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This paper is devoted to the study of the oscillation of solutions of delay differen- 
tial equations of the neutral and mixed types. Some general results are proved for 
certain general Volterra type neutral differential equations and many particular 
cases are discussed. ‘t:‘ 1989 Academic Press, Inc 

1. INTRODUCTION 

During the last 20 years there has been a great deal of work on the 
oscillation of solutions of delay equations of the type 

where the continuous functions hi(t) and t;(t) are non-negative for any 
1 <i<n and t>t,. 

Considerably less is known about the behavior of the solutions of (1.1) 
when it is of mixed type, that is there exist two indexes 1 < i #j < n such 
that hi(t) > 0 and b,(t) < 0, moreover sign bk(t) = sign bk( to) (1 < k < n, 
t 3 to). As recent contributions to this study we cite the papers of Arino, 
Ladas, and Sticas [ 1 ] and Ladas and Sficas [ 121. 

The neutral delay differential equations of the type 

g I x(t)- 2 a,x(t-8,) = - f b,x(t-T,), 
j= 1 1 i= 1 

(1.2) 

where uj, 6, (1 <j< n), !I,, r,a 0 (1 d i< n) are given constants, are 
interesting in some applications (see [Z, 41). Thus it is understandable that 
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recently there also has been a great deal of interest in obtaining results on 
the oscillatory behavior of solutions of neutral delay differential equations. 
Such results can be found in the papers of Grammatikopoulos, Grove, and 
Ladas [6, 73, Kulenovic, Ladas, and Meimaridou [ 111, and Ladas and 
Sficas [ 133. 

At first sight-ven from the above-mentioned papers-the 
investigations of the mixed type and of the neutral type equations seem to 
be independent. But after careful consideration we recognized that if we 
give some general results for the neutral delay differential equation 

$C*(I)-g(r,x(-)l+f(i,r(.))=0, tat,, (1.3) 

where f, g: [t,, co ) x C( [t ~, , co ), R) + R are continuous Volterra 
functionals and - cc d t _, < t,, then from these general results we can 
deduce new statements concerning the mixed and neutral type delay 
equations, too. Therefore the aim of this paper is to give some general 
results and principles for the general equation (1.3) and after that to 
discuss many interesting particular cases. 

In Section 2 of this paper we give our general results concerning 
Eq. (1.3). 

In Section 3, we apply our general results to some time dependent 
neutral equations to generalize some results of Hunt and Yorke [lo] and 
Ladas and Sficas [12]. We also investigate the mixed type equation 

i(t)= -px(t-t)+qx(t-a), (1.4) 

where p, q, T, and u are positive constants. Our statement concerning ( 1.4) 
is a significantly generalized and sharpened version of a recent theorem of 
Arino, Ladas, and Sficas [ 11. 

In Section 4, we deal with some integro-differential equations of the 
neutral type. In that section we also deal with a conjecture of Hunt and 
Yorke [IO] which was raised for non-neutral delay differential equations. 
That conjecture was proved in many particular cases in [9] and now we 
show that it is valid for some neutral delay differential equations, too. 

2. SOME GENERAL RESULTS 

Let C( [a, b], D) be a set of continuous functions mapping the interval 
[a,b], -co<ua<bd, into DcR=(-co, 00). 

Suppose -cocOrt,,<t,<cc andf: [to, cc)xC([tP,, co), R)+R is a 
given functional. The functional f is called a continuous Volterra 
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functional, if f(t, x( . )) is a continuous function of t for t E [t,, co) for all 
xEC([t-,, co),R), moreover for any x,y~C([t-,, co),R), 

f(t, x(.)) =f(L Y( )I> 

whenever t > t, is such that x(s) = y(s), t _ 1 < s < t. 
Consider now the neutral functional differential equation 

$Ix(t)-~(t,x(.))l+/(t,x(.))=o, (2.1) 

where f,g:[to,~)xC([tL,,co),R)-+R are continuous Volterra 
functionals. 

A function x is said to be a solution of Eq. (2.1), if x E C( [ t _, , cc ), R), 
x(t) -g(t, x( .)) is continuously differentiable and x(t) satisfies Eq. (2.1) on 
[to, 03). 

We say Eq. (2.1) is oscillatory if every solution x of Eq. (2.1) at t, is 
oscillatory; i.e., there exists a sequence { t,}p=, such that to d tk -+ + co 
(k-t+oo),andx(t,)=O,k~l.Afunctionx~C([t_,,c~),R)issaidtobe 
eventually positive (negative) if there exists a t, 3 t, such that x(t) > 0 
(x(t) < 0) for any t 3 t, . 

PROPOSITION 2.1. Assume that - 00 6 tP ,<t,<co andf,g: [to, c0)x 
C( [t ~, , co ) -+ R are continuous Volterra functionals and 

(A ,) there exists a continuous function z : [t,, co) + R + such that 
t--(t)btPI and it is increasing on t,<t<oO, t-T(t)+ +co (t-+ +a), 
and for any eventually positive function x E C( [t , , co), R), there exists 
t ~ > t, such that x(s) > 0 (s > t, - t( t.,)), and 

g(t, x(.))<max{x(s): t-T(t) <s< t}, t 2 t,. (2.2) 

If x(t) is a solution of Eq. (2.1) on [t ~, , cc ) and there exists some 
T., 3 t ~ 1 such that x(t) > 0 (t > T,), moreover 

f(t, x(.))>O, sup {f(s, x(.)): s>t} >o, 

t3TL=max{T,, to}, (2.3) 
then the function 

x(t)-g(t, X(‘)h t 3 T.:, 
min(x(t),x(T’,)-g(TL,x(.))}, t~,dt<Ti, 

(2.4 

is continuous on [t-,, co), u(t)>O(t>T.,), and 

a(t)= -f(t, x(.))dO, t> T;. (2.5 
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Proof. Since .x(t) is a solution of Eq. (2.1) on [t ~, , co), we have that 
x(t) and g(t, x( )) are continuous and so u(t) is also continuous on 
[t _, , co). From (2.1) and (2.3), it follows that 

ir(t)=~C\-(t)-g(r,,x-(.))l=-/(r,x(.))~o, t 3 T’,, (2.6) 

and 

inf{zi(s):s3t)=-sup{f(s,x(.)):s>tj<O, t>T;. (2.7) 

Now we shall show that u(t) > 0, t > T,. To do this we show that the 
negation of this assertion leads to a contradiction. If we assume that there 
exists a T, 2 T: such that u( T,) = 0, then (2.6) and (2.7) imply that there 
exists a constant T2 > T, such that ti( T2) < 0 and 

Thus by using the definition of u(t), we obtain 

x(t)=U(t)+g(t,x(.))~g(t,x(.))+u(Tz), t> T,. (2.8) 

From Assumption (A,), we have that there exists a t, 2 to such that 
x(s) 3 0 (s > t., - z(t,r)), and (2.2) holds. Combining this with (2.8), we have 

x(t)<g(t, ~(.))dmax{x(s): t-r(t)ds6t), 

t3i,=max{T,, tl-}. (2.9) 

Now, let us define a constant A4 > 0 such that 

O<x(t)<M, i.,-T(i.,)<f<..t.. 

We shall show that x(t) < M, for any t 3 1,. Indeed, if we assume that for 
some t, > i,, x(t,)=M, then there exists some t2E (t,, t,] such that 

Odx(t)<M, I, - z( ?,) d t x t,, x(tz) = M. 

However, from (2.9), we obtain the contradiction 

M = x( t2) < max {x(s) : f2 - r( tz) < s < t2} d M; 

therefore, 0 d x(r) < M, for any t 2 1, - $7,). Using this fact, (2.2) and (2.8) 
yield 



RETARDED DIFFERENTIAL EQUATIONS 5 

lim sup x(t) 6 lim sup g( t, x( . )) + u( T,) 
,- +J I-r tz 

Climsupmax {x(.s):t--r(t)<~<1 
r--1 +z 

=limsupx(t)dM<co, 
I- +r 

which is a contradiction and thus u(t) > 0 for any t > T-L. Since u( T.t) = 
x(T:)-g(Tt,,x(.))>O and x(t)>O, T,<t<T.i, thus u(t)>0 for any 
t > T.,, which completes the proof of the proposition. 

Now we are ready to prove our main statements. 

THEOREM 2.1. Assume that -co<tt,<t,<~ and f, g:[&,co)x 
C([tLl, co),R)+R are continuous Volterra finctionals such that 
Assumption (A, ) holds and 

(AZ) foranyx, u~C([t~,,c~),R)andT>tL,, theinequalityx(t)>u(t) 
(t > T) implies the existence of a T, = T,(T) such that 

f(t, 4.))2f(t, u(.))andg(t, x(.))2g(t, u(.)), (3 T,. (2.10) 

If x(t) is a solution of Eq. (2.1) on [t ~ r, co ) and there exists a constant 
T, > t, such that x(t) > 0 (t 3 T,), moreover (2.3) and 

df, x(.))>,O, t>T,, (2.11) 

hold, then the function u(t) defined by (2.4) is positive on [T,, cc) and 
there exists T:, > T., for which 

40 G -I-((, 4.)+&d., u(.))), t 3 T,, (2.12) 

where g,( t, u( . )) is a continuous non-negative function on [t r, cc ) such 
that gO( t, u( )) = g( t, u( . )) for all t large enough. 

Proof. By virtue of Proposition 2.1, we have u(t) > 0 (t > T,), and 
(2.11) implies 

x(t)=u(t)+g(t,x(~))~u(t), t> T,. 

From Assumption (A,), we can define some T( T,) > T,, such that (2.10) 
holds and gJt,u(.))=g(t,u(.)) (t>T(T,)); therefore, 

x(O~u(O+g,(t, 4’)), t 3 T(T,). 

Using also Assumption (A,), we have that for a suitable T.Y depending on 
T( T, )T 

f(t3 x(~))~f(4~)+&2(~, u(.))), (3 T,. 
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Combining this inequality with (2.6), we obtain the required inequality 
(2.12), and the proof is complete. 

THEOREM 2.2. Assume that -c~<t~,<t,,<co and f, g: [to, co)x 
C( [ t _, , co), R) -+ R are continuous Volterra jiunctionals such that 
Assumptions (A, ) and (A,) hold, moreover 

(AX) there exist a > 0 and b 3 c > 0 such that 

g(t,x(.))>amin(x(s):t-b,<s<t-c}, (2.13) 

for any (t,x)~Ct,,co)xC(Ct-,,co),R). 

If on these conditions, x(t) is a solution of Eq. (2.1) on [t 1, co) which 
is positive on some interval CT.,, co), then the function 

u(t)+ i a’u(t-ic), t 2 T., + (n + 1) 6, i= I 
ti,( t) = (2.14) 

u,( T, + (N + 1) 61, t< T,+(n+ l)b, 

is continuous and positive on [t- , , cc ) for any fixed n 2 1, moreover for 
some T,(n) k T,, 

4f) d -f(4 u,(.)), t 2 T,(N). (2.15) 

Proof: By virtue of Proposition 2.1, we have u(t) > 0 and ti(t) < 0 
(t B T,), and from (2.4), it follows that 

x(t)=u(t)+g(t, -4.1) 

au(t)+amin(x(s):t-bbsst-c}, tat,, 

i.e., 

x(t) 3 u(t) + au(t - c), t 3 T., + b. 

We shall show that for any k B 1 and for all t 3 T, + (k + 1) 6, 

x(t) 2 Uk(f), 

(2.16) 

(2.17) 

(2.18) 

where 

u(t)+ i a’u(t-ic), t 2 T, + (k + 1) 6, 
i= 1 

4(t) = 

u,A T, + (k + 1) 61, tp,<t<T,+(k+l)b 
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Indeed, (2.17) implies that x(t)>,ur(t), t> T,+ b. So, by virtue of the 
mathematical induction it is enough to show that if x(t) > uk(t), 
t 3 T, + (k + 1) b, for an arbitrary fixed k >, 1 then x(t) 2 uk+ ,(t), t > T, + 
(k + 2) 6. Let us assume that (2.18) holds for all t 3 T, + (k + 1) 6. Then 
(2.16 ) implies 

x(t)>u(t)+amin{u,(s):t-bdsdr-c}, t>T,+(k+l)b. 

Since ti(t) d 0, t 2 T,, we have a,(t) < 0, t 2 T, + (k + 1) b. Thus 

k+l 

x(t)~24(t)+au,(t-c)=u(t)+ c a’u(t-ic)=u,+,(t), 

,=I 

for any t 2 T, + (k + 2) b; i.e., (2.18) is valid for any k > 1. Particularly, if 
k = n, then x, u,, E C( [ t , , co), R) are such that the inequality x(t) 3 u,(t) 
holds for any t 3 T = T., + (n + 1) b. By virtue of Assumption (A,), there 
exists a TV(n) b T such that 

f(4 x(.))~.l”(f, u,(.)), t a T,w, 

and thus (2.5) implies 

G(f)= -f(t, x(.))< -./If, U,(‘)), f 3 T.&n). 

The proof of the theorem is complete. 

3. SOME SPECIAL EQUATIONS WITH FINITE DELAYS 

Let us consider the neutral delay differential equation 

f x(t)- f ai(t)x(t-hi(t)) = - f b,(t)x(t-r,(t)), (3.1) 
/=I 1 !=I 

where 
(P,) aj, dj (1 <j< M), and bi, r, (1 6 i< N) are given continuous 

non-negative functions on [to, co) such that 

,;, U,(f)G 1, sup f b,(s): s 3 t { (3.2) 
i= I 

for all t large enough and for some d > 0, 

6,(t) d d and r;(t) d A, tat,, 1 <j<M, 1 <i<N. 

By virtue of Theorem 2.1, we can prove the following. 
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THEOREM 3.1. If the property (P, ) is satisfied and 

C(t)= - $j h,(t) u(t-r,(t)) 
,=I I 

+,t, aj(t-ri(t))u(t-rr,(t)--,(t-rj(t))) 1 (3.3) 

has only oscillatory solutions on [T- 26, co) for all T> t, + 24 large 
enough, then Eq. (3.1) is oscillatory on [to - A, a~). 

Proof: Let us define the functionsf and g by the formulas 

f(t,x(.))= : bi(t).4-ri(t)) 
i= 1 

and 

At, x(.)1= ; q(t)x(t--,(t)), 
/=I 

foranyt,xE[t,,,cc)xC([t_,,cO),R),wheret_,=t,-A. 
Then f and g are continuous Volterra functionals and Eqs. (2.1) and 

(3.1) are equivalent. 
Define r(t)=A (t>t,), then t-s(t)++oo (t++oz), and for any 

eventually positive function x E C( [t _ r, cc ), R), there exists a t I; > to such 
that x(s) 20 (s > t,- A) and 

g(t, 4 .)I = ,f a,(t) x(t - b,(t)) 

j= I 

dmax{x(s): t-A<s<t), tat,, 

and thus the Assumption (A,) is satisfied. From the positivity of the 
functions a, (1 <j < M) and bi (1 6 i 6 N), it follows that f and g satisfy 
Assumption (AZ). 

Now let us assume that Eq. (3.1) is not oscillatory on [to - A, CO); 
i.e., Eq. (3.1) has an eventually positive or negative solution x(t) on 
[to-A, co). Without loss of generality, we can assume that x(t) is 
eventually positive, since if x(t) is a solution of Eq. (3.1) then -x(t) is also 
a solution. 

Now, we are able to apply Theorem 2.1. From this theorem, we have 
that the function u(t) defined by (2.4) is eventually positive and there exists 
a continuous function go(t, u( .)) on [t _, , co) such that go(t, u( .)) = 
g(t, u( .)) and inequality (2.12) is satisfied for all t large enough. But for any 
t large enough 
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f(4 4.)+go(~, 4.))) 

= f b,(t)Cu(t-r,(t))+g,(t-r,(t), 4.111 
,=I 

=; b,(i)[u(r-r;(r))+ f rr,(i-r,(r))u(i-ri(r)-ii,(r-r,(r))]; ,=I ,=l 

i.e., (2.12) implies 

a(r)G - f bi(t) U(t-r,(t))+ f Uj(t-r;(t))u(t-r,(t)--,(t--r,(t))) ,=I c /=I 1 
for a suitable interval T < t < co, where Ta t, is defined such that u(t) > 0 
for all t > T-24. But in that case, by a comparison theorem (see 
[3, p. 224]), we have that Eq. (3.3) has a positive solution on [T- 24, GO), 
which is a contradiction. Thus Eq. (3.1) is oscillatory and the proof of the 
theorem is complete. 

COROLLARY 3.1. If property (P, ) is satisfied and 

lim inf i b;(t) r,(t)+ jJ aj(t-ri(t))(ri(f)+6,(f-ri(f)) > l/e 
L 1 (3.4) 

I--r +m i=, ,=I 

then Eq. (3.1) is oscillatory on [t, - A, ac, ). 

Proof. From [ 10, Theorem 1.11, we have that if (3.4) is satisfied then 
Eq. (3.3) is oscillatory on [t, - A, co). Therefore by virtue of our 
Theorem 3.1, Eq. (3.1) is also oscillatory on [t, - A, co), The proof of the 
corollary is complete. 

From the last corollary, we get a generalized version of Theorem 3 of 
Ladas and Sficas [ 123: 

COROLLARY 3.2. Zf aj, S, (1 <j< N) and bi, ri (1 < i6 N) are given 
positive constants such that I,!“, a, d 1 and 

then 

$ -x(r)- z a,-~(t-d,) = - : b,x(t-r,) 
I 

(3.5) 
,=I ,= I 

is oscillatory on [to-A, CO), where A = max {6,, ri: 1 <j< M, 1 < i < N}. 
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COROLLARY 3.3. Assume that a E [0, 11, 6 > 0 are given constants 
and h, r: [to, a)-+R are continuous functions, O<r(t)<A<ac: (tat,), 
lim sup,+ +X h(t) < 00. If 

and 

liminfh(t)[r(t)+ l] >O, whenever a = 1, (3.6) 
I- +z 

1 
> lie, whenever a E [0, 1 ), (3.7) 

then 

f [x(t)-ax(t-a)] = -b(t)x(t-r(t)) (3.8) 

is oscillatory on [t, - A,, a~,), where A, = max { 6, A}. 

Proof Let us define the functions f and g by the formulas 

f(t, x(.1) =Nt) -4-r(t)) 
and 

g(t,x(.))=ax(t--1, 

for any t, XE [to, co) x C([t-i, co), R), where t-, = to- A,. 
Then one can see that f and g satisfy Assumptions (A,)-(A,), since 

g(t,x(.))bamin{x(s): t-h<s<t-c) 

for any (t,x)E[t,, a)xC([t-,, x), R), whenever h=c=& 
If we now assume that Eq. (3.8) is not oscillatory, then Eq. (3.8) has an 

eventually positive solution x(t) on [to - A, co). Define a constant 
T, 3 to- A such that x(t) > 0, t 3 T,. Then in view of Theorem 2.2, we 
have that the function u,(t) defined by (2.14) is positive on [to - A, co) and 

a(t)< -f(t, u,(.))= -b(t)u,,(t-r(t)), 

for any t large enough. 
But if t is large enough then from (2.14), it follows that 

u,,(t-r(t))=u(t-r(t))+ i a’u( t - r(t) - is), 
i=l 

since 6 = c. Thus for any fixed n > 1, there exists a real number T,, 2 t, such 
that u(t)>0 (t> T,-A) and 

zi(t)< -h(t)u(t-r(t))--(t) i a’u( t - r(t) - id), ta T,. 
,=I 



RETARDED DIFFERENTIAL EQUATIONS 11 

In view of a comparison result (see [3, p. 2241, we have that 

C(f)= -h(t)u(r-r(t))-/?(t) i u’u(t-r(t)-iS) (3.8), 
,=I 

has a positive solution on [T,, - A, co), for any fixed n > 1. From (3.6) and 
(3.7), it follows that there exists an integer n, >, 1 such that the real number 
B(a) defined by 

is larger than l/e, since 

if a=l, 

if O<a<l, 

and 

lim f ia’ = 

1 

+a, if a= 1, 

II- +r ;=, 
(1 :a)29 

if Oda<l, 

is larger than l/e. But by virtue of Theorem 1.1 in [lo], from the inequality 

it follows that Eq. (3.8), has no positive solution, whenever n = n,, which is 
a contradiction. Thus Eq. (3.8) is oscillatory and the proof of the corollary 
is complete. 

Remark 3.1. Corollary 3.3 contains Theorems 2, 3, and 4 of Ladas and 
Sticas [ 123 when h(t) = b, and r(t) = r,, are some constants in (3.8). 

Now let us consider the differential equation 

i(t)= -px(t-z)+qx(t-o), (3.9) 

where p, q, r, and g are positive constants. 
Recently, this equation has been investigated by Arino, Ladas, and 

Sfrcas [ 1 ] and they obtained that if G d r, q <p, q(r - 0) < 1, and 
(p - q) ze > 1 then every solution of (3.9) oscillates. 

By the application of our Theorem 2.1 from the previous section, we 
have the following theorem which is a significant extension of the above- 
mentioned result in [ 11. 
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THEOREM 3.2. If p, q, T, and G are positive constants such that 
O<q(z-o)< 1 and 

ip-9)C~+q(~-~)21 > l/e, 

then Eq. (3.9) is oscillatory. 

Proof. Equation (3.9) is equivalent to 

(3.10) 

;[x(t)-q!+;x(s)ds]= -(p-q)x(t-z). (3.11) 

Let us define the functions f and g by the formulas 

ft,x(.))=(P-4)X(t-~) 

and 

g(t, 4 ‘1) = q j,‘IT” 4s) ds> 

forany (t,x)E[t,,cO)xC([t-,,a)), where t_,=t,-T. 
Then f and g satisfy Assumptions (A, ) and ( A2), moreover Eq. (3.11) is a 

special case of Eq. (2.1). 
Now let us assume that (3.10) holds but Eq. (3.9) is not oscillatory. In 

that case Eq. (3.9) has an eventually positive solution x(t) on [t ~, , co), 
and x(t) is also a solution of Eq. (3.11). 

By virtue of Theorem 2.1, we have that there exists a T,> t, +z such 
that the function 

u(t) = x(t) - q j,‘;Xu x(s) ds 

is positive on [T, - r’, co) and 

a(t)< -(p-q)4t-r)-(p-q)q j,‘m2;-u.W~, t b T,. (3.12) 

Since u(t) is continuously differentiable and positive on T, - t, the 
function 

u(t)= -u(t) 
u(t) 

is also continuous and 

u(t)=u(T,-r)exp t 3 T, - 5. 
7, i 
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From (3.12), it follows that 

and thus 

(3.14) 

since exp(x) 3 ex, x 3 0. From [S, Lemma 2.11 and (3.13), we have 

0 < m = lim inf a( t) < co. 
I-+x 

thus (3.14) yields 

m3(P-q)ezm+(p-q)qem(r-a)*, 

i.e., 

But the latest inequality contradicts our assumption (3.10); therefore, 
Eq. (3.9) is oscillatory. The proof of the theorem is complete. 

Remark 3.2. Theorem 3.2 can be extended to the equations with several 
delays generalizing [ 1, Theorem 31. 

4. AN INTEGRO-DIFFERENTIAL EQUATION WITH INFINITE DELAY 

Let us consider the integro-differential equation of the neutral type 

I 
4s) dspo(t, $1 T(l) I 

I 
I 

=- 4s) dsqo(c s), 13 to, (4.1) 
1-I 

409!,4111-2 
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where - a3 < t , d to < x and 

W,) 7’: [to, ao)+R+ is a continuous function such that t-r(t) is 
monotone non-decreasing and t - z(t) 3 t ~, (t 3 to), moreover t - t(t) + + rx; 
(t+ +a), 

(Hz) for any fixed t 2 to, the function p,(t, s) is monotone non-decreasing 
on t-z(t)<s< t andfor some To> t,, 

po(t, t) - P”(L t - t(t)) G 1, t3 To, 

moreover ,for any x E C( [t , , cxj ), R), the function 

dt, 4 .)I = j,’ ~(,) 4s) d.vpo(t> s) (4.3) 

is continuous on [to, m); 

(HA qo: [to, a,)~ Ct- 1r CT) + R is a given ,fitnction such 
fixed t E [It,, xi), qO(t, s) is a monotone non-decreasing 
sE [t ,, co) andfor any xEC([t_,, a)), R), thefunction 

.f(t.x(9)=j’ x(s)d,qo(t,s) 
f-1 

(4.2) 

that for any 
function in 

(4.4) 

is continuous on [to, W). 

THEOREM 4.1. Assume (H ,)-(H3) hold and there exist two continuous 
functions To, T: [to, co) + R such that T,(t) < T(t) < t (t > to), 
lim ,--t+7[ T,(t)= +CO, limsup,,,, (t-T(t))>O, and 

lim inf lqO(t, T(t)) - qO(t, To(t))1 >O. f--t +z (4.5) 

If 

(4.6) 

then Eq. (4.1) has no positive negative solution on [t ~, , co ). 

Proof. We will show that the existence of a positive negative solution 
x(t) of (4.1) leads to a contradiction. Without loss of generality, we may 
assume that x(t) is a positive solution, since -x(t) is also a solution of 
Eq. (4.1). 
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From (4.2) it follows that 

.dt, -4 1) = j,’ ~(,) x(s) d,po(t, s) < Cpo(4 f) -Po(C f- ~(r))l 

max{x(s): r-r(t)bs<r) 

~maxjx(s):t-asset}, 

15 

and thus Assumption (A, ) of Proposition 2.1 is satisfied. Since 
monotone non-decreasing in its independent variable s, we have 

qo(t, $1 is 

’ .f’(r, x(.))= I X(.~)4qo(~, .s) 1 I T(r) > c 4s) d.,qo(r, s) 7-d I 1 
3 Cqo(f3 r(f))-qo(6 T,,(t))1 min{x(s): To(f) 
6sb T(r)) >o, 

for any t > to, which means that all conditions of Proposition 2.1 are 
satisfied. 

Thus for the positive solution x E C( [ t , , as ), R), by Proposition 2. I, we 
have that the function 

x(t)- j’ tat,, 
u(t) = f T(I) 

(4.7) 
x(t), ,X( to) - j”- r( to) X(s) d,&( t, s), t ~~, d t < to 

10 

is continuous and 

But, (4.7) implies that 

and thus (4.8) yields 

s 

I 
C(t)< - 4s) ~sqo(~~ S)> t> to, (4.9) 

I- I 

since qO(t, s) is monotone non-decreasing in s E [t 1, a), for all fixed 
t> to. 
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Sinceforany t,<t,<t,and tat,, 

from (4.9) it follows that 

<- c’” 4s) d,qo(t, s) - j’ 4s) 4qo(t? s) 
T(r) 

(4.10) 

The function u(t) is continuously differentiable on [to, co), therefore we 
may write it in the form 

.x(I)=x(to)exp(- j,la(s)ds), tat,, 

where the continuous, non-negative function CI is defined by 

a(t) =g, t>, t,. 

Again, with the aid of inequality (4.10) we obtain 

a(t)> j ,:exp(j:a(u)du)d,y,(i,r). tat,. (4.11) 

Thus, (4.5) and (4.11) imply 

a(t) 3 Cqo(t, T(t)) - qO(t, to)1 exp ( [ if, ff(U) d”) 

>mexp(j:prdu)du), (4.12) 

for any t large enough, where m and r are some constants such that 

O<m<v_m+$ {qo(4 r(t))-qO(t, toI) 

and 

O<r<limsup(t-T(t)). 
I-+x 
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In that case, by virtue of [S, Lemma 2.11, we have 

’ lim inf s Lx(U) du < co, 
I-+x f-r 

i.e., 

p=liminfa(r)<‘m. 
l-+X’ 

From (4.12), we obtain j? > m > 0, therefore for any E E (0, fl), there exists 
a T(E) > t, such that 

cx(t)>P-E, t 2 T(E). 

Using this inequality and (4.1 I), we have 

T(r) 
2 exp((B - ~)(t - .y)) d,qdt, s) 

To(l) 

for any large enough t, since T,(t) + + a, as t -+ + cc. But in that case 

b=liminfor(t)>/liminf 
r--r +3C I-r +x I 

T(I) 
exp((P - E)(t - .y)) d.dh(t, s), 

To(f) 

for any fixed E E (0, B). 
From (4.6) and the last inequality, it follows that 

p ’ lim inf 
/lL-Edp--Er-+r 

for any FE (0, /3). But this inequality leads to a contradiction as E -+ 0. 
Therefore Eq. (4.1) has no positive/negative solution on [tL , , a) and the 
proof is complete. 

COROLLARY 4.1. Assume that (H,)-(H,) hold, moreouer pi: [to, co)+ 
R + and t, : [t,, a; ) -+ R + (1 < i < n) are continuous functions such that 

inf jr-Ti(t)}3t ,, lim [t-t,(t)]= +cc (1 <i<n) (4.13) 
I 2 1” ,-+7 

and 

lim inf i pi(t) > 0, limsup [min{ri(t): 1 <i<n}]>O. (4.14) 
1-+x ,=, I--r t-7 
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m,=inf 
i 

!liminf i p,(t)exp(t,(t)):~>O 
I 

>l, (4.15) 
Pr--+x ,=, 

then 

f x(t)- i 1 
f 

4s) 4 Po(C s) ,~- 7(I) 1 
= - 1 P,(t)x(f-T,(t)), t3t,, 

,=I 
(4.16) 

has no positive negative solution on [L , , cc). 

Proof: Set 

T,(t)=min{t-ti(t): 1 dibn}, I-(t)=max{t-r,(t): l<i<nj, 

and 

40(6 s) = i P,(f) 47 - (t - .r,(f))L t3 t,, T,(t)<s< T(f), 
r= I 

where e(s) = 0, (s GO), and e(s) = 1 (s > 0). Then lim,, +,= To(t) = + cc 
and lim sup, _ + ,~ (t - T(t)) > 0, moreover (H,) and (4.5) are satisfied. 

On the other hand Eq. (4.16) is a special case of Eq. (4.1) and 
m, = m, > 1 where m, and m 1 are defined by (4.6) and (4.15), respectively. 
Thus Theorem 4.1 implies that Eq. (4.16) is oscillatory on [t I, cc ) and 
the proof is complete. 

Remark 4.1. Consider the delay differential equation 

i(f)= - i pi(t)x(t-Tr,(t)), t30, (4.17) 
r=l 

where pi, 7,: R, + R, (1 < i < n) are some given continuous functions. 
Hunt and Yorke [lo] conjectured that all solutions of (4.17) oscillate if p, 
and 5, (1 GiQn) are bounded on R, and 

(4.18) 

The conjecture was proved in some particular cases in a recent paper 
[9] and now Corollary 4.1 shows that the conjecture is valid for some 
neutral delay differential equations, too. 
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COROLLARY 4.2. Assume 0 <p < 1 and 7: >O are constants and 
k.R++R+ is a continuous function. 

Then 

&(r)-px(t-r)]= -JJ:k(f-s)x(s)ds, 13 0, (4.19) 

has no positive negative solution on [ -T, c;c ) if 

e 
l 

x k(s)sds> 1. 
0 

(4.20) 

Proqf: Let r(t)=~ (t>,O), t ,= -T, and 

po(t, s)=pe(s- [t--r]), 

where e is the unit step function, i.e., e(u) = 0 for u < 0 and e(u) = 1 for 
u > 0. Then the assumptions ((H, ) and (Hz)) about z and po( t, s) are 
satisfied. Set 

t>o, -TdS<O, 

0 d s d t, 

and observe that in this case Eq. (4.1) reduces to (4.19). 
Since (4.20) holds, we can define a constant r>O such that 

5 x k(s)ds>O 
II 

and e s Sk(s) d.y > 1 
9 i: 

Set T,(t) = t/2 and T(r) = max { T,( t), t-c}, for any t 3 0. 
Then, taking into account (4.21), we have 

exp(p(r - s)) ds qo( t, s) : p > 0 

exp(p( t - s)) k( t - s) ds 

(4.21) 

s IKE 
3 e lim inf (t-.s)k(t-s)ds 

r--r +JL r:2 

s 
112 

= e iim inf sk(s)ds> 1, 
t-+x 8, 
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where we used the well-known inequality exp(x) >, ex (X 2 0). On the other 
hand 

‘,‘_“+itf [qo(t, r(t)) - qO(t, T,(t))] = lim inf [“2 k(s) ds > 0, r-+m t 

that is, all conditions of Theorem 4.1 are satisfied and the proof of the 
corollary is complete. 
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