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A b s t r a c t - - L y a p u n o v  functionals are used usually for stability investigation of systems with af- 
tereffect [1-3]. The general method of Lyapunov functionals construction which was proposed and 
developed in [4-19] is used here for stochastic second type Volterra difference equations. It is shown 
that using this method, there is a possibility to construct for a given equation, a sequence of extending 
stability regions. (~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - D i f f e r e n c e  equations, Method of Lyapunov functionals construction, Asymptotic sta- 
bility. 

1. S T A T E M E N T  OF T H E  P R O B L E M  

Let  ( ~ , ~ , P }  be  a basic  p robab i l i ty  space, i E Z = { 0 , 1 , . . . }  be  a d iscre te  t ime,  f~ E ~ be a 

sequence  of  a -a lgebras ,  H be  a space of sequences  x = {xi,  i E Z}  f i - a d a p t e d  r a n d o m  values 

xi C R n wi th  n o r m  

Itxlr 2 = sup E Ixg. 
iEZ 

Consider the stochastic difference equation in the form 

x ~ + l = 7 ] ~ + l ÷ F ( i ,  x 0 , . . . , x i ) ,  i E Z ,  x0=710 ,  (1.1) 

and auxiliary nonstochastic difference equation 

x~+l = F ( i ,  x 0 , . . . , x i ) ,  i E Z. (2.2) 
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It  is assumed that  the functional F from equations (1.1) and (1.2) such tha t  F : Z * H ~ R ~ 
and F(i ,  .) does not depend on xj  for j > i, F(i ,  0 , . . . ,  O) = O, ~ E H. 

DEFINITION 1.1. A sequence xi from H is called: 

• uniformly mean square bounded if  Ilxll ~ < ~ ;  
• asymptotically mean square trivial iflimi-~oo E]x~[ 2 = 0; 

• mean square integrable i f E ~ o  EI~?  < oo. 

REMARK 1.1. It  is easy to see that  if the sequence xi is mean square integrable, then it is 

uniformly mean square bounded and asymptotically mean square trivial. 

DEFINITION 1.2. The trivial solution of  equation (1.2) is called: 

• stable i f  for any e > 0 there exist 5 > 0 such that sup~ez txi[ < E i f  [x0] < 5; 
• asymptotically stable i f  it is stable and limi--+oo xi -- 0 for any xo. 

THEOREM 1.1. Let there exists a nonnegative functional V~ = V(i ,  x0,. • •, xi) and a sequence of 
nonnegative numbers Vi such that 

E V  (0, xo) < oo, 

EAV~ _< - c E  ]x~] ~" + 7i, 

O<3 

~, < ~ ,  (1.3) 
i = 0  

i c Z ,  c > 0 .  (1.4) 

Then, the solution of  equation (1.1) is mean square integrable. 

PROOF. From (1.4), it follows 

i i i 

Z E ~ b  = ~,v (i + 1, x0, . . . ,  X , + l ) - E V  (0, x0) < - c ~ E  Ixjl 2 + ~ j .  
j=O j=O j=O 

From here, by virtue of (1.3), we obtain 

i o~ 

c Z E  I~j? _< EV (0, x0) + ~ ~j < oo. 
j = 0  j = 0  

Therefore, the solution of equation (1.1) is mean square integrable. The theorem is proven. 

COROLLARY 1.1. Let the sequence ~i be mean square integrable and there exists the nonnegative 

functional V~ = V(i ,  x 0 , . . . ,  x~) such that 

E v  (0, x0) < clE Ix012 , (1.5) 
EAVi < -e2Eix i l2  ÷ c3Eiw+I[  2 , i E Z, 

ek > O, k = 1,2, 3. Then, the solution of  equation (1.I) is mean square integrable. 

Similar to Theorem 1.1, one can prove the following. 

THEOREM 1.2. Let  there exist a nonnegative functional Vi = V(i ,  xo,.  • . ,  xi) such that  for some 

p > 0  
v(0,x0) < Cl Ixol", 

AV~ _< - c2  Ixil p , i ~ Z, 

ck > 0, k = 1,2. Then, the trivial solution of  equation (1.2) is asymptoticalIy stable. 

From Theorems 1.1 and 1.2, it follows tha t  investigation of asymptot ic  behavior of solutions of 
difference equations type (1.1) and (1.2) can be reduced to construction of appropriate Lyapunov 
functionals. For this, it is possible to use the formal procedure of Lyapunov functionals con- 
struction which was described in [5]. Below, this procedure is demonstrated for linear Volterra 
equation with constant coefficients. 
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2. LINEAR VOLTERRA EQUATIONS 
WITH C O N S T A N T  COEFFICIENTS 

Consider the scalar equation 

i 

Xiq-1 ~- ?]i+1 4- E aj2gi-J' i E Z, xo = r/o. (2.1) 
j=o 

Here ai, i C Z, are known constants. 

Let us apply the procedure of Lyapunov functionals construction to equation (2.1). Represent 

the right-hand side of this equation in the form 

k i 

xi+l = + E a j x , - j  + aj  _j, k > 0, (2.2) 
j=0 j=k+l 

and consider the auxiliary difference equation 

k 

Yi+l = E a j y i - j ,  i E Z.  (2.3) 
j=o 

Note that in (2.2) and (2.3), it is supposed xj = 0 if j < 0. 
Introduce into consideration the vector y(i)  = (y i -k , . . . ,  y~)' and represent the auxiliary equa- 

tion (2.3) in the form 

y(i  + 1) = Ay( i ) ,  A = 

0 1 0 . . .  0 O \  

) 0 0 1 ... 0 0 

0 0 0 . . .  0 1 

ak ak-1  ak-2  • • • al ao 

(2.4) 

Consider now the matrix equation 

0 0 ...  0 0 / 
0 0 ...  0 0 

A ' D A - D  = - U ,  U = { 0 0 ...  0 0 (2.5) 

\0 0 ... 0 1 

where D is a symmetric matrix of dimension k 4- i. 
Let us suppose that solution D of matrix equation (2.5) is a positive semidefinite matrix with 

dk+l,k+1 > 0. In this case, the function v~ = y'(i)Dy(i) is Lyapunov function for equation (2.4). 
Really, 

Av i  = y' (i 4- 1 )Dy(  i 4- 1) - y' ( i )Dy(  i) = y' (i) [ A ' D A  - D] y( i )  = - y '  ( i )Uy( i )  = - y 2  i . 

So, if matrix equation (2.5) has a positive semidefinite solution D, then the trivial solution of 

equation (2.4) (or (2.3)) is asymptotically stable [5]. 

Following the procedure of Lyapunov functionals construction, the main part Vu of Lya- 

punov functional V/ = Vii 4- V2i must be chosen in the form Vii = xZ(i)Dx(i), where x(i) = 
(x i -k , . . . , xd ' .  

Represent equation (2.1) in the form 

x( i  + 1) = ~(i + 1) + A x ( i )  + B( i ) ,  (2.6) 
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where matrix A is defined by (2.4), , ( i )  = ( 0 , . . . ,  0, r]i) and B(i) = (0 , . . . ,  O, bi)', 
i 

bi = E ajxi_j. 
j = k + l  

Calculating AVli, by virtue of equation (2.6), we have 

A Vli = x' (i -~ 1)Dx( i + 1) - x' (i)Dx(i) 

= (rl(i + 1) + Ax(i) + B(i))'DO?(i ÷ 1) + Ax(i) + B(i)) - x'(i)Dx(i) 
2 = - x  i + ~'(i + 1)Dr](i + 1) + B'(i)DB(i)  

+ 2~'(i + 1)DB(i) + 2r/(i + 1)DAx(i) + 2B'(i)DAx(i) .  

Put 

Note that 

Then, using (2.7), we obtain 

~'(i + 1)D~?(i + 1) 2 =- dk+l,k+l~]i+l. 

oc 

j=l 
l = 0 , 1 , . . . .  

B'(i)DB(i)  = dk+l,k+lb2i = dk+l,k+l ajxi_j 
j=k+l 

i i 
~dk+l,k+l E ]a=] E lajlx~-~ 

m = k + l  j = k + l  

i 

<-- dk+l'k+lOZk+l E laj 2 ] xi-j. 
j = k + l  

Using (2.7) and A > O, we have 
i 

2~'(i + 1)DB(i) = 2~]i+ldk+l,k+lbi = 2?~i+ldk+l,k+l g aj2ci- j 
j = k + l  

i 

~-- dk+l'k+l E lajl ('~--1~/2+1 -F /~X2i_j) 
j = k + l  

- 1  2 _< dk+l,k+l A C~k+l~/+l + A ~ iajl x~_2 I 

j=k+l 

Since 

/ 
, A x £  = , 

D~](i + 1) . . . .  ~i+1 / dk'k+l I I k Z, 

then 

2~'(i + 1)DAx(i) = 2rh+ 1 dl,k+lXi-k+l + dk+t,k+l E amXi-m 
/ /=1  m=0  

----2~]i+11~ (amdk+l'k+l~dk-m'k+l)Xi-m-bakdk+l'k+lXi-kJLm=O 

k 
2?]i+ldk+l'k+l E QkmXi-m' 

m~O 

(2.7) 

(2.s) 

(2.9) 

(2.1o) 

(2.11) 

(2.12) 

(2.13) 
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where 

So, putting 

Qk,~ = a,~ + dk2-m,k+l__ m = 0 , . . . ,  k - 1, Qkk = ak. (2.14) 
dk+l,k+l ' 

k k-1 am 

rn=O m=O 

dk-,~,k+l [ (2.15) 
dk+l,k+l 

and using ), > 0, we have 

k 

2~'(i + 1)DAx(i)  < dk+l,k+l E tQk,~[ (A-1~i+12 + ; ~ x 2 )  

~=0 (2.16) 

- a ~ k v i + l + a ~  IQkm 2 - dk+l,k+l -1 2 i x~_,~ . 
m=O 

Using (2.13)-(2.15), (2.7), (2.10), similar to (2.16), we obtain 

2B' ( i )DAx( i )  = 2b~dk+l,k+l ~ Qkmx~-~ 
m=O 
k i 

= 2dk+l,k+l E E Q k m a j X i - m X ' - J  
m=O j = k + l  

k i 
, X2 2 _<di+lk+l ~ ~ ]Qk,~llajl( ~-.~ +x~_y) (2.17) 

~n=O j=k+l 

~__ dk+l,k+l E ]Qkm] 2 2 c~k+lxi_.~ + lay] x~_j 
m = 0  j = k + l  

= dk+l,k+l ak+l ~ [Qk.,lx~_m +~k [ajlx~-j . 
m = 0  j=k+l 

As a result of (2.8), by virtue of (2.9), (2.11), (2.12), (2.16), (2.17), it follows that 

Agl i  ~ - x i :  + dk+l,k+l A-lqk~ 1 + (A + ak+l) E [Qkm] x ? 2 (2.18) 
m = 0  j = k + l  

where 

Now put 
{(~ + ~k+~)lQkj[, 

Rkj = qk]ajl ' 

Then, (2.18) can be written as foUows 

2 --I 2 zxvl~ <_ -x~ + ek+l,~+l :~ qk~÷l + ~_ ,RkjxLj  . 
j=O 

Choose the functional V2i in the form 

i--1 

V2o = 0, Vai = dk+l,k+l E x~ Rkj,  i > O. 
/=0  j= i - l  

qk = A + ak+l + ilk. (2.19) 

O_<j<k, 
(2.20) 

j > k .  

(2.21) 
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Calculating A&i, we obtain 

Ahi =-&+l,k+l 
(’ 

2x? 5 &j -2x; 2 &j 
I=0 j=i+1--2 I=0 jci-1 

= dk+l,k+l 

= &+l,k+l . 

From (2.20)-(2.22) for the functional Vi = Vii + V&, it follows 

EAK L - 1 - &+l,k+l Ezf + ~-l&+~,k+u&Erl:+~ 

Therefore. if 

(2.22) 

(2.23) 
j=O 

then the functional Vi satisfies the conditions of Corollary 1.1, and therefore, the solution of 
equation (2.1) is mean square integrable. 

Using (2.20), (2.10), (2.15), (2.19), transform the left-hand part of inequality (2.23) in the 
following way 

= (A -I- %+I) c IQkiI + qk c bil 
j=o j=k+l 

= CA + ak+l) Pk + (A + ak+l + Pk) %+I 

= 
x (Pk + ak+l) + a;+~ + 2ak+lPk. 

So, if 
a:+~ + 2ak+lPk < Sk, (2.24) 

then there exists sufficiently small X > 0 such that 

x(Pk + Qk+l) + O;+1 + 2ak+lPk < bk 

and condition (2.23) holds. It means that if condition (2.24) holds, then the solution of equa- 
tion (2.1) is mean square integrable. 

Note that condition (2.24) can be represented also in the form 

ak+l < j/ii - Pk. (2.25) 

REMARK 2.1. Using the same Lyapunov functional as above, one can prove that inequality (2.25) 
is a sufficient condition for asymptotic stability of the trivial solution of equation 

q-1 = UjXi--j, i E 2. (2.26) 
j=o 



Application of the General Method 1171 

REMARK 2.2. Suppose that  in equation (2.1) (or (2.26)) 

aj = 0, j > k + 1. (2.27) 

Then, ak+l = 0 and condition (2.25) holds. So, if condition (2.27) holds and matr ix  equation (2.5) 
has a positive semidefinite solution with dk+l,k+l > 0, then the solution of equation (2.1) is mean 
square integrable (the trivial sotution of equation (2.26) is asymptotically stable). 

REMARK 2.3. Suppose that  for each k > 0, matr ix equation (2.5) has a positive semidefinite 
solution Dk with dk+l,k+l > 0 and there exist the limits D = limk_~o~ Dk, fl = limk-~o ilk, such 
that  D 2 0, ID[ < cc (IDI is Euclidean norm of matr ix  D), fl < co. Then, the solution oi 
equation (2.1) is mean square integrable (the trivial solution of equation (2.26) is asymptotically 
stable). Really, this s tatement follows from (2.25) since limk-,~o ak+l  = 0. 

3 .  P A R T I C U L A R  C A S E S  

CASE 3.1. k -- 0. Condition (2.25) takes the form 

a l  < ~ 0 2 + 5 0 - / 3 0 .  (3.1) 

From (2.15), it follows ~0 = la0]. Equation (2.5) gives the solution dll  = (1 - a02) -1, which is 
a positive one if [ao] < 1. Condition (3.1) takes the form a l  < 1 - laol or 

s0  < 1. (3.2) 

Under condition (3.2), the solution of equation (2.1) is mean square integrable. 

REMARK 3.1. Note that  by condition 

aj > 0, j > 0, (3.3) 

inequality (3.2) is the necessary and sufficient condition for asymptotic stability of the trivial 
solution of equation (2.26). Really, suppose first tha t  x0 > 0. Then, from (3.3) and (2.26), it 
follows xi _> 0 for i > 0. Consider the Lyapunov functional 

vi = xi + ~ xl a~. 
/=0 j=i-l 

(3.4) 

Calculating AVi, we obtain 

i o o  i--1 oo 

A Xi+l H- )_~ xl aj - x i  - > £  xl )_£ aj 
I=O j=i-F l-1 l=0 j=i--l 

V ~i ajxi-j xi ~ aj xi ~i-1 
= a o x ~  + z _ ,  + - - z ~  x l a ~ - i  = (S0 -- 1)x~. 

j=l  j=l  t=~ 

(3.5) 

So, if inequality (3.2) holds, then from Theorem 1.2, it follows that the trivial solution of equa- 

tion (2.26) is asymptotically stable. In the contrary case, i.e., c~o _> I, from (3.5) it follows that 
the functional Vi is nondecreasing one, and therefore, xi does not go to zero. If x0 < 0, then 
xi _~ 0 for i _> 0 and in Lyapunov functional (3.4), it is necessary to change xz on Ixtl, l = 0, i,.... 

CASE 3.2. k = I. Condition (2.25) takes the form 

OZ2 < ~212  -~- 51 --/~1" (3.6) 
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Matrix equation (2.5) is equivalent to the system of the equations 

a2 d22 -- d n  = O, 

(al - 1) d12 + aoald22 = O, 

dll + 2ao~12 + (ao ~ - 1) d~ = -1,  

with the solution 
dl l  = a21d22, dl 2 aoal "n ,t~22 , 

1 - a l  
1 - aa (3.7) 

d22 -~ 

Matrix D is a positive semidefinite one with d22 > 0 by conditions lall < 1, [ao] < 1 - al. 
Using (2.15) and (3.7), we have 

ao d12 1 a0 
i 

Laol aoal 
/~1 = lall-}- dC~22, = lal[-}- + l - - a 1  = [ a l l + - -  1 -- a l '  (3.8) 

~i = ~ = i - a~ - a0 ~ } + al 
al 

Substituting (3.8) into (3.6), we obtain 

1 - l a l l  
a2 < 1 - Ia0I -i-- ~ fall. (3.9) 

Under condition (3.9), the solution of equation (2.1) is mean square integrahle. 

It is easy to see that condition (3.9) is not worse than condition (3.2). In particular, if al _> 0, 
then condition (3.9) coincides with condition (3.2), if al < 0, then condition (3.9) is better than 

condition (3.2). 

CASE 3.3. k = 2. Condition (2.25) takes the form 

aa < V / ~  + 52 - j32. (3.10) 

Matrix equation (2.5) is equivalent to the system of the equations 

a2d33 - d n  = O, 

a2d13 --b ala2d33 - d12 = O, 

a2d23 -t- aoa2d33 - d13 = O, 
(3.11) 2 dll  q-2aid13 -}-aid33 - d 2 2  = 0, 

d12 + aod13 + aoald33 + (al - 1) d23 = O, 

d22 + 2aod23 + (ao 2 - 1) da3 = - 1 ,  

with the solution 

d l l  = a22d33, 

~2 (1 -- al) (al + aoa2) n 
- a2 [ao • a 2 )  

a2 (ao + ala2) d33, 

2~la~(ao + a ~  ] (3.12) 
d ~  = ~ + ag + 1 - ~1 - a~ (~o + ~ ) J  d3~, 

(ao + a2) (al + aoa2) d 

r l _  ao - 2 ala  (ao + ao (ao + a2)(al + aoa2)l--1 d33 
L ~ -  ~ / -  ~ ~ 0 T ~ )  J 
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Using (2.15) and  (3.11), (3.12), we have 

ao ee3 a e13 
~2 = ta21 + -F d33 Jr- -4- d33 = [aet -~- 

= I~el + I~0 + alael  + I(1 - al)(al + a0ae)l 
fl - a l  - a e ( a o  + a e ) l  

I d 1 3 1 - I - l d l e l  

la21d33 

5 2 = d 3 ~ .  

(3.13) 

If  ma t r ix  D wi th  the  elements defined by (3.12) is a posit ive semidefinite one wi th  d33 > 0, then  
under  condi t ion (3.10) and  (3.13), the  solution of equat ion  (2.1) is mean  square integrable.  

EXAMPLE 3.1. Consider  the  scalar equat ion  

i 
z i + l  = ~]i+1 + a x i  + ~ b J z i _ j ,  xo = r]0. (3.14) 

j= l  

Condi t ion  (3.2) gives  

From (3.9), it follows 

lal + ~ < 1, 151 < 1. (3.15) 

b e 1 - I b l  
1 -Ib----~ < 1 - l a l  i - - b  Ibl' tbl < 1. 

F rom (3.10), (3.12), (3.13), we have 

Ib] 3 
+ 5e Ze, Ibl < 1, 

t -Ib-----i < 
la + b31 + (1 - 5)1b(1 + ab)l ¢~e = b e +  

I I -b -be (~+Se) l  ' 
52 = 1 - a 2 - b 2 - b 4 - 2b be(a + ba) + a ( a  ÷ b2)(i + ab) 

1 - b - b2(a + b 2) 

For k = 3, condi t ion (2.25) of equa t ion  (3.14) takes the  form 

where 

b4 
1 - lb------i < + 53 - f13, Ibl < 1, 

a" 4 
f l 3 = l b 3 1 +  + d 4 4  + b +  + + d 4 4  ' 53 -= d441 

dl--!4 = b 3 [b 3 + b 5 -  b s + a ( 1 -  b 3 + b4)] G -1, 
d44 

de-A = b 2 [a2b + b 2 + b 5 - b e - b s + a (1 + b 4 + be)] G - I ,  
d44 

e3~ gb[be +a3be + b4_ b, + ae (5 + b4)+a(1 + 2b 3 + ¢ -  ¢ -  bS)] a -1, 
d44 

d44 = G [1 - b -  b 2 - a4b 3 - 2b 4 + 2b 7 - 2b 8 + 2b 9 - b 1° - b 12 + b la 

- b 14 -t- b 17 - a 3 (b e -}- 55) - a e (1 n u b + 5b 4 - b a + b e - 2b 7 - b 9) 

- a b  2 ( 1 +  4 b -  b 2 + 5b 3 - b 4 + b 5 - 4b 6 + 4b 7 - b l° + b Z l ) ] - l ,  

G = 1 -  b -  ab 2 - ( l + a  2) b 3 -  b 4 -  ab ~ -  b 6 + b  7 + b 9. 

Note  t h a t  the  solution of equat ion (2.5) for k = 3 was ob ta ined  by  the  p ro g ram "[VIATHEMA- 

(3.16) 

(3.17) 

(3.1s) 

FICA". 
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In Figure 1, the regions of mean square integrability of the solution of equation (3.14) (and 
at the same time the regions of asymptotic stability of the trivial solution of equation (2.26)) 
are shown, given by conditions (3.15) (curve number 1), (3.16) (curve number 2), (3.17) (curve 
number 3), and (3.18) (curve number 4). One can see that for b >_ 0, the bound of the region of 
mean square integrability, given by condition (3.16), coincides with the bound of region, given by 
condition (3.15). For a >_ 0 and b >_ 0, all conditions (3.15)-(3.18) give the same region of mean 
square integrability, which is defined by inequality 

b 
a ÷ ~ < 1, b < 1. (3.19) 

From Remark 3.1, it follows that by conditions a > 0 and b > 0, inequality (3.19) is the necessary 
and sufficient condition for asymptotic stability of the trivial solution of equation 

i 

• = + (3 .20)  

j~-i 

Note also that the region of mean square integrability Qk, obtained for equation (3.14), (or the 
region of asymptotic stability of the trivial solution of equation (3.20)) expands if k increases, 
i.e., Q0 c Q1 c Q2 c Q3. So, to get a greater region of mean square integrability (or asymptotic 
stability), one can use the method of Lyapunov functionals construction for k = 4, k = 5, etc. 
However, it is easy to see that using condition (2.25) it is impossible to get a region of mean 
square integrability for equation (3.14) (or the region of asymptotic stability of the trivial solution 
of equation (3.20)) if ]b] > 1. For comparison on Figure 1, the exact region of asymptotic stability 
of the trivial solution of equation (3.20) is shown (curve number 5) obtained in [13] by virtue 
of some another stability condition. In Figure 2, the solution of equation (3.20) with the initial 
condition x0 = 0.5 is shown in the point M of the region of asymptotic stability (Figure 1) with 
coordinates a = 0.63, b = -2.5. 
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Figure 1. 
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