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Abstract—Lyapunov functionals are used usually for stability investigation of systems with af-
tereffect [1-3]. The general method of Lyapunov functionals construction which was proposed and
developed in [4-19] is used here for stochastic second type Volterra difference equations. It is shown
that using this method, there is a possibility to construct for a given equation, a sequence of extending
stability regions. © 2004 Elsevier Ltd. All rights reserved.
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1. STATEMENT OF THE PROBLEM

Let {Q,0,P} be a basic probability space, ¢ € Z = {0,1,...} be a discrete time, f; € ¢ be a
sequence of c-algebras, H be a space of sequences z = {z;, i € Z} f;-adapted random values

z; € R™ with norm
|z|? = sup B |z [*.
iI€Z

Consider the stochastic difference equation in the form
Zipl = Nog1 + F (1,20, ..., i), 1€ Z, x0="mo, (1.1)
and auxiliary nonstochastic difference equation

Tit1 :F(i,xo,...,l'i), i€ Z. (12)
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It is assumed that the functional F' from equations (1.1) and (1.2) such that F : Zx H = R"
and F(i,-) does not depend on z; for j > i, F'(3,0,...,0) =0,n € H.
DEFINITION 1.1. A sequence z; from H is called:

e uniformly mean square bounded if ||||* < oc;

e asymptotically mean square trivial if lim;_, . E|z;|2 = 0;

e mean square integrable if Y oo Blz;]? < cc.
REMARK 1.1. It is easy to see that if the sequence z; is mean square integrable, then it is
uniformly mean square bounded and asymptotically mean square trivial.

DEFRINITION 1.2. The trivial solution of equation (1.2) is called:
o stable if for any € > 0 there exist § > 0 such that sup;cy |2;| < € if |zo] < §;
e asymptotically stable if it is stable and lim;_.o, z; = 0 for any xg.

THEOREM 1.1. Let there exists a nonnegative functional V; = V (i, zq,...,z;) and a sequence of
nonnegative numbers «y; such that

EV(0,20) <00, > % <00, (1.3)
3=0
EAV, < —cEl|zi* +v, i€Z, c>0. (1.4)

Then, the solution of equation (1.1) is mean square integrable.

Proor. From (1.4}, it follows

ZEAV; =KV (7;—}—1,.’130,...,.%@'_;_1) ——EV(O,.’E()) _<_ —CZE!IE]'!Z +Z’)’J
=0 =0

=0
From here, by virtue of (1.3), we obtain
i o0
¢y Bz’ <EV(0,20) + )75 < oo
Therefore, the solution of equation (1.1) is mean square integrable. The theorem is proven.

COROLLARY 1.1. Let the sequence 1), be mean square integrable and there exists the nonnegative
functional V; =V (i,zo,...,2;) such that

EV (0,20) < e: B o],

A 5 . (1.5)
EAV; < —qE |zi|” + E nia]”, i€ Z,
e >0, k=1,2,3. Then, the solution of equation (1.1) is mean square integrable.
Similar to Theorem 1.1, one can prove the following.
THEOREM 1.2. Let there exist a nonnegative functional V; = V (i, zq, ..., z;) such that for some

p>0
V(0,z0) < c1 |z0l?,

AWS_CQ !xilpa iEZ,
ek > 0, k= 1,2. Then, the trivial solution of equation (1.2) is asymptotically stable.

From Theorems 1.1 and 1.2, it follows that investigation of asymptotic behavior of solutions of
difference equations type (1.1) and (1.2) can be reduced to construction of appropriate Lyapunov
functionals. For this, it is possible to use the formal procedure of Lyapunov functionals con-
struction which was described in [5]. Below, this procedure is demonstrated for linear Volterra
equation with constant coefficients.
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2. LINEAR VOLTERRA EQUATIONS
WITH CONSTANT COEFFICIENTS

Consider the scalar equation

i
Tiyl = N1 + Zajxi_j, i€ 4, zo=nno. (2.1)
§=0
Here a;, i € Z, are known constants.

Let us apply the procedure of Lyapunov functionals construction to equation (2.1). Represent
the right-hand side of this equation in the form

k %
Tipr =Tir1 + YT+ Y agmig, k20, (2.2)
§=0 je=k+1

and consider the auxiliary difference equation

k
Yit1 = Zajyi_j, i€ Z. (23)
Jj=0
Note that in (2.2) and (2.3), it is supposed z; =0if j < 0.

Introduce into consideration the vector y(2) = (yi—k, ..., ¥:) and represent the auxiliary equa-
tion (2.3) in the form

0 1 0 0 0
0 0 1 v 0 0
y(i+1) = Ay(i), A=|- o o o (2.4)
0 0 0 0 1
ar  Qg—-1 Q-2 *°° 41 Qg
Consider now the matrix equation
0 0 0 0
0 0 0 0
A'DA-D=-T, U= oo e oo | (2.5)
0 o ... 0 0
0 o --- 0 1

where D is a symmetric matrix of dimension & 4 1.

Let us suppose that solution D of matrix equation (2.5) is a positive semidefinite matrix with
dg+1,k+1 > 0. In this case, the function v; = y'(1) Dy(i) is Lyapunov function for equation (2.4).
Really,

Av; = /(i + 1) Dy(i + 1) —y/(i)Dy(i) = v/ (i) [A'DA — D] y(i) = —y'(i)Uy(§) = ~yi.

So, if matrix equation (2.5) has a positive semidefinite solution D, then the trivial solution of
equation (2.4) (or (2.3)) is asymptotically stable [5].

Following the procedure of Lyapunov functionals construction, the main part Vy; of Lya-
punov functional V; = V3; + Va; must be chosen in the form Vi; = 2/(i)Dz(i), where z(i) =
(Tiekey -, 24)"

Represent equation (2.1) in the form

(i +1) = (i + 1) + Az(i) + B(i), (2.6)
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where matrix A is defined by (2.4), n(i) = (0,...,0,7%;) and B(¢) = (0,...,0,b;),

bZ': Z ajmiﬁj. (27)

j=k+1
Calculating AVQ, by virtue of equation (2.6), we have
AVy; =2/ (i 4+ 1)Dz(i + 1) — 2/ (i) Dz(4)
= (n(i +1) 4+ Az(i) + B(3))' D(n(i + 1) + Az(i) + B(3)) ~ 2’ (i) Dz (i)

2 s 3 1es . (28)
— —a? /(i + 1)Dn(i + 1) + B'() DB()
+20/(i + 1) DB() + 20/ (i + 1)DAz(s) + 2B' (i) D Az (i).
Note that
7' (i +1)Dn(i + 1) = diy1, o171 (2.9)
Put -
a=Y lal, 1=0,1,.... (2.10)
=t
Then, using (2.7), we obtain
, 2
B'(i)DB(i) = dit1,k410] = dip1hr | D 650
j=k+1
Sdiriper Y loml Y lagla? (2.11)
k1 j=k+1
S dirikriorer Y, laglzd .
=kl
Using (2.7) and A > 0, we have
21 (i + D)DB(0) = 2i1dira b = Mipadiprnn Y, a;@ig
’ j=k+1
< drt1,k+1 Z lagl (A" 02 + A2l ;) (2.12)
j=k+1
Sdpgrprr [ Aok + A Z lajlz?_; | -
jmht
Since
dik+1 Ti—kt1l
d2’k+1 Ti—fot2
Dﬂ(i_I‘l) = Tit+1 s A.T?(’L) = .Z‘ )
di k+1 P
A1 k1 Zo AmTi—m
then
k k
20" (i + 1) DAz(3) = 2mi41 {Z Y kot 1% et l + Dt 1,41 Z amxi—m:l
=1 m=0
E—1
= 2141 {Z (OmBrt1,k+1 + Tomr k1) Tiem + akdk+1,k+1$i—kJ (2.13)
m=0

k
= Mir1dis1esr Y QbmTicm,

m=0
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where 0
Qi = G + =B 20, k=1, Quk = ak. (2.14)
dit1,k41 v
So, putting
dk -,k +1
= ml = |ak| + a 2.15
B = Zan | = lax| Z S ey (2.15)
and using A > 0, we have
k
20/ (i + 1) DAz(5) < digrpsr D |Qim| (N0 + A2,0)
m=0 . (2.16)
= dt1,k+1 (A—lﬁk"]iz-kl +A Z [Qrm] ﬂf?—m) .
m=0
Using (2.13)-(2.15), (2.7), (2.10), similar to (2.16), we obtain
k
B'(i)DAz(i) = 2bidi1541 D, QemTicm
m=0
koo
=iy ki1 D D QkmTimTij
. m=0 j=k+1
) k i
< dey1k+1 z Z Qrm| lag] (23 +w1_]) (2.17)
k
< dirikrr Y Quml | k1@l + Z lajl 27
m=0 j=k+1

k :
= di+1,k+1 (ak+1 Z |Qkm| T2 + B Z lajl“’?—j) .

m=0 j=k+1

As a result of (2.8), by virtue of (2.9), (2.11), (2.12), (2.16), (2.17), it follows that

: k i
AV € —2 +dyrpest | A aemig + (A4 ag1) Z |Qum| 22—, + ak Z laj|z7_; |, (2.18)

m=0 j=k+1
where
@ = A+ ary1 + Sk (2.19)
Now put
At a i, 0<7<k,
Ri; = { ( k1) Q| ) J (2.20)
arlajl, i>k
Then, (2.18) can be written as follows
i
AV < —.’L‘? + dk+1,k+1 A-lqkﬂ?_*_l + ZRkag_j . (2.21)
: =
Choose the functional V5; in the form
Vag =0, ‘—dk+1k+12$z Z Ry, 1> 0.

j=i-—-1
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Calculating AV, we obtain

% oo i-1 00
2 2
AVyi =digrpir | D27 Y. Ry—9 af Y Ry
=0 =0 7 l

= j=i1-1 j=f—

0 i—1
= dit1e+1 | 27 Z Ryj — Z Ry i1z} (2.22)
g=1 1=0

o0 [
2 2
=dgy1ps1 | T3 E Ry — E Ryjzi_;
j=1 j=1

From (2.20)~(2.22) for the functional V; = Vi; + Va;, it follows

oo
EAV; < —{ 1 ~diy1,k41 Zng‘ Ex? + A dkp1 e 16 Enfy 1

=0
Therefore, if
o0
D Rij <6k =dity g (2.23)
J=0
then the functional V; satisfies the conditions of Corollary 1.1, and therefore, the solution of
equation (2.1) is mean square integrable.

Using (2.20), (2.10), (2.15), (2.19), transform the left-hand part of inequality (2.23) in the
following way

oo k 0o
ZRkj ZZRM—F Z Rkj
=0 j=0

k oo
= (A4 ogq1) Z |Qkjs| + gx Z |a;]
§=0 J=k+1

= (At ak) Br + (A4 g1 + Br) Qe
= X(Br + og41) + aﬁ_ﬂ + 20541 8-

So, if
g1 + 200410k < 8, (2.24)

then there exists sufficiently small A > 0 such that
A(ﬁk + Oék_|.1) + 0‘%+1 -+ 2ak+1,3k < 0

and condition (2.23) holds. It means that if condition (2.24) holds, then the solution of equa-
tion (2.1) is mean square integrable.
Note that condition (2.24) can be represented also in the form

Oyl < 4/ /6123 + 6x — Pk. (2.25)

REMARK 2.1. Using the same Lyapunov functional as above, one can prove that inequality (2.25)
is a sufficient condition for asymptotic stability of the trivial solution of equation

Tip1 =Y a;Tiy, €2 (2.26)

4=0
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REMARK 2.2. Suppose that in equation (2.1) (or (2.26))
a; =0, j>k+1. (2.27)

Then, a1 = 0 and condition (2.25) holds. So, if condition (2.27) holds and matrix equation (2.5)
has a positive semidefinite solution with dy1 x41 > 0, then the solution of equation (2.1) is mean
square integrable (the trivial solution of equation (2.26) is asymptotically stable).

REMARK 2.3. Suppose that for each k¥ > 0, matrix equation (2.5) has a positive semidefinite
solution Dy with diiq k41 > 0 and there exist the limits D = limg_.oo Dg, 8 = limg_.00 Bk, such
that D > 0, |D| < oo (|D| is Euclidean norm of matrix D), 8 < oco. Then, the solution of
equation (2.1) is mean square integrable (the trivial solution of equation (2.26) is asymptotically
stable). Really, this statement follows from (2.25) since limy—,oe g1 = 0.

3. PARTICULAR CASES
Cask 3.1. k=0. Condition (2.25) takes the form

a; < \/ﬂ%-{-éo—ﬂo. (3.1)

From (2.15), it follows By = |ao|. Equation (2.5) gives the solution dy; = (1 — a3)~!, which is
a positive one if [ag| < 1. Condition (3.1) takes the form oy < 1 — |ag| or

agp < 1. (3.2)

Under condition (3.2), the solution of equation (2.1) is mean square integrable.

REMARK 3.1. Note that by condition
a; 20, j20, (3.3)
inequality (3.2} is the necessary and sufficient condition for asymptotic stability of the trivial

solution of equation (2.26). Really, suppose first that zg > 0. Then, from (3.3) and (2.26), it
follows z; > 0 for 1 > 0. Consider the Lyapunov functional

i—1 e
Vi=$i+2$l Z aj. (3.4)
1=0

F=i—1
Calculating AV;, we obtain
i oo i—1 oo
AV =ZL'¢+1+Z.’131 Z a5 — Ty — T Z a;
I=0 j=if1-1 =0 gj=i-!

i [e's] i—1
= agx; + E a;xi— + E a; —T; — E zia;—; = (e — 1)z;.
i=1 j=1 =0

So, if inequality (3.2) holds, then from Theorem 1.2, it follows that the trivial solution of equa-
tion (2.26) is asymptotically stable. In the contrary case, i.e., ag > 1, from (3.5) it follows that
the functional V; is nondecreasing one, and therefore, z; does not go to zero. If g < 0, then
z; < 0for i > 0 and in Lyapunov functional (3.4), it is necessary to change z; on |z;|, [ =0,1,....

CasE 3.2. k=1. Condition (2.25) takes the form

g < /B4 61— B (3.6)
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Matrix equation (2.5) is equivalent to the system of the equations
aldgy —d1y =0,
(a1 — 1) d12 + agaidae = 0,
d11 +2a0d1z + (ag — 1) doa = —1,
with the solution dody .

1- a
1-— ay (3'7)

(L+a) [(1—a)’ ~ad]

Matrix D is a positive semidefinite one with dgos > 0 by conditions |a1| < 1, |ae] < 1 — a;1.
Using (2.15) and (3.7), we have

2
dy1 = ajdyy, dip = das,

doo =

d apa a

B =laa| + ao-l——l—%l=|a1|-|— ag—l-—i—l— =la1|+_|9|_v’

do 1—ay 1—aq (38)
5 =d_1=1—a2—a21+a1

1 22 1 07~ o
Substituting (3.8) into (3.6), we obtain
1 —las|
1- N et . _
ag < lag| T |a1] (3.9)

Under condition (3.9), the solution of equation (2.1) is mean square integrable.

It is easy to see that condition (3.9) is not worse than condition (3.2). In particular, if a; >0,
then condition (3.9) coincides with condition (3.2), if a3 < 0, then condition (3.9) is better than
condition (3.2).

CasE 3.3. k=2. Condition (2.25) takes the form

ag < \/,B% + 6y — ,32. (3.10)

Matrix equation (2.5) is equivalent to the system of the equations
a3das — dyg =0,
azdy3 + ayaadaz — dip = 0,

agdas + apagdss — dig =0,

: (3.11)
di1 + 2a1d13 + ajdzs — dpe =0,
diz + aodia + agardsz + (61 — 1) dag = 0,
dag + 2a0das + (a§ — 1) daz = —1,
with the solution -
di; = a‘%d337
don = 92 (1—a1)(ar + aoaz)d
12 1-— a; — Qg (ao + ag) 33
din = ag (a0 + aias)
By e —ay (ap + az) 33
2a1a9 (ao -+ a1a2) (312)

2, 2
dog = |af + a5 + 33,

1—a1 —a2(a0+a2)
(CLO + az) (al -+ a0a2)

dog = ,
3 1—a; —as(ag+as) 3

-1
dss = |1— a2 — a2 — a2 — 2292 (a0 +a1a2) + a0 (30 +a2) (a1 + a0a2) |

i 1—a1 — a2 (a0 +az)




Application of the General Method 1173

Using (2.15) and (3.11), (3.12), we have

d d d
B2 = lag] + B4 1+£:|a2|+.’_ﬁl_‘l__l_l_2l
da3 ds3 |laz|das (3.13)
— Jas] + lao + a1ag| + (1 —a1)(a1 + 0002)1, 5y = dzl.

11— ay — as(ao + a2))

If matrix D with the elements defined by (3.12) is a positive semidefinite one with dgz > 0, then
under condition (3.10) and (3.13), the solution of equation (2.1) is mean square integrable.

ExaMPLE 3.1. Consider the scalar equation

Tig1 = Niy1 +0T; + ij.’l,‘i_j, To = 1. (3.14)
j=1
Condition (3.2) gives
4

b . .15
|a|+1_lbl<1, b <1 (3.15)

From (3.9), it follows
<l < (319

1— 13 ’ ' '

From (3.10), (3.12), (3.13), we have

[ <4/B24+ 65— P |6} < 1
1 lbl 2 2 2 ’
b3+ (1 — b)|b(1 + ab)|
_p o lat 3.17
e Iy Sy A 5 T (3.17)
b%(a + %) + a{a + b%)(1 + ab)
1212 _pd
bo=1—-a*—b"—b"—2b T .
For k = 3, condition (2.25) of equation (3.14) takes the form
pa
< +/B% + 383 — B, bl <1,
1—]1)} 3 37— M3 [ l (3 18)
d d '
3 24 2, %14 -1
= —— :d
o1 la d4 lb+ daa T rmi b = das
where
ha _ s B +6° —b® +a(1-b°+0%)]G71,
daa
Z’“ = b2 [a2h+ 0% +5° =08 — 0¥ pa (1 + 0% +0%)] G,
44
%3—4¥b[b2+a3b2+b4~b7+a2 (b+b%) +a(1+26°+0° —° —b%)] G,
44

dag =G [1 —b—b% —a*h® — 2b* + 257 — 26° + 26° — b'0 — p'2 4 p'3
— b b1 — 0 (B2 +55) —a® (14 b+ 5b* — b° + 56 — 257 — b°)
—ab® (14 4b — b 4+ 55° — b* + 5% — 4b® + 467 — b0 4 511)] 77,

G=1-b—ab® — (1 +a%)b° —b* —ab® — b5 +b7 4 1.

Note that the solution of equation (2.5) for k¥ = 3 was obtained by the program “MATHEMA-
TICA”.
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In Figure 1, the regions of mean square integrability of the solution of equation (3.14) (and
at the same time the regions of asymptotic stability of the trivial solution of equation (2.26))
are shown, given by conditions (3.15) (curve number 1), (3.16) (curve number 2), (3.17) (curve
number 3), and (3.18) (curve number 4). One can see that for b > 0, the bound of the region of
mean square integrability, given by condition (3.16), coincides with the bound of region, given by
condition (3.15). For ¢ > 0 and b > 0, all conditions (3.15)—(3.18) give the same region of mean
square integrability, which is defined by inequality

b
a+ T3 <1, b< 1 (3.19)
From Remark 3.1, it follows that by conditions a > 0 and b > 0, inequality (3.19) is the necessary
and sufficient condition for asymptotic stability of the trivial solution of equation

i
Tit1 = AT, + Z bja:i_]-. (320)
j=1

Note also that the region of mean square integrability Q, obtained for equation (3.14), (or the
region of asymptotic stability of the trivial solution of equation (3.20)) expands if k increases,
ie., Qo C Q1 C Q2 C Q3. So, to get a greater region of mean square integrability (or asymptotic
stability), one can use the method of Lyapunov functionals construction for k = 4, k = 5, etc.
However, it is easy to see that using condition (2.25) it is impossible to get a region of mean
square integrability for equation (3.14) (or the region of asymptotic stability of the trivial solution
of equation (3.20)) if |b] > 1. For comparison on Figure 1, the exact region of asymptotic stability
of the trivial solution of equation (3.20) is shown (curve number 5) obtained in [13] by virtue
of some another stability condition. In Figure 2, the solution of equation (3.20) with the initial
condition zg = 0.5 is shown in the point M of the region of asymptotic stability (Figure 1) with
coordinates a = 0.63, b = —2.5.

Figure 1.
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