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There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-
Gaussian distribution. However, existing standardmethods for source localisationmodel the data using only sec-
ond order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we
present a new general method for non-Gaussian source estimation of stationary signals for localising brain activ-
ity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source
probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel
density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used
linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with
highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case
of Gaussianmeasurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation
approach is shown to give better spatial estimates than the LCMVbeamformer, both in simulations incorporating
non-Gaussian signals, and in real MEGmeasurements of auditory and visual evoked responses, where the highly
correlated sources are known to be difficult to estimate.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

Magnetoencephalography (MEG) is emerging as a valuable neuro-
imaging technique due to its excellent (millisecond) temporal resolu-
tion and reasonable spatial resolution. Unlike functional magnetic
resonance imaging (fMRI) or positron emission tomography (PET),
MEG provides direct measurement of brain activity through recording
the magnetic induction over the scalp produced by electrical activity
in neural cell assemblies, and thus opens the possibility of exploring
the underlying dynamics of neural networks that occurs at amillisecond
time scale (Hämäläinen et al., 1993; Hansen et al., 2010).

There is evidence that MEG normally follows a non-Gaussian distri-
bution (Elul et al., 1975; Lee et al., 2000). This observation is supported
by Nagarajan et al. (2005, 2006), who demonstrated that evoked brain
sources are often characterised by spikes or by modulated harmonic
functions, leading to a non-Gaussian distribution. Other evidence for
c. Open access under CC BY-NC-ND lic
non-Gaussianity of MEG data, is given by the successful employment of
independent component analysis (ICA), which separate sources based
on non-Gaussian measures such as kurtosis, meaning that there are
elements of non-Gaussianity in the MEG data (Nagarajan et al., 2005,
2006). Furthermore, it is possible that MEG data may show a Gaussian
distribution, while the underlying sources may not be Gaussian due to
the fact that superposition of many non-Gaussian sources can resemble
a Gaussian distribution, according to the central limit theorem.

The scope for observing and interpreting neural activity depends on
the resolutionwithwhich sources of activity can be localised within the
brain from theMEGmeasurements at the skull. At theheart of this prob-
lem is the challenge of finding the optimal solution of the so-called in-
verse problem, which can only be solved by introducing a priori
assumptions on the generation ofMEG signals. One of themost success-
ful methods for localising brain activity with MEG is a set of array pro-
cessing methods known as beamformers, which have been widely
used not only in MEG (Robinson et al., 1999; Van Veen et al., 1997),
but also in communications and radar signal processing applications
(Van Veen and Buckley, 1988). Perhaps themost common beamformer
used inMEG imaging is linearly constrainedminimumvariance (LCMV)
spatial filter, which is designed to minimise the power of the measured
signal originating from all locations except the location(s) of interest
ense.
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(Van Veen and Buckley, 1988). However, as we show in this paper, its
performance is only optimal in the presence of measurement whose
pdfs can be described using only first and second order statistics (i.e.,
Gaussian distribution).

Although originally proposed for vector source localisation, the
LCMV beamformer has since been adapted for scalar beamforming. It
has been shown that these two types of beamformers are equivalent,
in terms of output power and output SNR, if their pointing directions
are optimised (Sekihara et al., 2006). There are several other approaches
that have been proposed to improve or extend the LCMV beamfomer.
Among them are graphical models for event-related field denoising
and localisation (Zumer et al., 2007, 2008), which provide a modifica-
tion of the method presented in Nagarajan et al. (2006) by incorporat-
ing the lead-field matrices and temporal information. Zumer et al.
(2008) have shown using a Bayesian formulation that, if the prior is as-
sumed tobeuniformly distributed, themaximumaposteriori (MAP) es-
timation converts to the maximum likelihood estimation which is in
turn equivalent to the LCMV beamformer. These graphical models also
typically assume Gaussian distributions for sources and noise. A Bayes-
ian paradigm has also been proposed to derive several MEG source
localisation approaches including the LCMV beamformer (Wipf and
Nagarajan, 2009). Here we also justify the LCMV beamformer from a
Bayesian perspective to be able to employ kernel density estimators in
the source estimation.

Since the set of weights used by the beamformer relies on the data
covariance matrix, the spatial resolution and accuracy of localisation
are dependent on the estimation of the covariance matrix. Several
methods have been suggested to provide a robust regularisation espe-
cially when the covariance matrix is (nearly) rank deficient through
techniques such as diagonal loading, which can improve the robustness
of the filter (Cox et al., 1987; Hudson, 1981). Other methods include
adaptive iterative algorithms such as expectation maximisation
(Friston et al., 2002), eigenspace beamformer (Sekihara et al., 2002),
relevance vector machines (Wipf and Nagarajan, 2007) and Bayesian
principal component analysis (Woolrich et al., 2011). The latter also
provides a robust estimate of the rank of the covariance matrix. How-
ever, since all these methods only improve the estimated covariance
matrix, the data still is assumed to follow a Gaussian distribution.

Anatomical and spatial information have also been used to improve
the beamformer source localisation by incorporating realistic constraints
on the orientation of the sources (Hillebrand, 2003; Limpiti et al., 2006).
In addition, statistical analyses have been specifically designed for the
beamformer power spectrum to provide a reliable inference about the
neural activity (Barnes and Hillebrand, 2003; Brookes et al., 2004, 2005).

Given the fact that MEG data follow non-Gaussian distributions, we
hypothesise that source localisation algorithms that are able to capture
non-Gaussianity should perform better than a Gaussian based method
such as the LCMVbeamformer. In this paperweprovide a novel approach
for non-Gaussian MEG source localisation. The approach presented here
combines a Bayesian formulation of the beamformer with a model of
the measurement pdf based on the kernel density estimator (Parzen,
1962), to provide a more accurate estimate of the source pdf.

Standard beamformer is sensitive to temporally correlated sources
such that moderately correlated sources are generally poorly identified
(Baillet et al., 2001; Sekihara et al., 2006). A number of studies have
tried to address the problem of correlated sources in MEG source
localisation. Wipf and Nagarajan (2007) showed that a Bayesian meth-
od for learning sparse models has the potential to remove the undesir-
able effects of correlation between sources. A dual source beamformer
technique has also been employed to image temporally correlated
sources (Brookes et al., 2007). An alternative method to circumvent
this problem is the so called null-beamformer technique, which has
been employed to suppress the activity from regions that are known
to have interfering activity (Dalal et al., 2006; Haykin, 2002; Hui and
Leahy, 2006). The null-beamformer has been further validated in audi-
tory MEG source localisation (Popescu et al., 2008), and has also been
employed for MEG recordings concurrent to deep brain stimulation
(Mohseni et al., 2010, 2012).

In light of the correlated source problem, we extend our method to
provide a Bayesian formulation of the null-beamformer for non-
Gaussian data. In this approach, the joint distribution of the correlated
sources is estimated and themarginal distribution is employed to obtain
the pdf of source of interest. It is shown that both the power and time-
series obtained using thismethod are equivalent to those obtained from
the null-beamformer when the measurement pdf is assumed to be
Gaussian.

The organisation of the paper is as follows. First, in the Problem
formulation section the problem is formulated. In the LCMV-
beamformer and its Bayesian derivation section the LCMV beamformer
is briefly reviewed and its solution is justified from a Bayesian perspec-
tive. In The Non-Gaussian probability distribution (PD) beamformer
section the method is described in a Bayesian framework with a non-
informative prior, and the details of an efficient implementation are
given. In the Non-Gaussian probability marginal distribution for
correlated sources section, in order to tackle the problem of making ac-
curate source estimations from data produced by highly correlated
sources, the proposed method is extended using a marginal distribu-
tion and its relation to the null-beamformer is explored. In A kernel
based estimation of themeasurement pdf section, a kernel basedmeth-
od for the estimation of the measurement pdf is explained. This is then
applied to both simulated and real MEG data recorded in auditory and
visual paradigms as presented in the Experimental results section. The
sensitivity and efficiency of the methods are also described with regard
to their free parameters, especially the diagonal loading factor λ in the
beamformer and the bandwidth of the kernel h in theproposedmethod.
In Summary and discussion section, the method is summarised and
discussed. Finally, in Appendix A, we present some theoretical analyses
of themethod including the impact of noise, relation to the beamformer
with a general linear constraint and an analysis of the convergence of
the algorithm.

Methods

Problem formulation

Let the vector yt ∈ ℝN be the measurement recorded at time sam-
ples t ∈ {1,…, T} from N sensor sites. Suppose that yt is composed of
the magnetic fields due to active current dipoles plus noise:

yt ¼ Fst þ nt ð1Þ

where F = [f1…fq] ∈ ℝN × q is the matrix of the lead-fields and st =
[s1,t…sq,t]T ∈ ℝq is the vector of q sources. Here, nt ∈ ℝN is the addi-
tive noise which is independent from the sources.

Suppose that yt, st and nt are zero-mean stationary processes with
probability density functions (pdfs) gy(.), gs(.) and gn(.), respectively.
Furthermore, assume that each source si,t ∈ ℝ, i ∈ {1,…, q}, which is a
stationary process, has the pdf Gsi :ð Þ , and that the lead-field vector of
each source fi ∈ ℝN is deterministic and known (Mosher et al., 1999).

It is also assumed, for simplicity, that the sources si,t, i ∈ {1,…, q} are
one-dimensional, whereby themethod is called scalar source localisation.
However, in reality the current dipoles aremultidimensional and a vector
source localisation, which assumes that the sources are two or three di-
mensional, is more appropriate.

LCMV-beamformer and its Bayesian derivation

To set the scene and better clarify the method proposed, we first
present the LCMV beamformer and its justification within a Bayesian
framework.

To locate the source sk,t at a particular location k and time sample t,
the approach known as the LCMV beamformer is often used for MEG
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source analysis. It is a linear filter that constrains the lead-field vector fk
to pass the signal at a location of interest, while minimising the covari-
ance of the measurement Ry:

argmin
w

wTRyw; subject to : wT fk ¼ 1 : ð2Þ

Here, w is a vector of weights and its closed-form solution using
Lagrange multiplier method is given by wT = (fkTRy

−1fk)−1fTRy
−1. The

estimated time-series ŝk;t at time t and the estimated power PSk are
then given by:

ŝk;t ¼ fTkR
−1
y fk

� �−1
fTR−1

y yt ð3Þ

Psk
¼ fTkR

−1
y fk

� �−1
: ð4Þ

Now we justify Eqs. (3) and (4) from a Bayesian perspective. One
may rewrite Eq. (1) as:

yt ¼ fksk;t þ ηt ð5Þ

where ηt = ∑ i ≠ kfisi,t + nt is the interference coming from all other
sources plus noise. We then assume that the pdf for ηt, gη(⋅), can be ap-
proximated with a Gaussian function, i.e., ηt∼N 0;Rη

� �
. In the Bayesian

framework, the posterior pdf of the source of interest p(sk|yt) is estimat-
ed and its expected value is considered as the estimation of the time-
series ŝk;t . This is accomplished via Bayes' rule given by:

p sk ytj Þ∝p yt skj Þp skð Þ:ðð ð6Þ

In Eq. (5), since we assumed that the interference plus noise distri-
bution gη(.) is Gaussian the likelihood p(yt|sk) is also Gaussian:

p yt skj Þ∝ exp − yt−fkskð ÞTR−1
η yt−fkskð Þ

h i
:

�
ð7Þ

By assuming an uninformative (uniform) prior on the source pdf
p(sk), using Bayes rule (Eq. (6)), it can be shown that the posteriori
p(sk | yt) is also Gaussian and its mean (the estimated time-series) and
variance (the estimated source power) are given by [see also
(Dogandzic and Nehorai, 2000; Zumer et al., 2008) for when Rη is
assumed to be known]:

ŝk;t ¼ fTkR
−1
η fk

� �−1
fTkR

−1
η yt ð8Þ

Psk
¼ fTkR

−1
η fk

� �−1
: ð9Þ

Eqs. (8) and (9) are equivalent to Eqs. (3) and (4), except for the fact
that in the former Rη has been used instead of Ry. If we assume that the
power of the source of interest is considerably smaller than thepower of
all other sources plus noise, we can approximate RηxRy, making the
beamformer and Bayesian solutions equivalent. Given the fact that
brain activity generally has distributed sources, this approximation is
acceptable in the MEG applications. However, in the event that this ap-
proximation is not true, we may face inaccurate and biased results.

It is notable that, in Eq. (2), minimising the power of the noise plus
interference Rη is better known as the minimum variance distortion-
less response (MVDR) beamformer. This should potentially perform
better than minimising the measurement power Ry alone (Ehrenberg
et al., 2010; Van Trees, 2004). Nevertheless, the main advantage of
the LCMVbeamformer over the Bayesian solution is thatRy can be effec-
tively estimated from the measurement, while estimation of Rη in most
applications is not possible (Wipf and Nagarajan, 2007).
The Non-Gaussian probability distribution (PD) beamformer

We start by assuming that the distribution over η, gη(.), is known.
Using this with Eq. (5), gives p(yt|sk) = gη(yt − fksk). By inserting this
into Eq. (6) and assuming that the prior is uniformly distributed, we
have:

p sk ytj Þð ∝ gη yt−fkskð Þ: ð10Þ

As with the classic Gaussian LCMV beamformer, we assume that the
source power is considerably smaller than the interference plus noise
power, and that the pdf of η can be approximated by the pdf of y; i.e.,
we assume gη(.) ≈ gy(.). As explained in the previous section, this is
equivalent to implicitly assuming that the power at one voxel is consid-
erably smaller than the power at all other voxels within the brain plus
noise. This assumption is valid in most applications of MEG source
localisation. Moreover, the main benefit of this assumption is that the
data pdf can be estimated from the measurements, while estimation
of the pdf of the noise plus interference is intractable inmost cases. Fur-
thermore, in Appendix A it is shown that we can exactly estimate the
source pdf in the presence of uncorrelated sources and noise free signal.
This means that regardless of the power of the interference, if the noise
power is small enough, this assumption does not have any negative im-
pact on the results, for example in ERFs obtained from averaging over
many trials.

Based on the assumption that gη(.) ≈ gy(.), Eq. (10) is given as

p sk ytj Þð ∝gy yt−fkskð Þ: ð11Þ

Here, gy(.) is obtained using the mechanism that is explained in A
kernel based estimation of the measurement pdf section. We then
may use the expected value of the posteriori as the estimation of the
time-series ŝk;t:

ŝk;t ¼
Z

skp skjytð Þdsk: ð12Þ

Other values including the mode of p(sk|yt) could also be used
instead.

In addition to the posteriori distribution p(sk|yt), it is necessarily
to obtain the source pdf given all observations, defined by gsk skð Þ ¼
p skjy1;…; yTð Þ, in order to estimate the source activity, which can be
represented by the variance (or fourth order moments) of gsk skð Þ.
Normally in this case, it is assumed that the measurement samples
are independent which leads to gsk skð Þ∝∏T

t¼1 gy yt−fkskð Þ. However,
we use gsk skð Þ≡ p skjE yf gð Þ as an estimation of the source pdf, where
E{.} is the expectation operator over gy(.). Source pdf estimation
using gsk skð Þ≡ p skjE yf gð Þ is much faster especially when it is re-
quired to estimate the power of a large number of points inside
the brain volume. Using Eq. (11) and the fact that the measurement
is zero mean, we therefore have

gsk skð Þ ∝ gy fkskð Þ: ð13Þ

Here, we have replaced gy(−fksk) by gy(fksk), since the minus sign
does not have any impact on the estimated power. Based on the above
equation the power of the source of interest is given by:

Psk
¼ ∫sk

2gsk skð Þdsk: ð14Þ

An important property of the two equations above is that an optimal
estimation of the source pdf (and consequently the source power) is
obtained if the noise power is very small, even if the interference is
large (please also see Appendix A).
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For the convenience of the reader, the pseudo-code of themethod is
presented in Algorithm1. The algorithmprovides the expected value ŝk;t
at time t and the powerPsk, of a source at a locationwith lead-field fk. The
inputs of this algorithm are measurements yt and the lead-field of the
source of interest fk. The data distribution gy(y) is a multidimensional
non-Gaussian distribution, and it is estimated from yt using kernel den-
sity estimators (see A kernel based estimation of the measurement pdf
section). The outputs of the algorithm are the time-series and power
at the location of interest. Similar to the traditional beamformer, in
practice the brain is divided into a number of discrete voxels and the al-
gorithm is implemented separately for each. Note that for simplicity of
notation, we have used the integral rather than the discrete sum, but
the integrals which are over univariate pdfs should be calculated
numerically.

Algorithm 1. Implementation of the method for the non-Gaussian PD
Beamformer

% estimating the time-series ŝk;t
for t = 1 to T do

estimate gy(y)asexplainedin “Akernelbasedestimation

of the measurement pdf section” or any other approach

set p(sk|yt) ∝ gy(yt − fksk) % Eq. (11)

normalise p skjytð Þ ¼ p sk jytð Þ
∫p sk jytð Þdsk

set ŝk;t ¼ ∫skp skjytð Þdsk % Eq. (12)

end for
% fast estimation of the power Psk at a location with lead-

field fk
estimate gy(y)asexplainedinAkernelbasedestimation

of the measurement pdf section or any other approach

set gsk skð Þ∝gy fkskð Þ % Eq. (13)
normalise gsk skð Þ ¼ gsk skð Þ

∫gsk skð Þdsk
set Psk ¼ ∫sk2gsk skð Þdsk % Eq. (14)

Non-Gaussian marginal distribution for correlated sources

In the previous section it was assumed that the sources are indepen-
dent, in practical applications however, this assumptionmay not be up-
held. Here, we provide a framework that can be used for pdf estimation
of correlated sources.

Suppose that we are interested in the activity of a set of voxels in the
brain {sm1, …,smp}, which are not necessarily independent from each
other. Similar to the application of the null-beamformer, we assume
that the location of the correlated sources is known. For example, in
an auditory experiment, we roughly know that the two sources are lo-
cated in the left and right auditory cortices (Dalal et al., 2006; Popescu
et al., 2008).

Let the lead-field matrix of the correlated sources be Fm =
[fm1 … fmp], and let sm = [sm1 … smp]T. Our aim is to estimate the
posteriori distribution and pdf of the kth source in the first set: p(smk|yt)
and gsmk

smkð Þ. Using the same argument given for derivation of Eq. (11),
onemayestimate the joint pdf of theposterior distribution of the correlat-
ed sources {sm1,…,smp} using:

p sm1;…; smqjyt
� �

¼ p smjytð Þ ∝ gy yt−Fmsmð Þ:

Having the joint distribution of dependent variables, the marginal
distribution (obtained by integrating over other variables) can be
employed to estimate the pdf of interest p(smk|yt) regardless of their
correlation, or precisely

p smkjytð Þ∝∫gy yt−Fmsmð Þdsmk= ð15Þ
where smk/ is a vector that is obtained by eliminating the kth entry of sm.
The time-series can thus be considered as the expected value of the con-
ditional density of the desired source; ŝmk;t ¼ ∫smkp smkjytð Þdsmk.

Following a similar approach to the estimation of the source pdf for
independent sources (Eq. (13)), the pdf of source of interest can be
obtained using

gsmk
smkð Þ ∝ ∫gy Fmsmð Þdsmk=: ð16Þ

Algorithm 2 presents the pseudo-code for the marginal distribution
method. This algorithm is similar to Algorithm 1, but includes the extra
steps of estimating the joint distribution and its marginalisation. In
Algorithm 2, the indices k and m are dropped for notational simplicity.
This code shows how to estimate the power Ps and time-series ŝt of a
sourcewith lead-field f, which is not independent from the sources aug-
mented in the vector s/. Note that the lead-fields of the sources in vector
s/ are augmented in the same order in the matrix F/. In this algorithm,
gs;s= s; s=

� �
is the joint pdf of the desired source and other correlated

sources. Normalisation of the pdf can be applied after themarginalisation
to slightly reduce the computational cost.

Algorithm 2. Implementation of the non-Gaussian MD Beamformer

% estimating the time-series ŝt
for t = 1 to T do

estimate gy(y)
set p(s, s/|yt) ∝ gy(yt − fs − F/s/)
marginalise p(s|yt) = ∫ p(s, s/|yt)ds/
normalise p sjytð Þ ¼ p sjytð Þ

∫p sjytð Þds
ŝt ¼ ∫sp sjytð Þds

end for
% fast estimation of the powerPs for the source swith lead field f
% which is not independent from s/ with lead-field matrix F/
estimate gy(y)
set gs;s= s; s=

� �
∝gy fsþ F=s=

� �
marginalise gs sð Þ ¼ ∫gs;s= s; s=

� �
ds=

normalise gs sð Þ ¼ gs sð Þ
∫gs sð Þds

set Ps ¼ ∫s2gs sð Þds

Relation to the null-beamformer
The null-beamformer is an effective method to remove sources

correlated with the source of interest. Assume again that the
unwanted sources have lead-field matrix F/ and the source of inter-
est has lead-field f. The formulation is the same as that of the
LCMV-beamformer, except that it has an additional constraint that
nulls the interference through enforcing wTF/ = 0, where 0 is a vec-
tor of zeros. Therefore,

argmin
W

wTRyw; subject E : wT f ¼ 1andwT F= ¼ 0 : ð17Þ

The closed-form solution of w is again obtained using the Lagrange
multiplier method, whereby the estimated time-series and power are
given by:

ŝt ¼ cT FTR−1
y F

� �−1
FTR−1

y yt ð18Þ

Ps ¼ cT FTR−1
y F

� �−1
c ð19Þ

where F = [f F/] and c = [1, 0]T.
The solution proposed in the non-Gaussian MD beamformer is the

same as the null-beamformer (Eqs. (18) and (19)), if a Gaussian pdf is
fitted to the measurements. This is proved in Appendix B, where we
show that if gy(.) is a zero-mean Gaussian distribution with covariance
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Fig. 1. Examples of the simulated source pdfs (black lines) and their estimation using the LCMV beamformer (blue lines) and the non-Gaussian method (red lines).
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matrix Ry, then the conditional density p(s|yt) given by Eq. (15) is also
Gaussian with mean value given by Eq. (18) and covariance matrix
given by Eq. (19). Furthermore, the marginalised distribution s gs(s)
given by Eq. (16) is zero-mean Gaussian with covariance matrix equiv-
alent to Eq. (19).

It is notable that the non-GaussianMD source localisation is also relat-
ed to the beamformer with general linear constraint (Van Trees, 2004)
under the Gaussianity assumption (see Appendix C for further details).

A kernel based estimation of the measurement pdf

We have shown how the source pdf can be estimated from the data
pdf. Thus, to implement the method, estimation of the measurement
pdf gy(.) is needed from the set of discrete observations yt, t ∈ {1,…,T}.
The success of the method depends somehow on the quality of this
estimation.

Since the dimension of yt is large (on the order of hundreds), we
employ kernel based methods, which are fast estimators requiring
no optimisation procedure. Kernel based estimation, which is one
of the most common methods, assumes that the data pdf may be
modelled as the sum of T kernels centred at each observation
(Silverman, 1999).

Eq. (13) shows that we require gy(fs) to be able to estimate the
source pdf, which can be obtained using the kernel density estimator
as:

gy fsð Þ ¼
XT
t¼1

1
hN

K
yt−fs

h

� �
ð20Þ

where K : RN→R is the kernel, h is a scaling factor known as band-
width, N is the number of sensors, and hN indicates h to the power
0 1 2 3 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Kurtosis

M
S

E

a

Beamforming

Non−Gaussian method

Fig. 2. Comparison between the LCMV beamformer and the non-Gaussian method in the simu
Gaussian. The method proposed is insensitive to the non-Gaussianity of the source plus noise.
N. This equation implies that constructing the whole measurement
pdf gy(y) for any given value of y is unnecessary, and instead, we
only need to estimate gy(fs) which is a univariate function. There-
fore, the pdf at a location with lead-field matrix f, based on the
Eqs. (13) and (20) is given by:

gs sð Þ ¼
XT

t¼1
1
hN
K yt− fs

h

� �
∫
XT

t¼1
1
hN
K yt− fs

h

� �
ds

: ð21Þ

Note also that the same kernel based estimation can also be
employed for the non-Gaussian method for correlated sources using
Eq. (16).

To better clarify the algorithm, suppose that at time instant t and at a
location with lead-field f, we are interested in estimating the source pdf
and consequently the source time-series st. The source pdf is approxi-
mated by a set of discrete points within a limited interval (e.g., for s
from −10 to 10 with an increment of 0.1), and the value of each point
is estimated using Eq. (20). This gives us a scaled version of the source
pdf and should be normalised by its integral. The integral is calculated
numerically based on the above set of points, resulting in an estimation
of the source pdf. This proceduremay be repeated for each location and
for each time instant.

The kernel itself and the bandwidth both need to be chosen; we use
the common Gaussian kernel, which is given by (Silverman, 1999):

K xð Þ ∝ exp −1
2
xTR−1

ker x
� �

ð22Þ

where Rker is the covariance of the kernel.
The choice of covariance matrix of the kernel is important in deter-

mining the spatial resolution. The simplest choice is the identity matrix
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Fig. 3.MSE versus correlation between sources for the proposedmethod and for the classic
LCMV beamforming approach in a simulation experiment. The LCMV beamformer ismore
sensitive to the correlation between sources than the proposed method.
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Rker = I, which results in a homogeneous kernel. An alternative
efficient choice of covariance matrix of the kernel can be made with
the eigenvectors associated with the largest eigenvalues of the mea-
surement covariance matrix. To construct this kernel suppose that
Ry = UΣUT is the singular value decomposition of the estimated mea-
surement covariance matrix, and set

Rker ¼ UmaxU
T
max þ σ I

where Umax is the matrix containing the eigenvectors associated to the
largest eigenvalues, and σ is a regularisation parameter used to stabilise
the calculation of the inverse, since UmaxUmax

T is rank deficient. This
choice of kernel is especially helpful in our study, in whichwe employed
the signal space separation artefact rejection algorithm (Taulu and
Simola, 2006). This filtering reduces the rank of the data from number
of sensors N to a much smaller number (order of tens). This kernel,
which is homogeneous in the space that the data is distributed and is
zero elsewhere, can improve the data pdf estimation and therefore re-
sults in a better source pdf estimation. In the above equation, Rker is
N × N, where N is the number of sensors, and Umax is N × r, where r is
the rank of the measurement after applying the signal space separation
filter. This choice of kernel can also be useful when some of the eigen-
values of data covariance matrix are considerably smaller than the
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Fig. 4. Comparison between the classic null-beamformer and the proposed non-Gaussianmetho
sources is non-Gaussian and (b) the additive noise is non-Gaussian. The method proposed is in
others, as is also the case with the multiple signal classification
(MUSIC) algorithm (Mosher et al., 1992).
Computational complexity
Kernel based estimators are almost asymptotically unbiased for a

large number of measurement samples (see Appendix D), however,
the algorithm is computationally intensive if the number of measure-
ment samples is large. The computational complexity of the proposed
algorithm for calculation of the time-series and power at a single
voxel is of order O(T2N2Ds) and O(TN2Ds), respectively, where Ds is the
number of points that are used to approximate the distribution of one
dimensional source. Depending on the number of time samples T and
number of points Ds, these orders are generally much bigger than the
computational complexity of the LCMV beamformer which is of order
O(TN2) for calculation of time-series and O(N2) for calculation of power.

For example, estimation of the time-series at each voxel, based on a
segment of 30-secondMEGdatawith sampling frequency of 250 Hz, re-
quires approximately 7 s, using a desktop computerwith 2.93 GHzCPU.
This means that approximately 3 h is required to estimate the time-
series for a set of voxels within the brain with a grid resolution of
12 mm. Compared to the standard beamformer, which needs few sec-
onds to scan thewhole brain, the computation time is substantially lon-
ger. However, given the fact that MEG source localisation is normally
implemented offline and the algorithm may be readily parallelised,
this high complexity should not present a barrier to its use.
Experimental results

Two sets of results are described. The first set uses simulations to in-
vestigate and quantify the errors of themethods proposed resulting from
non-Gaussian sources and noise. The second set investigates the
methods on real MEG data for resting state, auditory and visual stimuli.
In each case the methods are compared with the LCMV and null
beamformer.
Simulation experiments

To evaluate the new methods, we ran several simulation experi-
ments. Each used a single layer realistic head model in which the
brainwas divided into a number of cells. The distance between adjacent
cells was 5 mm. The number of samples was 400 and the number of
sensors was set to 102 following the number of magnetometer sensors
used in our MEG scanner.
Kurtosis

M
S

E

Beamforming

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

Non−Gaussian method

b

d based on themarginalised distribution for highly-correlated sourceswhen (a) one of the
sensitive to the Gaussianity of the source plus noise.



450 H.R. Mohseni et al. / NeuroImage 87 (2014) 444–464
The datawere normalised such that theirmaximumvaluewas equal
to one. In the non-Gaussianmethod the pdf of each source was estimat-
ed over a compact interval between−10 and 10. In all the simulations,
the value of the bandwidth in the non-Gaussian method was set to
h = 1, and the regularisation factor in the beamformer approach was
set to λ = 0.01Tr{Ry} (1% of the trace of the measurement covariance
matrix). Note that as long as the covariance matrix is full rank and not
nearly rankdeficient, the small value ofλhas little impact on the results.

The first experiment illustrates the estimation of the source pdf for a
single non-Gaussian source using the non-Gaussian PD beamformer.
The next two examine quantitatively the use of this method on non-
Fig. 5. An example for reconstruction of six simulated dipoles, (a) original location of dipoles, (
SAKETINI method (Zumer et al., 2007) and (d) estimated locations using the proposed non-Gau
the other two methods which assume that the data is Gaussian.
Gaussian noise and correlated sources respectively. In each case the re-
sults are compared with the LCMV beamformer. The experiment in the
Investigation of null-beamformer and its non-Gaussian extension section
compares the performance of the non-Gaussian MD beamformer with
the LCMV null-beamformer on the same data. The Reconstruction of
simulated sources section extends the investigation of the non-
Gaussian PD beamformer to image reconstruction for a set of un-
correlated Gaussian sources with non-Gaussian noise. The results from
the LCMV beamformer and the SAKETINI method (Zumer et al., 2007)
are also provided. Finally, in the Reconstruction of simulated correlated
sources section, we show the reconstruction of the time-series using
b) estimated locations using the LCMV beamformer and (c) estimated locations using the
ssian approach. The non-Gaussianmethod reconstructed six sources more accurately than



Fig. 6.Anexample of the reconstruction of six simulated dipoleswhen the two frontal sources are correlated using (a) the LCMVnull beamformer and (b) the non-Gaussianmethod,while
cancelling the left frontal source. The beamformer approach shows spurious activity between the two sources due to the correlation between sources, but the non-Gaussian approach
shows more accurate results. There is activity around the left frontal source, using both approaches, because of the additive noise.
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the non-Gaussian PD beamformer for non-Gaussian sources, comparing
the results with the LCMV beamformer and Bayesian PCA method
(Woolrich et al., 2011) as appropriate.

Impact of non-Gaussian source
In the first simulation experiment, the method was demonstrated

through the reconstruction of a single source. Three different pdfs
were assigned to the source in turn, the first Gaussian and the others
non-Gaussian (described further in the next experiment). It was
assumed that in addition there were 15 uncorrelated (Gaussian)
sources whose locations were randomly allocated inside the brain
volume. The pdfs of the source of interest are shown in Fig. 1. Zero-
mean Gaussian white noise was also added to the simulated MEG
data (after projection of the simulated sources through the lead-
fields) to set SNR = 8 dB. SNR is defined in the sensor space as the
ratio between mean power of the signal to the mean power of the
noise across all sensors. The pdf of the first source was estimated
using both Gaussian and non-Gaussian assumptions. Fig. 1(a) shows
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the result for the Gaussian source where both beamformers give an
accurate estimation. Figs. 1(b) and (c) show the results for two non-
Gaussian sources. It is clear that the non-Gaussian PD beamformer
increasingly outperforms the LCMV beamformer as the source pdf devi-
ates more from a Gaussian distribution.

In the second simulation experiment, themean squared error (MSE)
resulting from non-Gaussianity of one source was quantified using a
Monte Carlo simulation. This source was generated using a mixture
model consisting of two zero-mean Gaussian components. The depar-
ture from Gaussianity of the source was quantified using the kurtosis k
which is defined by k ¼ μ4

σ4−3, where μ4 is the fourth moment and σ is
the standard deviation. When the kurtosis is zero, the data is Gaussian,
and as it becomes larger, the pdf departs further from aGaussian profile.
Only when the variances of the two pdfs in themixture model are iden-
tical, is the mixture also Gaussian. Fig. 2(a) presents the result of the
MSE which is defined as the mean squared error between the original
and constructed pdf for different kurtosis. The average SNR is −5 dB
and the results were obtained using 1000 Monte Carlo simulations. It
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Fig. 8. Kurtosis versus channels in resting state experiments recorded from 10 subjects.
Kurtosis can be very large in some cases indicating the high non-Gaussianity of the mea-
sured MEG.
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is clear that as the kurtosis increases, the error in the LCMV beamformer
increases rapidly. In contrast, the new non-Gaussian PD beamformer
exhibits a flat error which means it is not sensitive to the shape of the
pdf.
Impact of additive non-Gaussian noise
So far the effect of non-Gaussian sources has been considered where

the noise was Gaussian. This simulation experiment was devoted to in-
vestigating additive non-Gaussian noise. In this case, all sources were
Gaussian and the noise was generated as per the previous example by
using a Gaussian mixture model with two zero-mean Gaussian compo-
nents. The covariance matrix of one of the Gaussian components was
the identity matrix I and the covariance of the second Gaussian compo-
nent was aI, where σ was varied to gain different values of kurtosis. As
demonstrated by Fig. 2(b), the non-Gaussian method is insensitive to
the shape of the noise pdf whereas the MSE in the LCMV beamformer
increases with increasing kurtosis.
Impact of correlation between sources
This experiment assesses the effect of correlated sources on the

LCMV beamformer and the non-Gaussian PD beamformer. Here, the
sources and the additive noise were all assumed to be Gaussian. Two
correlated sources s1 and s2 were generated using standard Gaussian
distribution: s1∼N 0;1ð Þ; s2∼ 1−αð ÞN 0;1ð Þ þ αs1, where α is a measure
of correlation between sources; α = 0 means the sources are
uncorrelated and α = 1 means they are completely correlated. The lo-
cations of the two sources were randomly and uniformly set within
the brain in the Monte Carlo simulation to estimate the average impact
of the method over all locations. Fig. 3 shows that even for Gaussian
sources the non-Gaussian method shows a better reconstruction of
the desired source pdf than the LCMVbeamformer as the correlation be-
tween sources increases. Even with moderate correlation between
Fig. 9. Histograms of the first seven channels for data in a 100–150 ms interval after stimulus o
shape) to effectively employ the classical LCMV beamformer.
sources, the MSE from the novel non-Gaussian method does not in-
crease very significantly.

Investigation of null-beamformer and its non-Gaussian extension
Next, we investigated the performances of the null-beamformer and

the non-Gaussian MD beamformer designed to cope with correlated
sources using the same simulation configuration. The results are
presented in Fig. 4. In each case, we assumed that the null location is
known. Fig. 4(a) shows the results when one source is non-Gaussian
and Fig. 4(b) shows the results when the additive noise is non-
Gaussian. Both methods are capable of cancelling out the correlated
source, but the non-Gaussian MD beamformer is better at dealing
with the non-Gaussianity of the source and additive noise.

Reconstruction of simulated sources
In the next simulation experiment, we simulated six uncorrelated

Gaussian sources with non-Gaussian noise to compare the source
localisation accuracy of the LCMV beamformer and the non-Gaussian
PD beamformer. The noise was created as in the other experiments
with the kurtosis equal to 3. The location of the sources is shown in
Fig. 5(a) and marked by green dots. The sources in this example were
also reconstructed using the SAKETINI method (Zumer et al., 2007),
which is a graphical model and assumes that a segment of the noise
and the number of sources are known. The noise segment was generat-
ed with the same distribution as that of the additive noise used to sim-
ulate the measurements. The number of sources was set to 6 and the
algorithm was implemented using the NUTMEG toolbox with the rec-
ommended settings (Dalal et al., 2004).

The results using the LCMV beamformer, SAKETINI and the non-
Gaussian PD beamformer are shown in Figs. 5(c–d). The source activi-
ties estimated using the three methods have been normalised between
0 and 1. It is clear that the newmethod gives more accurate reconstruc-
tion, particularly, with higher spatial precision for frontal and temporal
sources.

Reconstruction of simulated correlated sources
We also investigated the impact of correlated sources on the source

reconstruction. We used the same simulation settings as the previous
example, but the two frontal sources are chosen to be completely corre-
lated, i.e., the same time-series. If we reconstruct these correlated
sources without the nulling technique, a spurious source between the
two correlated sources is estimated.We therefore assume that the loca-
tion of one of the correlated sources (left frontal source) is known, and
then place a null at its location. The results using LCMV and the non-
Gaussian method are shown in Fig. 6, in which due to non-Gaussian
noise, the LCMV beamformer shows inferior localisation compared to
the non-Gaussian method.

Estimation of simulated time-series
In the last simulation experiment, we examined the accuracy of esti-

mation of the underlying time-series. The location of the desired source
is the right frontal source as shown in Fig. 5(a). The shape of the original
time-series is shown in Fig. 7with a solid black line. It consists of two cy-
cles of a sinusoidal wave within a period of no activity to represent an
event-related field potential. We also compare the proposed method
with a recent method based on the Bayesian PCA for estimation of the
nset in a visual paradigm. The histogram should be in the form of Gaussian function (bell
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Fig. 10. Reconstruction of neural activity in the visual paradigm using beamforming with (a) λ = 0.01%, (b) λ = 0.01% and (c) λ = 1% of trace of data covariance matrix, and using non-
Gaussian method with (d) h = 1, (e) h = 5 and (f) h = 10.
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Fig. 11. Reconstruction of neural activity in the auditory paradigmusing LCMV beamformerwith (a) λ = 0.01%, (b) λ = 0.1% and (c) λ = 1%of trace of data covariancematrix, and using
the proposed non-Gaussian method with (d) h = 1, (e) h = 5 and (f) h = 10.
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covariance matrix. This method particularly is useful when there are
few sources and therefore the covariance matrix can be represented
by a few eigenvectors (for further details please refer to (Woolrich
et al., 2011)).

The estimated time-series using the non-Gaussian PD beamformer,
the LCMV beamformer and Bayesian PCA were plotted using red, blue
and green lines, respectively, in Fig. 7. These results imply that the
non-Gaussian methods outperform the LCMV when the observations
are non-Gaussian. The proposed method also outperforms the Bayesian
PCA approach when the signal is corrupted with an additive non-
Gaussian noise. This is because the Bayesian PCA only uses the second
order statistics and therefore still assumes that the observations are
Gaussian.

Experiments using MEG data

Data acquisition
Ethical approval of the research methods was obtained on 18 July

2008 from Oxfordshire Research Ethics Committee (reference: 08/
H0604/58). The MEG data were recorded from three cohorts of 12 par-
ticipants, all of whomwere given informed written consent before tak-
ing part in the studies.

We compared the performance of the non-Gaussian method with
the LCMV beamformers on data from three separate MEG experiments.
The resting state experiment used ten right-handed participants (4
males, age 22–45 years) under the condition of eyes openwith fixation.
The visual experiment used a 27-year-old right-handed female with
normal vision or vision corrected to normal. The auditory experiment
used a 24-year-old right-handed participant with normal hearing.

All MEG recordings were performed using a 306 channel Elekta
Neuromag systemwith 102magnetometers and 102pairs of planar gra-
diometers. Data were recorded at a sampling rate of 1000 Hz with a
0.1 Hz high pass filter. Prior to acquisition, a three-dimensional digitizer
(Polhemus Fastrack) was used to localise the participants' head shape
relative to the position of the head-coils, with respect to three anatom-
ical landmarks which could be registered on the MRI scan (the nasion,
and the left and right preauricular points). A structural MRI was also ac-
quired for each participant.

A single layer realistic headmodel was used in the source analysis of
both the visual and auditory experiments. Head movements were kept
to a minimum, and head positions were localised immediately before
the start of the experiment. Signal space separation or MaxFilter,
which is a commercial pre-processing software package recommended
by the Elekta company, was applied to the continuous data (Taulu and
Simola, 2006). The continuous measurements were then linearly fil-
tered in a bandpass range of 1–40 Hz. The data were segmented and a
baseline correction applied (using a 200 ms segment of data before
the stimuli). Finally, the trials were visually inspected and those with
large variations were removed.

Investigation of Gaussianity of MEG data
In the first experiment, we examined the Gaussianity of real MEG

data recorded from ten normal participants in the resting state through
estimating the kurtosis. The kurtosis of the gradiometer signals is plot-
ted in Fig. 8 (sorted in order of descending kurtosis for each subject
for clarity). It is clear that even for resting state data, the kurtosis in
some cases can become very large meaning that the data pdf is highly
non-Gaussian. As a further test, the Jarque–Bera goodness-of-fit test
(Jarque and Bera, 1987) was applied to both skewness and kurtosis.
The test implied that only two channels in one subject and one channel
in another subject were Gaussian distributed with p b 0.05. We con-
clude therefore that an assumption of Gaussianity is not valid for real
MEG data.

In the following experiments, we compared the performance of the
methods for source reconstruction and investigated the sensitivity of
the results with regard to two key parameters λ and the kernel band-
width h.

Visual paradigm
The second MEG experiment used a visual paradigm where a series

of human and animal faces were presented to the participant. Each
image was presented for 300 ms and the time interval between images
was 1500 ms. Wewere interested in localising the first significant peak
of averaged epoched data which occurs around 100–150 ms after the
onset of visual stimuli. The origin of this peak is known to be located
in bilateral regions of the primary visual cortex. Fig. 9 shows the histo-
gram of this peak for the first five channels; none matches a Gaussian
distribution. Based on the results from the simulation experiments, we
therefore would expect the non-Gaussian method to outperform the
standard beamforming approaches.

Thiswas confirmed in Fig. 10. Figs. 10(a)–(c) show the output power
of the beamformer (trace of the estimated covariance matrix as in
Eq. (4)) normalised by the norm of the associated lead-fields; i.e.,
normalised by the power of projected white Gaussian noise (see (Van
Veen et al., 1997)). Figs. 10(d)–(f) show the estimated power using
the non-Gaussian PD beamformer, which was also normalised by the
norm of the associated lead-fields. In both methods, the same anatomi-
cal plane is displayed and it includes the results for different values of λ
and h. For the LCMV beamformer, we see from the figure that if a small
value for λ is chosen, the peak of the spectrum is in a frontal part of the
visual cortex and if a large value is chosen, the peak of reconstructed
source is in the cerebellum and not in the visual cortex. In contrast the
non-Gaussianmethod reconstructs activity in both right and left prima-
ry visual cortex formoderate and small values of h. It also has better spa-
tial resolution.

Auditory paradigm
The third MEG experiment was particularly useful to compare the

performance of both sets of beamformers: the LCMV beamformer with
the non-Gaussian PD beamformer and the null-beamformer with the
non-Gaussian MD beamfomer. It used a mismatch negativity auditory
paradigm, where participants were presented with trains of 7 different
tones repeated randomly. The frequency of the tones increased from
500 to 800 Hz in steps of 50 Hz. The number of times that the same
tone was presented in the sequence varied pseudo-randomly between
one and eleven. The probability that the same tone was presented
once or twicewas 2.5%, three and four times was 3.75% and five to elev-
en times was 12.5%. Stimuli were presented biaurally via headphones
for 15 min. The duration of each tone was 70 ms, with 5 ms rise and
fall times, and the inter-stimulus interval was 500 ms. Here, the first
tone of each train is considered as deviant and the rest as the standard
tone. About 250 deviant trials were presented.

We were only interested in localising a significant peak known as
N100 which occurs 100 ms after the stimulus onset. The source of this
peak is known to be in bilateral regions of the primary auditory cortex.
Traditional beamforming methods have been shown to have difficulty
in reconstructing these bilateral sources correctly.

The results of the source reconstruction are presented in Fig. 11
using the non-Gaussian PD and LCMV beamformers. In all the figures,
the small green volume is the mask representing the primary auditory
cortex presented using the Juelich Histological Atlas (Morosan et al.,
2001). Figs. 11(a)–(c) show the results using the LCMV beamformer
(blue regions) with λ equal to 0.01%, 0.1% and 1% of the trace. It is
clear that, depending on the value of λ, the LCMV beamformer has
only reconstructed a source primarily in the left or right auditory cortex,
leaving out the source in the other cortex. In addition, it has placed an
extraneous source in the middle of the brain (close to the precuneus
and posterior cingulate cortex), and one deep in the brain. These
extraneous sources are likely to arise from correlations between genu-
ine sources. Figs. 11(d)–(f) show the results from the non-Gaussian
method for h = 1, 5 and 10, respectively. It shows better reconstruction



Fig. 12. Reconstruction of neural activity in the auditory paradigmwhen the right-hand side source is cancelled out using the classic null-beamformer with (a) λ = 0.01%, (b) λ = 0.1% and
(c) λ = 1% of trace of data covariancematrix, andwhen the right-hand side source is cancelled out using the proposedmarginalised based non-Gaussianmethodwith (d) h = 1, (e) h = 5
and (f) h = 10.
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of both left and right sources in the primary auditory cortex (especially
for h = 5). It does not show any source deep in the brain, but for higher
values of h it does present a potentially incorrect source in the middle of
the brain due to the high correlation between sources. These observa-
tions also show that the sensitivity of the new method to the choice of
bandwidth hwas no higher than the sensitivity of the LCMVbeamformer
to regularisation factor λ.

Since the two sources are partially correlated, the classic null-
beamformer and the non-GaussianMDmethod were employed to can-
cel out one of the correlated sources. Figs. 12(a)–(c) show the results
from the classic null-beamformer when a null has been placed at the
right auditory cortex with three different values of λ. The null-
beamformer shows activity near the left auditory cortex and has re-
duced the large source of activity in the middle of the brain for small
values for λ but shows significant areas of extraneous activity as λ is in-
creased. Figs. 12(d)–(f) show the equivalent results using the non-
Gaussian approach. It is clear that the source in the left auditory cortex
had been located and other extraneous sources reduced. The non-
Gaussian method shows less sensitivity to its parameter h than the
null-beamformer does to its parameter λ.

Fig. 13 presents similar results to the previous figure, but here
the null has been placed in the left auditory cortex. The results
of the null-beamformer with different values of λ are shown in
Figs. 13(a)–(c). While the large sources of activity in the middle
and deep structure of the brain have largely been suppressed, the
source in the right auditory cortex is not at the correct location. In
contrast, Figs. 13(d)–(f) demonstrate the superior results from the
non-Gaussian method, which localises the source of activity very
close to the expected location. The extraneous sources have also
been completely removed.

Resting state
One of the resting state networks which has been well identified in

both fMRI and MEG data is the sensorimotor network (see (Brookes
et al., 2011) for more details). We use this network as a ground truth
to further investigate the performance of the proposed method. A 30-
second segment of raw MEG data were filtered in the beta band
(13–30 Hz) and the time-series at each voxel were estimated. The cor-
relation between the Hilbert envelope of the time course of the seed
source, located at the right sensorimotor cortex, with the envelopes
for the time courses at each voxel was then estimated. The results for
the LCMV beamformer and the proposed non-Gaussian method are
presented in Fig. 14. The activity at the left sensorimotor cortex, as
reconstructed by the LCMV beamformer, does not show any correlation
with the right sensorimotor cortex, while the activity, reconstructed by
the non-Gaussian method, shows a correlation of about 0.4. This exam-
ple also demonstrates the better performance of the proposed method
over the standard LCMV beamformer.

Summary and discussion

In this paper, we introduced a probabilistic formulation for MEG
source localisation which allows non-Gaussian measurements to be
modelled. An extension of the method to handle correlated sources
through the marginalisation of the estimated joint pdf was also
presented. The implementation of the newmethod showed that it out-
performs existing LCMV beamforming methods in terms of spatial and
temporal source estimations in data from simulations and real MEG ex-
periments. In particular, in the simulation experiments, we showed that
the non-Gaussian methods are superior to the LCMV beamformers in
coping with non-Gaussian pdfs for source and additive noise, and for
correlated sources. In addition, the mean square error in estimating
non-Gaussian time-series was also less. The improved results for simu-
lation experiments were repeatedwhen themethodwas applied to real
MEG data. The non-Gaussian beamformer was again superior in
localising visual and auditory paradigms, where the latter is known to
contain sources with high correlation.

Here, we used the kernel density estimator to estimate the data and
consequently the source distribution. Based on Algorithm 1, it is clear
that any other multivariate density estimator such as mixture of Gauss-
ian functions or multivariate Edgeworth series (Davis, 1976) could also
be employed. Analysis of the impact of these approaches on the source
localisation is beyond the scope of this paper, and we plan to evaluate
their performances in the near future.

One criticism of this approach is that estimation of high dimensional
density normally is not feasible because of the lack of enough observa-
tions. However, we present the following arguments to show that
kernel density estimators are suitable in MEG source localisation:

• Importantly, although in theory we assume that the multivariate
data distribution gy(y) is known, in practice we do not estimate
this multivariate distribution and only estimate a univariate function
gy(mathbffs) — see A kernel based estimation of the measurement
pdf section and specifically Eq. (20). The reason for this simplification
is that this method assumes, as the traditional beamformer, that all
sources are independent and thus it is not required to estimate the
inter-dependency of sources. However, it is notable that in the pro-
posed approach for correlated sources, when we need to estimate
the multivariate joint distribution, it is required that we estimate the
inter-dependency of sources. In this case, the number of correlated
sources to be estimated should not be overly high, because it may
not be feasible to estimate a high dimensional distribution.

• Althoughwe suggest the use of kernel density estimators in the appli-
cation of theMEG source analysis, the problemof high-dimensionality
in multivariate density estimators is not limited to this method and
has been discussed in other applications. For instance, for the pur-
poses of statistical discrimination, Scott (1992) and Scott and Sain
(2004) argued that kernel methods are powerful tools even over
dozens of dimensions. This is because if the bandwidth is very small,
the kernel estimate is essentially a nearest-neighbour classification,
and if the band-width is very large, the result is the Fisher's linear dis-
criminant analysis. Thus, at the extremes, kernel density analysis
mimics two successful algorithms and an appropriately chosen value
for the bandwidth should outperform both algorithms. Here, we also
observed that if we select the covariance of the kernel equal to the co-
variance of the observed data then the kernel density estimator and
the LCMV beamformer show similar results.

• Other factors including SNR and correlation between sources, general-
ly have more impact on a MEG source reconstruction algorithm than
the number of observations. For example, only one sample is enough
to exactly estimate the location of one source in a high SNR data set,
while it is impossible to estimate the covariance matrix based on
only one sample. On the other hand, if we have a very low SNR, the
exact estimation of the covariance matrix or data distribution,
obtained from a large number of observations, does not necessarily
help to localise the source activity.

We may conclude from the above points that the ultimate aim of
beamforming is source reconstruction and not estimation of the covari-
ance matrix or data distribution. This has again been discussed in the
statistical discrimination applications by Friedman (1997), who argued
that the optimal bandwidth for kernel discrimination is normally much
larger than for optimal density estimation. Therefore, the bandwidth or
form of the kernel (or regularisation factor in the beamformer) should
be chosen such that the best source localisation and not the best density
(or covariance matrix) estimation is achieved.

Comparison to the other related methods

To date, severalmethods have been proposed to tackle or exploit the
non-Gaussianity of theMEGdata set. Specifically, Nagarajan et al. (2005,
2006) proposed a generative model for ERF data that uses pre-stimulus



Fig. 13. Reconstruction of neural activity in the auditory paradigmwhen the left-hand side source is cancelled out using the classic null-beamformerwith (a) λ = 0.01%, (b) λ = 0.1% and
(c) λ = 1% of trace of data covariance matrix, and using the proposed marginalised based non-Gaussian method with (d) h = 1, (e) h = 5 and (f) h = 10.
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data segments to learn noise and interference components, thereby
allowing for the rejection of noise and interference from post-stimulus
segments. This method, which is based on factor analysis, models the
source activity by a mixture of Gaussian functions to incorporate the
non-Gaussianity of the evoked brain sources. Although this method as-
sumes that the sources of interest are non-Gaussian, other distributions
including the noise and artefacts are assumed to be Gaussian. Converse-
ly in the approach proposed here we assumed that the measurements
are non-Gaussian, which includes both the source and noise compo-
nents. Moreover, in Nagarajan et al. (2005, 2006), it is assumed that
the noise and artefact in the pre-stimulus and post-stimulus segments
are statistically the same, whereas in the proposed approach we do not
exploit information obtained from pre-stimulus segments. It is also
clear that the method proposed in Nagarajan et al. (2005, 2006) can be
used for the purpose of noise and artefact rejection before employing
any source reconstruction method including our proposed approach.

The method described in Nagarajan et al. (2005, 2006) has been ex-
tended by Zumer et al. (2007, 2008) by incorporating the lead-field of
the source of interest and also by including temporal basis functions
for modelling the MEG signals. In contrast to the method in Nagarajan
et al. (2005, 2006) and the method presented here, Zumer et al.
(2007, 2008) assume that all distributions are Gaussian. This is partly
to require fewer parameters to be estimated,which in turn leads to a ro-
bust estimation with less dependency on the initialisation step. They
have also related their approach to the traditional beamformer and
demonstrated that the beamformer is algebraically equivalent to the
maximum likelihood approach based on a uniformly distributed prior
(Zumer et al., 2007). Herewe have verified this finding and used this re-
sult to extend the method to non-Gaussian distributions (see Eq. (8)).
Moreover, the proposed non-Gaussianmethodmaintains one of the po-
tential benefits of the LCMV beamformer, in that it is less dependent on
a generative model describing the MEG data as a function of dipole
sources and their corresponding lead fields.

ICA is another method that uses the non-Gaussianity of MEG data
and has been extensively employed for artefact rejection or dimension-
ality reduction. As in the method presented here, ICA assumes that the
data is stationary but not Gaussian. It is also clear that, in contrast to
Fig. 14. Correlation between the Hilbert envelope of the right sensorimotor cortex and all other
and (b) results from the non-Gaussian method. The non-Gaussian method shows a correlat
correlation.
our method, ICA does not use spatial information, specifically the lead-
field matrices, and also uses measures of the non-Gaussianity, such as
kurtosis, rather than the data distribution.

Markov Chain Monte Carlo (MCMC) is another method that allows
for non-Gaussianity (Jun et al., 2005). MCMC is an alternative to varia-
tional Bayes and its advantages over variational methods have been
shown by Nummenmaa et al. (2007), when the posterior distribution
is not uni-modal. As with our proposed method, MCMC uses sample
points to estimate the distribution, which leads to a computationally in-
tensive method. Themain difference betweenMCMC and our approach
is that MCMC assumes that the posterior distribution of the parameters
of the model is non-Gaussian rather than the distribution of the mea-
surements. This prevents the algorithm from being trapped in local
minima, yet does not address the non-Gaussianity of the MEG signals.

In the case of measurement data from a large number of sensors, it
has been argued that dimensionality reduction is often necessary
(Zumer et al., 2007). The dimensionality reduction used here was
performed using the signal space separation algorithm by projecting
the data into the space that represents the internal volume of the sen-
sors (see (Taulu and Simola, 2006) for more details). Other methods
for dimensionality reduction as well as noise and artefact rejection
such as PCA and ICA, can also be employed to improve the current ap-
proach. PCA may fail in low SNR data and give erroneous results, and
other approaches like factor analysis (Nagarajan et al., 2006) and Bayes-
ian PCA (Woolrich et al., 2011) seemmore appropriate, where a robust
estimate of the noise covariance is made.

Finally, we assumed that the prior of the source is uniformly distrib-
uted (no prior information on s) which leads to a simple form of poste-
rior distribution. This is in line with several other methods in the
estimation theory literature including pseudo-inverse, maximum
likelihood, LCMV beamformer, particle filters, and minimum norm
source estimation. Nevertheless, the proposed method can be ex-
tended by using a prior obtained from anatomical information. One
way, as described in Limpiti et al. (2006), is to use a cortical patch
as a source model for representing spatially distributed neural activ-
ity based on a set of basis functions. Similarly, we may also incorpo-
rate prior assumptions about the source configuration obtained
voxels for MEG data filtered within the beta band, (a) results from the LCMV beamformer
ion with the left sensorimotor cortex, while the LCMV beamformer does not show any

image of Fig.�14
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from structural MRI. Such models have already been developed in a
Bayesian framework in the context of distributed source localisation
(Mattout et al., 2006).

The method introduced in this paper has shown clear advan-
tages over the LCMV beamformer, which uses second order statis-
tics to represent non-Gaussian data. Through a stochastic
formulation and kernel density estimation, the method offers a
general representation of the source pdf. Although the implemen-
tation presented uses a non-informative prior on the source pdf,
the method allows a prior to be incorporated. The method current-
ly implemented is based on scalar sources; however the general
formulation is readily applicable to vector source localisation, al-
though the complexity would be greater. We believe that the
methods introduced here provide a useful contribution to MEG im-
aging by relaxing a strong assumption in the LCMV and null-
beamformer.
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Appendix

In this section, the theoretical analysis of the proposed method is
presented. Appendix A shows that the source pdf can be exactly esti-
mated if the noise power is very small and sources are independent.
These results assure that a reliable approximation of the source pdf is
obtained in the case of a high SNR data set. Appendix B shows that the
proposed method is equivalent to the null-beamformer in the case of
Gaussian measurements. Appendix C shows the relation of the pro-
posed method to the well-known beamformer with general linear con-
straint, which is a generalisation of the null-beamformer. Appendix D
presents the convergence analysis and convergence rate of the algo-
rithm based on the multivariate kernel density estimation.

A. Impact of the noise

Below, we show that Eq. (13) gives the exact source pdf, if the noise
power is considerably lower than the signal and interference power. We
can say that the noise power tends to zero, if ∫|n| Nδ gn (n)dn → 0 for all
δ N 0, where |.| denotes the Frobenius norm. An example of such noise
is the multivariate Gaussian whose norm of the covariance matrix tends
to zero.

Theorem 1. In addition to the assumptions stated in Problem
formulation section, suppose that the noise power tends to zero, and
the lead-field vectors fi, i = 1,… q, are mutually independent. Then gsk
skð Þ can be exactly estimated by gy fksð Þ

∫gy fksð Þds, where the normalising constant

is also given by ∫gy fksð Þds ¼ gsk= 0ð Þ∫gn Fsð Þds.
Proof

Lemma 1. Based on the assumption in Theorem 1 and
pseudo-convolution, we have

gy yð Þ→ αgs s�
� �

y∈R Fð Þ whereby y ¼ Fs�

0 y∉R Fð Þ
�

ð23Þ
where α = ∫ gn(Fs)ds, and range of a matrix F is R Fð Þ ¼
uj∃s∗ ∈Rq such that u ¼ Fs∗
	 

Proof. Suppose there is a s⁎ such that y = Fs⁎, so

αgs s�
� � ¼ gs s�

� �
∫gn Fsð Þds ¼ gs s�

� �
∫gn F s�−s

� �� �
ds: ð24Þ

Therefore using Eq. (1):

��gy yð Þ−αgs s�
� ��� ¼ ��∫gs sð Þgn y−Fsð Þds−gs s�

� �
∫gn F s�−s

� �� �
ds
��

≤∫
��gs sð Þ−gs s�

� ���gn y−Fsð Þds:
ð25Þ

Now Let δ N 0, and split the region of integration into two regions
|s — s⁎| ≤ δ and |s − s⁎| N δ such that ∫ ¼ ∫js−s∗j≤δ

þ ∫js−hbf s∗ jNδ ¼ I1
yð Þ þ I2 yð Þ. Then we have:

��I1 yð Þ��≤ max
js−s�j≤δ

��gs sð Þ−gs s�
� ���Z

js−s�j≤δ
gn y−Fsð Þds ð26Þ

by continuity of gs(s), the above value is small for δ that is sufficiently
small. On the other hand, for δ fixed we have

jI2 yð Þj≤
Z

js−s�jNδ
gs sð Þj þ jgs s�

� ��� ��� �
gn y−Fsð Þds

≤2M
Z

js−s�jNδ
gn y−Fsð Þds

ð27Þ

whereM is themaximum of gs(s). Noting that because |s − s⁎| N δ there
is a fixed ϵ such that |y − Fs| = |F(s⁎ − s)| N ϵδ. This means I2(y) tends
to zero by explicit assumption about the noise (∫|n| Nδ gn(n)dn → 0).

Now suppose there is no s⁎ such that y = Fs⁎, but that there is a δ N 0
such that |(s⁎ − s)| N δ and there is ϵ N 0 such that |F(s⁎ − s)| N ϵδ, for
all s ∈ ℝq. Therefore

gy yð Þ≤M
Z

js−s�jNδ
gn y−Fsð Þds ð28Þ

whereM again is the maximum of gs(s). Using the same argument as in
Eq. (27), gy(y) tends to zero. ■

Using the above Lemma it is now shown that gy(fksk) is the exact es-
timation of gsk skð Þ. If we set s* = [0…0…sk…0…0]T, then y = Fs⁎ gives
y = fksk. Using Lemma 1:

gy fkskð Þ→αgs s�
� � ¼ αgsk skð Þgsk= 0ð Þ ¼ Zgsk skð Þ ð29Þ

where Z ¼ αgsk= 0ð Þ ¼ gsk= 0ð Þ∫gn Fsð Þds . Eq. (29) gives gsk skð Þ ¼ gy
fkskð Þ=Z , where Z also is a normalising constant Z = ∫ gy(fksk)
dsk. ■

Given this result we can now investigate the estimated source pdfs
in a noisy environment.

First, note that the relationship between the measurement pdf and
the source pdf in addition to the noise pdf based on Eq. (1) is given by
the following equation (the pdf of the sum of two random variables
(Grimmett and Stirzaker, 2001)):

gy yð Þ ¼
Z

Rq
gs sð Þgn y−Fsð Þds: ð30Þ

From Eqs. (13) and (30) the pdf of kth source gsk s∗k
� �

is given by:

gsk s�k
� �

∝gy fks
�
k

� � ¼ ∫gs sð Þgn fks
�
k−Fs

� �
ds

¼ ∫∫gsk sð Þgs= s=
� �

gn fks
�
k−thbf f ksk−F=s=

� �
dsds=

ð31Þ



461H.R. Mohseni et al. / NeuroImage 87 (2014) 444–464
where we assumed that sk is independent from the other sources. By
changing the variable sk⁎ − sk = u, we have

gy fs�k
� � ¼ ∫∫gsk s�k−u

� �
gs= s=
� �

gn fu−F=s=
� �

ds=du

¼ ∫gsk s�k−u
� �

gy= fuð Þdu ¼ gsk s�k
� � � gy= fs�k

� � ð32Þ

where gy= fuð Þ ¼ ∫gs= s=
� �

gn fu−F=s=
� �

ds= and * is the convolution op-

erator. Therefore, Eq. (32) states that the estimation of gsk s∗kð Þ is propor-
tional togsk s∗kð Þ∗gy= fskð Þ. Thismeans that the estimated source pdf is the
original pdf that is convolved with an unknown functionwhich is based
on the pseudo-convolution of the noise and interference pdfs. This
means that in contrast to the noise-free environment, interference can
also distort the estimated pdf.

It is clear that, if the noise pdf is known for example from pre-
stimulus trials, one can employ the deconvolution method to remove
the noise and then estimate gsk skð Þ from a noise-free data set.
B. Relation to the null-beamformer

Here, it is shown that if the measurement is Gaussian, p(s | yt) given
by Eq. (15) is Gaussian with variance equal to Eq. (19) and mean equal
to Eq. (18). Similarly, it can be shown that gs(s) given by Eq. (16) is a
zero-mean Gaussian with variance equal to Eq. (19).

Using block matrix inversion, the output power of the null-
beamformer, Eq. (19), can be expressed as:

Ps ¼ cT FTR−1
y F

� �−1
c ¼ cT fT

FT=

" #
R−1
y f F=
h i !−1

c

¼ 1 0½ � fTR−1
y f fTR−1

y F=
FT=R

−1
y f FT=R

−1
y F=

" #−1
1
0

� 

¼ fTRy−1 f− fTR−1
y F=

� �
FT=R

−1
y F=

� �−1
FT=R

−1
y f

� �� �−1

ð33Þ

which is the Schur complement. The time-series, Eq. (18), using
block matrix inversion is also expanded as:

ŝt ¼ 1 0½ � fTR−1
y f fTR−1

y F=
FT=R

−1
y f FT=R

−1
y F=

" #−T
fT

FT=

" #
R−1yt

¼ fTR−1
y f−fTR−1 f FT=R

−1
y F=

� �−1
FT=R

−1
y f

� �−1
fTR−1

y yt

þ fTR−1
y f−fTR−1

y f FT=R
−1
y F=

� �−1
FT=R

−1
y f

� �−1

fTR−1
y F= FT=R

−1
y F=

� �−1
FT=R

−1
y yt

¼ fTR−1
y f−fTR−1

y f FT=R
−1
y F=

� �−1
FT=R

−1
y f

� �−1

fTR−1
y yt þ fTR−1

y F= FT=R
−1
y F=

� �−1
FT=R

−1
y yt

� �

ð34Þ

where −T denotes transpose and inverse operation.
Now we derive the null-beamformer (above expanded equations)

using the method proposed. Eq. (15) is rewritten as

p sjytð Þ ¼ ∫p s; s=jyt
� �

ds=∝∫p fsþ F=s=jyt
� �

ds=: ð35Þ
Using the Gaussianity of the data, p(s | yt) is found as

p sjytð Þ∝∫ exp − fsþ F=s=−yt
� �T

R−1
y fsþ F=s=−yt
� �h i

ds=

∝∫ exp½−sT fTR−1
y fsþ sT fTR−1

y yt þ yTt R
−1
y fs−sT fTR−1

y F=s=

−sT= F
T
=R

−1
y fs−sT= F

T
=R

−1
y F=s= þ sT= F

T
=R

−1
y yt þ f yTt R

−1
y F=s=�ds=

∝ exp −sT fTR−1
y fsþ sT fTR−1

y yt þ yTt R
−1
y fs

h i
�

∫exp − s=− FT=R
−1
y F=

� �−1
FT=Ry fs−ytð Þ

� �T

FT=Ry F=
� ��

s=− FT=R
−1
y F=

� �−1
FT=Ry fs−ytð Þ

� �
ds= �

exp fs−ytð ÞTR−1
y F= FT=R

−1
y F=

� �−1
FT=R

−1
y fs−ytð Þ

� 

ð36Þ

The last integral is an integration over a Gaussian distribution with
random variable s/ and therefore it will be a constant. We continue by
eliminating the integral and combining the two exponentials:

p sjytð Þ∝ exp½−sT fTR−1
y f−fTR−1

y F= FT=R
−1
y F=

� �−1
FT=R

−1
fy f

� �
s

þsT fTR−1
y yt þ fTR−1

y F= FT=R
−1
y F=

� �−1
FT=R

−1
y yt

� �

þ yTt R
−1
y f þ yTt R

−1
y F= FT=R

−1
y F=

� �−1
FT=R

−1
y f

� �
s�

∝exp − s−að ÞT fTR−1
y f−fTR−1

y f FT=R
−1
y F=

� �−1
FT=R

−1
y f

� �
s−að Þ

� 
ð37Þ

where a = (fTRy
−1f − fTRy

−1(F/TRy
−1 F/)−1 F/TRy

−1Ry
−1f)−1

(fTRy
−1yt +fTRy

−1 F/(F/TRy
−1 F/)−1 F/Ry

−1yt). The above equation
shows that p(s | yt) is a Gaussian distribution and its variance is equal
to Eq. (33). The best estimation of the time-series is its mean which is
equal to Eq. (34).

C. Relation to the beamformer with general linear constraint

A beamformer with general linear constraint is given by the follow-
ing formulation (Haykin, 2002):

argmax wTRyw; subject to : wT F ¼ cT ð38Þ

where F = [f1…fq] and c is a constraint vector. The solution of this
problem is the same as those given by Eqs. (18), (19), except that,
here, c is an arbitrary vector.

Our aim is to present an estimation method for gs(s) that is equiva-
lent to the beamformer with general linear constraint, when the mea-
surement is Gaussian.

The method based on the marginal distribution given in the Non-
Gaussian marginal distribution for correlated sources section, mar-
ginalises out all the parameters except the desired parameter. In other
words, it integrates gs(s) over the subspace that is perpendicular to
c = [1 0]T. Therefore,we can employ the sameprocedure tofirst estimate
gs(s) ∝ gy(Fs), and then the desired pdf gs(s) for an arbitrary c is obtained
by integration of gs(s) over the subspace that is perpendicular to c, or
equivalently:

gs sð Þ ¼
Z

Ωc

gy Fsð Þds= ð39Þ

where Ωc = {s | cTs − cTcs = 0}, and ∫
Ωc

gds= is the integral of g over
subspaceΩc with appropriate variable of integration ds/.
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The general solution of the method proposed (Eq. (39)) has the
same solution to the beamformer with general linear constraint, when
the measurement is Gaussian. This can simply be shown by rotating
the coordinate such that the vector c lies on the first axis. In this case,
the rotated c is equal to [1 0]T and, thus, Eq. (16) can be used for this ro-
tated coordinate. By rotating back to the original coordinate, Eq. (39) is
obtained.

D. Convergence analysis

The convergence, bias and variance of the kernel based pdf estima-
tion stated in Eq. (21) is given by the following theorem.

Theorem 2. Suppose the kernel K satisfies the following conditions:

Z
K uð Þdu ¼ 1; j

Z
uTuK uð Þdujb∞; K uð Þ ¼ K −uð Þ ð40Þ

(i) At every point of continuity of gs(.), if the noise power tends to
zero then

lim
T→∞

ĝs sð Þ→gs sð Þ ð41Þ

(ii) If gs(s) is twice differentiable and its second partial deriv-
atives are bounded and continuous, then the bias is given
by:

E ĝs sð Þf g−gs sð Þ→

h2

2gy= fð Þ
Z

uTGgy
fsð ÞuK uð Þdu− gy fsð Þ

gy= fð Þ
Z

Ω f

uTGgy=
fð ÞuK= uð Þdu

 !

þO h4
� �

þ O
1

ThN−1

� �
ð42Þ

where the Hessian matrix Ggy
is given by Ggy

uð Þ ¼ ∂2gy uð Þ
∂ui∂uj

� 
i; j
.

Here, Ggy=
fð Þ ¼ ∫Ggy

fsð Þds, gy/(f) = ∫ gy(fs)ds, K/(u) = ∫ K

(fs − u)ds and Ωf = {u | fTu − fTu = 0}.
(iii) The variance of the estimator E gs sð Þ−ĝs sð Þð Þ2

n o
is given by

E gs sð Þ−ĝs sð Þð Þ2
n o

→

gy fsð Þ
ThNg2y= fð Þ

Z
K2 uð Þduþ h

gy fsð Þ
gy= fð Þ

Z
Ω f

K2
= uð Þdu−2

Z
K uð ÞK= uð Þdu

 ! !

þO
1

ThN−2

� �
: ð43Þ

Proof. For part (i) Please refer to a similar theorem in Parzen (1962).
We use the following Lemma to proof parts (ii) and (iii):

Lemma2. Let U1(y) and U2(y) be two randomvariables and let {y1,…, yT}
be an independent and identically distributed sequence of random vari-
ables, then

E
1
T

XT
t¼1

U1 ytð Þ
1
T

XT
t¼1

U2 ytð Þ

8<
:

9=
;≈ E U1f g

E U2f g þ
1
T

E U1f gvar U2f g
E U2f g3 − cov U1;U2f g

E U2f g2
� �

ð44Þ

and

var
1
T

XT
t¼1

U1 ytð Þ
1
T

XT
t¼1

U2 ytð Þ

8<
:

9=
;≈ 1

TE U2f g2

var U1f g þ E U1f g2var U2f g
E U2f g2 −2

E U1f gcov U1;U2f g
E U2f g

 !
:

ð45Þ
Proof. See Proposition 31.8 in Port (1994). ■
Suppose U1 yð Þ ¼ 1

hN
K fs−y

h

� �
(nominator of Eq. (21)) and U2 yð Þ ¼ ∫ 1

hN
K

fs−y
h

� �
ds (denominator of Eq. (21)), then:

E U2f g ¼ E
Z

1
hN

K
fs−y
h

� �
ds

� �
¼
ZZ

1
hN

K
fs−y
h

� �
gy yð Þdsdy: ð46Þ

To calculate the above integral, we rotate the coordinate such
that the line along the direction of f lays on the of the first coordi-
nate axis. This can be done simply by a rotation matrix Θ such that
Θf = |f|[1 0…0]T, where |f| is the norm of f. Suppose that the rotated
pdf and the rotated kernel are gy

r(v) = gy(Θy) and Kr(v) = K(Θy), re-
spectively, where v = [v1,…, vn]T is the new coordinate. Thus, Eq. (51)
is rewritten as:

E U2f g ¼
ZZ

1
hN

Kr jfjs−v1
h

;
v2
h
;…;

vN
h

� �
gry vð Þdsdv

¼
Z

1
jfjhN−1 K

r
=

v2
h
;…;

vN
h

� �
gry vð Þdv:

ð47Þ

Here we used u = |f|s − v1 and we defined Kr
=

v2
h ;…; vNh
� � ¼ ∫Kr

u; v2h ;…; vNh
� �

du. Now let us define v/ = [v2,…, vN]T, thus,K
r
=

v2
h ;…; vNh
� � ¼ Kr

=
v=
h

� �
and gy

r(v) = gy
r(v1, v/). By change of variable u= ¼ v=

h , we have:

E U2f g ¼
ZZ

1
fj jK

r
= u=

� �
gry u1;hu=

� �
du1du=: ð48Þ

Using Taylor series expansion around origin for fixed u1, we approx-
imate gry u1;hu=

� �
≈gry u1;0ð Þ þ huT

= J
r
gy

u1;0ð Þ þ h2

2u
T
=G

r
gy=

u1;0ð Þu= , where

Gr
gy=

u1;u=

� � ¼ ∂2gry u1 ;u=ð Þ
∂ui∂u j

h i
i; jN1

and Jrgy u1;u=

� � ¼ ∂gry u1 ;u=ð Þ
∂ui

h i
iN1

. We continue

as:

E U2f g≈
ZZ

1
fj jK

r
= u=

� �
gry u1;0ð Þ þ huT Jrgy u1;0ð Þ þ h2

2
uT
=G

r
gy=

u1;0ð Þu=

 !

du1du= ¼
1
fj j
Z

gry u1;0ð Þdu1 þ
h2

2jfj
ZZ

uT
=G

r
gy=

u1;0ð Þu=K
r
= u=

� �
du1du=:

ð49Þ

This simplification is because of two identities ∫ K/
r(u/)du/ = 1 and

∫ Kr(u/)u/du/ = 0. The first identity is the result of ∫ K/
r(u/)du/ =

∫∫ K/
r(u1,u/)du1du/ =∫ K(u)u = 1 and the second identity is the result

of K/
r(u/) = ∫ K/

r(u1,u/)du1 = ∫ K/
r(−u1, − u/)du1 = ∫ K/

r(u1, − u/)

du1 = K/
r(−u/).

If we rotate back to the original coordinate we have

1
fj j
Z

gry u1;0ð Þdu1 ¼
Z

gy fsð Þds
h2

2jfj
ZZ

uT
=G

r
gy=

u1;0ð Þu=K
r
= u=

� �
du1du= ¼

h2

2

Z
Ω f

yT
Z

Ggy
fsð ÞdsuK= yð Þdy

ð50Þ

where Ggy
uð Þ ¼ ∂2gy uð Þ

∂ui∂u j

h i
ij

, Ωf = {u|uTf − fTf = 0} and K/(u) =

∫ K(fs − u)ds. By substituting Eq. (50) into Eq. (49), we obtain:

E U2f g≈
Z

gy fsð Þdsþ h2

2

Z
Ω f

uTGgy=
uK= uð Þdu ð51Þ

where Ggy=
¼ ∫Ggy

fsð Þds.
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Now E{U1U2} is given by:

E U1U2f g ¼ E
1
hN

K
fs−y
h

� �Z
1
hN

K
fs−y
h

� �
ds

� �

¼
Z

1
h2N

K
fs−y
h

� �Z
K

fu−y
h

� �
dugy yð Þdy: ð52Þ

Using u = v + s for inner integral and then using u ¼ fs−y
h , we

obtain:

E U1U2f g ¼
Z

1
h2N

K
fs−y
h

� �Z
K

fvþ fs−y
h

� �
dvgy yð Þdy

¼
Z

1
hN

K uð Þ
Z

K
fv
h

þ u
� �

dvgy fs−uhð Þdu

¼
Z

1
hN−1 K uð Þ

Z
K fvþ uð Þdvgy fs−uhð Þdu

¼
Z

1
hN−1 K uð ÞK= uð Þgy fs−uhð Þdu

ð53Þ

where K/(u) = ∫ K(fs − u)ds = ∫ K(fs + u)ds. Using Taylor series
expansion gy fs−huð Þ≈gy fsð Þ þ huT Jgy fsð Þ þ 1

2h
2uTGgy

fsð Þu the above
equation is rewritten and simplified to:

E U1U2f g≈ 1
hN−1 gy fsð Þ

Z
K uð ÞK= uð Þduþ 1

2
h2
Z

uTGgy
fsð ÞuK uð ÞK= uð Þdu

� �
:

ð54Þ
Similarly, it can be shown that

E U1f g ¼ E
1
hN

K
fs−y
h

� �� �

≈gy fsð Þ þ h2

2

Z
uTGgy

uK uð Þdu
ð55Þ

and

E U2
1

n o
¼ E

1
h2N

K2 fs−y
h

� �� �

≈ 1
hN

gy fsð Þ
Z

K2 uð Þduþ h2

2

Z
uTGgy

uK2 uð Þdu
 ! ð56Þ

and

E U2
2

n o
¼ E

1
h2N

Z
K

fs−y
h

� �
ds

� �2� �

≈ 1
hN−1

Z
p fsð Þds

Z
Ω f

K2
= uð Þduþ h2

2

Z
Ω f

uTGgy=
uK2

= uð Þdu
 !

:

ð57Þ

Therefore, using Eqs. (55) and (56) we have:

var U1ð Þ ¼ E U2
1

n o
−E U1f g2

≈ 1
hN

gy fsð Þ
Z

K2 uð Þduþ 1
2hN−2

Z
uTGgy

fsð ÞuK2 uð Þdu
ð58Þ

and using Eqs. (51) and (57):

var U2ð Þ≈ 1
hN−1

Z
gy fsð Þds

Z
Ω f

K2
= uð Þdu

þ 1
2hN−3

Z
Ω f

uTGgy=
uK2

= uð Þdu

ð59Þ
and using Eqs. (55), (51) and (54):

cov U1;U2ð Þ ¼ E U1U2f g−E U1f gE U2f g

≈ 1
hN−1 gy fsð Þ

Z
K uð ÞK= uð Þduþ 1

2hN−3

Z
uTGgy

fsð ÞuK uð ÞK= uð Þdu:

ð60Þ

Finally, using Lemma 2 and the fact that 1
sþδ≈ 1

s − δ
s2, for a sufficiently

small δ, the bias and variance of the estimator are obtained. ■
Thus, the kernel based estimations are almost asymptotically unbi-

ased, if h → 0 and ThN−1 → ∞ as T → ∞. Furthermore, the estimator
is consistent (variance is zero) provided ThN → y, as T → ∞. This
means that as with many smoothing problems, small bandwidths give
small bias and large variance, whereas large bandwidths give large
bias and small variance.

The theoretical optimal bandwidth is obtained byminimising the in-
tegrated asymptotic mean square error (IMSE), which is defined by
Cheng and Serfling (1981):

IMSE ¼ E
Z

gs sð Þ−ĝs sð Þð Þ2
� �

ð61Þ

which in turnmay be written as the sum of the integrated variance and
the integrated squared bias. Therefore, using Theorem 2, the resulting
expression is of the form of:

IMSE ¼ ah4 þ b
ThN

þ O h6
� �

þ O
1

ThN−1

� �
ð62Þ

where a and b are constants. The optimal bandwidths are obtained by
differentiating the above equation with respect to the bandwidth h
and equating to zero. This shows that h is of order T

−1
Nþ4 . Substituting h

into Eq. (62) shows that the best convergence rate in the sense of
IMSE is in the order of T− 4

Nþ4 . It is expected, therefore, that the conver-
gence properties are better when the number of sensors are reduced
while the number of observations is fixed.

E. Computational complexity of the algorithm

The computational complexity of the proposed method can be de-
rived as follows. The part of Algorithm 1, which has the largest order
of complexity, is given in Eq. (20); other parts of the algorithm such as
normalisation have a smaller order and can be ignored. Eq. (20) is the
sum of T kernels, each of which has a computational complexity of
order O(N2), and therefore this equation has a computational complex-
ity of orderO(N2T). For estimation of the power, this term should be cal-
culated once for each point of the discrete source distribution, therefore
the computational complexity for estimation of the power is of order
O(TN2Ds). For estimation of the time-series this term should be calculat-
ed for each time sample and thus its computational complexity is of
order O(T2N2Ds).

The computational complexity of the LCMV beamformer at each
voxel is given by Eqs. (3) and (4). The calculation of fTR−1f is of order
O(N2) (its inverse only needs one operation) and fTRyt is of order
O(N2T). Thus, the computational complexity of the estimation of power
is of order O(N2) and the computational complexity of the estimation
of the time-series is of order O(N2T).
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