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In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity
they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-
layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks
(e.g. sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common
underlying principle, a ‘goal function’, of information processing implemented in this structure. By defi-
nition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. ‘edge
filtering’, ‘working memory’). Thus, to formulate such a principle, we have to use a domain-independent
framework. Information theory offers such a framework. However, while the classical framework of
information theory focuses on the relation between one input and one output (Shannon’s mutual infor-
mation), we argue that neural information processing crucially depends on the combination of multiple
inputs to create the output of a processor. To account for this, we use a very recent extension of
Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the
information that several inputs provide individually (unique information), redundantly (shared informa-
tion) or only jointly (synergistic information) about the output. First, we review the framework of PID.
Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal
functions (predictive coding, infomax and coherent infomax, efficient coding). We find that PID allows to
compare these goal functions in a common framework, and also provides a versatile approach to design
new goal functions from first principles. Building on this, we design and analyze a novel goal function,
called ‘coding with synergy’, which builds on combining external input and prior knowledge in a syner-
gistic manner. We suggest that this novel goal function may be highly useful in neural information
processing.
� 2015 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In many neural systems anatomical and physiological motifs
are present repeatedly in the service of a variety of different func-
tions. A prime example is the canonical cortical microcircuit that is
found in many different regions of the six-layered mammalian
neocortex. These different regions serve various sensory, cognitive,
and motor functions, but how can a common circuit be used for
such a variety of different purposes? This issue has spawned
interest in finding a common abstract framework within which
the relevant information processing functions can be specified.
Several solutions for such an abstract framework have been
proposed previously, among them approaches that still use seman-
tics to a certain extent (predictive coding with its initial focus on
sensory perception), teleological ones that prescribe a goal based
on statistical physics of the organism and its environment (free
energy principle) and information theoretic ones that focus on
local operations on information (Coherent Infomax). While these
are all encouraging developments, they also beg the question of
how to compare these approaches, and how many more possibili-
ties of defining new approaches of this kind exist. Ideally, an
abstract framework that would comprise these approaches as
specific cases would be desirable. This article suggests a possible
starting point for the development of such a unifying framework.
ctions.
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By definition this framework cannot be cast in processing-
domain specific language, such as ‘edge-filtering’ or ‘face percep-
tion, or ‘visual working memory, for example, but must avoid
any use of semantics beyond describing the elementary operations
that information processing is composed of.1 A framework that has
these properties is information theory. In fact, information theory is
often criticized exactly for its lack of semantics, i.e. for ignoring the
meaning of the information that is processed in a system. As we will
demonstrate here, this apparent shortcoming can be a strength
when trying to provide a unified description of the goals of neural
information processing. Moreover, by identifying separate compo-
nent processes of information processing, information theory pro-
vides a meta-semantics that serves to better understand what
neural systems do at an abstract level (for more details see Wibral,
Lizier, & Priesemann, 2015). Last, information theory is based on
evaluating probabilities of events and thereby closely related to
the concepts and hypotheses of probabilistic inference that are at
the heart of predictive coding theory (Clark, 2013; Hohwy, 2013;
Lee & Mumford, 2003; Rao & Ballard, 1999). Thus information theory
is naturally linked to the domain-general semantics of this and
related theories.

Based on the domain-generality of information theory several
variants of information theoretic goal functions for neural net-
works have been proposed. The optimization of these abstract goal
functions on artificial neural networks leads to the emergence of
properties also found in biological neural systems – this can be
considered an amazing success of the information theoretic
approach given that we still know very little about general cortical
algorithms. This success raises hopes for finding unifying principles
in the flood of phenomena discovered in experimental neuro-
science. Examples of successful, information-theoretically defined
goal functions are Linsker’s infomax (Linsker, 1988) – producing
receptive fields and orientation columns similar to those observed
in primary visual cortex V1 (Bell & Sejnowski, 1997), recurrent
infomax – producing neural avalanches, and an organization to
synfire-chain like behavior (Tanaka, Kaneko, & Aoyagi, 2009), and
coherent infomax (Phillips, Kay, & Smyth, 1995). The goal function
of coherent infomax is to find coherent information between two
streams of inputs from different sources, one conceptualized as
sensory input, the other as internal contextual information. As
coherent infomax requires the precomputation of an integrated
receptive field input as well as an integrated contextual input to
be computable efficiently (and thereby, in a biologically plausible
way), the theory predicted the recent discovery of two distinct
sites of neural integration in neocortical pyramidal cells (Larkum,
2013). For details see the contribution of Phillips to this special
issue. We will revisit some of these goal functions below and
demonstrate how they fit in the larger abstract framework aiming
at a unified description that is presented here.

Apart from the desire for a unified description of the common
goals of repeated anatomical motifs, there is a second argument
in favor of using an abstract framework. This argument is based
on the fact that a large part of neural communication relies on axo-
nal transmission of action potentials and on their transformation
into post-synaptic potentials by the receiving synapse. Thus, for
neurons, there is only one currency of information. This fact has
been convincingly demonstrated by the successful rewiring of
sensory organs to alternative cortical areas that gave rise to
functioning, sense-specific perception (see for example the
cross-wiring, cross-modal training experiments in von Melchner,
1 To be truly generic, the framework should also avoid to resort too strongly to
semantics in terms of ‘‘survival of the organism” as even that maybe not desirable for
each and every individual organism in certain species. This is because ‘‘programmed
death” will allow a more rapid turnover of generations and thereby more rapid
evolutionary adaptation.
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Pallas, & Sur, 2000). In sum, neurons only see the semantics inher-
ent in the train of incoming action potentials, not the semantics
imposed by the experimenter. Therefore, a neurocentric frame-
work describing information processing must be necessarily
abstract. From this perspective information theory is again a natu-
ral choice.

Classic Shannon information theory, however, mostly deals with
the transmission of information through a communication channel
with one input and one output variable. In a neural setting this
would amount to asking howmuch information present at the soma
of one cell reaches the soma of another cell across the connecting
axons, synapses and dendrites, or how much information is passed
from one circuit to another. Information processing, however,
comprises more operations on information than just its transfer. A
long tradition dating back all the way to Turing has identified the
elementary operations of information as information transfer,
active storage, and modification. Correspondingly, measures of
information transfer have been extended to cover more complex
cases than Shannon’s channels, incorporating directed and dynamic
couplings (Schreiber, 2000) and multivariate interactions (Lizier,
Prokopenko, & Zomaya, 2008), and alsomeasures of active informa-
tion storage have been introduced (Lizier, Prokopenko, & Zomaya,
2012). Information modification, seemingly comprising of subfunc-
tions such as de novo creation and fusion of information, however,
has been difficult to define (Lizier, Flecker, & Williams, 2013).

One reason for extending our view of information processing to
more complicated cases is that even the most simple function from
Boolean logic that any other logic function can be composed of
(NAND, see for example Jaynes, 2003, chap. 1) uses two distinct
input variables and one output. While such a logic function could
be described as a channel between the two inputs and the outputs,
this does not do justice to the way the two inputs interact with
each other. What is needed instead is an extension of classic
information theory to three way systems, describing how much
information in the output of this Boolean function, or any other
three-way processor of information, comes uniquely from one
input, uniquely from the other input, how much they share about
the output, and how much output information can only be
obtained from evaluating both inputs jointly.

These questions can be answered using an extension of infor-
mation theory called partial information decomposition (PID)
(Bertschinger, Rauh, Olbrich, Jost, & Ay, 2014; Griffith & Koch,
2014; Harder, Salge, & Polani, 2013; Williams & Beer, 2010).

This article will introduce PID and show how to use it to specify
a generic goal function for neural information processing. This gen-
eric goal function can then be adapted to represent previously
defined neural information processing goals such as infomax,
coherent infomax and predictive coding. This representation of
previous neural goal functions in just one generic framework is
highly useful to understand their differences and commonalities.
Apart from a reevaluation of existing neural goal functions, the
generic neural goal function introduced here also serves to define
novel goals not investigated before.

The remainder of the text will first introduce partial informa-
tion decomposition, and then demonstrate its use to decompose
the total output information of a neural processor. From this
decomposition we derive a generic neural goal function ‘‘G”, and
then express existing neural goal functions as specific parameteri-
zations of G. We will then discuss how the use of G simplifies the
comparison of these previous goal functions and how it helps to
develop new ones.

2. Partial information decomposition

In this section we will describe the framework of partial infor-
mation decomposition (PID) to the extent that is necessary to
osition as a unified approach to the specification of neural goal functions.
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understand the decomposition of the mutual information between
the output Y of a neural processor and a set of two inputs X1; X2

(Fig. 1). The inputs themselves may be multivariate random vari-
ables but we will not attempt to decompose their contributions
further. This is linked to the fact that in many neurons contextual
and driving inputs are first summed separately before being
brought to interact to produce the output. This summation
strongly reduces the parameter space and thereby makes learning
tractable – see (Kay, 1999; Kay & Phillips, 2011).2 Therefore, we
limit ourselves to the PID of the mutual information between one
‘‘left hand side” or ‘‘output” variable Y and two ‘‘right hand side”
or ‘‘input” variables X1; X2. That is, we decompose the mutual infor-
mation IðY : X1;X2Þ,3 the total amount of information held in the set
fX1;X2g about Y4:

IðY : X1;X2Þ ¼
X

x12AX1
;x22AX2

;y2AY

pðx1; x2; yÞlog2
pðyjx1; x2Þ

pðyÞ ð1Þ

¼ HðYÞ � HðYjX1;X2Þ; ð2Þ
where the A� signify the support of the random variables and
Hð�Þ;Hð�j�Þ are the entropy and the conditional entropy, respectively
(see Cover & Thomas, 1991 for definitions of these information the-
oretic measures).

The PID of this mutual information addresses the questions:

1. What information does one of the variables, say X1, hold indi-
vidually about Y that we cannot obtain from any other variable
(X2 in our case)? This information is the unique information of X1

about Y : IunqðY : X1 n X2Þ.
2. What information does the joint input variable fX1;X2g have

about Y that we cannot get from observing both variables
X1; X2 separately? This information is called the synergy, or
complementary information, of fX1;X2g with respect to
Y : IsynðY : X1;X2Þ.

3. What information does one of the variables, again say X1, have
about Y that we could also obtain by looking at the other vari-
able (X2) alone? This information is the shared information5 of
X1 and X2 about Y : IshdðY : X1;X2Þ.

Following Williams and Beer (2010), the above three types of
partial information terms together by definition provide all the
information that the set fX1;X2g has about Y, and other sources
agree on this (Bertschinger et al., 2014; Griffith & Koch, 2014;
Harder et al., 2013; Williams & Beer, 2010), i.e.:

IðY : X1;X2Þ ¼ IunqðY : X1 n X2Þ þ IunqðY : X2 n X1Þ
þ IshdðY : X1;X2Þ þ IsynðY : X1;X2Þ: ð3Þ

Fig. 2 is a graphical depiction of this notion by means of the par-
tial information (PI-) diagrams introduced in Williams and Beer
(2010). In addition, there is agreement that the information one
input variable has about the output should decompose into a
unique and a shared part as:

IðY : X1Þ ¼ IunqðY : X1 n X2Þ þ IshdðY : X1;X2Þ
IðY : X2Þ ¼ IunqðY : X2 n X1Þ þ IshdðY : X1;X2Þ:

ð4Þ
2 Furthermore, the formulation of measures providing generally-accepted decom-
positions (Bertschinger et al., 2014; Griffith & Koch, 2014) at the present time are only
defined for two variables (Rauh, Bertschinger, Olbrich, & Jost, 2014).

3 As the concepts of unique, shared and synergistic information require a more fine
grained distinction of how individual variables are grouped, we employ the following
extended notation that was introduced in Bertschinger et al. (2014) and defined in
Appendix A: ‘‘:” separates sets of variables between which mutual information or
partial information terms are computed, ‘‘;” separates multiple sets of variables on
one side of a partial information term, whereas ‘‘,” separates variables within a set
that are considered jointly (see Appendix A for examples).

4 See notational definitions in Appendix A.
5 Also known as redundant information in Williams and Beer (2010).
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For the treatment of neural goal functions we have to further-
more give PID representations of the relevant conditional mutual
information terms. These can be obtained from Eqs. (3) and (4) as:

IðY : X1jX2Þ ¼ IunqðY : X1 n X2Þ þ IsynðY : X1;X2Þ
IðY : X2jX1Þ ¼ IunqðY : X2 n X1Þ þ IsynðY : X1;X2Þ:

ð5Þ

Moreover, all parts of the PI-diagram are typically required to be
positive to allow an interpretation as information terms.

Due to the pioneering work of Williams and Beer (2010) it is
now well established that neither unique, nor shared, nor synergis-
tic information can be obtained from the definitions of entropy,
mutual information and conditional mutual information in classi-
cal information theory. Essentially, this is because we have an
underdetermined system, i.e. we have fewer independent equa-
tions relating the output and inputs in classical information theory
(three for two input variables) than we have PID terms (four for
two input variables). For at least one of these PID terms a new,
axiomatic definition is necessary, from which the others then
follow, as per Eqs. (3)–(5). To date, the equivalent axiom systems
introduced by Bertschinger et al. (2014) and Griffith and Koch
(2014) have found the widest acceptance. They also yield results
that are very close to an earlier proposal by Harder et al. (2013).
All of these axiom systems lead to measures that are sufficiently
close to a common sense view of unique, shared and synergistic
information, and all satisfy Eqs. (3)–(5). Hence, their exact details
do not matter at first reading for the purposes of this paper, and
will therefore be presented in Appendix B.

The one exception to this statement is that we have to mention
here already that shared information may arise in the frameworks
of Bertschinger et al. (2014), Griffith and Koch (2014), and also
Harder et al. (2013) for two reasons. First, there can be shared
information because the two inputs X1; X2 have mutual informa-
tion between them (termed source redundancy in Harder et al.
(2013), and source shared information here) – this is quite intuitive
for most. Second, shared information can arise because of certain
mechanisms creating the output Y (mechanistic redundancy in
Harder et al., 2013, mechanistic shared information here). This
second possibility of creating shared information is less intuitive
but nevertheless arises in all of the frameworks mentioned above.
For example, the binary AND operation on two independent (iden-
tically distributed) binary random variables creates 0.311 bits of
shared information in Bertschinger et al. (2014), Harder et al.
(2013) and Griffith and Koch (2014), and 0.5 bits of synergistic
mutual information, while there is no unique information about
the inputs in its output.

3. A generic decomposition of the output information of a
neural processor

We use PID in this section to decompose the information HðYÞ
that is contained in the output of a general neural processor
(Fig. 1) with two input (sets) X1 and X2 and an output Y:

HðYÞ ¼ IðY : X1;X2Þ þ HðYjX1;X2Þ ð6Þ
¼ IunqðY : X1 n X2Þ þ IunqðY : X2 n X1Þ
þ IshdðY : X1;X2Þ þ IsynðY : X1;X2Þ
þ HðY jX1;X2Þ:

To arrive at a neural goal function we can add weight coeffi-
cients to each of the terms in the entropy decomposition above
to specify how ‘desirable’ each one of one of these should be for
the neural processor, i.e. we can specify a neural goal function G
as a function of these coefficients. Since all the terms in Eq. (6)
are non-overlapping, and the coefficients can be chosen indepen-
dently, this is the most generic way possible to specify such a goal
function:
osition as a unified approach to the specification of neural goal functions.
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Fig. 1. Neural processors: (A) neural processor with multidimensional inputs X1; X2, and output Y. (B) Processor with local weighted summation of inputs as used in coherent
infomax and in this study. To establish the link to the coherent infomax literature we identify the input X1 with the receptive field input R, which may be excitatory (e) or
inhibitory (i), and which is summed. In the same way, X2 is identified with the contextual input C. (C) Overlay of the coherent infomax neural processor on a layer 5 pyramidal
cells, highlighting potential parallels to existing physiological mechanisms. Layer 5 cell created with the TREES toolbox (Cuntz et al., 2010), courtesy of Hermann Cuntz.
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Fig. 2. Partial information diagram with both classical information terms (solid
lines) and PID terms (color patches). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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G ¼ C0IunqðY : X1 n X2Þ þ C1IunqðY : X2 n X1Þ ð7Þ
þ C2IshdðY : X1;X2Þ þ C3IsynðY : X1;X2Þ
þ C4HðYjX1;X2Þ;

which can also be rewritten with another set of coefficients ci as:

G ¼ c0IunqðY : X1 n X2Þ þ c1IunqðY : X2 n X1Þ ð8Þ
þ c2IshdðY : X1;X2Þ þ c3IsynðY : X1;X2Þ
þ c4HðYÞ;

using ci ¼ Ci � C4 (i ¼ 0 . . .3), c4 ¼ C4 (and Eq. (6)).
Note that training a neural processor will obviously change the

value of the goal function in Eq. (7), but of course also change the
relative composition of the entropy in Eq. (6).

This decomposition of the entropy and its parametrization are
closely modeled on the approach taken by Kay and Phillips in their
formulation of another versatile information theoretic goal func-
tion (‘‘F ”, see below) for the coherent infomax principle (Kay,
1999; Kay, Floreano, & Phillips, 1998; Kay & Phillips, 2011;
Phillips et al., 1995).

In general, we will choose the formulation used in Eq. (7)
because the conditional entropy does not overlap with the parts
in the PI-diagram (Fig. 2), but note that the formulation used in
Eq. (8) may be useful when goals with respect to total bandwidth,
rather than unused bandwidth, are to be made explicit. This could
for example happen when neuronal plasticity acts to increase the
total bandwidth of a neural processor.6

In the next sections we introduce coherent infomax and analyze
it by means of PID. We then show how to (re-)formulate infomax,
and predictive coding using specific choices of parameters for G.
Last, we will introduce a neural goal function, called coding with
synergy, that explicitly exploits synergy for information processing.
4. The coherent infomax principle and its goal function as seen
by PID

4.1. The coherent infomax principle

The coherent infomax principle (CIP) proposes an information
theoretically defined neural goal function in the spirit of domain-
independence laid out in the introduction, and a neural processor
implementing this goal function (Kay, 1999; Kay et al., 1998; Kay
& Phillips, 2011; Phillips et al., 1995). The neural processor oper-
ates on information it receives from two distinct types of inputs
6 Along similar lines one may wish to add the total information in both inputs
HðX1Þ and HðX2Þ (or, HðX1jY ;X2Þ and HðX2jY ;X1Þ, respectively) to G. However, since
the neural processor has only control over the output Y, changing the amount of this
initial information in the inputs is beyond the scope of its goal function.
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X1; X2 and sends the results to a single output Y (see Fig. 1). The
two distinct types of input in CIP were described as driving and
modulatory, formally defined by their distinct roles in local
processing as detailed in the coherent infomax Principles
CIP.1–CIP.4, below. Here we will denote the driving input by X1,
and the contextual input by X2.

In the mammalian brain the driving input X1 includes, but is not
limited to, both external information received from the sensors and
information retrieved frommemory. The contextual input X2 arises
from diverse sources as lateral long-range input from the same
or different brain regions, descending inputs from hierarchically
higher regions, and input via non-specific thalamic areas. Phillips,
Clark, and Silverstein (2015) provide a recent in-depth review of
this issue in relation to the evidence for such distinct inputs from
several disciplines.

The coherent infomax principle (CIP) states the following four
goals of information processing:

CIP.1 The output Y should transmit information that is shared
between the two inputs, so as to enable the processor to
preferentially transmit information from the driving inputs
(X1) that is supported by context-carrying information from
internal sources elsewhere in the system arriving at input
X2. This is what the term ‘coherent’ refers to.

CIP.2 The output Y could transmit some information that is only in
the driving input X1, but not in the context, so as to enable
that the local processor transmits some information that is
not related to the information currently available to it from
elsewhere in the system.
osition as a unified approach to the specification of neural goal functions.

http://dx.doi.org/10.1016/j.bandc.2015.09.004
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CIP.3 The output Y should minimize transmission of information
that is only in the contextual input X2. This is necessary to
ensure that the effects of the context do not become con-
founded with the effects of the drive and thereby reduce
the reliability of coding.

CIP.4 The output Y should be optimally used in terms of
bandwidth.

To state these goals more formally, Kay and Phillips first decom-
posed the total entropy of the output, HðYÞ as:
HðYÞ ¼ IðY : X1 : X2Þ þ IðY : X1jX2Þ

þ IðY : X2jX1Þ þ HðY jX1;X2Þ; ð9Þ
where the three-term multi-information IðY : X1 : X2Þ is defined as:

IðY : X1 : X2Þ ¼ IðX1 : YÞ � IðX1 : YjX2Þ
¼ IðX1 : X2Þ � IðX1 : X2jYÞ
¼ IðY : X2Þ � IðY : X2jX1Þ: ð10Þ

Kay and Phillips then re-weighted the terms of this decomposi-
tion by coefficientsUi to obtain a generic information theoretic goal
function F as:

F ¼ U0IðY : X1 : X2Þ þU1IðY : X1jX2Þ
þU2IðY : X2jX1Þ þU3HðY jX1;X2Þ: ð11Þ

Here, the first term, IðY : X1 : X2Þ, was meant to reflect the informa-
tion in the output that is shared between the two inputs, the second
term the information in the output that was only in the driving
input, the third term the information in the output that was only
in the contextual input, while the last term represents the unused
bandwidth (see Fig. 3 for a graphical representation of these terms).
Below, these assignments will be investigated using PID.

In previous work (Phillips et al., 1995), the goal of coherent info-
max was implemented by setting U0 ¼ 1; U1 ¼ U2 ¼ U3 ¼ 0, lead-
ing to the objective function IðY : X1 : X2Þ. While this objective
function appears not to explicitly embody any asymmetry between
the influences of the X1 and X2 inputs, it is important to realize that
the modulatory role played by the contextual input X2 is expressed
through the special form of activation function introduced in
Phillips et al. (1995), and defined in Appendix 7.4. The possibility
of expressing this asymmetry explicitly in the objective function
was also discussed in Phillips et al. (1995) and Kay et al. (1998)
by taking U0 ¼ 1; 0 6 U1 < 1; U2 ¼ U3 ¼ 0, leading to the goal
function

FCIP ¼ IðY : X1 : X2Þ þU1IðY : X1jX2Þ; ð12Þ
which is a weighted combination of the multi-information and the
information between Y and the driving input X1 conditional on the
contextual input X2. This last term was meant to represent informa-
tion that was both in the output Y and the driving input X1, but not
in the contextual input X2.

Next, we will investigate how this goal function FCIP implements
the goals CIP.1–CIP.4 when these are restated using the language
of PID.

4.2. F as seen by PID

We first take the generic goal function F from Eq. (11), that is
independent of CIP proper, and rewrite it as a sum of mutual infor-
mation terms and decompose these using PID. We will sort the
resulting decomposition by PID terms and compare this result to
the general goal function G. This will tell us about the space of goal
functions covered by F. Knowing this space is highly useful as a
working neural network implementation of F with learning rules
exists (reviewed in Kay, 1999; Kay & Phillips, 2011). This
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implementation can also be used to implement goal functions for-
mulated in the precise PID framework based on G, whenever the
specific G that is of interest lies in the space that can be represented
by F’s.

We begin by decomposing F into mutual information terms:

F ¼U0IðY :X1 :X2ÞþU1IðY :X1jX2ÞþU2IðY :X2jX1ÞþU3HðYjX1;X2Þ
¼U0 IðY :X2Þ� IðY :X2jX1Þð Þ
þU1 IðY :X1;X2Þ� IðY :X2Þð Þ
þU2 IðY :X2;X1Þ� IðY :X1Þð Þ
þU3HðY jX1;X2Þ; ð13Þ

which, using the PID Eqs. (3)–(5), and collecting PID terms, turns
into:

F ¼ U1IunqðY : X1 n X2Þ
þU2IunqðY : X2 n X1Þ
þU0IshdðY : X1;X2Þ
þ ðU1 þU2 �U0ÞIsynðY : X1;X2Þ
þ ðU3ÞHðYjX1;X2Þ: ð14Þ
Comparing this to the general PID goal function G, we see that

the coefficients C ¼ ½C0 . . .C4� and U ¼ ½U0 . . .U3� are linked by
the matrix X as:

XU :¼ C ð15Þ

X ¼

0 1 0 0
0 0 1 0
1 0 0 0
�1 1 1 0
0 0 0 1

0
BBBBBB@

1
CCCCCCA
: ð16Þ

Since X is not invertible, there are parameter choices in terms of C
that have no counterpart in U. These are described by the comple-
ment of the range of this matrix (the null space of XT). This one-
dimensional subspace is described by7:

VC ¼ fC 2 R5 : C ¼ a � ½�1;�1;1;1;0�T ;a 2 Rg: ð17Þ
The existence of this subspace of coefficients not expressible in
terms of Ui’s means that it is impossible to prescribe the goal of
simultaneously maximizing synergistic and shared information,
while minimizing the two unique contributions, and vice versa
when using F. Ultimately, the existence of a subspace not repre-
sentable by Ui’s is a consequence of the fact that PID terms cannot
be expressed using classic information theory (while F in contrast
was defined from classical information theoretic terms only).

4.3. The coherent infomax principle as seen by PID

For the investigation of the specific goal function FCIP , we first
want to clarify how we understand the four goals listed in the pre-
vious section. To this end we identify them one to one with goals in
terms of PID as:

1. ! CIP.1: The output should contain as much shared informa-
tion IshdðY : X1;X2Þ as possible.

2. ! CIP.2: The output could contain some unique information
IunqðY : X1 n X2Þ.

3. ! CIP.3: The output should minimize unique information
IunqðY : X2 n X1Þ.

4. ! CIP.4: The unused output bandwidth HðYjX1;X2Þ should be
minimized.
osition as a unified approach to the specification of neural goal functions.
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Fig. 3. Graphical depiction of the various contributions to F and their weighting coefficients in the PID diagram. (A) Classical unconditional mutual information terms. (B)
Unused bandwidth, weighted by U3. (C) Conditional mutual information IðY : X1jX2Þ, weighted by U1. (D) Conditional mutual information IðY : X2jX1Þ, weighted by U2. Note
the overlap of this contribution with the one from (C). (E) The three way information IðY : X1 : X2Þ, weighted by U0. Here the three way information is the checkered minus the
striped area. (F) This region appears in (C), (D), (E) and is weighted accordingly by three coefficients simultaneously (U0;U1;U2). The area in (F) is the synergistic mutual
information that is also shown in cyan in Fig. 2.
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With respect to item 1 on this list, it is important to recall
from Section 2 that shared information can arise from mutual
information between the sources (source shared information) or
be created by a mechanism in the processor (mechanistic shared
information). Kay and Phillips had in mind the first of these two
possibilities.

To see whether FCIP indeed reflects these goals as stated via PID,
we look at the specific choice of parameters, U0 ¼ 1; 0 6 U1 < 1;
U2 ¼ U3 ¼ 0, that was used to implement the coherent infomax
principle, and find using Eqs. (3)–(5) (the reader may also verify
this graphically using Fig. 3):

FCIP ¼ IshdðY : X1;X2Þ þU1IunqðY : X1 n X2Þ � ð1�U1ÞIsynðY : X1;X2Þ:
ð18Þ

We will now discuss the various contributions to FCIP in detail,
starting with the shared information, which figures most promi-
nently in the goals CIP.1–CIP.4.

Shared information. We see that shared information is maxi-
mized. This shared information contains contributions frommutual
information between the sources (source shared information) as
well as shared information created by mechanisms in the processor
(mechanistic shared information, see the note on item 1 above). The
first type of shared information is the one aimed for in CIP.1. Thus,
for inputs that are not independent the coherent infomax goal func-
tion indeed maximizes source shared information as desired. We
will investigate the case of independent inputs below.

Unique information. In addition to the shared information, the
unique information from the driving input is also maximized,
albeit to a lesser degree. In contrast, synergy between the output
and the combined inputs is minimized. Therefore, goals 1, 2 and
3 are expressed explicitly in this objective function but there is
no explicit mention of minimizing the output bandwidth.
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Synergistic information. Of all the PID terms, synergy is discour-
aged. This may at first seem surprising as the mapping of the goals
of coherent infomax to PID did not appear to make any explicit
statements about synergistic components – unless one views the
transmission of undesirable synergistic components as being an
extra component of the bandwidth (along with HðYjX1;X2Þ) that
is not used in the optimal attainment of goals 1–3. Nevertheless
the minimization of synergy serves the original goals of coherent
infomax. This can be seen when we consider that these were for-
mulated for two different types of inputs, driving and modulatory.
For these two types of input, the goal of coherent infomax is to use
the modulatory inputs to guide transmission of information about
the driving inputs. Synergistic components would transmit infor-
mation about both driving and modulatory inputs, so transmitting
them would be treating the modulatory inputs as driving inputs.
This is clearly undesirable in the setting of coherent infomax.

At amore technical level, we note the trade-off in that increasing
the value of the parameter U1 towards 1 at once serves to enhance
promotion of the unique information from the driving inputwhile it
simultaneously lessens the pressure to minimize the synergy. This
is a remnant of the term U1IðY : X1jX2Þ in Eq. (12) which had been
included in order to capture information that was both in Y and
X1 but not in X2 (i.e. the unique information from the driving input),
but inadvertently also served to capture the synergy.

In terms of the range of tasks that can be learned by a processor
with FCIP , the minimization of synergy between the two types of
inputs means for example that learning tasks that require a lot of
synergy between the inputs, like the XOR-function, cannot be
achieved easily. It is crucial, however, to realize that discourage-
ment of synergy concerns only relations between drive X1 and
modulation X2. In contrast, synergistic relations between just the
components of a multivariate X1 can be learned by the coherent
infomax learning rule. The XOR between components of X1 for
osition as a unified approach to the specification of neural goal functions.
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8 These past inputs may in principle lie arbitrarily far in the past (i.e. with
arbitrarily large k), meaning that also long term memory in a system may contribute
to the predictions.

9 Here, representation is used in the sense of lossless encoding. Thus, for us X2ðtÞ is
equivalent to all lossless (re-)encodings of X2ðtÞ, e.g. in other alphabets, amongst
others the alphabet of X1ðtÞ.
10 The relevant constraints here are that the collections of input values X1ðtÞ are
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X1ðtÞ.
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example can be learned reliably if supervised, and still occasionally
if not (Phillips et al., 1995).

Independent sources. What remains to be investigated is what
the goal functions aims for in the specific case of statistically inde-
pendent inputs, i.e. when source shared information cannot be
obtained. In other words, we may ask whether the coherent info-
max processor will maximize mechanistic shared information in
this case?.

Since the mutual information between the inputs, IðX1 : X2Þ, is
assumed to be zero, then using one of the forms of the multi-
information (Eq. (10)) we have

IðY : X1 : X2Þ ¼ IðX1 : X2Þ � IðX1 : X2jYÞ ¼ �IðX1 : X2jYÞ; ð19Þ

and so the multi-information is non-positive. It follows from the
other forms of the multi-information (Eq. (10)) that

IðY : X1jX2Þ P IðY : X1Þ and IðY : X2jX1Þ P IðY : X2Þ: ð20Þ
This implies directly (compare Fig. 2A) that for independent

inputs we must have:

IshdðY : X1;X2Þ 6 IsynðY : X1;X2Þ; ð21Þ
an important additional constraint that arises from independent
inputs. Thus, in this case the minimization of synergy and the max-
imization of shared information compete, giving more effective
weight to the unique information from the driving input. Neverthe-
less, limited shared information may exist in this scenario, and if so
it will be of the mechanistic type.

In sum, we showed that (i) the generic goal function F in the
coherent infomax principle cannot represent all goal functions that
are possible in the PID framework using the goal function G –
specifically, F lacks one degree of freedom; (ii) for the CIP this leads
to a weighted maximization of the shared information (source
shared information and mechanistic shared information) and the
unique information from the driving input; (iii) it can be shown
that within the space of all possible goal functions F it is impossible
to maximize synergy and shared information together, while min-
imizing the two unique information terms, and vice versa; (iv) and
for the CIP synergy between the driving and modulatory inputs is
explicitly discouraged.

5. Partial information decomposition as a unified framework to
generate neural goal functions

In the this section we will use PID to investigate infomax,
another goal function proposed for neural systems, and we will
formulate an information-theoretic goal function for a neural
processor aimed at predictive coding.

5.1. Infomax

To investigate infomax, we recall that the goal stated there is to
maximize the information in the output about the relevant input
X1, which typically is multivariate (Linsker, 1988). This goal
function is implicitly designed for situations with limited output
bandwidth, i.e. HðX1Þ > HðYÞ. Not considering a second type of
input X2 it is obvious that PID will not contribute to the under-
standing of infomax. This changes however if the variables in a
multivariate input will be considered separately. Then, it may
make sense to ask whether the output information in a given
system is actually being maximized predominantly due to unique
or synergistic information.

Mathematically, the infomax goal can also be represented by
using F with two types of inputs X1; X2, where the information
transmitted about X1 is to be maximized. This can be achieved
by choosing U0 ¼ U1 ¼ 1 to obtain (e.g. Kay, 1999):
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FIM ¼ U0IðY : X1 : X2Þ þU1IðY : X1jX2Þ ð22Þ
¼ IunqðY : X1 n X2Þ þ IshdðY : X1;X2Þ
¼ IðY : X1Þ:

The insight to be gained using PID here is that infomax does not
incorporate the use of auxiliary variables X2 to extract even more
information from X1 via the synergy IðY : X1;X2Þ, nor does it prefer
either shared or unique information over the other.

5.2. Predictive coding

In predictive coding the goal is to predict inputs X1ðtÞ using
information available from past inputs X1ðt� 1Þ ¼ ½X1ðt � 1Þ . . .
X1ðt � kÞ�.8 Thus, the processor has to learn a model MPC that yields
predictions X2ðtÞ ¼ MPCðX1ðt� 1ÞÞ, such that X2ðtÞ � X1ðtÞ. This is the
same as maximizing the mutual information between outcome and
prediction IðX1ðtÞ;X2ðtÞÞ ¼ IðX1ðtÞ;MPCðX1ðt� 1ÞÞÞ, at least if we
do not care how exactly X2ðtÞ represents9 the prediction. Under
some mild constraints10 the data processing inequality here actually
states that trying to tackle this problem information theoretically is
trivial, as IðX1ðtÞ;X2ðtÞÞ ¼ IðX1ðtÞ;MPCðX1ðt� 1ÞÞÞ is maximized by
MPCðX1ðt� 1ÞÞ ¼ X1ðt� 1Þ, i.e. all the information we can ever hope
to exploit for prediction is already in the raw data (and it is a mere
technicality to extract it in a useful way). The whole problem
becomes interesting only when there is some kind of bandwidth lim-
itation on MPC , i.e. when for example MPCðX1ðt� 1ÞÞ has to use the
same alphabet as X1ðtÞ, meaning that we have to state our prediction
as a single value that X1ðtÞ will take. Of course, this actually is the
typical scenario in neural circuits. Therefore, we state the main
goal of predictive coding as maximizing IðX1ðtÞ;X2ðtÞÞ ¼ IðX1ðtÞ;
MPCðX1ðt� 1ÞÞÞ, under the constraint that X1ðtÞ and MPCðX1ðt� 1ÞÞ)
have the same ‘‘bandwidth” (the same raw bit content to be precise).
Despite of the goal of maximizing a simple mutual information this
is not an infomax problem, due to the temporal order of the vari-
ables, i.e. we need the output X2ðtÞ before the input X1ðtÞ is available.
Thus, we have to find a different solution to our problem.

To this end, we suggest that a minimal circuit performing
predictive coding will have to perform at least three subtasks,
(i) produce predictions as output, (ii) detect whether there were
errors in the predictions, (iii) use these for learning. In Fig. 4 we
detail a minimalistic circuit performing these tasks, with subtask
(i) represented in X2ðtÞ, subtask (ii) in YðtÞ and subtask (iii) in
MPC . This circuit assumes the following properties for its neural cir-
cuits: (a) neurons have binary inputs and outputs, (b) information
passes through a neuron in one direction, and (c) information from
multiple inputs can be combined into one output only. The circuit
consists of two separate units: (1) the error detection unit that
operates on past predictions X2ðt � 1Þ ¼ MPCðX1ðt� 2ÞÞ, obtained
via a memory buffer, and past inputs X1ðt � 1Þ, to create the output
Y via an XOR operation, with y ¼ 1 indicating an erroneous predic-
tion in the past; (2) the prediction unit that has the capability to
produce output based on a weighted summation over a vector of
past inputs X1ðt� 1Þ via a weighting function in the model MPC .
MPC will update its weights whenever an error was received.

We suggest that the information theoretic goal function of this
circuit is simply to minimize the entropy of the output of the error
unit, i.e. HðYÞ. In principle, this would drive the binary output of
osition as a unified approach to the specification of neural goal functions.
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the circuit either to pðy ¼ 1Þ ! 1 or to pðy ¼ 0Þ ! 1. Of these two
possibilities, only the second one is stable, as the constant signal-
ing of the presence of an error will lead to incessant changes in
MPC , which in turn will change Y even for unchanging input X1.
Thus, minimizing HðYÞ should enforce pYðy ¼ 0Þ ! 1. Therefore,
we can formulate an information theoretic goal function of the
form G if we conceive of the whole circuit as being just one neural
processor with inputs X1ðt � 1Þ and X1ðt� 1Þ, and as having the
error Y as its main output. In this case, we find as a goal function
for the predictive coding error (PCE):

GPCE ¼ c0IunqðY : X1ðt � 1Þ n X1ðt � 1ÞÞ ð23Þ
þ c1IunqðY : X1ðt � 1Þ n X1ðt � 1ÞÞ
þ c2IshdðY : X1ðt � 1Þ;X1ðt � 1ÞÞ
þ c3IsynðY : X1ðt � 1Þ;X1ðt � 1ÞÞ
þ c4HðYÞ;

with the weights cPCE ¼ ½0;0;0; 0;�1� using the c-notation from
Eq. (8) where the total output entropy was made explicit, or equiv-
alently, CPCE ¼ ½�1;�1;�1;�1;�1�. Interestingly, this goal function
formally translates to U ¼ ½�1;�1;�1;�1�, or F ¼ �HðYÞ. This gives
hope that one can translate the established formalism for F to the
present case by taking into account that the original architecture
behind F is augmented here by an additional XOR subunit. Learning
of the circuit’s goal function may have to proceed in two steps if we
do not have subunits able to perform XOR at the beginning. In this
case, the ‘‘XOR” subunit will first have to learn to perform its
function. This can be achieved by maximizing the synergy of two
uniform, random binary inputs and the subunit’s output Y. After this
initial learning the XOR-subunit is ‘frozen’ and learning of predic-
tions can proceed to minimize HðYÞ. One conceivable mechanism
for this would be to use learning based on coincidences between
input bits in MðX1ðt � 2ÞÞ and the error bit Y.

We note that this goal function is not entirely new, as the idea
of making the output of a processing unit as constant as possible in
learning has been used before in various implementations (e.g.
Cannon, 1932; Der, Steinmetz, & Pasemann, 1999; Wyss, König, &
Verschure, 2006). It is also closely related to the homeostatic goals
pursued by the free energy minimization principle (Friston, 2009;
Friston, Kilner, & Harrison, 2006; Friston & Stephan, 2007). We
have merely added here a generic minimal circuit diagram and
the information theoretic interpretation to these previous
approaches. Also, note that the actual prediction X2ðtÞ ¼
MPCðX1ðt� 1ÞÞ must be implicitly part of the information theoretic
goal function, as the goal function we suggest here would be
nonsensical on many other circuits.

As a next level of complication one may consider that the
predictions X2 that are created within our minimal circuit are sent
back to the source of the input X1 to interact with it there. One such
interaction scheme will be studied in the next section.
6. Coding with synergy

So far the goal functions investigated in our unifying framework
G had in common that maximization of synergy did not appear as a
desirable goal. This may historically be simply due to the profound
mathematical difficulties that had to be overcome in the definition
of synergistic information. In this section we will therefore show
how synergy naturally arises in a generalization of ideas from
efficient coding by PID. We will call the goal function simply coding
with synergy (CWS).

The neural coding problem that we will investigate here is
closely related to predictive coding discussed in the previous
section. However, in contrast to predictive coding where the
creation of predictions was in focus, here we focus on possible uses
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of prior (or contextual) information from X2, be it derived from
predictions or by any other means. In other words, we here simply
assume that there is (valid) prior information in the system that
does not have to be extracted from the ongoing input stream X1

by our neural processor. Moreover, we assume that there is no
need to waste bandwidth and energy on communicating X2 as this
information is already present in the system. Last, we assume that
we want to pass as much of the information in X1 as possible, as
well as of the information created synergistically by X1 and X2. This
synergistic information will arise for example when X2 serves to
decode or disambiguate information in X1.

Looking at the PID diagram (Fig. 2) one sees that in this setting it
is optimal to minimize IunqðY : X2 n X1Þ and the unused bandwidth
HðYjX1;X2Þ while maximizing the other terms. This leads to:

GCWS ¼ IunqðY : X1 n X2Þ ð24Þ
� IunqðY : X2 n X1Þ
þ IshdðY : X1;X2Þ
þ IsynðY : X1;X2Þ
� HðYjX1;X2Þ;

or C ¼ ½1;�1;1;1;�1�. The important point here is that this is differ-
ent from maximizing just IðY : X1jX2Þ, as this would omit the shared
information, i.e. we would lose this part of the information in X1.
The goal function GCWS is also different from just maximizing
IðY : X1Þ, as this would omit the synergistic information, i.e. the pos-
sibility to decode information from X1 by means of X2. Furthermore,
there is no corresponding goal function F here in terms of classical
information theoretic measures. This can easily be proven by noting
that C ¼ ½1;�1;1;1;�1� has a non-zero projection in VC (Eq. (17)).
In other words, there is no U that satisfies Eq. (15).

Given there were bandwidth constraints on Y, one might want
to preferentially communicate one or two of the positively
weighted terms in Eq. (24). The natural choice here is to favor syn-
ergy and unique information about X1, because the shared infor-
mation with X2 is already in the system. If just one contribution
can be communicated this leaves us with three choices. We will
quickly discuss the meaning of each here: first, focusing on the
unique information IunqðY : X1 n X2Þ emphasizes the surprising
information in X1, because this is the information that is not yet
in the system at all (i.e. not in X2); second, focusing on the shared
information IshdðY : X1;X2Þ basically leads to coherent infomax;
third, focusing on the synergistic information IsynðY : X1;X2Þ
emphasizes information which can only be obtained when putting
together prior knowledge in X2 and incoming information X1 – this
would be the extreme case of CWS. This case should arise naturally
in binary error computation, e.g. in error units suggested as
osition as a unified approach to the specification of neural goal functions.
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integral parts of certain predcitive coding architectures (see Clark,
2013 for a discussion of error units, also compare the XOR unit in
Fig. 4).

A classic example for this last coding strategy would be crypto-
graphic decoding. Here, the mutual information between cypher
text (serving as input X1) and plain text (serving as output Y) is
close to zero, i.e. IðY : X1Þ � 0, given randomly chosen keys and a
well performing cryptographic algorithm. Nevertheless the mutual
information between the two, given keys (serving as input X2), is
the full information of the plain text, i.e. IðY : X1jX2Þ ¼ HðYÞ,
assuming the unused bandwidth is zero (HðY : X1;X2Þ ¼ 0). As
the mutual information between key and plain text should also
be zero (IðY : X2Þ ¼ 0) we see that in this case the full mutual infor-
mation is synergistic: IðY : X1;X2Þ ¼ IsynðY : X1;X2Þ. In a similar
vein, any task in neural systems that involves an arbitrary key-
dependent mapping between information sources – as in the above
cryptographic example – will involve CWS. One such task would be
to read a newspaper printed in Latin characters (which could be in
quite a range of languages) to get knowledge about the current
state of the world (or at least some aspects of it). Visually inspect-
ing the text, without the information incorporated in the rules of
the unknown written language used will not reveal information
about the world. Yet, having all the information on the rules of
written language, without having a specific text will also not reveal
anything about the world. To obtain this knowledge we need, both,
the text of the newspaper and the language-specific information
how written words map to possible states of the world.

A corollary of the properties of synergistic mutual information
is that when a neuron’s inputs are investigated individually they
will seem unrelated to the output – to the extent that synergistic
information is transmitted in the output. Therefore, the minimal
configuration of neuronal recordings needed to investigate the
synergistic goal function is a triplet of two inputs and one output.
Thus, though coding with synergy has not been prominent in
empirical reports to date, it might become more frequently
detected as dense and highly parallel recordings of neuronal activ-
ity become more widely available.

The general setting of coding under prior knowledge discussed
here is also related to Barlow’s efficient coding hypothesis (Barlow,
1961) if we take the prior information X2 to be information about
which inputs to our processor are typical for the environment it
lives in. We here basically generalize Barlow’s principle by drop-
ping reference to what the input or the prior knowledge are about.

Last, this goal function seems significant to us as synergy is seen
by some authors as useful in an formal definition of information
modification (e.g. Lizier et al., 2013). Thus synergy is a highly use-
ful measure in the description of neural processor with two or
more inputs (or one input and an internal state), as it taps into
the potential of the processor to genuinely modify information11

7. Discussion

7.1. Biological neural processors and PID

In this study we introduced partial information decomposition
(PID) as a universal framework to describe and compare neural
processors in a domain-independent way. PID is indispensable
for the information theoretic analysis of systems where two (or
more) inputs are combined to one output, because it allows to
decompose the information in the output into contributions
provided either uniquely by any one of the inputs alone (unique
11 Most interestingly, the current definition of information transfer via the transfer
entropy (Schreiber, 2000) actually also contains an element of synergy between the
source’s and the target’s past (Williams & Beer, 2011), and thus there are basically
modifying and non-modifying forms of information transfer.
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information), by either of them (shared information), or only by
both of them jointly (synergistic information). Using PID, the infor-
mation processing principles of the processor can be quantitatively
described by specific coefficients C for each of the PID contribu-
tions in a PID-based goal function GðCÞ, which the processor
maximizes.

This framework is useful in several ways. First, and perhaps
most importantly, it allows the principled comparison of existing
neural goal functions, such as infomax, coherent infomax, predic-
tive coding, and efficient coding. Second, it aids in the design of
novel neural goal functions. Here we presented a specific example,
coding with synergy (CWS), that exploits synergy to maximize the
information that can be obtained from the input when prior infor-
mation is available in the system. Note, however, that the actual
implementation of a neural circuit maximizing the desired goal
function is not provided by the new framework and will have to
be constructed on a case by case basis at the moment. This is in
contrast to coherent infomax where a working implementation is
known. Third, applying this framework to neural recordings may
help us understand better how neural circuits that are far away
from sensory and motor periphery, and for which we do not have
the necessary semantics, function.

Currently, the applicability of our framework rests on the
assumption that a neural processor with two inputs is a reasonable
approximation of a neuron or microcircuit.12 Of course, neurons
typically have many more inputs than just two. However, if such
inputs naturally fall into two groups, e.g. being first integrated
locally in two groups on the dendrites before being brought to inter-
act at the soma, then indeed the two input processor is a useful
approximation. If, moreover, these integrated inputs are measured
before their fusion in the soma, then the formalism of goal functions
presented here will allow us to assess the function of this neuron in a
truly domain independent way, relying only on information that is
also available to the neuron itself.

For example, two such spatially segregated and separately
integrated inputs can be distinguished on Pyramidal cells (Fig. 1).
Pyramidal cells are usually highly asymmetric and consist of a cell
body with basal dendrites and an elongated apical dendrite that
rises to form a distal dendritic tuft in the superficial cortical layers.
Thus, the inputs are spatially segregated into basal/perisomatic
inputs, and inputs that target the apical tuft. Intracellular record-
ings indicate that there are indeed separate integration sites for
each of these two classes of input, and that there are conditions
in which apical inputs amplify (i.e. modulate) responses to the
basal inputs in a way that closely resembles the schematic two-
input processor shown in Fig. 1. There is also emerging evidence
that these segregated inputs have driving and modulatory func-
tions and are combined in a mechanism of apical amplification of
responses to basal inputs – resembling the coherent infomax goal
function. Direct and indirect evidence on this apical amplification
and its cognitive functions is reviewed by Phillips [in this special
issue]. That evidence shows that apical amplification occurs within
pyramidal cells in the superficial layers, as well as in layer 5 cells,
and suggests that it may play a leading role in the use of predictive
inferences to modulate processing.

Which of the goal functions proposed here, e.g. infomax, coher-
ent infomax, or coding with synergy a neural processor actually
performs is an empirical question that must be answered by
analyzing PID footprints of G obtained from data recorded in neural
processors. At present this is still a considerable challenge when
applied to the level of single cells or microcircuits because this
requires the separate recording of at least one output and two
12 Although the work of Griffith and Koch (2014) and colleagues as well as Rauh
et al. (2014) allows some extensions to more inputs and outputs, respectively.
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inputs, which must moreover be of different type in the case of
coherent infomax. Next, the PID terms have to be estimated from
data, instead of distributions that are known. This type of estima-
tion is still a field of ongoing research at present. Overcoming these
challenges will yield in-depth understanding of, for example, the
information processing of the layer 5 cell described above in terms
of PID, and elucidate which of the potential goal functions is imple-
mented in such a neuron.

In the spirit of the framework proposed here, classical informa-
tion theoretic techniques have already been applied to psychophys-
ical data to search for coherent infomax-like processing at this level
(Phillips & Craven, 2000). These studies confirmed for example that
attentional influences are modulatory, and showed how modula-
tory interactions can be distinguished from interactions that inte-
grate multiple driving input streams. These result are a promising
beginning of amore large scale analysis of neuronal data at all levels
with information theoretic tools, such as PID.

Further information theoretic insight relevant to predictive pro-
cessing may also be gained by relating the predictable information
in a neural processor’s inputs (measured via ’local active informa-
tion storage’ Lizier et al., 2012) to the information transmitted to
its output (measured via transfer entropy (Schreiber, 2000)), or
local transfer entropy (Lizier et al., 2008) to investigate whether
principles of predictive coding apply to the information processing
in neurons. This is discussed in more detail in Wibral et al. (2015).

7.2. Conclusion

We here argued that the understanding of neural information
processing will profit from taking a neural perspective, focusing
on the information entering and exiting a neuron, and stripping
away semantics imposed by the experimenter – semantics that is
not available to a neuron. We suggest that the necessary analyses
are best carried out in an information theoretic framework, and
that this framework must be able to describe the processing in a
multiple input system to accommodate neural information pro-
cessing. We find that PID provides the necessary measures, and
allows to compare most if not all theoretically conceivable neural
goal functions in a common framework. Moreover, PID can also
be used to design new goal functions from first principles. We
demonstrated the use of this technique in understanding neural
goal functions proposed for the integration of contextual informa-
tion (coherent infomax), the learning of predictions (predictive
coding), and introduced a novel one for the decoding of input based
on prior knowledge called coding with synergy (CWS).
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13 The self-redundancy axiom states that the shared information is just the mutual
information between input and output when considering the same input twice, i.e.
IshdðY : X1;X1Þ ¼ IðY : X1Þ. This axiom becomes important in extensions of PID to more
than two input variables.
Appendix A. Notation

A.1. Probability distributions

We write probability distributions of random variables X1; X2;

Y as PðX1;X2;YÞ wherever we’re talking about the distribution as
an object itself, i.e. when we treat a distribution PðX1;X2;YÞ as a
point of in the space of all joint probability distributions of these
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three variables. To signify a value that such a distribution takes
for specific realizations x1; x2; y of these variables, we either write
PðX1 ¼ x1;X2 ¼ x2;Y ¼ yÞ, or use the shorthand pðx1; x2; yÞ.
A.2. Notation of PID terms

To highlight the necessity of the notation used here and to dee-
pen the understanding of the various partial information terms we
give the following example where we add explicit set notation for
clarity:

IshdðY : A;B;C;DÞ – ðA:1Þ
IshdðY : A;B;C;DÞ ¼ ðA:2Þ
IshdðY : fA;B;C;DgÞ ¼
IshdðY : fA;B;C;Dg; fA;B;C;DgÞ ¼
IðY : A;B;C;DÞ ;
IshdðY : A;B;C;DÞ – ðA:3Þ
IshdðY : A;B;C;DÞ ¼ ðA:4Þ
IshdðY : fA;Bg; fC;DgÞ :

Here, the first expression (A.1) asks for the information that all four
right hand side variables share about Y, while the second expression
(A.2) asks for the information that the set fA;B;C;Dg shares (with
itself) about Y. By the self-redundancy axiom13 (Williams & Beer,
2010) this is just the mutual information between the set
fA;B;C;Dg and Y. In the next example in Eqs. (A.3) and (A.4) we
ask in Eq. (A.4) for the information shared between the two sets of
variables fA;Bg and fC;Dg, meaning that the information about Y
can be obtained from either A, or B, or from them considered jointly,
but must also be found in either C or D or in the two of them consid-
ered jointly. This means in the latter case information held jointly by
A and B about Y is considered if it is shared with information about Y
obtained from any combination of C; D, including their synergistic
information.
Appendix B. Partial information decomposition

B.1. Partial information decomposition based on unique information

We here present a definition of unique information given by
Bertschinger et al. (2014), which is equivalent to that provided by
Griffith and Koch (2014). We assume (that neural signals can be
described by) discrete random variables X1; X2; Y with (finite)
alphabets AX1 ¼fx11; . . . ;x1Mg; AX2 ¼fx21; . . . ;x2Ng; AY ¼fy1; . . . ;yLg,
described by their joint probability distribution PðX1;X2;YÞ ¼
fpðx11;x21;y1Þ; . . . ;pðx1M;x2N;yLÞg.

As already mentioned above, a definition of either unique, or
shared, or synergistic information that X1; X2 and fX1;X2g have
about a variable Y is enough to have a well defined PID. Among
these possibilities, Bertschinger and colleagues opt for a definition
of unique information based on the everyday notion that having
unique information about Y implies that we can exploit this unique
information to our favor against others who do not have this infor-
mation – at least given a suitable situation. Thus if we are allowed
to construct such a suitable situation to our liking, we may prove to
have unique information for example by winning bets on the
outcomes of Y, where the bets are constructed by us against an
opponent who does not have that unique information.
osition as a unified approach to the specification of neural goal functions.
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I(Y : X1; X2)
I(Y : X2)

I(Y : X1)

Iunq(Y : X1\X2)

Iunq(Y : X1\X2)

Ishd(Y : X1;X2)

I syn
(Y : X

1
;X 2

)

I(Y : X1) is known from information 
theory. It is constant on P, i.e. 
independent of the choice of Q.  

Iunq(Y : X1 \ X2) is unkown in classi-
cal information theory, but constant 
on P by assumption from game 
theory. 

By minimizing IQ(Y : X1 | X2),
Isyn,Q(Y : X1; X2)  is also minimized, 
and therefore only Iunq remains:

Iunq(Y : X1 \ X2)  = min IQ(Y : X1 | X2).

IQ(Y : X1 | X2) is known from infor-
mation theory, and depends on the 
choice of Q. 

With the aim to estimate
Iunq(Y : X1 \ X2), one defines a set of 
IQ(Y : {X1, X2}`)  on P.
IQ depends on the choice of Q (see 
main text).

Likewise, Isyn,Q(Y : X1; X2) depends 
on the choice of Q. 

The aim is to quantify Iunq, Ishd, and Isyn.

With knowing Iunq(Y : X1 \ X2),
Ishd(Y : X1; X2) is calculated with
I(Y : X1).

Last, Isyn(Y : X1 ; X2) is caluclated 
from the known quantities
I(Y : X1 ; X2), Iunq(Y : X1 \ X2), 
Iunq(Y : X2 \ X1) and Ishd(Y : X1; X2).
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Fig. B.5. Graphical depiction of the principle behind the definition of unique
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More formally, one can imagine two players Alice and Bob. Alice
has access to the variable X1 from Eq. (3), while she does neither
have access to variable X2, nor direct access to variable Y. Bob
has access to the variable X2, but neither direct access to X1, nor
to Y. To the extent that the mutual information terms IðY : X1Þ,
and IðY : X2Þ allow, Alice and Bob however, do have some informa-
tion about the variable Y, despite not having direct access to Y. If
Alice wants to prove that having access to X1 gives her unique
information about Y,14 then she can suggest to Bob to play a specific
game, designed by her, where the payout depends only on the out-
comes of Y. In such a game, her reward will depend only on the prob-
ability distribution pðx1; yÞ ¼ pðx1jyÞpðyÞ, while Bob’s reward will
depend only on pðx2; yÞ ¼ pðx2jyÞpðyÞ. The winner is thus determined
simply by the two distributions pðx1; yÞ and pðx2; yÞ, but not by the
details of the full distribution pðx1; x2; yÞ. Practically speaking, Alice
should therefore construct the game in such a way that her payout
is high for outcomes y about which she can be relatively certain,
knowing x1.

From this argument, it follows that Alice could not only prove to
have unique information in the case described by the full joint dis-
tribution P ¼ PðX1;X2;YÞ, but also for all other cases described by
distributions Q ¼ QðX1;X2;YÞ that have the same pairwise mar-
ginal distributions, i.e. pðx1; yÞ ¼ qðx1; yÞ ^ pðx2; yÞ ¼ qðx2; yÞ8x1; x2;
y 2 AX1 ;X2 ;Y . Based on this observation it makes sense to request
that IunqðY : X1 n X2Þ and IunqðY : X2 n X1Þ stay constant on a set DP

of probability distributions that is defined by:

DP ¼ fQ 2 D : QðX1 ¼ x1;Y ¼ yÞ ¼ PðX1 ¼ x1;Y ¼ yÞ
and QðX2 ¼ x2; Y ¼ yÞ ¼ PðX2 ¼ x2;Y ¼ yÞg; ðB:1Þ

where D is the set of all joint probability distributions of X1; X2;Y .
From this, it follows from Eq. (4) that also the shared informa-

tion IshdðY : X1;X2Þ must be constant on DP (consult Fig. B.5, and
take into account that the mutual information terms IðY : X1Þ and
IðY : X2Þ are also constant on DP). Hence, the only thing that may
vary when exchanging the distribution P, for which we want to
determine the unique information terms, for another distribution
Q 2 DP is the synergistic information IsynðY : X1;X2Þ. It therefore
makes sense to look for a specific distribution Q0 2 DP where the
unique information terms coincide with something computable
from classic information theory. From Fig. 2 we see that for the
case of a distribution Q0 2 DP where synergistic information
vanishes, the unique information terms would coincide with
conditional mutual information terms, i.e. Iunq;PðY : X1 n X2Þ ¼
Iunq;Q0 ðY : X1 n X2Þ ¼ IQ0 ðY : X1jX2Þ. It is known, however, that a Q0

with this property does not necessarily exist for all definitions of
unique, shared and synergistic information that satisfy Eqs. (3)–
(5), and that also satisfy the above game-theoretic property (being
able to prove the possession of unique information). Therefore,
Bertschinger and colleagues suggested to define a measure ~Iunq of
unique information via the following minimization:

~IunqðY : X1 n X2Þ ¼ min
Q2DP

IQ ðY : X1jX2Þ ðB:2Þ
~IunqðY : X2 n X1Þ ¼ min

Q2DP

IQ ðY : X2jX1Þ: ðB:3Þ

From this, measures for shared and synergistic information can
be immediately obtained via Eqs. (4), (3) as:

~IshdðY : X1;X2Þ ¼ max
Q2DP

IðY : X1Þ � IðY : X1jX2Þð Þ
¼ max

Q2DP

CoIQ ðY;X1;X2Þ;
ðB:4Þ
information in Bertschinger et al. (2014). For details also see the main text.
(A) Reminder of the partial information diagram. (B) Explanation how unique
information can be defined using minimization of conditional mutual information
on the space of probability distributions DP (see text). Note that if the synergy in
(B6) cannot be reduced to 0, then we simply define the unique information measure
as ~IunqðY : X1 n X2Þ ¼ minQ2DP IðY : X1jX2Þ.

14 Remember that the unique information is part of a decomposition of a mutual
information, IðY : X1;X2Þ, so we’re looking at information about Y. We do not care how
much information X1 has about X2, and vice versa.
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~IsynðY : X1;X2Þ ¼ IðY : ðX1;X2ÞÞ �min
Q2DP

IQ ðY : ðX1;X2ÞÞ: ðB:5Þ

Note that CoI refers to the co-information CoIðY;X1;X2Þ ¼ IðY : X1Þ�
IðY : X1jX2Þ (see Bertschinger et al., 2014 for details). For this partic-
ular choice of measures it can be shown that there is always at least
one distribution Q0 2 DP for which the synergy vanishes, as was
desired above. As knowledge of the pairwise marginal distributions
PðX1;YÞ; PðX2; YÞ only specifies the problem up to any Q 2 DP , and
as the synergy varies on DP , we need to know the joint distribution
PðX1;X2;YÞ to know about the synergy. This is indeed an intuitively
plausible property and supports the functionality of the definitions
given by Bertschinger et al. (2014).

From Fig. 2 and the definition of~Iunq; ~Ishd, and~Isyn in Eqs. (B.2)–(B.5)
it seems obvious that the following bounds hold for these measures:

~IunqðY : X1 n X2Þ P IunqðY : X1 n X2Þ; ðB:6Þ
~IunqðY : X2 n X1Þ P IunqðY : X2 n X1Þ; ðB:7Þ
~IshdðY : X1;X2Þ 6 IshdðY : X1;X2Þ; ðB:8Þ
~IsynðY : X1;X2Þ 6 IsynðY : X1;X2Þ; ðB:9Þ

and this can indeed be proven, given that Iunq; Ishd, and Isyn is taken
to mean any other definition of PID that satisfies Eqs. (3)–(5)
Bertschinger et al. (2014) and the above game theoretic assumption
of a constant Iunq on DP .

The measures ~Iunq; ~Ishd, and ~Isyn require finding minima and
maxima of conditional mutual information terms on DP . Fortu-
nately, these constrained optimization problems are convex for
two inputs as shown in Bertschinger et al. (2014), meaning that
there is only one local minimum (maximum) which is the desired
global minimum (maximum). Incorporating the constraints
imposed by DP into the optimization maybe non-trivial, however.

B.2. PID by example: of casinos and spies

A short example may demonstrate the above reasoning: Let
Alice and Bob bet on the outcomes Y of a (perfect, etc.) Roulette
table at a Casino in a faraway city, such that they do not have
immediate access to these outcomes; they will only get a list of
these outcomes when the Casino closes, but will have to place their
bets before that. Alice has a spy X1 at the Casino who informs here
directly after an outcome was obtained there, but only tells the
truth when the outcome was even (this includes 0). Otherwise
he tells her a random possible outcome from a uniform distribu-
tion across natural numbers from 0 to 36 (just like the Roulette).
Bob also has a spy X2 at the casino, but in contrast to Alice’s spy
he only tells Bob the truth for uneven outcomes and for 0, other-
wise he lies in the same way as the one of Alice, picking a random
number. Neither Alice nor Bob knows about the spy of the other.15

While this situation looks quite symmetric at first glance, both can
prove to each other to have unique information about the outcomes
at the casino, y. To see this, remember that Alice may suggest a game
constructed by herself when trying to prove the possession of unique
information. Thus, Alice could suggest to double the stakes for bets
on even numbers.16 At the end of the day, both Alice and Bob will
15 This is actually irrelevant, since the game is about Y only. The statement is
intended for readers with a game theoretic background and should clarify that this is
a trivial game, where knowledge about the opponent doesn’t influence Alice’s or Bob’s
strategy.
16 In roughly 50% of the cases the outcome of the Roulette, y, will be even, and in
these cases Alice will be told the truth. In the other 50% of the cases, the outcome will
be odd, and the spy will report a random number. Of these roughly 50% will be even,
roughly 50% will be odd. Thus Alice will receive on average roughly 75% even and 25%
odd numbers. Of the even numbers 2/3 will be correct. Of the odd numbers only 1/18
will be correct – by chance. For Bob the situation is reversed. Forcing higher stakes for
even outcomes will, therefore, be an advantage for Alice.
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have won a roughly equal amount of bets, but the bets Alice will
typically have won payed out more, and Alice wins. In the same
way, Bob could suggest to double the stakes for uneven outcomes
if it were his turn to prove the possession of unique information.
Thus, both have the same amount of information about the out-
comes at the casino, but a part of that information is about different
outcomes.

In this example, there is also redundancy as both will have the
same information about the outcome Y ¼ 0.

It is left for the reader to verify that Alice and Bob will gain
some information (i.e. synergy) by combining what their spies tell
them, but that this is not enough to be certain about the outcome
of the Roulette, i.e. IðY : X1;X2Þ < HðYÞ.17
B.3. Estimating synergy and PID for jointly Gaussian variables

While synergy, shared and unique information are already dif-
ficult to estimate for discrete variables, it is not immediately clear
how to extend the definitions to continuous variables in general.
Barrett has made significant advances in this direction though by
considering PID for jointly Gaussian variables (Barrett, 2014).
Approaches to Gaussian variables are important analytically
because the classical information theoretic terms there may be
computed directly from the covariance matrix of Y ; X1; X2, and
are important empirically due to the wide use of Gaussian models
to simplify analysis (e.g. in neuroscience).

First, Barrett was able to demonstrate the existence of cases of
non-zero quantities for each of synergy and shared information
for such variables. This was done without reference to any specific
formulation of PID measures by examining the ‘net synergy’
(synergy minus shared information), i.e. IðY : X1;X2Þ � IðY : X1Þ�
IðY : X2Þ, which provides a sufficient condition for synergy where
it is positive and for shared information where it is negative. This
was an important result, since the intuition of many authors was
that the linear relationship between such Gaussian variables could
not support synergy.

Next, Barrett demonstrated a unique form for the PID for jointly
Gaussian variables which satisfies the original axioms of Williams
and Beer (2010) as well as having unique and shared information
terms depending only on the marginal distributions ðX1;YÞ and
ðX2;YÞ (as argued by Bertschinger et al. (2014) above, and consis-
tent with Harder et al. (2013), Griffith & Koch (2014)). To be speci-
fic, this unique form holds only for a univariate output (though
multivariate inputs are allowed). This formulation maps the shared
information to the minimum of the marginal mutual information
terms IðY : X1Þ and IðY : X2Þ – hence is labeled the Minimum Mutual
Information (MMI) PID – and the other PID terms follow from Eqs.
(3)–(5). Interestingly, this formulation always attributes zero
unique information to the input providing less information about
the output. Furthermore, synergy follows directly as the additional
information provided by this ‘‘weaker” input after considering the
‘‘stronger” input. Some additional insights into this behavior have
recently been provided by Rauh and colleagues in Olbrich,
Bertschinger, and Rauh (2015).
Appendix C. Learning rules for maximizing F and for learning
the coherent infomax goal function FCIP

We here briefly present the learning rules for gradient ascent
learning of neural processor learning to maximize the goal function
F from Eq. (11). We only consider the basic case of a single a neural
processor with binary output Y here (Kay, 1999; Kay et al., 1998).
17 Hint: Think about what they can conclude if the parities of their outcomes match,
and what if they don’t match.
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The inputs to this processor are partitioned into two groups fX1ig,
representing the driving inputs and fX2jg, representing the contex-
tual inputs. These inputs enter the information theoretic goal func-
tion FðX1;X2;YÞ via their weighted sums per group as:

X1 ¼
Xm
i¼1

wiX1i �w0 ¼ wTX1 �w0 ðC:1Þ

X2 ¼
Xn
j¼1

v jX2j � v0 ¼ vTX2 � v0: ðC:2Þ

The inputs affect the output probability of the processor via an
activation function Aðx1; x2Þ as:

H � pðY ¼ 1jX1 ¼ x1;X2 ¼ x2Þ ¼ 1
1þ expð�Aðx1; x2ÞÞ : ðC:3Þ

For the sake of deriving general learning rules, A may be any gen-
eral, differentiable nonlinear function of the input. Note thatH fully
determines the information theoretic operation that the processor
performs. H is a function of the weights used in the summation
of the inputs. Thus, learning a specific information processing goal
can only be done via learning these weights – assuming that the
input distributions of the processor cannot be changed. Learning
rules for these weights will now be presented.

To write the learning rules in concise form, the additional
definitions:

E ¼ hHix1 ;x2 ðC:4Þ
Ex2 ¼ hHix1 jx2 ðC:5Þ
Ex1 ¼ hHix2 jx1 ; ðC:6Þ
are introduced to abbreviate the expectation of the activation across
all input vectors x1 ¼ ½x11 . . . x1m�; x2 ¼ ½x21 . . . x2n�. These expecta-
tions are functions of the input distributions as well as of the
weights and have to be recomputed after weight changes. Using
online learning therefore necessitates computing these expecta-
tions over a suitable time window of past inputs. To write the learn-
ing rules in concise notation a non-linear floating average �O of the
above expectations is introduced as:

�O ¼ U0 log
E

1� E
� ðU0 �U2Þ log Ex1

1� Ex1
� ðU0 �U1Þ log Ex2

1� Ex2
:

ðC:7Þ
Using this notation, the gradients for the updates of weights

w ¼ ½w1 . . .wm�; v ¼ ½v1 . . .vn�, and the bias coefficientsw0; v0 are:

@F
@w

¼ ðU1 þU2 �U3 �U0ÞA� �O
� � @A

@x1
Hð1�HÞx1

� �
x1 ;x2

ðC:8Þ

@F
@v

¼ ðU1 þU2 �U3 �U0ÞA� �O
� � @A

@x2
Hð1�HÞx2

� �
x1 ;x2

ðC:9Þ

@F
@w0

¼ ðU1 þU2 �U3 �U0ÞA� �O
� � @A

@x1
Hð1�HÞð�1Þ

� �
x1 ;x2

ðC:10Þ
@F
@v0

¼ ðU1 þU2 �U3 �U0ÞA� �O
� � @A

@x2
Hð1�HÞð�1Þ

� �
x1 ;x2

:

ðC:11Þ
Last, we note that for the specific implementations of CIP, the

activation function was chosen as:

Aðx1; x2Þ ¼ x1 k1 þ ð1� k1Þ expðk2x1x2Þ½ �; ðC:12Þ
with 0 6 k1 < 1 and k2 > 0, and with x1; x2 being realizations of
X1; X2 from Eqs. (C.1), (C.2). This specific activation function (Kay,
1999; Phillips et al., 1995) guarantees that:
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� Zero output activation can only be obtained if the summed driv-
ing input X1 is zero.

� For zero summed contextual input X2, the output equals the
summed driving input.

� A summed contextual input of the same sign as the summed
driving input leads to an amplification of the output. The
reverse holds for unequal signs.

� The sign of the output is equal to the sign of the summed driv-
ing input.

These four properties were seen as essential for an activation
function that supports coherent infomax.
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