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Let E, F be Hausdorff topological vector spaces over the field @ (which is either 
the real field or the complex field), let ( , ): Fx E -+ @ be a bilinear functional, 
and let X be a non-empty subset of E. Given a multi-valued map S: X-P 2x and two 
multi-valued maps M, T: X-t 2F, the generalized bi-quasi-variational inequality 
(GBQVI) problem is to find a point VEX such that YES and inf,,.,,,, 
Re( f- W, i-x) 40 for all XE S(g) and for all f~ M(j). In this paper two 
general existence theorems on solutions of GBQVIs are obtained which 
simultaneously unify, sharpen, and extend existence theorems for multi-valued 
versions of Hartman-Stampacchia variational inequalities proved by Browder and 
by Shih and Tan, variational inequalities due to Browder, existence theorems for 
generalized quasi-variational inequalities achieved by Shih and Tan, theorems for 
monotone operators obtained by Debrunner and Flor, Fan, and Browder, and the 
Fan-Clicksberg fixed-point theorem. 0 1989 Academic Press, Inc 

1. INTRODUCTION 

Throughout this paper, @ denotes either the real field [w or the complex 
field @. For a non-empty set Y, 2’ will denote the family of all non-empty 
subsets of Y. Let E, F be vector spaces over @, ( , ): F x E -+ CO be a 
bilinear functional, and X be a non-empty subset of E. If S: X+ 2x and 
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M,T:X+2F, the generalized bi-quasi-variational inequality (GBQVI) 
problem for the triple (S, M, T) is to find j E X satisfying the properties 

(i) j~S(i) and 

(ii) infwETcp, Re(f-w,j-x)dO for all x~S(j) and for all 
fEWPI. 

In case T is single-valued, a generalized bi-quasi-variational inequality 
problem will be called a bi-quasi-variational inequality problem. 

We remark that the generalized bi-quasi variational inequality problem 
includes the following generally known variational-type inequality 
problems: 

Suppose E is a topological vector space, F= E’, the vector space of all 
continuous linear functionals on E, and ( , ) is the usual duality pairing 
between E’ and E. Then: 

(i) If T E 0, a generalized bi-quasi-variational inequality problem 
for (S, M, 0) becomes a generalized quasi-variational inequality problem 
which was studied by Chan and Pang [9] in the finite-dimensional case 
and by Shih and Tan [24] in the infinite-dimensional case. 

(ii) If T E 0 and M is single-valued, a generalized bi-quasi- 
variational inequality problem for (S, M, 0) becomes a quasi-variational 
inequality problem which was introduced by Bensoussan and Lions in 1973 
in connection with impulse control (cf. [4]; see also Aubin [l] and 
Baiocchi and Capelo [3]). 

(iii) If S(x) = X, ME 0, and T is single-valued, a generalized 
bi-quasi-variational inequality problem becomes a variational inequality 
problem which was introduced by Stampacchia [25] (see also 
Kinderlehrer and Stampacchia [ 181 and Lions and Stampacchia [20]). 

(iv) If S(x) = X and M E 0, a generalized bi-quasi-variational 
inequality problem becomes a generalized variational inequality problem 
which was studied by Browder [7], Yen [27], and Shih and Tan [23], etc. 

In this paper we prove two general existence theorems on solutions 
of the generalized bi-quasi-variational inequality problem, which contain 
the fixed point theorem of Fan [ 1 l] and Glicksberg [ 151 and which 
simultaneously unify, sharpen, and extend existence theorems of seemingly 
diverse variational-type inequalities including (a) the existence theorems of 
variational inequalities due to Hartman and Stampacchia [ 173 and 
Browder [6, 71, (b) the existence theorems of generalized variational 
inequalities due to Browder [7, Theorem 61 and Shih and Tan [23, 
Theorem 111, (c) the existence theorems of generalized quasi-variational 
inequalities due to Shih and Tan [24, Theorems l-41, and (d) the theorem 
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on monotone operators due to Browder [7, Theorem 83 which in turn 
sharpens results due to Debrunner and Flor [lo] and Fan [13, 
Theorem 121. 

2. Two MAIN THEOREMS 

The following three types of multi-valued maps will be needed in the 
discussion of our results. 

Let X, Y be topological spaces and let g: X+ 2 ‘. Then g is said to be 
upper semi-continuous on X [2, p. 1093 if for every x,, E X and for each open 
set G in Y with g(xO) c G there exists an open neighborhood N(x,) of x0 
such that g(x) c G for all x E N(x,). g is said to be lower semi-continuous on 
X [2, p. 1093 if for every x0 E X and for each open set G in Y with 
g(xO) n G # @ there exists an open neighborhood N(x,) of x0 such that 
g(x) n G # @ for all x E N(x,). g is said to be continuous on X if g is both 
upper semi-continuous and lower semi-continuous on X. 

Let E be a topological vector space over @, F be a vector space over @ 
and ( , ): F x E + @ be a bilinear functional. For each x,, E E, for each 
non-empty subset A of E, and for E > 0, let 

U(A;&):={yEF:sup~(y,x)~<&}. 
.Y E A 

Let a(F, E) be the topology on F generated by the family { W(x; E): XE E 
and E > 0} as a subbase for the neighborhood system at 0 and let 6( F, E) 
be the topology on F generated by the family { U(A; E): A is a non-empty 
compact subset of E and E > 0} as a base for the neighborhood system at 
0. We note then that F, when equipped with the topology a(F, E) or the 
topology 6( F, E), becomes a locally convex topological vector space but 
not necessarily Hausdorff. Furthermore, for a net { y,},,r in F and for 
y~F,(i)y~-‘yino(F,E)ifandonlyif(y,,x)~(y,x)foreachx~E 
and (ii) y, -+ y in 6(F, E) if and only if (y,, x) + (y, x) uniformly 
for x E A for each non-empty compact subset A of E. Now if X is a non- 
empty subset of E, then a map T: X + 2F is called monotone (with respect 
to the bilinear functional ( , )) if for any x, y E X, u E T(x), w E T(y), 
Re( w - U, y - x ) 2 0. Note that when F = E’, the vector space of all 
continuous linear functionals on E, and ( , ) is the usual pairing between 
E’ and E, the monotonicity notion coincides with the usual definition (see, 
e.g., Browder [B, p. 791). Note also that T: X-+ 2F is monotone if and only 
if its graph G(T) = {(x, y): y E T(x)} is a monotone subset of Xx F; i.e., for 
all (x,, Y,), (x2, Y~EG(O, Re(y2--yl,x2-xl)30. 

We now state two main theorems. 
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THEOREM 1. Let E be a locally convex Hausdorff topological vector 
space over @, X be a non-empty compact convex subset of E, and F be a 
topological vector space over @. Let ( , >: F x E -+ @ be a bilinear 
functional which is continuous on compact subsets of F x X. Suppose that 

(a) S: X 4 2x is an upper semi-continuous map such that each S(x) is 
closed convex. 

(b) M: X+ 2F is monotone (with respect to ( , )). 

(c) T: X+ 2F is an upper semi-continuous map such that each T(x) is 
compact. 

(d) The set 

C:={yEX: sup SUP inf Re(f-w,y-x)>O) 
xeS(y) feM(x) W'CT(1.) 

is open in X. 

Then there exists a point j E X such that 

(i) YES(~) and 

(ii) inf,,. rc-cJ Re(f-w,p--x)60 for all x~S(y) and for all 
f E M(x). 

If, in addition, M is lower semi-continuous along the line segments in X to 
the topology a(F, E) on F, then 

(iii) inf,, rcjJ Re(f -w, j-x)<0 for all x~S(y) and for all 
f E M(9). 

Moreover, if S(x) = X for all x E X, E is not required to be locally convex 
and tf T = 0, the continuity assumption on ( , ) can be weakened to: for 
each f E F, XH (f, x) is continuous on X. 

THEOREM 2. Let E be a locally convex Hausdorff topological vector 
space over @, X be a non-empty compact convex subset of E, and F be a 
vector space over CD. Let ( , >: F x E + @ be a bilinear functional such that 
for each f E F, x H (f, x) is continuous on X. Equip F with the topology 
6(F, E). Suppose that 

(a) S: X + 2x is a continuous map such that each S(x) is closed 
convex. 

(b) M: X --) 2F is monotone (with respect to ( , )) and lower semi- 
continuous. 
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(c) T: X -+ 2’ is an upper semi-continuous map such that each T(x) is 
compact. 

Then there exists a point j E X such that 

(i) yes(j) and 

(ii) inf,,, r(jj Re(f-w,3-x)<O for all x~S(y) and for all 
s EM(i). 

3. FOUR LEMMAS 

The following lemmas will be needed in our proofs. 

LEMMA 1. Let X be a non-empty subset of a Hausdorff topological vector 
space E and let S: X4 2” be upper semi-continuous such that each S(x) is 
bounded. Then for each continuous linear functional p on E, the map 
f,: X+ 18 defined byf,(y) :=su~,~~(.~) Re ( p, x) is upper semi-continuous; 
i.e., for each IEIW, the set (y~X:f~(y)=sup~~~(~)Re(p,x)<~} is open 
in X. 

Proof: We refer to Lemma 1 in Shih and Tan [24]. 1 

LEMMA 2. Let E, F be two topological vector spaces over @, and let 
( , >: F x E + @J be a bilinear functional. Let X be a non-empty compact set 
in E and let T X -+ 2F be an upper semi-continuous map such that each T(x) 
is compact. Let $: Xx X -+ R be defined by 

$(x, y) := inf Re(w,y-x). 
WE 7-v) 

If ( , ) is continuous on the (compact) subset (IJxex T(x)) XX of FX E, 
then for each fixed x E X, the map y N 1+5(x, y) is lower semi-continuous on 
X, i.e., for each ,I E R, the set {y E X: $(x, y) d /2} is closed in X. 

Proof Let x E X be fixed and A E Iw be given. Let A, := { y E X: 
$(x, y)<i}. Suppose { ycrjas,- is a net in A, and yoI --PYLE X. Since for 
each a E r, w N Re(w, y, - x) is continuous on T(y,) and T(y,) is 
compact, for each a E r, we can choose w, E T( y,) such that 

Re<w,, Y.-X)= inf Re(w, y,--x)=$(x, yc,)dA. 
WE T(YII) 

Since T is upper semi-continuous and each T(y) is compact, UYE x T(y) is 
compact; thus {w,},~,- has a subnet (w,.},,,~, which converges to some 
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w0 E uyEX T(y). As T is upper semi-continuous, w0 E T( yO). Because ( , ) 
is continuous on the compact set (tJyex T(y)) x X, we have 

;1>limRe(w,., y,.-x) 
a’ 

=Ww,, yo-x) 

2 I( &Fyoj Re(w, Y, - x> = +(x2 ~~1. 

Thus y, E A, and hence A, is closed in X. Therefore y I-+ Ii/(x, y) is lower 
semi-continuous on X. 1 

The statement of Lemma 3 below may be found in Takahashi [26, 
Lemma 31; however, we shall provide a complete proof (of which only 
Case 1 was proved by Takahashi in [26]). 

LEMMA 3. Let X, Y be topological spaces, let f: X -+ R be non-negative 
and continuous, and let g: Y -+ R be lower semi-continuous. Then the map 
F Xx Y + R defined by F(x, y) := f(x) g(y) for all (x, y) E Xx Y is lower 
semi-continuous. 

Proof Let CI E Iw. We need to show only that the set 

H: = {(x, y)~Xx Y:F(x, y)>cc) 

is open in Xx Y. Let (x0, yo)e H; then F(x,, yo)= f(xO) g(y,)>a. 

Case 1. Suppose f (x0) # 0 so that f (x0) > 0. Since f(xo) g( yo) > 
~1, g( yo) > or/f(x,). Choose /I # 0 such that g( yo) > /? > cr/f (x0). Let 

N, :={XEX:f(X)/?>cc}= 
i 

(xEX:f(x)WP}, if /I > 0, 
{xEX: f(x)<cl/b}, if j<O, 

which is an open neighborhood of x0 in X since f is continuous. Let 

which an open neighborhood of y, as g is lower semi-continuous. Thus for 
all (x, y) E IV,, x Nyor f(x) fi > CI and g(y) > /?, it follows that 

(1) iff(x)=O, then f(x) g(y)=O>cr. 

(2) iff(x)#O, thenf(x) g(y)>f(x)P>cr. 

Case 2. Suppose f(x,) = 0 and g( yo) 20. But then c( (0. Let 
E := 612. As f is continuous at x0 and f > 0, there exists an open 
neighborhood IV,, of x0 such that 0 <f(x) < E for all x E N,,. As g is lower 
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semi-continuous at y,, there exists an open neighborhood NY0 of y, such 
that g(y) > g(yO) - E for all y E N,,,. It follows that for all (x, v) E N,, x NvO, 
0 <f(x) <E and g(y) - g(yO) + E > 0; thus f(x)[g(y) - g(y,) + ~12 0 and 
hence 

f(x) g(v) 2f(x) idY0) -&f(X) 

2 -&f(X)2 -2 

= a/4 > ct. 

Case 3. Suppose f(.q,) = 0 and g( y,) < 0. Set 

6 := d(3g(Yo))? E’ := -1/(2g(y,)). 

Then E, E’ > 0. By continuity offat x,,, there exists an open neighborhood 
N, of x0 such that 0 <f(x) < E for all x E N,,. Also, by lower semi-con- 
tinuity of g at y,, there exists an open neighborhood NY,, of y, such that 
g(y) > g(y,,) - E’ for all y E N,,,. Thus, for all (x, y) E N,, x NY,,, 0 <f(x) < E 
and g(y) > gbd -E’ = 3/GMyo)), so that 

f(x) g(y) 2 3f(x) g(Yo)P 

> 3&g( y,)/2 = cr/2 > ct. 

In any case, H is open in Xx Y. This completes the proof. 1 

LEMMA 4. Let E be a topological vector space over @, F be a vector 
space over @, and let ( , >: F x E + Qi be a bilinear functional. Let X be 
a non-empty subset of E and let M: X + 2F be lower semi-continous along 
line segments in X to the topology a(F, E) on F. Suppose S: X + 2x and 
T: X + 2? Zf there exists y E X such that 

(i) j E S(y), S(y) is convex and 

(ii) inf,, r(gJ Re( f-w,y-x)<O for all 
f EM(X), 

then 

x~S(y) and for all 

inf Re( f-w,y-x><O forall x~S(j 
WST(Y) 

) andfor all f E M(j). 

Proof Fix x E S(j). For each t E [0, 11, let x, := tx + (1 - t) 9; then by 
(i), x, E S(P). BY (ii), 

inf Re( f-w,y-xt)<O for all t E [0, l] and for all f E M(x,), 
WE T(j) 
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so that 

t. inf Re(f-w,F-x)<O for all t E [0, l] and for all f c M(x,). 
W’E 7-j) 

Hence 

(*) inf,.. T(.F) Re( f-w,j-x)<O for all tE(0, l] and for all 
f E Mb,). 

Fix fO E M( 9). Let E > 0 be given and let 

u, := {f EF‘: I<f -.fo, F-x>1 cc}; 

then U,, is a a( F, E) neighborhood of fO. As U,, n M( ji) # fi5 and M is 
lower semi-continuous on L := {x,: t E [0, l] }, there exists an open 
neighborhood N of j such that U,, n M(y) # @ for all y E N. But then 
there exists 6 E (0, 1) such that X,E N for all t E (0,6). Choosing any 
tE(0,6)andf,EUf,nM(x,),wehave I(f,-f,,j-x)l<s.Thus 

inf Re( fO-w, j-x) 
II’ E T( j ) 

=WfO-f,, .Cx)+X~:fj,Re(f,-wY 9-x) 

GE+ inf Re( f!-w, jj--x)<~ (by (*)I. Il’E r(p) 

As E >O is arbitrary, inf,,. T(yj Re( fO-w, F--x)<O. Since x~S(j) and 
f0 E M( 9) are arbitrary, 

inf Re( f -w, j-x)<0 forall xES(j)andforallfEM(j). I 
WET(j) 

When F= E’ and ( , ) is the usual pairing between E’ and E, S(x) = X, 
T- 0, and M is single-valued, Lemma 4 reduces to that of Minty [21]. 

4. PROOF OF THEOREM 1 

The proof of Theorem 1 may either use Fan’s infinite-dimensional 
generalization [ 12, Lemma 1 ] of the classical Knaster-Kuratowski- 
Mazurkiewicz theorem or the following Yen’s generalization [27] of Fan’s 
minimax inequality [ 141: 

THEOREM A. Let A’ be a non-empty compact convex subset of a 
Hausdorff topological vector space and let cp, $ be two real-valued functions 
on Xx X. Suppose that 
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(a) cp(x, y) Q $(x, y) for all (x, y) EXx X and $(x, x) 60 for all 
x E x. 

(b) For each fixed x E X, cp(x, y) is a lower semi-continuous function 
ofy on X. 

(c) For each fixed y E X, $(x, y) is a quasi-concave function of x 
on X. 

Then there exists FE X such that cp(x, $) <O for ali XE X. 

Here, a real-valued function Ic/ on a convex set X is said to be quasi- 
concaue if for each 1 E R, the set {x E X I,+(X) > A} is convex. 

We now proceed to prove Theorem 1. Suppose that the assertions of 
Theorem 1 were false. Then for each y E X, either y 4 S(y) or there exist 
XE S(y) and f E M(x) such that inf,,,.,,, Re( f-w, y-x) >O; that is, 
either y# S(y) or FEZ. If y # S( y), then by a separation theorem for 
convex sets in locally convex Hausdorff topological vector spaces, there 
exists pi E’ such that 

Wp, Y> - SUP Wp, x> >O. 
XE S(v) 

For each p E E’, let 

V(p):=(y~X:Re(p, y>- sup Re(p,x)>O}. 
XE S(.b) 

Then X=Cu UpeEC V(p). As each V(p) is open in X by Lemma 1 and Z 
is open in X by hypothesis, by compactness of X, there exist p,, 
p2,..., pn E E’ such that X = Z u (Jr=, V(p,). For simplicitly of notations, let 
V0 := C and Vi= V(p,) for i= 1, 2 ,..., n. Let {B,,, j?r ,..., /I,,} be a continuous 
partition of unity on X subordinate to the covering { VO, V, ,..., V, >. Then 
/I,,, /I1 ,..., /ln are continuous non-negative real-valued functions on X such 
that pi vanishes on flVi for each i= 0, l,..., n and x;,0 /Ii(x) = 1 for all 
XEX. Define cp,t,kXxX+lR by 

cpb, Y) := PO(Y) sup inf Wf-wy-x)+ i P,(y)Re(p,,y--x), 
fE M(x) WIG T(Y) i=l 

4%~ Y) :=Po(Y)gEi;{y, weT(y) inf Re(g-w, y-x)+ f: Pi(y)Re(pi, y-x). 
i= 1 

Then we have: 

(1) $(x,x)=0 for all xEX. 
(2) Since M is monotone, for any x, ye X, we have 

Re( f - g, x - y) B 0 for all f E M(x) and for all’g E M( y). It follows that 



GENERALIZED INEQUALITIES 15 

Re(f-w, y-x)dRe(g-w, y-x) for all f~M(x), for all gEM(y), 
and for all w E T(y), and hence 

sup inf Re(f-w, y-x)< inf inf Re(g-w, y-x). 
fE .qx) WE T(Y) i?sWy) ++‘E T(Y) 

Therefore cp(x, y) G $(x, y) for all x, y E X. 

(3) For each fixed x E X and for each fixed f~ M(x), the map 
T,: X + 2F defined by 

T’(Y) :=f- KY) for each y E X 

is an upper semi-continuous map such that each Tf(y) is a compact subset 
of F. Thus by Lemma 2, the map 

ye--+ inf Re(f-w, y-~)=~m~r,Re(w, y-x) 
WE T(Y) 

is lower semi-continuous on X. By Lemma 3, the map 

Y l-b /MY) sup inf Re(f-w, y-x) 
fEM(X) WET(Y) 

is lower semi-continuous on X. Therefore for each fixed XE X, the map 
y H cp(x, y) is lower semi-continuous on X. 

(4) Clearly, for each fixed VEX, the map XH cp(x, y) is quasi- 
concave. 

Thus by Theorem A, there exists j E X such that cp(x, 9) < 0 for all x E X, 
i.e., 

(**I PO(P) supfEM(x) infW1.,jj Wf - W, P - X> + C1=l Pi(P) 
Re(p,, j-x)<0 for all XEX. 

Choose i E S(j) such that 

sup inf Re(f- w, 9-a) >O 
/E&f(f) WE T(j) 

whenever /I,,( 9) > 0; 

it follows that 

BOW sup inf Re(f-w, y-a)>0 whenever B,,(j) > 0. 
fe &f(i) WE T(9) 

If i l { 1, . . . . H} is such that pi(i) > 0, then j E V(p,) and hence 

Wpj, 9) > SUP Re(pt, x> 2 Re(pi, 2) 
xeS(Y) 
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so that 

Re(p,, P-z?) >O. 

Note then that 

Pi(j) Re<pi, B--f> >O whenever pj( 9) > 0 for i= 1, . . . . n. 

Since pi(j) > 0 for at least one ie (0, 1, . . . . n}, it follows that 

PO(P) sup inf Re(f-w,F--a)+ i /Ii($)Re(pi,$-i)>O, 
fE ,+f(,$) W’S W) i=l 

which contradicts (w). This proves parts (i) and (ii) of Theorem 1. Now 
part (iii) of Theorem 1 follows from parts (i) and (ii) and Lemma 4. 

Next we note from the above proof that E is required to be locally 
convex when and only when the separation theorem is applied to the case 
y 4 S(y). Thus if S: X-+ 2’ is the constant map S(x) = X for all x E X, E is 
not required to be locally convex. 

Finally, if T= 0, in order to show that for each XE X, ye cp(x, y) is 
lower semi-continuous, Lemma 2 is no longer needed and the weaker con- 
tinuity assumption on ( , ) that for each f~ F, x H (f, x) is continuous 
on X is sufficient. This completes the proof. i 

5. PROOF OF THEOREM 2 

As ( , ): F x E -+ @ is a bilinear functional such that for each f E F, 
.XH (f, x) is continuous on X and as F is equipped with the topology 
6( F, E), it is easy to see that ( , ) is continuous on compact subsets of 
F x X. Thus by Theorem 1, it suffices to show that the set 

c:= {yEX: sup sup inf Re(f-w, y-x)>O} 
*Gs(y) J-EM(X) WE T(y) 

is open in X. Indeed, let y0 E C; then there exist x0 E S( y,,) and f. E M(x,) 
such that 

OI:= inf Re(fo-w, y,-x,) >O. 
W’E T(Y(j) 

Let 

w:= {WEF sup I(w,z,-z,>I <a/6}. 
Z,‘22EX 
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Then W is an open neighborhood of 0 in F so that 

u, := T(yo)+ w 

is an open neighborhood of T(y,). Since T is upper semi-continuous at y,, 
there exists an open neighborhood N, of y0 such that if YEN, then 
T(y) c U,. Let 

2 := (YE F: sup 1 (f-So, z, - z2)j < 46). 
=I.2ztX 

Then Z is an open neighborhood of Jo. As M is lower semi-continuous at 
x0 and Zn M(x,) # 125, there exists an open neighborhood V, of x,, in X 
such that M(x) n Z # @ for all x E V, As the map 

XH inf Re(fo-w,x,-x> 
w t 7-( .b’() ) 

is continuous at x0, there exists an open neighborhood V, of x0 in X such 
that 

/ inf Re(f,--w,x,-x>I ~46 for all XE V,. 
WE T(>‘,) 

Let V0 := V, n I’,; then V,, is an open neighborhood of x0 in X. Since 
V, n S(y,) # Iz/ and S is lower semi-continuous at y,, there exists an open 
neighborhood N, of y, such that S(y) n V0 # /zl for all y E N,. Since the 
map 

.YH inf Wfo-w, Y-Y,) 
w E T( yg ) 

in continuous at y,, there exists an open neighborhood N3 of y, such that 

I inf Re<fo-w, Y-.YY,)I ~46 for all yEN3. 
W’E Kvo) 

Let N, := N, n N, n N,. Then N, is an open neighborhood of y, such that 
for each y, E N,, we have 

0) T(Y,)~U~=T(Y~)+W~~Y,~N,; 

(ii) S(y,)nV,#(ZIasy,EN,;chooseanyx,ES(y,)nV,,; 

(iii) I inf, E r(vo) Re(f,-w,yl-yo)l<~/6asy,~N3; 
(iv) M(x,)nZ#@ as x,EV,; choose anyfrEM(xr)nZ, 

409’143’1-6 
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so that 
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SUP IV, -fov ~1 -zz)l <a/6; 
:,, zz E x 

(4 I inf,, r(.v,j Re(f,-w,x,-x,)) ~46 as X,E V2; 

it follows that 

inf RG -w, Y, - x1 > 
M’E UY,) 

>Re(f,-f,,y,-xl)+ inf Re<fo-w,y,-x,) 
11’ E T( .I’, ) 

3 -46 + inf Wfo-wy,-x,) (by (i) and (iv)) 
wc7-.!Jg)C w 

3 -cr/6+ inf Re(f,-w,y,-x,)+MiEnfWRe(w,I’,-x,) 
ll’t WJo) 

3 --a/6+ inf Re(&-w,y,-y,,)+ inf Re(fo-w,yo-xo) 
M’ E T( .vg 1 H’S Kv,) 

+ inf Re(& - w, x0 - x1 > - 46 
w E V.vo) 

> 4/6-u/6+cr-cr/6-cr/6 (by (iii) and (v)) 

= 43 > 0; 

therefore 

sup sup inf Re(f-w, y,-x)>O 
.XSS(Y,) /EM(X) wET(yl) 

as x1 E S(y,) and fi E M(x,). This shows that y, EC for all y, E No, so that 
2 is open in X. This proves the theorem. 1 

6. CONSEQUENCES OF THEOREM 1 

In this section we shall give a variety of applications of Theorem 1. 

THEOREM 3 (Fan [ 111 and Glicksberg [ 151). Let E be a locally conuex 
Hausdorff topological vector space and X be a non-empty compact convex 
subset of E. Let 3 X -+ 2x be upper semi-continuous such that each S(x) is 
closed convex. Then there exists a point 2 E X such that 2 E S(Z). 

Proof Apply Theorem 1 where F= E’, the vector space of all 
continuous linear functionals on E, ( , ) is the usual pairing between E’ 
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andE(orsimply, (, )-O),F’ IS e uipped with the topology, 6( F, E), q’ 
and A4 E 0 and Tr 0; the assertion follows. 1 

THEOREM 4. Let E be a Hausdorff topological vector space (not 
necessarily locally convex) over @, X be a non-empty compact convex subset 
of E, and F be a topological vector space over @. Let ( , >: F x E + @ be 
a bilinear functional which is continuous on compact subseis of F x X. 
Suppose that 

(a) M: A’-+ 2F is monotone (with respect to ( , )). 

(b) T: X+ 2F is an upper semi-continuous map such that each T(x) is 
compact. 

Then there exists a point y E X such that 

(i) inf,.. r,9) Re(f-w,j-x)dOforallx~Xandforallf~M(x). 

If, in addition, M is lower semi-continuous along the line segments in X to 
the topology o(F, E) on F, then 

(ii) inf,,. rcpj Re(f-w,j-x)fOforallx~Xandforallf~M(ji). 

Proof Let 

AT’:= {yEX:sup sup inf Re(f-w, y-x)>O). 
xax /-EM(X) W’ET(.v) 

If C’ = X, then by applying Theorem 1 with S(x) = X for all x E X, we 
obtain a contradiction. Thus Z’ #X which proves (i). Now (ii) follows 
from (i) and Lemma 4. 1 

Note that even when T is single-valued, part (i) of Theorem 4 sharpens 
Theorem 8 in Browder [7], (where ( , ) is assumed to be continuous on 
Fx E) which in turn sharpens Theorem 12 in Fan [ 133 (where ( , ) is 
assumed to be continuous on F x E and F is required to be locally convex 
and quasi-complete) and the theorem in Debrunner and Flor [lo] (where 
( , ) is assumed to be continuous on F x E and E is required to be locally 
convex). We remark here that Debrunner and Flor’s theorem is one of the 
fundamental theorems in the theory of monotone operators. Note also that 
Debrunner and Flor’s theorem extends earlier results of Minty [22] and 
Griinbaum [16] (see also [S]). 

It is of interest to compare Theorem 4 with the following: 

THEOREM 5. Let E, F be Hausdorff topological vector spaces over @, of 
which F is locally convex. Let ( , ): F x E + [w be a bilinear functional 
which is continuous on compact subsets of F x E. Let X and Y be non-empty 
compact convex subsets of E and F, respectively. Let M: X---f 2’ be 
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monotone (with respect to ( , )) and T: X -+ 2’ be upper semi-continuous. 
Then 

(i) thereexistyEXandGET(y)such that (f-k,y-x)<Oforall 
x E X and for all f E M(x). 

(ii) If, in addition, M is lower semi-continuous along the line segments 
inXtothetopologya(F,E)onF,then(f-~,~-x)~OforallxEXand 
for all fe M(j). 

Proof: Part (i) is a theorem of Browder [7, Theorem lo]. Part (ii) 
follows from part (i) and Lemma 4. 1 

THEOREM 6. Let E be a locally convex Hausdorff topological vector 
space over @, X be a non-empty compact convex subset of E, and F be a 
topological vector space over @. Let ( , >: F x X -+ @ be a bilinear func- 
tional such that for each f E F, x H (f, x> is continuous on X. Suppose that 

(a) S: X + 2x is an upper semi-continuous map such that each S(x) is 
closed convex; 

(b) M: X -+ 2F is monotone (with respect to ( , ) ); 

(c) the set 

z:= (yEX: sup SUP Wf, Y-X> >O> 
.-c~S(,v) fEM(X) 

is open in X. 

Then there exists a point j E X such that 

(i) 9~ S(y) and 

(ii) supfEMCx) Re(f, y-x) GO for all x~S(y). 

If, in addition, M is lower semi-continuous along the line segments in X to 
the topology o(F, E) on F, then 

(iii) surfs M(P) Re(fy-x)<Ofor allxES(y). 

If S(x) = X for all x E X, E is not required to be locally convex. 

Proof Apply Theorem 1 with Tz 0; the conclusion follows. 1 

When F = E’ and ( , ) is the usual pairing between E’ and E, 
Theorem 6 was first proved by Shih and Tan [24, Theorem 11. 

THEOREM 7. Let E be a Hausdorff topological vector space over @, X be 
a non-empty compact convex subset of E, and F be a topological vector space 
over @. Let ( , ): Fx E + @ be a bilinear functional such that for each 
f E F, x H (f, x) is continuous on X. If M: X + 2F is monotone (with respect 
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to ( , >) and is lower semi-continuous along the line segments in X to the 
topology o(F, E) on F, then there exists a point Jo X such that 

sup Re(f, y-x) ~0 for all x E X. 
f t M(Y) 

Proof: Let 

C’:= {yEX:sup sup Re(f, y-x)>O). 
xsx fsM(x) 

If C’ =X, then by applying Theorem 6 with S(x) = 1, we obtain a 
contradiction. Thus C’ # X and hence there exists y E X such that 

sup Re(f, y-x)<0 for all x E X. 
fe M(x) 

By Lemma 4 with T- 0 and S(x) z X, we conclude that 

sup Re(f, j-x)<0 for all XE X. 1 
ft M(P) 

We remark that Theorem 7 is an improvement of a multi-valued version 
of the Hartman-Stampacchia variational inequality [ 171 given in Shih and 
Tan [23, Theorem 111. 

THEOREM 8. Let E be a locally convex Hausdorff topological vector 
space over @, X be a non-empty compact convex subset of E, and F be a 
topological vector space over @. Let ( , >: Fx E + @ be a bilinear 
functional which is continuous on compact subsets of F x X. Suppose that 

(a) S: X + 2x is an upper semi-continuous map such that each S(x) is 
closed convex. 

(b) T: A’+ 2F is an upper semi-continuous map such that each T(x) is 
compact convex. 

(c) The set 

.z:= {yex: sup inf Re(w, y-x) >O} 
XES(Y) H’S T(v) 

is open in X. 

Then there exists a point j E X such that 

(i) PCS(~) and 

(ii) there exists a point i E T(p) with Re(5, Ji- x) 60 for all 
XES(3). 

If S(x) = X for all x E X, E is not required to be locally convex. 
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Proof Apply Theorem 1 with ME 0 and T being replaced by -T; 
there exists p E X such that 

(*) $ES(P) and 

(w) inf,,. TCjJ Re( w, j -x) d 0 for all XE S(j). 

Now define g: S(p) x T(j) + R’ by 

g(x, z) := Re(z, 3-x). 

As S(p) is convex, T( 3) is compact convex, and for each fixed x E S(g), 
z H g(x, z) is continuous and affine and for each fixed z E T(y), x H g(x, z) 
is alline, by Kneser’s minimax theorem [ 191 we have 

Thus 

min max g(x, z) = max min g(x, z). 
iE T(.C) x.E.s(j) XES(j) ir T(r’) 

min max Re(z,F-x)QO by (**). ZE T(j) rtS(p) 

Since T(y) is compact, there exists f E T( 3) such that 

Re(d, i-x)<0 for all x E S(c). 1 

Theorem 8 is an improvement of Theorem 3 in our paper [24]. 

THEOREM 9. Let E be a Hausdorff topological vector space over @, X be 
a non-empty compact convex subset of E, and F be a topological vector space 
over CD. Let ( , >: F x E --) @ be a bilinear functional which is continuous on 
compact subsets of F x X. Suppose that T: X -+ 2F is an upper semi-con- 
tinuous map such that each T(x) is compact convex. Then there exist a point 
9 E X and a point f E T(B) such that 

Re(i,jj-x><O forall XEX. 

Proof Let 

C’:= (yeX: sup inf Re(w, y-x) >O}. 
xe* t+,E T(Y) 

If Z’= X, then by applying Theorem 1 with ME 0, T being replaced by 
- T, and with S(x) = X, we obtain a contradiction. Thus C’ # X and hence 
there exists j E X such that 

sup inf Re(w, i-x) ~0. 
x.zx KJt T(Y) 
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By another application of Kneser’s minimax theorem as seen in the proof 
of Theorem 8 (with S(j) = X), the conclusion follows. 1 

Theorem 9 is an improvement of Theorem 6 in [7] (and hence also 
Theorem 2 in [7]). Thus Theorem 1 is a unified account of Browder’s 
theorems (Theorems 2 and 6 in [7]) and Debrunner and Flor’s 
theorem [lo] which are seemingly unrelated results. 

7. CONSEQUENCES OF THEOREM 2 

THEOREM 10. Let E be a locally convex Hausdorff topological vector 
space over @, X be a non-empty compact convex subset of E, and F be a 
vector space over @. Let ( , >: F x E -+ CD be a bilinear functional such that 
for each f E F, x H (f, x> is continuous on X. Equip F with the topology 
6(F, E). Suppose that 

(a) S: X-+ 2x is a continuous map such that each S(x) is closed 
convex. 

(b) M: X+ 2F is monotone (with respect to ( , )) and lower semi- 
continuous. 

Then there exists j E X such that 

(i) YES and 

(ii) Re(f,j-x)~Oforallx~S(~)andforallf~M(j). 

Proof Applying Theorem 2 with T= 0, the conclusion follows. 1 

THEOREM 11. Let E be a locally convex Hausdorff topological vector 
space over @, X be a non-empty compact convex subset of E, and F be a 
vector space over Qi. Let ( , >: F x E + @ be a bilinear functional such that 
for each f E F, x H (f, x) is continuous on X. Equip F with the topology 
6(F, E). Suppose that 

(a) S: X+ 2x is a continuous map such that each S(x) is closed 
convex. 

(b) T X -+ 2F is an upper semi-continuous map such that each T(x) is 
compact convex. 

Then there exists a point ji E X such that 

(i) pus and 

(ii) there exists a point i E T(y) with Re(i, p-x) 60 for all 
XES(j). 
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ProoJ: Applying Theorem 2 with A4 = 0 and T being replaced by - T, 

there exists p E X such that 

(*) YES and 

(**) inf,, Tcjj Re(w, j--x)<0 for all x~S(p). 

By another application of Kneser’s minimax theorem as seen in the proof 
of Theorem 8, the conclusion follows. 1 

Theorem 10 improves Theorem 2 in our earlier paper [24] where F= E’ 
and ( , ) is the usual pairing between E’ and E; Theorem 11 generalizes 
Theorem 4 in our earlier paper [24] where E is a normed space, F = E’ is 
equipped with normed topology, and ( , ) is the usual pairing between E’ 
and E, 
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