viewed as a 
justification of these algorithms. 
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THEOREM 5. The following are plans: 

(a) A = 2q h = 3. 

F 1 has the two chains 1, 3, 5, 7,..., 2q -- 1 and 2, 4, 6, 8,..., 2q. 

F 2 has the two chains 1, 2, 5, 6, 9, 10, 13, 14,..., and 3, 4, 7, 8, 11, 12, 15, 16,.... 

F 3 has the q + 1 chains 1 2, 3 4, 5 6, 7 "'" 2q --  2, 2q --  1 2q. 

(b) A = - a q  h = 3 .  

F 1 has the two chains 1, 2,..., q, 2q + 1, 2q + 2,..., 3q and q + 1, q + 2,..., 2q, 3q + 1, 
3q + 2,..., 4q. 

le2 has the two chains 1, 2,..., 2q and 2q + 1,..., 4q. 

F 3 has 2q + 1 chains, of which only the following one has more than one element: 
q + 1, q + 2,..., 3q. 

The proof of Theorem 5 is a simple exercise in the application of Corollary 1 and 

Theorem 2. 
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