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DMNT biosynthesis was proposed to proceed via (E)-nerolidol in plants a decade ago. However, (E)-
nerolidol function as airborne signal/substrate for in-vivo biosynthesis of DMNT remains to be
investigated and the regulation of DMNT production and emission is largely unknown. We address
both of these aspects using Achyranthes bidentata model plant in conjunction with deuterium-
labeled ds-(E)-nerolidol, headspace, GC-FID, and GC/MS-based absolute quantification approaches.
We demonstrate that airborne (E)-nerolidol is specifically metabolized in-vivo into DMNT emission,
but requires airborne VOC MeJA or predator herbivore as additional environmental signal. In addi-
tion, we provide new insight into the complex regulation underlying DMNT emission, and highlight
the importance of studying multiple environmental factors on emission patterns of plant VOCs and
their mechanistic regulation.

© 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Plants emit a blend of volatile organic compounds (VOCs) in re-
sponse to environmental stimuli, including predators and patho-
gens, as a part of its elaborated self-defense mechanisms [1-5].
Herbivores are well-studied natural predators with respect to plant
defense response and VOC emissions [5-9]. Emitted VOC types and
their amounts vary from plant to plant and under environmental
conditions [5,6,10-13]. Depending on the plant species, dominant
terpene VOCs are (E)-B-ocimene, linalool, (E)-o-bergamotene, (E)-
B-farnesene, and B-caryophyllene [3,5,10,14]. In addition to these
terpenes, plants emit an irregular C; terpene VOC, known as
homoterpene (3E)-4,8-dimethy-1,3,7-nonatriene (DMNT)
[5,12,15,16]. The biosynthetic pathways are basically defined for
most VOCs, but the underlying regulation for their production
and emission remains largely unknown, including DMNT.
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The DMNT biosynthesis has been proposed to occur via nerol-
idol as an immediate precursor (Fig. 1A) [17-20]. Nerolidol is a ses-
quiterpene alcohol and a VOC constituent in the headspace of
several flowers [21] and plants. Recently, the enzyme catalyzing
nerolidol into DMNT was identified and characterized [19]
(Fig. 1A). However, unlike DMNT, which is one of the defensive
VOCs involved in plant-insect interaction [15], nerolidol itself is
not considered as an active compound in plant defensive systems.
Furthermore, two questions remain to be answered: (i) does nerol-
idol function as an airborne signal? and (ii) is the airborne
nerolidol metabolized into DMNT?

Here, we have addressed the above questions using Achyran-
thes bidentata (hereafter called Achyranthes) plant as a model
system [13] in combination with deuterium-labeled ds-(E)-
nerolidol (Fig. 1B), VOC collections in headspace, GC-FID, and
GC/MS-based absolute quantification approaches. The ds-(E)-
nerolidol was used to track its airborne nature and in-vivo
metabolic product in Achyranthes. Novel findings presented in
this study demonstrate nerolidol as an airborne VOC and its
efficient in-vivo metabolic conversion specifically into DMNT
emission, providing a better understanding on mechanistic regu-
lation of the DMNT emission.

0014-5793/$36.00 © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
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Fig. 1. Proposed biosynthesis pathway of DMNT and synthesized ds-(E)-nerolidol. (A) The biosynthesis pathway proposed for DMNT in plants via (E)-nerolidol. (B) The
structure of synthesized ds-(E)-nerolidol and it metabolic conversion to d,-DMNT in Achyranthes plant. The CYP82G1 is a unique enzyme in the plant CYP82 family of
cytochrome P450 monooxygenase (P450) with a function as DMNT/TMTT (C16-homoterpene (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene) homoterpene synthase. Details
are mentioned in the text. Abbreviations: NES, (E)-nerolidol synthase; and DHTS, DMNT homoterpene synthase.

2. Materials and methods
2.1. Chemicals

Trans-methyl jasmonate (trans-Me]A) and nerolidol (mixture of
E-/Z-isomers) were purchased from Sigma-Aldrich Corporation (St.
Louis, MO, USA). The penta-deuterated [4-°H,, 15-H3]-(E)-
nerolidol was synthesized as reported previously [22]. All other
chemicals were of analytical grade.

2.2. Plant materials and biological replication

Seeds of Achyranthes plant (Achyranthes bidentata var. tomento-
sa) were collected at Tenno Katagami (Akita, Japan), and grown un-
der the conditions described previously [13]. Shoots of
Achyranthes with fully opened four leaves (about 12-cm-tall) were
also used as experimental materials. A total of five independent
biological replications were performed for each experiment.

2.3. Exposure of Achyranthes plant or its shoot to airborne VOCs

MeJA and/or ds-(E)-nerolidol (2 mg) was applied to a paper disk
(5-mm-diameter). The paper disk was then hung in the headspace
of a glass container (1 L) having whole Achyranthes plant or its
shoot (Supplementary Fig. 1).

2.4. Larvae and herbivore treatment

Eggs of Spodoptera litura, kindly provided by Biological Research
Laboratories (Nissan Chemical Industries Ltd., Shiraoka, Saitama,
Japan), were reared on an artificial wheat-germ diet (Insecta LF-
S; NOSAN Corporation, Yokohama, Japan) at 24 °C. Three sets of
experiments comprising Achyranthes shoots with opened leaves
and whole plant were designed for herbivory treatment.

2.4.1. Experiment design 1: application of larval regurgitant to leaves

Larvae were transferred to feed on Achyranthes leaves for two
days before regurgitant collection. Larvae were placed in a glass
Petri dish and a capillary glass tube (1.0-mm-diameter) was intro-
duced into the mouth of a larva. Regurgitant was aspirated and
trapped in a glass bottle (5 mL). Collected regurgitant (10 pL) in
the trap was applied on Achyranthes leaf within the assigned mark

(8 marks per leaf) for 24 h; marks were made by pressing the leaf
with the Pasteur pipette (1.5-mm-diameter). These leaves with lar-
vae regurgitant were also exposed to airborne ds-(E)-nerolidol for
24 h to examine their combined effect on DMNT and emission of
other VOCs.

2.4.2. Experiment design 2: application of sixth-instar larvae alone or
with airborne ds-(E)-nerolidol

Five sixth-instar larvae were placed on leaves of Achyranthes
shoot and allowed to feed for 30 min. To expose the fed leaves to
airborne ds-(E)-nerolidol for 24 h, stems of the shoots were trans-
ferred inside a glass container containing 10 mL of water (Supple-
mentary Fig. 1).

2.4.3. Experiment design 3: application of sixth-instar larvae on leaves
of whole plant alone or with airborne ds-(E)-nerolidol

Three-week-old Achyranthes plants (15- to 20-cm-tall) were
transplanted together with roots and soil to plastic pots (6-
cm-diameter) and grown further for two weeks. Ten sixth-instar
larvae were placed on leaves and allowed to feed for 2 h, followed
by transfer of the plants to a glass container for exposure with air-
borne ds-(E)-nerolidol for 24 h.

2.5. VOC collections and analyses

VOCs in the headspace of glass container were collected using
solid-phase micro-extraction (SPME) fibers (65 wm Stable Flex
PDMS/DVB, Supelco Co., PA, USA) and analyzed by GC-FID
(Shimadzu GC-2010, Kyoto, Japan) or GC-MS (PerkinElmer Turbo
Mass, Shelton, CT, USA) as described previously [13].

3. Results

3.1. DMNT emission in the presence of nerolidol, methyl jasmonate,
and herbivore

To investigate whether airborne nerolidol is metabolized into
DMNT emission, Achyranthes leaves were exposed to airborne
ds-(E)-nerolidol by supplying it to the headspace of glass container
(Supplementary Fig. 1). Amounts of DMNT and other VOCs emitted
in the headspace were quantified by GC-FID. Neither DMNT nor
other VOCs were detected from exposed or unexposed leaves (data



S. Tamogami et al./FEBS Letters 585 (2011) 1807-1813

not shown). Previously, it was shown that Achyranthes leaves emit
DMNT as a minor VOC in response to airborne MeJA [13]. Given
this report and MeJA as a naturally occurring and well-studied
VOC, Achyranthes leaves were exposed to airborne Me]A alone or
in combination with airborne ds-(E)-nerolidol. As expected, DMNT
emission was detected (marked by broken rectangle) along with
the other nine VOCs from the Me]A-exposed leaves (Fig. 2A,
marked by broken rectangle and C). Importantly, a 3.4-fold in-
crease was found only in the DMNT emission from leaves exposed
to a combination of MeJA and ds-(E)-nerolidol airborne signals
(Fig. 2A and D) compared to that of airborne MeJA alone (Fig. 2A
and C); emission patterns of the other nine VOCs were dramatically
suppressed over airborne MeJA (Fig. 2A). Identified 13 VOCs were
as indicated in the total ion chromatograms: green leaf volatiles
[GLVs: methyl 2-(E)-hexenoate (1), 3-(Z)-hexenyl acetate (2), and
2-(E)-hexenyl acetate (3)]; monoterpenes [(E)-B-ocimene (4) and
linalool (5)]; homoterpene [DMNT (6)]; and sesquiterpenes [7
through 13: (E)-B-caryophyllene, (E)-a-bergamotene, sesquisabin-
ene, (E)-p-farnesene, o-humulene, (E,E)-a-farnesene, and B-bisabo-
lene, respectively] (Fig. 2).

Next, to know whether molecular signal(s) other than the VOC
MeJA supports metabolization of nerolidol to DMNT emission, a
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natural predator herbivore and its larval regurgitant were used.
To note, a large body of evidence has revealed that herbivore se-
crete elicitors including fatty acid-amino acid conjugate (FAC),
which trigger highly complex defense response and VOC emissions
in plants, including DMNT [5-7,12,23]. Leaves were first exposed
to larval regurgitant of S. litura alone or with airborne ds-(E)-nerol-
idol (Fig. 2B). Larval regurgitant alone elicited the emission of
DMNT (6) as a minor VOC versus the dominant (E)-p-farnesene
(10) and (E,E)-a-farnesene (12) VOCs (Fig. 2B). However, larval
regurgitant together with airborne ds-(E)-nerolidol caused a 6.4-
fold increase specifically in the DMNT emission compared to larva
regurgitant. Again, no increase in emission of the other nine VOCs
was found, but rather their emissions were suppressed.

Similarly, S. litura larvae feeding on leaves for 30 min alone elic-
ited DMNT emission as a minor VOC versus the major (E)-B-
ocimene (4), (E)-p-farnesene (10), and (E,E)-a-farnesene (12) VOCs
(Fig. 3A; marked by broken rectangle). The leaf area chewed up by
larvae of S. litura was recorded to be about 13 mg per leaf of its 3 g
fresh weight, suggesting that even a minor damage by S. litura
larvae is sufficient to trigger the DMNT emission. However, when
these chewed leaves were exposed to airborne ds-(E)-nerolidol,
the magnitude of DMNT emission was dramatic with up to
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Fig. 2. Absolute quantification of VOCs emitted by Achyranthes leaves upon exposure to airborne MeJA, airborne ds-(E)-nerolidol, larval regurgitant of herbivore S. litura or
their simultaneous combinations at 24 h. (A) Exposure to MeJA alone or with ds-(E)-nerolidol. (B) Exposure to larval regurgitant alone or with ds-(E)-nerolidol. (C), (D), and (E)
are total ion chromatograms (tg 5.0-18 min) of GC/MS-analyzed VOCs at 24 h emitted by Achyranthes leaves upon exposure to MeJA, Me]JA plus ds-(E)-nerolidol, or herbivore
plus ds-(E)-nerolidol, respectively. A segment of chromatogram (tg 15.5-17.0 min; rectangular with solid line) was enlarged (inset) to clearly present peaks 7 through 13 and
to detect basal peaks, if any. Assigned numbers in (A) through (E) correspond to: 4, (E)-B-ocimene (tg = 8.69); 5, linalool (tgx =9.68); 6, DMNT (tg = 10.00); 7, (E)-B-
caryophyllene (tg=15.51); 8, (E)-a-bergamotene (tg =15.68); 9, sesquisabinene (tg = 15.78); 10, (E)-B-farnesene (tg=15.93); 11, o-humulene (tg =16.05); 12, (EE)-o-
farnesene (tg = 16.71); and 13, B-bisabolene (tg = 16.78). Other prominent peaks 1, 2, and 3 were the VOCs identified as methyl 2-(E)-hexenoate (tg = 7.02), 3-(Z)-hexenyl
acetate (tg = 7.84), and 2-(E)-hexenyl acetate (tg = 8.01), respectively. In chromatograms (D) and (E), peak for ds-(E)-nerolidol (tg = 17.48) was also detected and marked.
Concerted action of airborne ds-(E)-nerolidol on dramatically enhanced emission of DMNT is highlighted with rectangles (broken line). None of these VOCs was detected in
the headspace samples of control Achyranthes leaves or exposed to only airborne ds-(E)-nerolidol. In order to quantify the VOCs amounts, GC-FID analysis was carried out.
The absolute amount of each VOC was calculated using n-octane as an internal standard. Data shown are derived from five independent biological replicates and were used to
calculate means and SE. Error bars represent standard errors.
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Fig. 3. Absolute quantification of VOCs emitted by Achyranthes leaves upon herbivore S. litura larvae feeding followed by exposure to airborne ds-(E)-nerolidol. (A) Effect of
individual S. litura larvae feeding on leaves. (B) Effects of sequential combination of S. litura larvae feeding of leaves for 30 min and airborne ds-(E)-nerolidol exposure for 24 h.
Rest is the same as described in Fig. 2, including the assigned numbers (4 through 13) for emitted and identified VOCs.

290-fold increase as the major VOC in comparison with herbivore
S. litura-elicitation alone (Fig. 3B and Fig. 2E). Moreover, this
sequential combination showed additive effect on emission pat-
terns of the other nine VOCs. It is likely that signals were triggered
by larvae chewing the leaves. These signals may facilitate efficient
metabolism of airborne nerolidol into DMNT biosynthesis and
emission.

Taken together, the findings demonstrate that airborne nerol-
idol is metabolized to biosynthesize primarily DMNT and its emis-
sion in Achyranthes, but requires yet unknown factor(s) or
molecular signal(s) derived from airborne VOC MeJA, larval regur-
gitant of S. litura, or S. litura larvae. Moreover, increase in DMNT
emission affects considerably the emission patterns of at least
the nine VOCs (4-5 and 7-13 in Figs. 2 and 3).

3.2. Plant conversion of airborne ds-(E)-nerolidol into DMNT emission

To extend the above finding at the whole plant level, experi-
ments of S. litura larvae feeding and airborne Me]A were separately
conducted again with airborne ds-(E)-nerolidol (Supplementary
Fig. 2). Leaves chewed by the larvae S. litura for 30 min are shown
in Supplementary Fig. 2B. The larvae chewed up to 4% of the total
leaf area. The measured weight of leaf was on average
2.985+0.645 g, and larvae fed 12 +7 mg of the leaf during the

feeding period. As shown in Fig. 4, the DMNT dominant chromato-
grams were again obtained in either experimental condition (A and
B). Hence, airborne nerolidol is also metabolized in-vivo specifi-
cally into DMNT and emitted at the whole plant level.

3.3. De-novo synthesized d>-DMNT derives from airborne ds-(E)-
nerolidol

The GC/MS chromatograms in Figs. 2 and 4 showed the DMNT
peaks at 10 min. A typical MS spectrum is shown for DMNT emit-
ted by leaves in response to sequential combination of S. litura lar-
vae feeding and airborne ds-(E)-nerolidol (Fig. 5). In the MS
spectrum, characteristic fragment ions were found at m/z 152,
137, 109, 83, and 69. These fragmentation patterns match well
with a previous report on the d,-DMNT fragmentation [22]. A
simultaneous combination of airborne MeJA and airborne ds-(E)-
nerolidol also showed exactly the same mass spectrum and
fragmentation patterns (data not shown). The expanded chromato-
grams within an inset in Fig. 5 show the relative intensity of
deuterated versus undeuterated DMNT by monitoring at m/z 152
and m/z 150, respectively. Their calculated peak areas revealed that
d,-DMNT amount was about 20 times higher than DMNT in case of
Me]JA plus ds-(E)-nerolidol airborne signals (Fig. 5B) or S. litura lar-
vae plus airborne ds-(E)-nerolidol (Fig. 5C). No d,-DMNT was de-
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chromatograms and quantified VOCs. Rest is the same as described in Fig. 2.

tected with airborne MeJA alone (Fig. 5A). Together, our results
demonstrate that the DMNT peak at 10 min in the chromatograms
mainly consists of d,-DMNT, which is de-novo biosynthesized from
airborne ds-(E)-nerolidol.

4. Discussion

4.1. (E)-Nerolidol is an airborne signal for DMNT biosynthesis

Plant-emitted VOCs are known to mediate intra- and inter-plant
communications [1,24-27]. However, a few of them have been

experimentally shown to function as airborne signal for such com-
munications. MeJA is one such VOC that elicits other VOC emis-
sions and defense-related genes/proteins [1,13,25,27]. MeJA was
recently demonstrated as an airborne VOC [13]. It was shown that
airborne MeJA is converted essentially to JA and JA-Ile in the recei-
ver Achyranthes plant, leading to VOC emissions and induction of
de-novo jasmonate production [13,24]. Evidence provided in this
study adds up (E)-nerolidol as another novel airborne signal for
biosynthesis and emission of DMNT in Achyranthes. But unlike air-
borne MeJA, (E)-nerolidol requires additional environmental sig-
nal(s) to metabolize itself into DMNT and to elicit altered pattern
of VOC emissions.
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Fig. 5. MS spectrum of d,-DMNT emitted by Achyranthes leaves exposed to S. litura larvae and then to airborne ds-(E)-nerolidol. In an inset, expanded mass chromatograms
show selected ion chromatograms at m/z 150 and m/z 152 analyzing molecular ions of DMNT and d,-DMNT, respectively. Treatments are: (A) airborne MeJA; (B) airborne
Me]A plus airborne ds-(E)-nerolidol; and (C) S. litura larvae plus airborne ds-(E)-nerolidol.
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4.2. Underlying complex regulation of DMNT: an emerging view

Available reports suggest that DMNT production/emission is
differentially regulated in plants in response to various environ-
mental factors [3,5,12]. For example, it is a dominant VOC of spider
mites-infested lima bean [15], but a minor VOC of maize [16],
Arabidopsis [19], and Achyranthes-exposed to airborne MeJA [13].
These studies led to propose the importance of (E)-nerolidol syn-
thase (NES) over DMNT homoterpene synthase (DHTS) [15] or both
[16] in regulation of DMNT biosynthesis (Fig. 1A).

Our new findings integrated to a proposed model imply that
induction or activation of DHTS enzyme by MeJA or herbivore as a
second environmental factor appears to be critical to de-novo
metabolize the airborne (E)-nerolidol into DMNT and to influence
the patterns of VOC emissions (Supplementary Fig. 3B and C). This
statement is based on the fact that airborne (E)-nerolidol, as a single
factor, fails to metabolize into DMNT (Supplementary Fig. 3A). In-
deed, DHTS enzyme was recently shown to be induced by herbivory
[19]. Our view is in agreement with the assumption that only NES
induction is not sufficient for significant increase in the DMNT emis-
sion[16] and hence, plants must receive the exogenous (E)-nerolidol
to perform this task. Given this scenario, it is highly likely that plants
receive airborne (E)-nerolidol to bypass its de-novo biosynthesis.

4.3. Multiple environmental factors influence volatile emission
patterns

In nature, plants rarely experience a single environmental stim-
ulus, but rather are exposed to multiple stimuli simultaneously or
sequentially. Although individual (single) stress has been well
studied for VOC emissions, very few studies have been performed
to quantitatively profile VOC emissions under multiple factors in
the laboratory or the field [3,5]. Two or more stress factors could
have additive, opposing, or priority effects on the pattern of VOC
emissions. As discussed in the above sections, airborne (E)-nerol-
idol, as a single factor, was not sufficient to be metabolized into
DMNT. But when airborne (E)-nerolidol is combined with the sec-
ond stress factor [Me]A, larval regurgitant (containing elicitors
including FAC), or herbivore larvae], the airborne nerolidol was
efficiently metabolized. Moreover, combination of airborne nerol-
idol with MeJA or larvae regurgitant as abiotic factors had an atten-
uation effect on VOC emissions except for DMNT (Fig. 2), whereas
with biotic factor as herbivore larvae showed an additive effect on
VOC emissions (Fig. 3). In line with this finding, the additive effects
of spider mites (biotic) and ozone (abiotic) or herbivore damage
(biotic) and pathogen infection (biotic) has been reported on VOC
emissions, including DMNT [28,29]. These findings demonstrate
the importance of studying multiple factors to discover new pat-
terns and functions of plant VOCs.

5. Concluding remarks

In conclusion, our experimental approach demonstrates nerol-
idol as a novel airborne signal for de-novo biosynthesis of DMNT
in Achyranthes, suggesting the importance of multiple environ-
mental stimuli in better understanding their functions and pat-
terns of VOC emissions. A similar approach could be applicable
to large number of uninvestigated VOCs (such as GLVs, terpenes,
and MeSA) to know their airborne functions and finding new path-
ways of metabolic conversion/biosynthesis and crosstalk.
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