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a b s t r a c t

Observations are reported in uniaxial cyclic tensile tests (loading–unloading with various maximum
strains) on high density polyethylene at temperatures ranging from room temperature up to 90 �C. It
is demonstrated that the maximum stress per cycle and an apparent residual strain (measured at the
instant when the tensile force vanishes under retraction) strongly decrease with temperature. The latter
seems unexpected as the interval of temperatures covers the a-relaxation temperature, which is conven-
tionally associated with activation of additional mechanisms for inelastic flow. A model is developed that
captures the decrease in residual strain with temperature. Adjustable parameters in the stress–strain
relations are found by fitting the experimental data. The effects of temperature and maximum strain
per cycle on residual strains are studied numerically.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with experimental investigation and numerical
simulation of the viscoplastic behavior of high density polyethyl-
ene (HDPE) in an interval of temperatures covering the a-relaxa-
tion region.

Observations in small-amplitude oscillatory tests on polyethyl-
ene demonstrate three noticeable peaks on the diagram of loss
tangent d plotted versus temperature T (Popli et al., 1984; Boyd,
1985; Khanna et al., 1985; Alberola et al., 1990). A peak with the
highest temperature Ta (located below the melting temperature
Tm) is conventionally associated with a-relaxation. For high den-
sity polyethylenes, Ta belongs to the interval between 50 and
70 �C (Na et al., 2007). Its position is weakly affected by molecular
structure (molecular weight distribution, entanglement density,
degree of branching, lamellar thickness, average size of spherulites,
etc.) and testing conditions (frequency of oscillations, heating rate,
intensity of preloading, etc.). For recent DMTA (dynamic mechani-
cal thermal analysis) observations on polyethylenes, see Matthews
et al. (1999), Kuwabara et al. (2000), Mano (2001), Sirotkin and
Brooks (2001), Matsuo et al. (2003), Men et al. (2003), Kolesov
et al. (2005), Stadler et al. (2005), Na et al. (2007), Guan and Phil-
lips (2007), and the references therein.

Although a-relaxation in polyolefins is commonly attributed to
thermal activation of some sliding processes at the micro-level
(these processes are presumed to be restrained below Ta), the
physics behind this phenomenon remains a subject of debate for
it is not clear (i) what type of sliding starts at Ta, (ii) in which phase
ll rights reserved.
(crystalline or amorphous), and (iii) at which length scale. Several
hypotheses have been suggested regarding molecular mechanisms
of a-relaxation: c-shear within crystalline lamellae (homogeneous
shear of crystal blocks in the direction of their c-axis) (Sirotkin and
Brooks, 2001; Guan and Phillips, 2007), inter-lamellar shear (slip of
crystalline blocks past each other) (Matthews et al., 1999; Jiang
et al., 2009), sliding of tie molecules and motion of chain folds
and loops through crystals (Khanna et al., 1985), diffusion of chains
(Men et al., 2003) and defects (Alberola et al., 1990) in crystallites,
growth of mobility of chains in the interphase (transition regions
located in the close vicinity of lamellar surfaces) (Rastogi et al.,
2007), weakening of lamellar coupling and enhancement of seg-
ment exchange between crystalline and amorphous phases (Kole-
sov et al., 2005; Na et al., 2007; Zubova et al., 2007).

Not focusing on a detailed description of these mechanisms, one
can conclude that heating of a sample through the a-relaxation
region activates motion of chains both in crystalline and amor-
phous phases due to release of constraints hindering their mobility
below Ta (Khanna et al., 1985). It seems plausible to presume that
enhancement of molecular mobility may be reflected in mechani-
cal tests as a decrease in elastic moduli (driven by rearrangement
of chains), as well as intensification of plastic flow (associated with
intra- and inter-lamellar slip) with temperature. The aim of this
study is to validate this hypothesis by (i) measuring stress–strain
diagrams in cyclic tensile tests at various temperatures T, and (ii)
applying the experimental data to evaluate the effect of tempera-
ture on Young’s moduli of crystalline and amorphous regions.

Although the problem of identification of elastic moduli of
amorphous and crystalline phases in a semicrystalline polymer
has been formulated a long ago (Boyd, 1979), it has not been satis-
factory resolved until now. This may be explained by the fact that
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the stress–strain diagrams of polyethylene under uniaxial stretch-
ing are rather simple to be adequately approximated within a one-
phase constitutive model (Drozdov and Christiansen, 2008). As
modeling of a semicrystalline polymer as a two-phase composite
leads to a noticeable growth in the number of material constants,
observations in additional tests are to be employed to ensure an
acceptable accuracy in their determination. An attempt to apply
experimental data in relaxation tests for this purpose was under-
taken by Djokovic et al. (2000). However, their treatment of obser-
vations (matching of relaxation curves by a sum of two exponential
functions that are presumed to describe the time-dependent
response of amorphous and crystalline regions separately) may
be questioned. It appears that determination of adjustable param-
eters in a two-phase model by matching stress–strain diagrams
under stretching and retraction may be a more adequate approach
as it allows not only elastic moduli, but also plastic strains to be
assessed.

Our observations in uniaxial tensile cyclic tests (Section 2) dem-
onstrate that the engineering stress r strongly decreases with tem-
perature, in accord with the above assumptions. Surprisingly, it is
found that the plastic strain evaluated by means of an apparent
residual strain (the strain measured when the tensile load vanishes
at retraction) decreases with temperature (in contradiction to what
is expected based on the concept of temperature-induced activa-
tion of molecular mobility). The reduction in residual strain is
modest when the maximum strain per cycle �max is lower that
the yield strain �y, and it becomes substantial when �max belongs
to the post-yield region of deformations.

The objective of this study is threefold: (i) to report observa-
tions on HDPE in tensile cyclic tests with various maximum strains
in an interval of temperatures that covers the a-relaxation region,
(ii) to derive stress–strain relations for the thermo-viscoplastic
response of semicrystalline polymers and to find adjustable
parameters by fitting the experimental data, and (iii) to apply these
equations to the numerical analysis of the effects of temperature
and maximum strain per cycle on residual strains [the importance
of these effects for engineering applications was discussed by Olasz
and Gudmundson (2005)].

Constitutive models for the viscoelastic and viscoplastic
responses of semicrystalline polymers under non-monotonic
deformation may be divided into two groups. In models belonging
to the first group, a homogenization method is applied that allows
a semicrystalline polymer with a complicated micro-structure to
be replaced with an equivalent one-phase continuum (Bergstrom
et al., 2002; Khan and Krempl, 2006; Drozdov and Christiansen,
2007a,b, 2008; Yakimets et al., 2007; Mizuno and Sanomura,
2009; Sweeney et al., 2009). As the number of adjustable parame-
ters necessary to describe the mechanical behavior of a one-phase
medium is relatively small, these parameters can be found with
high accuracy by matching observations in conventional tests. A
shortcoming of these models is that the influence of external fac-
tors (e.g., temperature, humidity, etc.) on mechanical properties
of crystalline and amorphous phases cannot be evaluated
separately.

Models of the other group treat a semicrystalline polymer as a
two-phase composite where crystalline inclusions are distributed
in an amorphous matrix (Argon, 1997; Nikolov and Doghri, 2000;
Cangemi and Meimon, 2001; van Dommelen et al., 2003, 2007;
Nikolov et al., 2006; Bedoui et al., 2006; Ben Hadj Hamouda
et al., 2007; Roguet et al., 2007; Brusselle-Dupend and Cangemi,
2008; Diani et al., 2008; Dusunceli and Colak, 2008; Baudet et al.,
2009; Regrain et al., 2009). A disadvantage of this approach is that
it leads to a noticeable increase in the number of material
constants and a pronounced deterioration of accuracy of their
determination. To overcome this difficulty, three approaches are
employed: (i) ad hoc hypotheses are introduced regarding
mechanisms of inelastic deformations [for example, plastic flow
is ascribed to the crystalline phase exclusively, while the amor-
phous phase is treated as merely viscoelastic (Nikolov and Doghri,
2000; Cangemi and Meimon, 2001), or different laws are intro-
duced to characterize plastic deformations in the amorphous and
crystalline regions (van Dommelen et al., 2003, 2007)], (ii) observa-
tions in mechanical tests are analyzed together with experimental
data in other tests [conventionally, small- and wide-angle X-ray
diffraction (Argon, 1997; Diani et al., 2008)] that provide informa-
tion about evolution of the crystalline structure under loading, and
(iii) complicated deformation programs are applied for the experi-
mental investigation of the mechanical response [numerical simu-
lation shows that cyclic deformation (Regrain et al., 2009) and
tension interrupted by creep (Ben Hadj Hamouda et al., 2007; Rog-
uet et al., 2007; Brusselle-Dupend and Cangemi, 2008) are the pro-
grams most sensitive to changes in morphology of semicrystalline
polymers].

This study follows the latter approach. High density polyethyl-
ene is treated as a two-phase composite, where crystalline inclu-
sions are distributed in an amorphous matrix. Both phases are
modeled as viscoplastic media. Appropriate plastic flows are asso-
ciated with sliding of junctions between chains in the amorphous
matrix and intra- and inter-lamellar slips in crystallites. The differ-
ence between treatment of plastic deformations in crystalline and
amorphous regions consists in the assumption that the strain rate
for sliding of junctions in the amorphous matrix is proportional to
the deviatoric component of an appropriate stress tensor, whereas
the strain rate for slip in crystal blocks equals the sum of strain
rates for intra- and inter-lamellar sliding. The former linearly de-
pends on the deviatoric part of the stress tensor in the crystalline
phase, and the latter is proportional to the strain rate for macro-
deformation.

The exposition is organized as follows. Observations in cyclic
tensile tests are reported in Section 2. Stress–strain relations for
the thermo-viscoplastic response of a semicrystalline polymer
are developed in Section 3. Adjustable parameters are found in
Section 4. Some results of numerical simulation are discussed in
Section 5. Concluding remarks are formulated in Section 6.

2. Experimental procedure

High density polyethylene Eraclene MM 95 (density 0.953 g/
cm3, melting temperature Tm ¼ 134 �C, melt flow index 4 g/
10 min) was purchased from Polimeri Europa (Italy). Dumbbell
specimens (ASTM standard D-638) with cross-sectional area 9.8
mm � 3.8 mm were molded by using injection-molding machine
Ferromatic K110/S60-2K.

Mechanical tests were conducted by means of universal testing
machine Instron-5568 equipped with a thermal chamber and an
electro-mechanical sensor for control of longitudinal strains. The
tensile force was measured by a 5 kN load cell. The engineering
stress r was determined as the ratio of axial force to cross-sec-
tional area of specimens in the stress-free state.

Five series of cyclic tensile tests were performed at the temper-
atures T = 23, 45, 60, 75, and 90 � C. Before measurements started,
each specimen was equilibrated at the required temperature T for
30 min. In each test, a sample was stretched with the cross-head
speed 20 mm/min (which corresponded to the strain rate
_� ¼ 4� 10�4 s�1) up to a maximum strain �max and retracted with
the strain rate � _� down to the zero stress. All series of experiments
involved three tests with the maximum strains �max = 0.05, 0.10,
and 0.15.

Each test was conducted on a new sample and repeated 3 times
to assess reproducibility of measurements. The maximum devia-
tion between engineering stresses measured on different
specimens did not exceed 4%.



Fig. 2. Stress r versus strain �. Symbols: experimental data in cyclic tests with
various maximum strains �max at T = 45 � C. Solid lines: results of numerical
simulation.
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Observations are reported in Figs. 1–5, where the engineering
stress r is plotted versus tensile strain � (the experimental
stress–strain curves present average data over three sets of mea-
surements). These figures show that the stress–strain curves under
tension and retraction are (i) nonlinear and (ii) strongly affected by
temperature. For example, the maximum stress monitored along
loading paths of the stress–strain diagrams decreases approxi-
mately by 4 times, from 20.5 MPa at room temperature to
15.2 MPa at T = 45, 11.4 MPa at T = 60, 8.4 MPa at T = 75, and
5.8 MPa at T = 90 � C. An apparent residual strain after a cycle of
loading–retraction �res (identified as the strain � measured when
the tensile stress r vanishes at unloading) decreases with temper-
ature T when the maximum strain per cycle �max exceeds the yield
strain �y (corresponding to the point of maximum on the stress–
strain curve under stretching). The latter value is close to 0.11,
and it is practically independent of temperature. For example, for
�max ¼ 0:15, the growth of temperature induced a reduction in
residual strain by twice: from 0.079 at room temperature to
0.069 at T = 45, 0.061 at T = 60, 0.046 at T = 75, and 0.039 at
T = 90 � C. When the maximum strain per cycle becomes lower
than the yield strain, the effect of temperature on residual strain
weakens pronouncedly: in tests with �max ¼ 0:05, the strain �res

remains practically constant (close to 0.022) at all temperatures
below 75 � C and decreases down to 0.015 at T = 90 � C.

In what follows, a semicrystalline polymer is modeled as an
incompressible medium. To validate this assumption, additional
tensile tests were conducted at room temperature, in which tensile
strain � and transverse strain �t were measured simultaneously by
means of longitudinal (model Instron Static 2630-113) and trans-
verse (model Epsilon 3574-250M) extensometers. Stretching of
samples was performed with the cross-head speed 20 mm/min.
The average (over observations on three specimens) stress–strain
diagram rð�Þ is depicted in Fig. 1. The characteristic dependence of
transverse strain �t on tensile strain � is reported in Fig. 6, where only
data below the yield strain �y are presented (in this region, no vol-
ume growth was observed induced by nucleation, formation, and
propagation of micro-voids). Fig. 6 demonstrates that transverse
strain �t increases linearly with � in the intervals of linear elastic re-
Fig. 1. Stress r versus strain �. Symbols: experimental data in cyclic tests with
various maximum strains �max at T = 23 � C. Solid lines: results of numerical
simulation.

Fig. 3. Stress r versus strain �. Symbols: experimental data in cyclic tests with
various maximum strains �max at T = 60 � C. Solid lines: results of numerical
simulation.
sponse ð0 < � < 0:015Þ and in the sub-yield region 0.015 < � < 0.1,
but slope of the curve �tð�Þ suffers an upward jump at � � 0:015.

To calculate Poisson’s ratios of HDPE, the experimental data are
approximated by the linear function

�t ¼ c0 � c1�; ð1Þ

where the coefficients c0 and c1 are calculated by the least-squares
method. Fitting is performed separately in the intervals [0,0.015]
and [0.015,0.1], respectively. Poisson’s ratios m1 (in the region of lin-
ear mechanical response) and m2 (in the interval of sub-yield
deformations) are set equal to appropriate coefficients c1. Poisson’s
ratio m1 ¼ 0:423 is in good agreement with the values of this param-



Fig. 4. Stress r versus strain �. Symbols: experimental data in cyclic tests with
various maximum strains �max at T = 75 � C. Solid lines: results of numerical
simulation.

Fig. 5. Stress r versus strain �. Symbols: experimental data in cyclic tests with
various maximum strains �max at T = 90 � C. Solid lines: results of numerical
simulation.

Fig. 6. Transverse strain �t versus tensile strain �. Circles: experimental data in a
tensile test. Solid lines: their approximation by Eq. (1) in the region of linear
mechanical response (A) and in the sub-yield region (B).
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eter reported by other researchers [m = 0.40 (Nitta and Suzuki,
1999), m = 0.42 (Fellahi et al., 1995), and m = 0.45 (Lai and Bakker,
1995)]. Poisson’s ratio m2 ¼ 0:490 is very close to m = 0.5 for an
incompressible medium, which implies that compressibility of
HDPE may be neglected in the analysis of its response at tensile
strains exceeding 0.015.
3. Model

To study the effect of temperature on mechanical properties of
crystalline and amorphous phases separately, we treat HDPE as a
two-phase composite, where crystalline inclusions are distributed
in an amorphous matrix. To reduce the number of adjustable
parameters in the stress–strain relations, several hypotheses are
introduced regarding the micro-structure of a semicrystalline poly-
mer and its mechanical behavior.

3.1. Basic assumptions

Following common practice (Nikolov and Doghri, 2000; Can-
gemi and Meimon, 2001; Bedoui et al., 2006; Brusselle-Dupend
and Cangemi, 2008), only two phases (amorphous and crystalline)
are taken into account. The presence of inter-phases and amor-
phous regions with reduced molecular mobility located between
spherulites and amorphous matrix (Rastogi et al., 2007) or near
the fold and stem surfaces (Murthy, 2001) is disregarded.

Both phases are treated as viscoplastic media. Their viscoelastic
response associated with rearrangement of chains (Tanaka and
Edwards, 1992) in the bulk amorphous phase and cooperative
relaxation (Mano, 2001) in crystallites and amorphous domains
with restricted molecular mobility is neglected. This assumption
appears to be reasonable for the analysis of cyclic tensile tests as
the duration of these tests did not exceed 1 min, while our obser-
vations in relaxation tests (Drozdov and Christiansen, 2008) show
that the decrease in stress during this period was lower than 20% at
room temperature, and it does not exceed 10% at temperatures
above 45 � C.

To describe the inelastic response of amorphous (m = 1) and
crystalline (m = 2) regions at small deformations, the strain tensor
for macro-deformation �̂ is split into the sum of strain tensors for
elastic �̂me and plastic �̂mp deformations

�̂ ¼ �̂me þ �̂mp: ð2Þ

The amorphous phase is modeled as an equivalent non-affine net-
work of chains linked by permanent junctions. Non-affinity means
that junctions slide with respect to their reference positions under
deformation. The strain rate for plastic deformation in the amor-
phous phase is proportional to the deviatoric component r̂01 of an
appropriate stress tensor r̂1,
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d�̂1p

dt
¼ W1r̂01; ð3Þ

where W1 is a non-negative function.
The strain tensor for plastic deformation in the crystalline phase

equals the sum of two strain tensors associated with intra-crystal-
line (c-shear) slip (Sirotkin and Brooks, 2001; Guan and Phillips,
2007) and inter-lamellar (sliding of crystalline blocks) flow (Mat-
thews et al., 1999; Jiang et al., 2009)

�̂2p ¼ ê1p þ ê2p: ð4Þ

The strain rate for intra-lamellar deformation is proportional to the
deviatoric component r̂02 of the stress tensor r̂2 in the crystalline
phase

dê1p

dt
¼ W2r̂02; ð5Þ

where W2 is a non-negative function. The strain rate for inter-lamel-
lar deformation is proportional to the strain rate for macro-
deformation

dê2p

dt
¼ /

d�̂
dt
: ð6Þ

The coefficient / in Eq. (6) satisfies the conditions: (i) / equals zero
in the reference state (which means that inter-lamellar slip does not
occur at very small deformations), (ii) it monotonically increases
with strain (which reflects acceleration of plastic flow under load-
ing), and (iii) it tends to the ultimate value /1 ¼ 1 at large
deformations.

3.2. Stress–strain relations

The strain energy density (per unit volume) of a two-phase
composite W equals the sum of strain energy densities of amor-
phous and crystalline phases

W ¼W1 þW2: ð7Þ

Eq. (7) implies that the energy of interaction between phases in ac-
counted for by means of the incompressibility condition only. The
strain energy density of the mth phase WmðtÞ ðm ¼ 1;2Þ is given
by the standard relation

Wm ¼
1
2
lm�̂me : �̂me; ð8Þ

where lm stands for rigidity of the mth phase, and the colon de-
notes convolution of tensors. The Clausius–Duhem inequality for
non-isothermal deformation of an incompressible medium reads

Q ¼ T
dg
dt
� dW

dt
þ r̂0 :

d�̂
dt
� 1

T
�q � rT P 0; ð9Þ

where T is absolute temperature, g stands for entropy per unit vol-
ume, �q is the heat flux vector, r denotes gradient, Q is the rate of
internal entropy production per unit volume, and

r̂0 ¼ r̂01 þ r̂02 ð10Þ

denotes deviator of the stress tensor r̂. Inserting Eqs. (7) and (8)
into Eq. (9) and using Eqs. (2)–(6), we find that the second law of
thermodynamics is satisfied for an arbitrary deformation program,
provided that

r̂01 ¼ l1�̂1e; r̂02 ¼ l2ð1� /Þ�̂2e; ð11Þ

the specific entropy g is connected with the strain energy density W
by the conventional equation

oW
og
¼ T;
and the heat flux vector reads

�q ¼ �jrT;

where j stands for thermal conductivity. Inequality (9) follows
from the formula

Q ¼ W1r̂01 : r̂01 þ
W2

1� /
r̂02 : r̂02 þ

j
T
rT � rT

and the conditions imposed on the functions
WmðtÞ ðm ¼ 1;2Þ and /ðtÞ.

The viscoplastic behavior of a semicrystalline polymer under an
arbitrary three-dimensional deformation with small strains is
described by

r̂ ¼ �pbI þ r̂0; ð12Þ

where p is an unknown pressure, bI stands for the unit tensor, and r̂0
is given by Eqs. (10) and (11).

3.3. Adjustable parameters

Stress–strain relations (10)–(12) together with kinematic equa-
tions (2) and (4) and kinetic equations (3) and (5) involve three
adjustable functions /ðtÞ; W1ðtÞ; and W2ðtÞ. To reduce the number
of material functions, we set

Wm ¼
w _�eq

lm
ðm ¼ 1;2Þ; ð13Þ

where w is a non-negative dimensionless function to be determined

later, and _�eq ¼ 2
3

d�̂
dt : d�̂

dt

� �1
2 denotes the equivalent strain rate for

macro-deformation.
Evolution of the coefficient / with time is described by the dif-

ferential equation

d/
dt
¼ �Að1þ beeq

2p � /Þ2; /ð0Þ ¼ 0 ð14Þ

with

A ¼ a _�eq: ð15Þ

Here a and b are coefficients that depend on temperature T only,
eeq

2p ¼ 2
3 ê2p : ê2p
� �1

2 stands for the equivalent plastic strain for inter-
lamellar shear, and the signs ‘‘+” and ‘‘�” correspond to loading
and unloading, respectively. For uniaxial tension, these processes
are determined unambiguously, whereas for an arbitrary three-
dimensional deformation, they can be defined following Xia et al.
(2005).

When b = 0, Eq. (14) is transformed into a conventional second-
order kinetic equation, whose order reflects the fact that sliding of
crystalline blocks induces sliding of junctions in the amorphous
matrix, which, in turn, accelerates plastic flow in the crystalline
phase. The second term in parentheses takes into account self-
acceleration of inter-lamellar slip driven by plastic deformation
of crystallites. The coefficient A in Eq. (14) characterizes duration
of a transition regime after which / approaches its ultimate value
/1. This dimensional parameter is replaced in Eq. (15) with its
dimensionless analog a.

The coefficient w is independent of strain �̂, but adopts different
values under loading and unloading. Its value under loading S1 is a
function of temperature T only: S1 ¼ S1ðTÞ. Its value under retrac-
tion S2 depends on two parameters: temperature T and equivalent
plastic strain �eq

p ¼ 2
3 �̂p : �̂p
� �1

2 reached under active loading:
S2 ¼ S2 T; �eq

p
� �

. To distinguish between the effects of temperature
and plastic strain tensor (with �̂p ¼ �̂1p þ �̂2p), a linear dependence
of S2 on �eq

p is adopted

S2 ¼ s0 � s1�eq
p ; ð16Þ



Fig. 7. Elastic moduli E1 and E2 versus temperature T. Symbols: treatment of
experimental data in cyclic tests. Solid lines: their approximation by Eq. (24).
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where s1 is a constant, and s0 ¼ s0ðTÞ is a function of temperature.
Given a temperature T and a maximum strain per cycle �max, the

mechanical behavior of a semicrystalline polymer under cyclic
deformation is determined by six adjustable parameters:
l1; l2; a; b; S1; and S2. This number is close to the number of
material constants in one-phase constitutive models for cyclic
loading, and it is noticeable lower than that in stress–strain rela-
tions that account for mechanically induced evolution of micro-
structure in semicrystalline polymers.

To characterize the effect of temperature on adjustable param-
eters in the stress–strain relations, the Arrhenius equations are
adopted for the coefficient b and the elastic moduli lm ðm ¼ 1;2Þ

b ¼ b0 exp �H0

RT

� �
; lm ¼ lm0 exp

Hm

RT

� �
; ð17Þ

where b0 and lm0 stand for pre-factors, H0 and Hm denote apparent
activation energies, and R is the universal gas constant.

The quantities S1 and s0, as well as the characteristic strain

�� ¼
1
a

ð18Þ

are presumed to linearly depend on temperature T

S1 ¼ Sð0Þ1 þ Sð1Þ1 T; s0 ¼ sð0Þ0 þ sð1Þ0 T; �� ¼ �ð0Þ� þ �ð1Þ� T; ð19Þ

where SðiÞ1 ; sðiÞ0 ; and �ðiÞ� ði ¼ 0;1Þ are constants. Comparison of Eqs.
(17) and (19) shows that b and lm are treated as parameters
strongly (exponentially) affected by temperature, whereas the
influence of temperature on other quantities is relatively weak to
be approximated by linear functions.

4. Fitting of observations

Adjustable parameters in the stress–strain relations are found
by fitting the observations reported in Figs. 1–5. Each set of exper-
imental data is approximated separately.

4.1. Governing equations

It follows from Eqs. (10)–(12) that under uniaxial tensile defor-
mation of an incompressible medium, the engineering stress r
reads

r ¼ r1 þ r2; r1 ¼ E1�1e; r2 ¼ E2ð1� /Þ�2e; ð20Þ

where

Em ¼
3
2
lm ðm ¼ 1;2Þ

stand for appropriate Young’s moduli. The elastic strains �1e and �2e

are determined from Eqs. (2) and (4)

�1e ¼ �� �1p; �2e ¼ �� e1p � e2p; ð21Þ

where � stands for tensile strain. Evolution of �1p; e1p; and e2p with
� is described by Eqs. (3), (5), (6), and (13)

d�1p

d�
¼ w

E1
r1;

de1p

d�
¼ w

E2
r2;

de2p

d�
¼ /; ð22Þ

where w ¼ S1 at stretching and w ¼ �S2 at retraction. Eq. (22) imply
that the plastic strains �1p and e1p grow monotonically with time,
while e2p increases under tension and decreases under retraction.
Changes in the coefficient / are governed by Eqs. (14), (15), and (18)

d/
d�
¼ 1
��
ð1þ be2p � /Þ2; ð23Þ

which provides physical meaning for the characteristic strain �� as
the strain at which plastic flow of junctions in the amorphous
matrix reaches it steady state.
4.2. Algorithm of approximation

We begin with matching the stress–strain curves at cyclic load-
ing with the maximum strain �max ¼ 0:15 at various temperatures
T. Parameters E1, E2, a, b, S1, and S2 are calculated by means of the
following procedure. First, some intervals ½0; a�	; ½0; b�	;
½0; S�1	; and ½0; S�2	 are fixed, where the best-fit parameters a, b, S1,
and S2 are located. Each of these intervals is divided into J ¼ 10
sub-intervals by the points aðiÞ ¼ iDa; bðjÞ ¼ jDb; SðkÞ1 ¼
kDS1; and SðlÞ2 ¼ lDS2 with Da ¼ a�=J; Db ¼ b�=J;
DS1 ¼ S�1=J; DS2 ¼ S�2=J; ði; j; k; l ¼ 0;1; . . . ; J � 1Þ. For each set
aðiÞ; bðjÞ; SðkÞ1 ; SðlÞ2

n o
, Eqs. (20)–(23) are integrated the Runge–Kutta

method from � ¼ 0 to � ¼ �max and from � ¼ �max to r ¼ 0 with
the step D� ¼ 1:0� 10�4. The moduli E1 and E2 are calculated by
the least-squares technique from the condition of minimum of
the function

F ¼
X

m

rexpð�mÞ � rnumð�mÞ½ 	2;

where summation is performed over strains �m at which the obser-
vations are reported, rexp is the engineering stress measured in the
test, and rnum is given by Eq. (20). After finding the best-fit values of
a, b, S1, and S2 from the condition of minimum of F, the initial inter-
vals are replaced with the new intervals ½a� Da; aþ Da	;
½b� Db; bþ Db	; ½S1 � DS1; S1 þ DS1	; ½S2 � DS2; S2 þ DS2	, and the
calculations are repeated.

When the elastic moduli E1 and E2 are determined for each tem-
perature separately, these quantities are plotted versus T in Fig. 7.
The data are approximated by Eq. (17)

log Em ¼ Eð0Þm þ
Eð1Þm

T
ð24Þ

with log ¼ log10; Eð0Þm ¼ log 3
2 lm0

� �
; and Eð1Þm ¼ Hm

R ln 10. The coefficients
EðiÞm ðm ¼ 1;2; i ¼ 0;1Þ are found by the least-squares method.

After determination of a, b, and S1 for each temperature T, the
quantity �� is calculated by means of Eq. (18), and parameters ��,
b, and S1 are plotted versus T in Figs. 8–10. The data reported in
Fig. 8 are matched by Eq. (19), where the coefficients �ð0Þ� and �ð1Þ�
are calculated (by the least-squares technique) in the regions be-



Fig. 8. Characteristic strain �� versus temperature T. Circles: treatment of exper-
imental data in cyclic tests. Solid lines: their approximation by Eq. (19).

Fig. 9. Dimensionless coefficient b in Eq. (23) versus temperature T. Circles:
treatment of experimental data in cyclic tests. Solid line: their approximation by Eq.
(25).

Fig. 10. Dimensionless rate of plastic strain under loading S1 versus temperature T.
Circles: treatment of experimental data in cyclic tests. Solid lines: their approxi-
mation by Eq. (19).
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low and above Ta separately. Observations presented in Fig. 9 are
fitted by Eq. (17)

log b ¼ bð0Þ � bð1Þ

T
ð25Þ

with bð0Þ ¼ log b0 and bð1Þ ¼ H0
R ln 10. The data depicted in Fig. 10 are

approximated by Eq. (19), where the coefficients Sð0Þ1 and Sð1Þ1 are
determined by the least-squares method in the intervals
T < Ta and T > Ta separately.

We proceed with fitting observations in cyclic tests with
�max ¼ 0:05 and 0.10 at various temperatures T. Given E1, E2, a, b,
and S1, each experimental stress–strain curve is determined by
the only parameter S2, which is found by means of the above
algorithm.

For each temperature T, the coefficient S2 is plotted versus max-
imum plastic strain reached under stretching �p in Fig. 11. First, the
data at T = 75 � C are fitted by Eq. (16)

S2 ¼ s0 � s1�p; ð26Þ

where the coefficients s0 and s1 are calculated by means of the least-
squares method. Then, the value of s1 is fixed, and each set of data
depicted in Fig. 11 is approximated by Eq. (26) with the only adjust-
able parameter s0. When the coefficient s0 is determined for all tem-
peratures, it is plotted versus T in Fig. 12. The data are matched by
Eq. (19), where the coefficients sð0Þ0 and sð1Þ0 are calculated in the
regions below and above Ta separately.
4.3. Discussion

Figs. 1–5 demonstrate good agreement between the experimen-
tal data in tensile cyclic tests with various maximum strains �max at
various temperatures T and the results of numerical simulation.

Fig. 7 reveals that the Arrhenius equation correctly describes
the effect of temperature on Young’s moduli of amorphous and
crystalline phases. The apparent activation energies H1 and H2

adopt similar values (H2 exceeds H1 by 26%, but some deviations
of experimental data for E1 from the theoretical dependence should
be mentioned). Closeness of H1 and H2 is in accord with the results
reported by Djokovic et al. (2000) based on treatment of observa-
tions in relaxation tests. The activation energies in the range 21–
26 kJ/mol are similar to those provided by Zubova et al. (2007)
for a-relaxation in HDPE (between 29 and 36 kJ/mol) and Bin Wa-
dud and Baird (2000) for relaxation in polyethylene melts
(between 27 and 32 kJ/mol).

Fig. 9 shows that Eq. (17) adequately describes evolution of b
with temperature. As H0 exceeds H2 by 30% and H1 by 63%, it is
rather difficult to conclude whether thermally induced changes
in b, E1, and E2 are driven by the same molecular mechanism.

Figs. 8, 10 and 12 demonstrate that slopes of the curves
��ðTÞ; S1ðTÞ; and s0ðTÞ alter pronouncedly in the vicinity of



Fig. 11. Dimensionless rate of plastic strain under retraction S2 versus plastic strain
�p. Symbols: treatment of experimental data in cyclic tests at various temperatures
T � C. Solid lines: their approximation by Eq. (26).

Fig. 12. Strain-independent component of plastic strain rate under retraction s0

versus temperature T. Circles: treatment of experimental data in cyclic tests. Solid
lines: their approximation by Eq. (19).

Fig. 13. Stress r versus strain �. Circles: experimental data in a cyclic test with the
maximum strain �max ¼ 0:122 at T = 23 � C. Solid line: prediction of the model.
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Ta � 50—60 �C (this temperature may be identified as the a-relax-
ation temperature). The value of Ta found in the analysis of obser-
vations in cyclic tests is close to the values Ta ¼ 50—60 �C
(Pegoretti et al., 2000), Ta ¼ 60 �C (Drozdov and Christiansen,
2008), Ta ¼ 70 �C (Stadler et al., 2005), and Ta ¼ 50—70 �C (Na
et al., 2007) obtained by using other experimental techniques.

According to Fig. 8, the characteristic strain �� ranges from 0.03
to 0.06 (depending on temperature). Comparison of these values
with appropriate values of the yield strain �y (Figs. 1–5) implies
that developed plastic flow in the amorphous phase is formed in
the sub-yield region of deformations, before the tensile stress
reaches its maximum.
Fig. 10 together with Eqs. (3) and (5) leads to a rather unex-
pected conclusion: above the a-relaxation temperature, the coeffi-
cient S1 vanishes. This means that no plastic flow in the amorphous
phase and no intra-lamellar slip in the crystalline phase occur
under active loading, while inter-lamellar shear provides the only
mechanism for inelastic deformation at T > Ta. This result, as well
as a noticeable decrease in s0 with T (Fig. 12), appear to be surpris-
ing as it is conventionally accepted that the growth of temperature
activates all mechanisms for energy dissipation. The above conclu-
sion, however, is in accord with the observations in cyclic tests
with �max ¼ 0:15 (Figs. 1–5) which show a pronounced decrease
in residual strains with temperature (the latter reflects a reduction
of plastic strains acquired under tension and retraction). The decay
in plastic flows in amorphous and crystalline domains does not
contradict the conventional mechanism of a-relaxation as
enhancement of mobility of chains due to release of constraints
imposed on their motion at T < Ta, but indicates that these con-
straints play the key role in sliding of junctions in the amorphous
matrix and intra-lamellar slip in crystallites.
5. Numerical simulation

Our aim now is to perform numerical simulation of the stress–
strain relations in order to (i) validate the model by comparison of
observations in independent tests with numerical predictions, and
(ii) conduct a thorough analysis of the effects of temperature and
maximum strain per cycle on residual strains.

5.1. Validation of the model

To examine the ability of the stress–strain relations to predict
the mechanical response of HDPE, two additional cyclic tensile
tests were carried out at room temperature with the maximum
strains �max ¼ 0:12 and 0.20. In each test, a sample was stretched
with the strain rate _� ¼ 4� 10�4 s�1 up to a maximum strain �max

and retracted down to the zero stress with the strain rate � _�. The
experimental data are reported in Figs. 13 and 14 together with
the results of numerical simulation. These figures demonstrate that
the model correctly predicts the observations.



Fig. 14. Stress r versus strain �. Circles: experimental data in a cyclic test with the
maximum strain �max ¼ 0:203 at T = 23 � C. Solid line: prediction of the model.
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To evaluate the influence of temperature on the viscoplastic
behavior of HDPE, numerical analysis is conducted of cyclic tensile
tests with the maximum strain �max ¼ 0:15 at T = 0, 20, 40, 60, and
80 � C. Appropriate stress–strain diagrams are reported in Fig. 15.
To confirm validity of numerical simulation, two tensile cyclic tests
were conducted at the temperatures T = 40 and 80 � C, and their
results are also depicted in Fig. 15. This figure shows (i) a pro-
nounced decrease in the maximum stress (ry is reduced by a factor
of 4, from 30.4 MPa at T = 0 � C to 7.0 MPa at T = 80 � C), (ii) a
noticeable growth of the yield strain (�y increases by twice, from
0.060 at T = 0 � C to 0.118 at T = 80 � C), and (iii) a substantial decay
in residual strain (�res decreases by twice, from 0.085 at T = 0 � C to
0.045 at T = 80 � C). These conclusions are in accord with the exper-
imental data depicted in Figs. 1–5.
Fig. 15. Stress r versus strain �. Solid lines: results of numerical simulation for cyclic t
experimental data in cyclic tests at T = 40 � C (unfilled circles) and T = 80 � C (filled circle
5.2. Evolution of residual strains with temperature

To study the effects of temperature and maximum strain on
residual strain after a cycle of loading–retraction, numerical simu-
lation is conducted for tensile cyclic tests with �max ¼ 0:06, 0.12,
and 0.18 at temperatures T in the interval from 0 to 100 � C. For
each �max, the strain �res (reached under unloading down to
r ¼ 0Þ is calculated and plotted versus T in Fig. 16. The results of
simulation are matched by the linear equation

�res ¼ �ð0Þres þ �ð1ÞresT; ð27Þ

where the coefficients �ð0Þres and �ð1Þres are calculated by the least-
squares technique in the intervals T < Ta and T > Ta separately.

Fig. 16 shows that (i) for each �max, Eq. (27) correctly approxi-
mates results of numerical analysis, (ii) at temperatures below
Ta, the residual strain �res is practically independent of tempera-
ture when the maximum strain per cycle is below or close to the
yield strain, and it weakly decreases with T when �max belongs to
the post-yield region of deformations, (iii) at temperatures above
the a-relaxation temperature, the residual strain �res strongly
decreases with T for all maximum strains �max, (iv) when the max-
imum strain per cycle lies in the interval of sub-yield deformations,
the graph �resðTÞ consists of two straight lines that intersect at the
a-relaxation temperature, whereas at �max > �y, an additional tran-
sition region arises near Ta.
6. Concluding remarks

Experimental data are reported on high density polyethylene in
tensile loading–unloading tests with a constant strain rate and var-
ious maximum strains at temperatures ranging from room temper-
ature to 90 � C (this interval covers the a-relaxation region of
HDPE). Observations reveal two characteristic features of the
thermo-viscoplastic response: (i) a pronounced reduction in elastic
moduli with temperature, and (ii) a decrease in an apparent resid-
ual strain (measured at the instant when tensile force vanishes
under retraction), which becomes substantial when the maximum
strain per cycle exceeds the yield strain.
ests with the maximum strain �max ¼ 0:15 at various temperatures T � C. Symbols:
s).



Fig. 16. Residual strain �res versus temperature T. Symbols: results of numerical
simulation for cyclic tests with various maximum strains �max. Solid lines: their
approximation by Eq. (27).
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A model is developed that allows evolution of elastic moduli of
amorphous and crystalline phases to be analyzed. A semicrystal-
line polymer is thought of as a two-phase composite, where crys-
talline inclusions are distributed in an amorphous matrix. Both
phases are treated as viscoplastic media: inelastic deformation in
the amorphous phase is attributed to sliding of junctions between
chains, whereas plastic flow in spherulites is associated with intra-
and inter-lamellar shear. Given a temperature and a maximum
strain per cycle, the stress–strain relations involve six adjustable
parameters that are found by fitting the observations.

The model adequately describes the experimental data and en-
sures good accuracy of prediction for observations in independent
tests. The latter confirms applicability of the constitutive model
with small strains to the analysis of experimental data in tests
where the maximum tensile strain does not exceed 20%. Adjustable
parameters are affected by temperature in a physically plausible
way. In particular, (i) Young’s moduli of amorphous and crystalline
phases decrease with temperature following the Arrhenius depen-
dencies with similar apparent activation energies, (ii) evolution of
��, S1, and S2 (these quantities characterize the viscoplastic flows in
amorphous and crystalline regions) with temperature is fitted by
linear equations at low and high temperatures, while the point of
intersection of the linear approximations coincides with the a-
relaxation temperature. The rates of sliding of junctions in amor-
phous matrix and intra-lamellar slip in crystallites vanish above
Ta, which may serve as a reason for the decay in residual strains
observed in cyclic tensile tests.
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