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Voltage-gated calcium (Ca2+) channels initiate release of neurotransmitters at synapses, and regulation of
presynaptic Ca2+ channels has a powerful influence on synaptic strength. Presynaptic Ca2+ channels form
a large signaling complex, which targets synaptic vesicles to Ca2+ channels for efficient release and mediates
Ca2+ channel regulation. Presynaptic plasticity regulates synaptic function on the timescale of milliseconds
to minutes in response to neurotransmitters and the frequency of action potentials. This article reviews the
regulation of presynaptic Ca2+ channels by effectors and regulators of Ca2+ signaling and describes the
emerging evidence for a critical role of Ca2+ channel regulation in control of neurotransmission and in presyn-
aptic plasticity. Failure of function and regulation of presynaptic Ca2+ channels leads to migraine, ataxia, and
potentially other forms of neurological disease. We propose that presynaptic Ca2+ channels serve as the reg-
ulatory node in a dynamic, multilayered signaling network that exerts short-term control of neurotransmis-
sion in response to synaptic activity.
Introduction
Ca2+ entry through presynaptic voltage-gated Ca2+ (Cav) chan-

nels initiates release of neurotransmitters. Multiple mechanisms

directly or indirectly modulate the function of these presynaptic

Ca2+ channels and thereby regulate synaptic transmission (Cat-

terall, 2000; Dunlap et al., 1995; Snutch and Reiner, 1992; Tedford

and Zamponi, 2006). Neuromodulation affects the ability of Cav

channels to open, close, or inactivate in response to membrane

depolarization and alters their response to repetitive stimuli in

an activity-dependent manner. These forms of channel regulation

have an important impact on neurotransmission (Catterall, 2000;

Tedford and Zamponi, 2006). Following brief overviews of Ca2+

channel structure/function and presynaptic plasticity, this article

reviews progress toward understanding the cellular and molecu-

lar mechanisms that modulate the activity of presynaptic Ca2+

channels, regulate synaptic transmission, and induce short-

term synaptic plasticity. We focus here on activity-dependent

mechanisms that have been shown to regulate synaptic transmis-

sion in functional synapses, including regulation by G protein-

coupled receptors, SNARE proteins, and residual intracellular

Ca2+. Broader reviews of Ca2+ channel regulation in transfected

cells and in the cell bodies of a wide range of native cell types

have been presented elsewhere (Catterall, 2000; Jarvis and Zam-

poni, 2005; Striessnig et al., 2006; Tedford and Zamponi, 2006).

Calcium Channels
Ca2+ currents in different cell types have diverse physiological

roles and pharmacological properties, and an alphabetical no-

menclature has evolved for the distinct classes of Ca2+ currents

(Tsien et al., 1988). N-type, P/Q-type, and R-type Ca2+ currents

require strong depolarization for activation (Tsien et al., 1991)

and are blocked by specific polypeptide toxins from snail and

spider venoms (Miljanich and Ramachandran, 1995). N-type

and P/Q-type Ca2+ currents are observed primarily in neurons,
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where they initiate neurotransmission at most fast conventional

synapses (Catterall, 2000; Dunlap et al., 1995; Olivera et al.,

1994). The Ca2+ channels that have been characterized bio-

chemically are composed of four or five distinct subunits

(Figure 1A) (Catterall, 2000; Takahashi et al., 1987). The a1 sub-

unit of 190–250 kDa is the largest subunit, and it incorporates the

conduction pore, the voltage sensors and gating apparatus, and

most of the known sites of channel regulation by second mes-

sengers, drugs, and toxins. The a1 subunit is composed of about

2000 amino acid residues organized in four homologous

domains (I–IV). Each domain of the a1 subunit consists of six-

transmembrane a helices (S1 through S6) and a membrane-

associated P loop between S5 and S6. Intensive studies of the

structure and function of the related pore-forming subunits of

Na+, Ca2+, and K+ channels have led to identification of their prin-

cipal functional domains (Yu et al., 2005). The S1 through S4 seg-

ments serve as the voltage sensor module (Figure 1B, yellow),

whereas transmembrane segments S5 and S6 in each domain

and the P loop between them form the pore module

(Figure 1B, green). The large intracellular segments of Ca2+ chan-

nels serve as a signaling platform for Ca2+-dependent regulation

of neurotransmission, as discussed below.

The a1 subunits are associated with four distinct auxiliary pro-

tein subunits (Catterall, 2000) (Figures 1A and 1B). The intracellu-

lar b subunit is a hydrophilic protein of 50–65 kDa. The trans-

membrane, disulfide-linked a2d subunit complex is encoded by

a single gene, but the resulting prepolypeptide is posttransla-

tionally cleaved and disulfide-bonded to yield the mature a2

and d subunits. A g subunit having four transmembrane seg-

ments is a component of skeletal muscle Ca2+ channels, and re-

lated subunits are expressed in heart and brain. The auxiliary

subunits of Ca2+ channels have an important influence on their

function (Dolphin, 2003; Hofmann et al., 1999). CaVb subunits

greatly enhance cell surface expression of the a1 subunits and
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shift their kinetics and voltage dependence of activation and in-

activation. The a2d subunits also enhance cell surface expres-

sion of a1 subunits, but have smaller and less consistent effects

on the kinetics and voltage dependence of gating (Davies et al.,

2007). The g subunits do not increase cell surface expression of

CaV channels and, in some cases, reduce it substantially. The

functional role of the g subunits of Ca2+ channels is the least

well-defined. Although these four auxiliary subunits modulate

the functional properties of the Ca2+ channel complex, the phar-

macological and physiological diversity of Ca2+ channels arises

primarily from the existence of multiple a1 subunits.

Ca2+ channel a1 subunits are encoded by ten distinct genes in

mammals, which are divided into three subfamilies by sequence

similarity (Catterall, 2000; Ertel et al., 2000; Snutch and Reiner,

1992). Division of Ca2+ channels into these three subfamilies is

phylogenetically ancient, as single representatives of each are

found in the C. elegans genome. The CaV2 subfamily members

(CaV2.1, CaV2.2, and CaV2.3) conduct P/Q-type, N-type, and

R-type Ca2+ currents, respectively (Catterall, 2000; Ertel et al.,

2000; Olivera et al., 1994; Snutch and Reiner, 1992).

The Presynaptic Ca2+ Current and Neurotransmission
Ca2+ entering neurons through CaV2.1 and CaV2.2 channels is

primarily responsible for initiating synaptic transmission at fast

Figure 1. Subunit Structure of CaV Channels
(A and B) The subunit composition and structure of
high-voltage-activatedCa2+channelsare illustrated.
(B) Predicted helices are depicted as cylinders.
The lengths of lines correspond approximately to
the lengths of the polypeptide segments repre-
sented. The voltage-sensing module is illustrated
in yellow and the pore-forming module in green.
(C) The sites of interaction of different regulatory
proteins on the intracellular surface of the a1 sub-
unit of CaV2 channels are illustrated.

conventional synapses (Dunlap et al.,

1995; Olivera et al., 1994). CaV2.2 chan-

nels, which conduct N-type Ca2+ current,

are most important at synapses formed

by neurons of the peripheral nervous sys-

tem. In contrast, CaV2.1 channels, which

conduct P/Q-type Ca2+ currents, play the

major role at most synapses formed by

neurons of the mammalian central ner-

vous system. However, in some central

synapses, including a subset of inhibitory

interneurons of the hippocampus (Poncer

et al., 1997), CaV2.2 channels are pre-

dominant in neurotransmitter release.

Ca2+ entry through a single Ca2+ chan-

nel can trigger vesicular release (Stanley,

1993), and Ca2+-triggered synaptic vesi-

cle exocytosis depends on the assembly

of the SNARE complex, in which the

vesicle-associated v-SNARE protein syn-

aptobrevin (VAMP) interacts with two

plasma-membrane-associated t-SNARE

proteins, SNAP-25 and syntaxin-1 (Bajjalieh and Scheller,

1995; Sollner et al., 1993; Sudhof, 1995, 2004). Maturation into

a release-ready SNARE complex requires synaptotagmin, an in-

tegral Ca2+-binding protein of the synaptic vesicle membrane

that provides Ca2+-dependent regulation of the fusion machin-

ery. Ca2+ influx into the presynaptic terminal binds to the Ca2+

sensor, synaptotagmin, and the SNARE complex changes

conformation from a trans to a cis state, resulting in the fusion

of apposing membranes and the release of neurotransmitter.

Neurotransmitter release occurs in two phases: a fast syn-

chronous (phasic) component and a slow asynchronous (tonic)

component (Atluri and Regehr, 1998; Barrett and Stevens,

1972; Goda and Stevens, 1994; Hubbard, 1963; Rahamimoff

and Yaari, 1973). Both forms of transmission are Ca2+ depen-

dent. Synchronous release driven by the precisely timed presyn-

aptic Ca2+ current results in a large, fast postsynaptic response

(Llinas et al., 1981; Sabatini and Regehr, 1996). The slower asyn-

chronous component, resulting from residual Ca2+ remaining in

the terminal after an action potential, provides a basal or tonic

level of neurotransmitter release at many synapses (Atluri and

Regehr, 1998; Hagler and Goda, 2001; Lu and Trussell, 2000).

Neurotransmitter release is proportional to the third or fourth

power of Ca2+ entry (Augustine et al., 1987; Dodge and Raha-

mimoff, 1967; Katz and Miledi, 1970; Zucker and Regehr,
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 883
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2002). Thus, regulation of presynaptic Ca2+ channels provides

a sensitive and efficient means to regulate neurotransmitter re-

lease, as a 2-fold change in the presynaptic Ca2+ current results

in an 8- to 16-fold change in exocytosis.

Synaptic Plasticity
Neurons fire at frequencies ranging from less than once per sec-

ond (1 Hz) to several hundred Hz. Changes in firing rate induce

different forms of synaptic plasticity that alter the amplitude of

both synchronous and asynchronous components of the post-

synaptic response (Hagler and Goda, 2001; Lu and Trussell,

2000; Zucker and Regehr, 2002). Short-term synaptic plasticity,

which occurs on a timescale of milliseconds to minutes, regu-

lates the activity of neural networks and information processing

in the nervous system (Abbott and Regehr, 2004; Katz and

Miledi, 1968; Zucker and Regehr, 2002). Short-term plasticity

typically reflects a presynaptic change in neurotransmitter re-

lease (Del Castillo and Katz, 1954; Katz and Miledi, 1968;

Zucker and Regehr, 2002). Short-term plasticity can result in

synaptic enhancement through three processes—facilitation,

augmentation, and posttetanic potentiation (PTP)—that

vary in duration (Figure 2A) (Zucker and Regehr, 2002). It can

also reduce neurotransmission, resulting in synaptic depres-

sion (Figure 2A) (Zucker and Regehr, 2002). The molecular

mechanisms mediating the various forms of short-term plastic-

ity are still a topic of debate, but all of these forms of short-term

plasticity are Ca2+ dependent (Katz and Miledi, 1968; Zucker

and Regehr, 2002).

Katz and Miledi proposed that residual Ca2+ remaining in the

synapse after an action potential acts to enhance synaptic

transmission (Katz and Miledi, 1968; Zucker and Regehr,

2002). This model is supported by more recent experiments

in which introduction of the slow Ca2+ chelator ethylene gly-

col-bis(b-aminoethyl ether)-N,N,N0,N0-tetraacetic acid (EGTA)

into the presynaptic terminal reduces synaptic enhancement

(Atluri and Regehr, 1996; Habets and Borst, 2005; Hochner

et al., 1991; Korogod et al., 2005; Regehr et al., 1994; Van

der Kloot and Molgo, 1993). The simplest explanation is that

residual Ca2+ binds to the Ca2+ sensor for exocytosis and

increases neurotransmitter release (Katz and Miledi, 1968).

However, more recent data indicate that residual Ca2+ acts

on Ca2+-binding protein(s) other than the sensor for neurotrans-

mitter release to enhance synaptic transmission (Blatow et al.,

2003; Felmy et al., 2003; Muller et al., 2007; Sippy et al., 2003;

Tsujimoto et al., 2002).

Short-term synaptic plasticity has two mechanistic elements:

(1) the source and regulation of the residual Ca2+ that initiates

the process and (2) the effector mechanism(s) that respond to re-

sidual Ca2+ and enhance neurotransmitter release. Two major ef-

fector mechanisms that may contribute to synaptic facilitation

have been proposed. In one mechanism, high-affinity presynap-

tic Ca2+ buffers, such as calbindin-D28K and parvalbumin, are

partially saturated by residual Ca2+ remaining after an action po-

tential. Thus, when another action potential follows in close suc-

cession, more of the entering Ca2+ remains free and available to

act on the normal Ca2+ sensor(s) for neurotransmitter release,

presumably the synaptotagmins (Blatow et al., 2003; Felmy

et al., 2003; Muller et al., 2007). In this case, the effector mech-
884 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
anism of residual Ca2+ is occupancy of high-affinity Ca2+ buffers.

In the second type of mechanism, residual Ca2+ binds to a Ca2+

sensor other than that for neurotransmitter release to increase

the probability of release. Activation of this ‘‘facilitation sensor’’

may increase Ca2+ entry (Mochida et al., 2008; Tsujimoto et al.,

2002) and thereby enhance neurotransmitter release according

to the power law or may directly modulate the vesicular release

machinery to enhance neurotransmitter release (Dittman et al.,

2000; Sippy et al., 2003).

Augmentation and PTP require longer trains of stimuli than fa-

cilitation and are defined by their longer decay time constants

(augmentation t = 5–10 s; PTP t = 30 s to minutes) (Figure 2A)

(Zucker and Regehr, 2002), but they may represent overlapping

Figure 2. Multiple Forms of Short-Term Synaptic Plasticity
(A) Simulated experiment showing the relative rise and decay times for multiple
forms of short-term synaptic plasticity. Excitatory postsynaptic currents were
evoked at 0.5 Hz versus time with tetanic stimulation (HFS, 10 Hz for 10 s) be-
ginning at time 0. Adapted from Zucker and Regehr (2002). Tetanic stimulation
required to induce short-term plasticity varies from synapse to synapse. Aug-
mentation (gray) decays more rapidly than PTP (black).
(B) Facilitation and depression of synaptic transmission at the calyx of Held.
EPSCs recorded from principal neurons in an auditory nucleus in the brainstem
receiving input from the calyx of Held in a solution containing 1 mM Ca2+ and
2 mM Mg2+ were evoked by a train of 20 stimuli at 100 Hz. EPSCs were
recorded from slices of either wild-type (C) mice or mice lacking P/Q channels
(B). EPSCs in wild-type neurons show facilitation that is absent in neurons
lacking P/Q channels, suggesting that facilitation is caused by P/Q channels.
Adapted from Ishikawa et al. (2005).



Neuron

Review
physiological processes. Augmentation is caused by an increase

in the probability of vesicle release rather than by an increase in

the size of the readily releasable pool of vesicles (Stevens and

Wesseling, 1999). The rate of Ca2+ clearance from the synapse

can determine whether augmentation or PTP occurs (Korogod

et al., 2005; Zucker and Regehr, 2002). Residual Ca2+ that accu-

mulates during the long stimuli that induce augmentation and

PTP is eliminated from the synapse by the Ca2+-ATPase and

the Na+/Ca2+ exchanger. Long trains of action potentials in-

crease intracellular Ca2+ and Na+ concentrations and slow the

rate of Ca2+ clearance by Na+/Ca2+ exchange or even drive it

in reverse. Residual Ca2+ driving PTP can also result from the

slow efflux of mitochondrial or endoplasmic reticulum Ca2+

that accumulates during tetanic stimulation (Lin et al., 1998; Nar-

ita et al., 2000; Tang and Zucker, 1997).

Synaptic depression reduces the strength of synaptic trans-

mission during repeated stimuli, whether delivered as closely

paired stimuli (paired-pulse depression) or as trains of stimuli.

It is thought that depression primarily results from depletion

of the pool of readily releasable vesicles (Zucker and Regehr,

2002). Electron microscopic studies directly demonstrate de-

pletion of the total pool of synaptic vesicles, but only after

long (several minutes) trains of stimuli (Dickinson-Nelson and

Reese, 1983). Depletion and recovery of the readily releasable

pool of synaptic vesicles, as defined by high-sucrose treatment

or long depolarization, is correlated with depression and recov-

ery of synaptic responses following trains of action potentials

(Rosenmund and Stevens, 1996; Wu and Borst, 1999). How-

ever, physiological studies show that vesicle depletion does

not fully account for rapid synaptic depression at some synap-

ses (Sullivan, 2007; Xu and Wu, 2005). Decreased release prob-

ability caused by decreased Ca2+ entry (Forsythe et al., 1998;

Xu and Wu, 2005), or changes downstream of Ca2+ entry (Wu

and Borst, 1999) have been proposed. Therefore, like facilita-

tion, augmentation, and PTP, multiple mechanisms contribute

to synaptic depression, and their relative roles remain under

debate.

Presynaptic Ca2+ Channel Signaling Complexes
Ca2+ entering neurons through Ca2+ channels forms a transient

microdomain of high Ca2+ concentration in the presynaptic nerve

terminal (Llinás et al., 1992; Smith et al., 1993; Stanley, 1997).

Neurotransmitter release is initiated within 200 ms after the arrival

of the action potential. Exocytosis of synaptic vesicles requires

high Ca2+ concentration, with a threshold of 10 mM and near-

maximal activation at 50 mM (Schneggenburger and Neher,

2005). SNARE proteins and other intracellular proteins that

bind Ca2+ to initiate and regulate synaptic transmission must

be located near Ca2+ channels in order to receive the Ca2+ signal.

In many cases, this close localization is achieved by direct inter-

action with the intracellular domains of Ca2+ channels, which

serve as signal transduction platforms for cytosolic Ca2+ signal-

ing (Catterall, 2000). The signaling complexes of presynaptic

Ca2+ channels contain SNARE proteins involved in exocytosis,

G proteins involved in feedback regulation of Ca2+ channels,

and many Ca2+-binding proteins involved in regulation of

channel activity and initiation of Ca2+-dependent responses,

including short-term synaptic plasticity.
Interactions of Presynaptic Ca2+ Channels
with SNARE Proteins
Both CaV2.1 and CaV2.2 channels colocalize densely with syn-

taxin-1 at the presynaptic nerve terminals (Cohen et al., 1991;

Westenbroek et al., 1992, 1995). These channels can be isolated

as a complex with SNARE proteins (Bennett et al., 1992; Leveque

et al., 1994; Yoshida et al., 1992). The plasma membrane SNARE

proteins syntaxin-1A and SNAP-25, but not the synaptic vesicle

SNARE synaptobrevin, specifically interact with the Cav2.2 chan-

nel by binding to the intracellular loop between domains II and III

(LII-III) of the a12.2 subunit (Figure 1C) (Sheng et al., 1994) at the

synaptic protein interaction (synprint) site. This interaction is

Ca2+ dependent, with maximal binding at 20 mM Ca2+ and re-

duced binding at lower or higher Ca2+ concentrations (Sheng

et al., 1996), suggesting sequential steps of association and dis-

sociation of SNARE proteins with CaV2 channels as a function of

Ca2+ concentration. Two peptide segments separated by a flexi-

ble linker within the synprint site independently bind both syn-

taxin-1A and SNAP-25 (Yokoyama et al., 2005). CaV2.1 channels

have an analogous synprint site, and different channel isoforms

have distinct interactions with syntaxin and SNAP-25 (Kim and

Catterall, 1997; Rettig et al., 1996), which may confer specialized

regulatory properties that contribute to synaptic modulation. The

molecular interaction between syntaxin and presynaptic CaV2.2

channels has been observed in intact nerve terminals by molec-

ular imaging and correlation analysis (Li et al., 2004b).

Synaptotagmin-1, -2, -3, and -9 serve as the Ca2+ sensors for

the fast, synchronous neurotransmitter release (Geppert et al.,

1994; Sudhof, 2004; Xu et al., 2007). Synaptotagmin-1 contains

two homologous C2 domains, which bind Ca2+ to initiate syn-

chronous transmitter release (Sudhof, 2004). The C2B domain

of synaptotagmin-1 binds to the synprint sites of both CaV2.1

and CaV2.2 channels (Sheng et al., 1997). Moreover, syntaxin in-

teracts competitively with either synprint or synaptotagmin in a

Ca2+-dependent manner, such that at low Ca2+ concentrations

syntaxin-1 binds synprint, whereas at higher concentrations

(>30 mM) its association with synaptotagmin increases. The se-

quential Ca2+-dependent binding of syntaxin to the synprint site

and then to synaptotagmin in vitro may reflect stepwise protein

interactions that occur during exocytosis (Sheng et al., 1996).

Several protein kinases are localized in presynaptic terminals

and phosphorylate Ca2+ channels and SNARE proteins. Phos-

phorylation of the synprint peptide by protein kinase C (PKC)

and Ca2+/calmodulin-dependent protein kinase II (CaMKII)

in vitro strongly inhibits its binding to syntaxin-1A and SNAP-

25 (Yokoyama et al., 1997). The two separate segments of the

synprint site that each bind syntaxin-1 and SNAP-25 in vitro

are regulated by PKC phosphorylation at serines 774 and 898

and by CaMKII phosphorylation at serines 784 and 896, respec-

tively (Yokoyama et al., 2005). Each phosphorylation site con-

trols syntaxin-1 and SNAP-25 binding to half of the synprint

site (Yokoyama et al., 2005). These studies suggest that phos-

phorylation of the synprint site by PKC or CaMKII may serve as

a biochemical switch controlling the SNARE-synprint interaction.

This mechanism provides a potential functional link between

neurotransmitter-activated protein phosphorylation and tether-

ing docked synaptic vesicles in an optimal position to respond

to the Ca2+ signal from presynaptic Ca2+ channels.

Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 885
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Regulation of Ca2+ Channels by SNARE Proteins
In addition to linking presynaptic Ca2+ channels to the vesicle re-

lease machinery, syntaxin-1A and SNAP-25 also regulate chan-

nel function. Coexpression of syntaxin-1A and/or SNAP-25 with

Cav2.1 or Cav2.2 channels reduces the availability of the chan-

nels to open and shifts the voltage dependence of inactivation

toward more negative membrane potentials (Bezprozvanny

et al., 1995; Wiser et al., 1996; Zhong et al., 1999). The inhibitory

effects of syntaxin on CaV2.2 channels can be reversed by coex-

pressing SNAP-25 (Jarvis and Zamponi, 2001; Wiser et al.,

1996), and the inhibitory effects of SNAP-25 on CaV2.1 channels

can be relieved by coexpressing synaptotagmin-1 (Wiser et al.,

1997; Zhong et al., 1999). Relief of inhibition of Ca2+ channels

by formation of a complete synaptotagmin/SNARE complex fa-

vors Ca2+ influx through CaV2 channels having docked synaptic

vesicles nearby that are ready for release, thus providing a poten-

tial mechanism to increase the release probability of synaptic

vesicles that are docked close to CaV2 channels.

The synprint site binds to the entire H3 helix in the cytoplasmic

domain of syntaxin-1A (Bezprozvanny et al., 2000; Sheng et al.,

1994, 1996). However, the transmembrane region and only

a short segment within the H3 helix are critical for channel mod-

ulation (Bezprozvanny et al., 2000). Deletion of the synprint site

weakened the modulation of the channels by syntaxin-1A, but

did not abolish it, arguing that the synprint site acts as an anchor

in facilitating channel modulation but is not required for modula-

tory action.

SNARE protein modulation of Cav2 channels is also regulated

by protein phosphorylation. PKC phosphorylation blocks the

negative shift of steady-state inactivation of Cav2.2 channels

caused by syntaxin, possibly by altering the interaction of syn-

taxin-1 with the synprint site (Jarvis and Zamponi, 2001). PKC

activation in transfected tsA-201 cells does not completely

dissociate syntaxin-1A from the channels but does completely

reverse the negative shift of the voltage dependence of inactiva-

tion caused by syntaxin-1A (Yokoyama et al., 2005).

Many presynaptic proteins regulate the synaptic vesicle cycle

via interactions with the SNARE proteins, and these interactions

have potential impacts on the modulation of the SNARE-CaV2

channel complex. Rab-interacting molecule (RIM), an active

zone protein that is required for synaptic transmission and is im-

plicated in synaptic plasticity, interacts with the synprint region

in vitro (Coppola et al., 2001; Hibino et al., 2002). In addition,

RIM interacts with CaVb subunits and shifts the voltage depen-

dence of inactivation to more positive membrane potentials,

increasing Ca2+ channel activity (Kiyonaka et al., 2007). In the

neuroendocrine cell line PC12, interaction of RIM with CaV2.2

channels increases docking of neurotransmitter-containing ves-

icles (Kiyonaka et al., 2007). Regulation of presynaptic Ca2+

channel function and vesicle docking by RIM provides an addi-

tional potential pathway to increase the release probability of

synaptic vesicles docked close to CaV2 channels.

Regulation of Presynaptic Ca2+ Channels
by Interaction with G Proteins
G protein-coupled receptors in presynaptic nerve terminals bind

released neurotransmitters and provide negative feedback to in-

hibit presynaptic N-type and P/Q-type Ca2+ currents and

886 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
thereby reduce neurotransmitter release (Hille, 1994; Ikeda and

Dunlap, 1999). Autoreceptors in one nerve terminal bind neuro-

transmitter(s) released from that terminal, whereas other G pro-

tein-coupled receptors in the same nerve terminal may respond

to neurotransmitters released by nearby nerve terminals from

other neurons. Most neurotransmitters inhibit Ca2+ currents in

this manner, including acetylcholine, glutamate, GABA, biogenic

amines, and many neuropeptides. Negative regulation of neuro-

transmitter release through inhibition of Ca2+ currents is very

potent because of the power law of synaptic transmission. The

most prominent form of G protein-induced inhibition causes

a positive shift in the voltage dependence of activation of the

Ca2+ current, which can be reversed by strong positive depolar-

ization (Figure 3A) (Bean, 1989; Marchetti et al., 1986; Tsunoo

et al., 1986). Gbg subunits released from heterotrimeric G pro-

teins of the Gi/Go class, which are sensitive to inhibition by

Figure 3. G Protein Regulation of Ca2+ Channels and Synaptic
Transmission
(A) Activation of G proteins by intracellular GTP-gS induced facilitation of Ba2+

currents conducted by CaV2.1 channels expressed in tsA-201 cells following
a conditioning prepulse to 100 mV for 10 s. Adapted from Herlitze et al. (1996).
(B and C) Relief of synaptic depression and resulting synaptic enhancement
induced by activation of G proteins with extracellular baclofen, a GABA-B
receptor agonist, in microisland cultures of hippocampal neurons. Adapted
from Brody and Yue (2000). (B) Stimulus protocol (top) and example traces
recorded in the presence of baclofen (bottom). (C) Averaged data showing
synaptic depression in control cells at all intervals measured and initial facilita-
tion in the presence of baclofen.
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pertussis toxin, are usually responsible for this form of Ca2+

channel inhibition (Hille, 1994; Ikeda and Dunlap, 1999). Reversal

of this inhibition by depolarization provides a point of intersection

between chemical and electrical signal transduction at the syn-

apse and can potentially provide novel forms of short-term syn-

aptic plasticity that do not rely on residual Ca2+.

Studies in transfected nonneuronal cells and in neurons re-

vealed that this form of Ca2+ channel regulation is caused by

binding of G protein bg subunits directly to the Ca2+ channel

(Herlitze et al., 1996; Ikeda, 1996). Extensive studies have impli-

cated three sites of interaction with Ca2+ channel a1 subunits

(Figure 1C): the N terminus (Canti et al., 1999), the intracellular

loop connecting domains I and II (LI-II [Herlitze et al., 1997;

Zamponi et al., 1997]), and the C terminus (Delmas et al., 2005;

Furukawa et al., 1998; Li et al., 2004a; Qin et al., 1997). The sites

in the N terminus and LI-II exert the most potent effects.

In addition to this widespread, voltage-dependent inhibition of

CaV2 channels by direct interaction with G proteins, many neu-

rons also exhibit voltage-independent inhibition of CaV2 chan-

nels that is dependent on intracellular signaling pathways and in-

volves multiple protein kinases (Dunlap et al., 1995; Hille, 1994;

Strock and Diverse-Pierluissi, 2004). Voltage-independent regu-

lation by G proteins often involves the Gq family of G proteins,

which regulate the levels of phosphatidylinositide lipids by in-

ducing hydrolysis of phosphatidylinositol bisphosphate via

activation of phospholipase C enzymes (Delmas et al., 2005).

Regulation of Ca2+ channels by this pathway has not yet been

shown to modulate synaptic transmission, but it is likely that

new information on this subject will appear in the near future.

Regulation of the Cav2.2 channels also involves interplay be-

tween synprint site interactions and second messenger modula-

tion of Ca2+ channels by G proteins. Syntaxin-1A is required for G

protein inhibition of presynaptic Ca2+ channels in intact neuronal

terminals (Stanley and Mirotznik, 1997), as cleavage of syntaxin-

1A by botulinum toxin prevents G protein modulation of presyn-

aptic Ca2+ channels in chick calyx synapses. Further studies

(Jarvis et al., 2000) showed that the synprint site and Gb subunit

bind to distinct portions of syntaxin-1A and that expression of

syntaxin-1A is a prerequisite for tonic G protein inhibition of the

CaV2.2 channels.

Regulation of Presynaptic Ca2+ Channels
by Ca2+ and Calmodulin
L-type Ca2+ currents in cardiac myocytes have long been known

to be regulated by Ca2+-dependent inactivation (Yue et al.,

1990), but N-type and P/Q-type Ca2+ currents in neuronal cell

bodies typically do not show this form of Ca2+-dependent regu-

lation (Chaudhuri et al., 2005; Mochida et al., 2008). In contrast,

Ca2+-dependent inactivation of presynaptic P/Q-type currents is

observed at the calyx of Held, a giant synapse in an auditory nu-

cleus in the brainstem (Forsythe et al., 1998). Similarly, with

a level of internal buffering (0.5 mM EGTA) similar to the cytosol,

Ca2+-dependent inactivation is also observed for Cav2.1 chan-

nels transfected in nonneuronal cells (Lee et al., 1999, 2000)

(Figure 4A). These results suggest that the high density of Ca2+

channels in the active zones of nerve terminals and in transfected

cells is necessary to support Ca2+-dependent inactivation of

CaV2.1 channels, whereas the lower density in neuronal cell bod-
ies is not. Thus, it seems that Ca2+ entry through a single CaV2.1

channel is not sufficient to cause its inactivation and therefore

that global increases in Ca2+ mediated by multiple nearby Ca2+

channels are required for Ca2+-dependent inactivation of these

channels. With low concentrations of EGTA (0.5 mM), Ca2+-de-

pendent inactivation is also observed for Cav2.2 and Cav2.3

channels (Liang et al., 2003). Therefore, all three Cav2 family

channels show Ca2+-dependent inactivation in response to

global increases in Ca2+.

During trains of depolarizations, P/Q-type Ca2+ currents in-

crease in size during the first pulses due to facilitation and then

inactivate in a pulsewise manner (Cuttle et al., 1998; Lee et al.,

2000) (Figures 2B and 4A). Both facilitation and inactivation are

prevented when Ba2+ is the permeant ion (Figure 4A) and when

Ca2+ is rapidly chelated by BAPTA. However, inactivation, but

not facilitation, is prevented by a high intracellular concentration

of EGTA (10 mM) (Lee et al., 2000). These results indicate that the

facilitation process has higher affinity and/or more rapid binding

of Ca2+ than the inactivation process. This dual feedback regula-

tion may permit activity-dependent sharpening of presynaptic

Ca2+ signals by enhancing the Ca2+ transients in response to

the early action potentials in a train and reducing the Ca2+ tran-

sients in response to the later action potentials. This would have

the effect of increasing release probability during short trains of

impulses followed by reduction of release probability during

long trains.

Both Ca2+-dependent facilitation and inactivation of CaV2.1

channels are dependent on calmodulin (CaM) (DeMaria et al.,

2001; Lee et al., 1999, 2000). In the C-terminal domain of the

full-length a12.1 subunit, CaM interacts with a modified IQ-like

motif, which begins with the sequence isoleucine-methionine

(IM) rather than isoleucine-glutamine (IQ), and with a second

nearby downstream site (the CaM binding domain, CBD), both

of which are involved in Ca2+-dependent feedback regulation

of full-length Cav2.1 channels (Figure 1C) (DeMaria et al., 2001;

Lee et al., 1999, 2003). Ca2+-dependent facilitation is impaired

by mutations in CaM that prevent binding of Ca2+ at the C-termi-

nal EF-hands (DeMaria et al., 2001; Lee et al., 2003). In contrast,

Ca2+-dependent inactivation is preferentially inhibited by

mutations of the Ca2+-binding sites in the N-terminal lobe of

CaM (DeMaria et al., 2001; Lee et al., 2003).

Recent studies using multiphoton microscopy and a microflui-

dic mixer have revealed two sequential, rapid conformation

changes of CaM upon binding Ca2+, which may be the molecular

basis for its biphasic regulation of Ca2+ channel function (Park

et al., 2008). The first transition in the C-terminal lobe proceeds

with a time constant of �0.5 ms. The second transition in the

N-terminal lobe proceeds with a time constant of�20 ms. These

absolute rate constants are faster than facilitation and inactiva-

tion of CaV2.1 channels, but these lobe-specific conformational

transitions in CaM would be expected to be slowed by its binding

to a regulatory target in which it must induce additional confor-

mational changes as part of its regulatory mechanism. The 40-

fold difference in the rates of the two conformational changes

in CaM approximates the difference in rates of facilitation and in-

activation, supporting the idea that they may indeed represent

the molecular mechanism for biphasic regulation of CaV2.1

channels.
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Figure 4. Regulation of CaV2.1 Channels by CaM and CaM-like nCaS Proteins
(A) Ca2+/CaM-dependent regulation of CaV2.1 channels expressed in tsA-201 cells. Currents were evoked by 5 ms depolarizations from�80 to +20 mV (Ca2+) or
+10 mV (Ba2+) at 100 Hz. Ca2+ currents (black) show initial Ca2+-dependent facilitation followed by Ca2+-dependent and voltage-dependent inactivation. The
regulation remaining in Ba2+ currents is voltage dependent.
(B) Model for sequential Ca2+/CaM-dependent facilitation and inactivation. Local rises in intracellular Ca2+ activate the two C-terminal Ca2+-binding EF-hands of
CaM, which strengthens or initiates an interaction with the IQ-like motif causing facilitation. Following prolonged Ca2+ entry, global rises in intracellular Ca2+ allow
CaM to become fully liganded where it interacts with both the IQ-like motif and CaM-binding domain (CBD) to produce inactivation. Adapted from Lee et al.
(2003).
(C) Schematic representation of CaM and two CaM-like nCaS proteins, CaBP1 and VILIP-2, showing N-terminal myristoyl group (CaBP1 and VILIP-2), EF-hands,
and central helical linker. Filled boxes represent Ca2+-binding EF-hands. Open boxes represent EF-hands that are inactive in binding Ca2+.
(D) Averaged normalized Ca2+ currents elicited as in panel (A) in tsA-201 cells expressing CaV2.1 channels modulated by endogenous CaM (black) or over-
expressed CaBP1 (blue) or VILIP-2 (green).
(C and D) Adapted from Lautermilch et al. (2005).
The two lobes of CaM interact differentially with the two CaM-

binding subsites in the C-terminal domain of CaV2.1 channels

(Lee et al., 2003). Mutations of the IQ-like domain primarily impair

facilitation, indicating that they interact primarily with the

C-terminal lobe of CaM (DeMaria et al., 2001; Lee et al., 2003).

In contrast, mutations of the CBD primarily impair Ca2+-depen-

dent inactivation (Lee et al., 2003), suggesting that they interact

primarily with the lower affinity N-terminal lobe of CaM. These re-

sults lead to a model in which rapid, high-affinity binding of Ca2+

to the C-terminal lobe of CaM and interaction with the IQ-like

motif of CaV2.1 channels cause facilitation, whereas subsequent

slower and/or lower-affinity binding of Ca2+ to the N-terminal

lobe of CaM and interaction with the CBD of CaV2.1 channels

cause inactivation (Figure 4B).

It is interesting to compare this biphasic regulation of CaV2.1

channels in synapses and transfected cells to Ca2+/CaM-depen-

dent regulation of other CaV1 and CaV2 channels. Both CaV2.2

and CaV2.3 channels have Ca2+-dependent inactivation that de-

pends on global Ca2+ and the N-terminal lobe of CaM, but neither

of these channels shows marked Ca2+/CaM-dependent facilita-

tion of Ca2+ channel activity (Liang et al., 2003). CaV1.2 channels,

which conduct L-type Ca2+ currents in cardiac myocytes, endo-

crine cells, and neurons, have striking Ca2+/CaM-dependent in-

activation (Peterson et al., 1999; Zühlke et al., 1999). This form of
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Ca2+-dependent inactivation of CaV1.2 channels relies on local

Ca2+ and involves high-affinity interaction of the C-terminal

lobe of CaM with a classical IQ domain in the C-terminal domain

(Peterson et al., 1999). However, a second novel CaM-interact-

ing domain in the N-terminal domain of CaV1.2 channels can

transform the regulation by the N-terminal lobe of CaM such

that it also mediates Ca2+-dependent inactivation in response

to local rather than global Ca2+ (Dick et al., 2008; Zhou et al.,

2005). CaV1.3 channels, which conduct L-type Ca2+ currents in

endocrine cells and in the nerve terminals of specialized ribbon

synapses in auditory hair cells, also have rapid Ca2+/CaM-de-

pendent inactivation when expressed in nonneuronal cells (Cui

et al., 2007), and this rapid inactivation is controlled by an alter-

natively spliced autoregulatory domain in the distal C terminus of

these channels (Singh et al., 2008). In contrast, CaV1.4 channels,

which conduct L-type Ca2+ currents in the synaptic terminals of

photoreceptors, have no Ca2+/CaM-dependent inactivation, but

deletion of the distal C-terminal autoregulatory domain reveals

latent Ca2+/CaM-dependent inactivation (Singh et al., 2006). Ev-

idently, the form of Ca2+/CaM-dependent regulation of CaV1

channels is tailored to their specific functional roles in local

Ca2+-dependent signal transduction by interactions of the C-ter-

minal IQ domain with other regulatory domains in the N and C

termini.
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Regulation of CaV2 Channels by Ca2+ Regulatory
Proteins
CaM is the primordial member of a large family of related Ca2+

sensors (CaS), some of which are expressed specifically in neu-

rons (nCaS) (Burgoyne and Weiss, 2001; Haeseleer et al., 2002).

Like CaM, these nCaS proteins possess four EF-hand Ca2+-

binding motifs organized in two lobes connected by a central

a helix (Figure 4C). At least one of the two N-terminal EF-hands

of nCaS is nonfunctional in Ca2+ binding due to changes in amino

acid sequence, and the nCaS proteins are myristolyated at their

N terminus (Figure 4C) (Burgoyne and Weiss, 2001). nCaS are

similar enough to displace CaM from shared binding sites in

the a1 subunits of CaV channels, but different enough to confer

distinct forms of regulation.

CaBP1 is a member of a subfamily of nCaS highly expressed in

the brain and retina (Haeseleer et al., 2000) and is colocalized

with presynaptic Cav2.1 channels in some synapses (Lee et al.,

2002). Like CaM, CaBP1 binds to the CBD of a12.1, but its bind-

ing is Ca2+ independent (Lee et al., 2002). It causes rapid inacti-

vation that is independent of Ca2+, and it does not support Ca2+-

dependent facilitation (Lee et al., 2002) (Figure 4D). A second

nCaS that modulates Cav2.1 channels is visinin-like protein-2

(VILIP-2), which is highly expressed in the neocortex and hippo-

campus (Burgoyne and Weiss, 2001). When cotransfected with

Cav2.1 channels in mammalian cells, VILIP-2 increases Ca2+-de-

pendent facilitation, but inhibits Ca2+-dependent inactivation

(Lautermilch et al., 2005) (Figure 4D). These effects of VILIP-2

may involve displacement of CaM from the CBD, because both

the CBD and IQ-like motifs of a12.1 are required for binding of

VILIP-2. Thus, CaBP-1 and VILIP-2 bind to the same site as

CaM but have opposite effects on CaV2.1 channel activity

(Figure 4D). In a presynaptic terminal, these differential effects

on facilitation and inactivation of the P/Q-type Ca2+ current

would substantially change the encoding properties of the syn-

apse in response to trains of action potentials (Abbott and

Regehr, 2004).

How can VILIP-2 and CaBP1 have such opposing effects on

Cav2.1 function? The mechanism for these effects is not yet

clear, but both proteins must be myristolyated on the N termini

to have their distinctive regulatory effects (Few et al., 2005). Be-

cause CaM is not myristoylated at its N terminus and does not

have an inactive N-terminal EF-hand, it is tempting to propose

that differential interactions of the inactive EF-hands, which differ

in their positions in the N-terminal domains of these Ca2+-binding

proteins (Figure 4C), with the IQ-like domain and CBD of CaV2.1

channels are responsible for their differences in action. The

divergent actions of nCaS proteins on Cav2.1 channels may

fine-tune the function and regulatory properties of presynaptic

P/Q-type Ca2+ currents, allowing a greater range of input-output

relationships and short-term plasticity at different synapses.

Ca2+/CaM-dependent protein kinase II (CaMKII) is the most

prominent Ca2+/CaM-dependent regulator of the postsynaptic

response, including long-term potentiation (Kennedy et al.,

1990; Luscher et al., 2000; Schulman and Greengard, 1978;

Shepherd and Huganir, 2007). CaMKII also regulates presynap-

tic function (Llinas et al., 1985, 1991), including effects on synap-

tic plasticity (Chapman et al., 1995; Lu and Hawkins, 2006).

Recent studies show that CaMKII binds to a specific site in the
C-terminal domain of cardiac CaV1.2 channels (Hudmon et al.,

2005). CaMKII also binds to CaV2.1 channels and enhances their

activity by slowing inactivation and positively shifting the voltage

dependence of inactivation (Jiang et al., 2008). Surprisingly,

these effects on the function of CaV2.1 channels require binding

of an activated form of CaMKII, but do not require the catalytic

activity of the enzyme (Jiang et al., 2008). It was proposed that

noncatalytic regulation of CaV2.1 channels by bound CaMKII

serves to enhance the activity of those channels that have the ef-

fector of the Ca2+ signal (i.e., CaMKII) in position to bind entering

Ca2+ and respond to it (Jiang et al., 2008). This form of regulation

is similar to regulation by SNARE proteins and RIM, as described

above; that is, the activity of the CaV2.1 channels is increased by

formation of a complete SNARE complex with synaptotagmin

and RIM bound (Kiyonaka et al., 2007; Zhong et al., 1999), which

serves as the effector of the Ca2+ signal for initiation of synaptic

transmission. This ‘‘effector checkpoint’’ mechanism serves to

focus the Ca2+ entry through those Ca2+ channels whose effec-

tors (i.e., a complete SNARE complex and CaMKII) are bound

and ready to respond (Jiang et al., 2008).

In addition to the wide range of protein interactions that regu-

late CaV2 channels, emerging evidence suggests that alternative

splicing of their mRNAs also has an important impact on the di-

versity of their regulation. Alternative splicing of exons encoding

the C-terminal domain of CaV2.1 channels alters regulation by

Ca2+ and CaM (Chaudhuri et al., 2004), and alternative splicing

of exons encoding the intracellular linker between domains I

and II of CaV2.2 channels controls their regulation by opiates and

tyrosine phosphorylation (Altier et al., 2007; Raingo et al., 2007).

It is likely that these studies reveal only the tip of the iceberg of

the enormous regulatory diversity and complexity introduced

by alternative splicing of CaV2 channels.

Calcium Channel Signaling Complexes
and Synaptic Transmission
Analysis of the functional effects of presynaptic Ca2+ channel

regulation in synaptic transmission is an important step toward

understanding these regulatory processes in their physiological

context, but these experiments are made challenging by the dif-

ficulty of specifically manipulating Ca2+ channel interactions in

the presynaptic terminal. Two approaches have been success-

ful: injection of specific peptide antagonists of protein interac-

tions into the presynaptic cell and expression of specific peptide

antagonists or mutant CaV2 channels from cDNA injected into

the presynaptic cell.

SNARE-Synprint Interactions in Synaptic Transmission
Peptides derived from the synprint site competitively inhibit

interactions between SNARE proteins and CaV2 channels

in vitro. Injection of synprint peptides from Cav2.2 channels

into presynaptic superior cervical ganglion neurons (SCGNs) in

culture significantly reduced the excitatory postsynaptic re-

sponse by competitive uncoupling of the endogenous Ca2+

channel-SNARE interaction at nerve terminals (Mochida et al.,

1996). Rapid, synchronous synaptic transmission was selec-

tively inhibited following the injection, while late asynchronous

release and paired-pulse facilitation were increased (Figure 5).

Similarly, injection of the synprint peptides into embryonic
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 889
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Xenopus spinal neurons reduced transmitter release substan-

tially when cells were stimulated in an extracellular solution con-

taining physiological Ca2+ concentration (Rettig et al., 1997). In-

creasing the external Ca2+ concentrations effectively rescued

this inhibition, implying that the Ca2+ channels are competitively

displaced away from docked synaptic vesicles by the injected

synprint peptides, and this effect can be overcome by flooding

the presynaptic terminal with Ca2+ from the extracellular pool

(Rettig et al., 1997).

A requirement for close coupling of CaV2.1 channels to synap-

tic vesicles for efficient release of neurotransmitters also

emerged from studies at the calyx of Held. P/Q-type Ca2+ cur-

rents are more effective than N-type Ca2+ currents and R-type

Ca2+ currents in eliciting neurotransmitter release at this synapse

in postnatal day 7 rats where all three channels are expressed

(Inchauspe et al., 2007; Iwasaki et al., 2000; Wu et al., 1999).

The high efficiency of P/Q-type Ca2+ currents in initiating neuro-

transmitter release is correlated with the close localization of

docked vesicles near CaV2.1 channels, as assessed by immuno-

cytochemistry (Wu et al., 1999).

At first glance, it seems that interactions of CaV2 channels with

SNARE proteins have two opposing effects: tethering synaptic

vesicles near the point of Ca2+ entry would increase synaptic

transmission, whereas enhancing CaV2 channel inactivation

would reduce synaptic transmission. These effects were dis-

sected by use of competing synprint peptides and mutant syn-

taxin in Xenopus neuromuscular junctions in vivo (Keith et al.,

2007). Injection of competing synprint peptides into developing

neuromuscular junctions reduced the basal efficiency of synap-

Figure 5. Asynchronous Release Is Increased in the Presence
of Synprint Peptides
(A) Model showing SNARE complex: syntaxin (dark blue), SNAP-25 (light blue),
and synaptobrevin (red) on docked vesicles interacting with presynaptic Ca2+

channels (left) or synprint peptide (right).
(B) Synaptic transmission recorded from pairs of cultured SCG neurons is syn-
chronous in the absence of synprint peptides (left), and asynchronous release
is increased after synprint peptides were dialyzed into the presynaptic neuron
for 20 min. EPSPs were evoked by three presynaptic current pulses at 100 Hz.
Adapted from Mochida et al. (1996).
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tic transmission, as reflected in increased paired-pulse facilita-

tion and reduced quantal content of synaptic transmission.

Evidently, the effect of the synprint peptide to reduce linkage

of docked synaptic vesicles to CaV2 channels is predominant,

because its potentially opposing effect to relieve inhibition of

Ca2+ channels by SNARE proteins would be occluded by

SNAP-25 and synaptotagmin for the subset of channels interact-

ing with a complete SNARE complex that could participate in

vesicle release. In contrast, overexpression of a syntaxin mutant

that is unable to regulate CaV2.2 channels, but still binds to them

(Bezprozvanny et al., 2000), increased the efficiency of synaptic

transmission, as reflected in reduced paired-pulse facilitation

and increased quantal content (Keith et al., 2007). In this case,

the syntaxin mutant likely relieves enhanced inactivation of

CaV2.2 channels caused by endogenous syntaxin, thereby in-

creasing Ca2+ entry and synaptic transmission, but does not alter

linkage of docked synaptic vesicles to CaV2.2 channels. These

results demonstrate a bidirectional regulation of synaptic trans-

mission in vivo by interactions of SNARE proteins with CaV2.2

channels.

Regulation of Synaptic Transmission by G Protein
Modulation of CaV2 Channels
Classical work has provided many examples of potent negative

regulation of neurotransmission by receptor activation (Hille,

1992). This form of modulation by GABA acting at GABA-B

receptors and glutamate acting at metabotropic glutamate re-

ceptors has been directly demonstrated at the calyx of Held

with parallel measurements of Ca2+ currents and synaptic trans-

mission (Kajikawa et al., 2001; Takago et al., 2005; Takahashi

et al., 1996). Similar modulation by cannabinoids acting at CB1

receptors has been demonstrated by optical measurements of

Ca2+ transients together with electrophysiological recordings

of synaptic transmission at the nerve terminals of the parallel fi-

bers of cerebellar granule cells innervating Purkinje neurons

(Brown et al., 2004). Depolarization relieves this form of inhibi-

tion of Ca2+ channels (Figure 3A), leading to the prediction that

trains of action potentials would reverse receptor/G protein inhi-

bition of synaptic transmission. This prediction has been tested

in microisland cultures of hippocampal neurons in which autap-

ses are formed by single hippocampal pyramidal neurons (Brody

and Yue, 2000). In this preparation, trains of action potential-like

stimuli relieve the inhibition of synaptic transmission caused by

activation of GABA-B receptors with baclofen or adenosine A1

receptors with 2-Cl�adenosine. This relief of inhibition resulted

in facilitation of synaptic transmission in the range of 1.5-fold,

which was blocked by inhibition of CaV2.1 channels, but not

CaV2.2 channels, with peptide neurotoxins. Regulator of G pro-

tein signaling-2 (RGS-2) relieves G protein inhibition of presynap-

tic Ca2+ channels, resulting in a higher basal probability of re-

lease and consequently a reduction in paired-pulse facilitation

ratio (Han et al., 2006). These results demonstrate that voltage-

dependent relief of G protein inhibition of CaV2 channels in

paired pulses and trains can cause synaptic facilitation. How-

ever, this form of facilitation does not contribute to short-term

synaptic plasticity at the synapse of parallel fibers onto Purkinje

neurons (Kreitzer and Regehr, 2000). Moreover, classical paired-

pulse facilitation of synaptic transmission and facilitation by
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trains of depolarizations is induced by increases in residual intra-

cellular Ca2+ (Katz and Miledi, 1968; Zucker and Regehr, 2002);

therefore, relief of G protein-induced inhibition of CaV2.1 chan-

nels is unlikely to contribute substantially to these forms of

short-term synaptic plasticity.

Regulation of Presynaptic Ca2+ Channels
and Short-Term Synaptic Plasticity
Short-term synaptic plasticity of neurotransmitter release from

presynaptic terminals shapes the response of postsynaptic neu-

rons to bursts of impulses and is crucial for fine-grained encod-

ing of information in the nervous system (Abbott and Regehr,

2004; Zucker and Regehr, 2002). Regulation of presynaptic

Ca2+ channels by Ca2+, CaM, and nCaS proteins causes facilita-

tion and inactivation of the Ca2+ current (Figure 4). The steep de-

pendence of neurotransmitter release on the presynaptic Ca2+

current predicts that these types of regulation should profoundly

alter short-term synaptic plasticity. Recent studies have shown

that this form of regulation of presynaptic Ca2+ channels plays

a crucial role in short-term synaptic plasticity. Differential

expression of these Ca2+-dependent regulatory proteins may

provide a means of cell-type-specific regulation of presynaptic

Ca2+ channels and short-term synaptic plasticity.

The residual Ca2+ that controls short-term synaptic enhance-

ment is not thought to act directly on the Ca2+ sensor for neuro-

transmitter release (Blatow et al., 2003; Dittman et al., 2000;

Felmy et al., 2003; Muller et al., 2007; Sippy et al., 2003; Tsuji-

moto et al., 2002). The presynaptic Ca2+ current was not detect-

ably altered during synaptic facilitation at the squid giant

synapse, as studied with three-microelectrode voltage-clamp

methods (Augustine et al., 1987; Charlton et al., 1982). However,

several lines of evidence indicate that residual Ca2+ regulates the

presynaptic Ca2+ current in vertebrate synapses. At the calyx of

Held, the presynaptic Ca2+ current can be recorded directly by

voltage-clamp methods. In synapses from young mice, a combi-

nation of P/Q- and N-type currents shows activity-dependent fa-

cilitation that predicts the amount of synaptic facilitation accord-

ing to the power law (Inchauspe et al., 2004; Ishikawa et al.,

2005; Figure 2B). In contrast, both facilitation of the presynaptic

Ca2+ current and synaptic facilitation are lost in CaV2.1 knockout

mice (Inchauspe et al., 2004, 2007; Ishikawa et al., 2005). The

N-type Ca2+ currents conducted by CaV2.2 channels that remain

in the calyx of Held of these CaV2.1 knockout mice are less effi-

cient in mediating synaptic transmission, do not show facilita-

tion, and do not support facilitation of synaptic transmission,

but they are more sensitive to modulation by G protein-coupled

receptors (Inchauspe et al., 2007). Together, these results sug-

gest that activity-dependent increases in presynaptic CaV2.1

channel currents cause synaptic facilitation and that CaV2.2

channel currents are not increased by facilitation but have strong

G protein regulation.

Augmentation and PTP also rely on residual Ca2+. The relation-

ship between presynaptic Ca2+ transients and PTP was mea-

sured at the calyx of Held using fluorescent Ca2+ indicators. After

induction of PTP, the presynaptic Ca2+ influx increased to an

extent that predicted PTP when the power law of neurotransmis-

sion was applied (Habets and Borst, 2006). Furthermore, the

presynaptic Ca2+ transient decayed with a time course that par-
alleled the decay of PTP (Habets and Borst, 2006). These results

are consistent with a role for regulation of presynaptic Ca2+

channels in PTP at the calyx of Held.

In order to critically test the role of activity-dependent regula-

tion of presynaptic Ca2+ channels in short-term synaptic plastic-

ity, it is necessary to compare synaptic transmission initiated

by wild-type CaV2.1 channels and by mutant channels with

impaired Ca2+-dependent regulation. This is a challenging ex-

periment because endogenous Ca2+ channels are present in

high concentration in presynaptic active zones, and replacement

of them with exogenously expressed mutant Ca2+ channels is

difficult. Cultured superior cervical ganglion (SCG) neurons

have no endogenous P/Q-type Ca2+ currents. They can be trans-

fected successfully with cDNA encoding CaV2.1 channels by mi-

croinjection, and these transfected neurons then have P/Q-type

Ca2+ currents in their cell bodies and synapses (Mochida et al.,

2003a). Whole-cell voltage-clamp recordings of transfected

CaV2.1 channels at the cell body show that they undergo Ca2+-

dependent facilitation (Mochida et al., 2008). The contribution

of these transfected CaV2.1 channels to initiation of synaptic

transmission can be isolated by blocking the endogenous

N-type Ca2+ current specifically with u-conotoxin GVIA. EPSPs

recorded in the postsynaptic neurons in response to action

potentials elicited in the presynaptic neuron are 30%–40% of

the size of those initiated by endogenous N-type Ca2+ currents

(Mochida et al., 2003a).

In these transfected SCG neurons, mutations in the IQ-like

motif of CaV2.1 channels that prevent Ca2+-dependent facilita-

tion of Ca2+ currents recorded from the cell bodies of SCG neu-

rons also reduced paired-pulse facilitation of EPSPs at SCG syn-

apses (Figure 6) (Mochida et al., 2008). Thus, CaM and other CaS

proteins may respond to residual Ca2+ as ‘‘facilitation sensors’’

by binding to the IQ-like motif in the C terminus of CaV2.1 chan-

nels and causing Ca2+-dependent facilitation of the presynaptic

Ca2+ current.

Transfected SCG neurons have a form of synaptic enhance-

ment of intermediate duration, which is similar to augmentation.

This enhancement of synaptic strength is also reduced by

mutations that prevent Ca2+-dependent facilitation of CaV2.1

channels by blocking association of CaS proteins with the IQ-

like motif (Mochida et al., 2008). In contrast, PTP induced by lon-

ger trains of stimuli was not significantly affected (Mochida et al.,

2008). Thus, synaptic facilitation and augmentation in trans-

fected SCG neurons share a common mechanism: activation

of Ca2+ sensor proteins by residual Ca2+ increases ‘‘instanta-

neous’’ Ca2+ entry via CaV2.1 channels in an activity-dependent

manner, which in turn increases neurotransmitter release ac-

cording to the power law of neurotransmission.

What do these findings mean in terms of the residual Ca2+

hypothesis? These results argue that residual Ca2+ acts on a facil-

itation sensor, a CaM-like CaS protein, which causes Ca2+-de-

pendent facilitation of presynaptic Ca2+ currents by binding to

the IQ-like motif of CaV2.1 channels and thereby increases Ca2+

entry. In this model, Ca2+-dependent facilitation of CaV2.1 chan-

nels is the effector mechanism for residual Ca2+ in short-term

plasticity. This increase in Ca2+ entry via CaV2.1 channels directly

mediates multiple forms of synaptic enhancement—facilitation,

augmentation, and perhaps PTP in some synapses—by
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 891



Neuron

Review
increasing neurotransmitter release according to the power law.

While facilitation of presynaptic Ca2+ channels may contribute

to all three forms of synaptic enhancement at some synapses

(Ishikawa et al., 2005; Mochida et al., 2008), augmentation and

PTP likely represent overlapping processes that are caused by

different combinations of mechanisms at different synapses

(Zucker and Regehr, 2002), and residual Ca2+ may engage multi-

ple effector mechanisms for these slower forms of synaptic plas-

ticity. A good candidate for an additional effector mechanism for

PTP is the Ca2+/phospholipid-dependent kinase protein kinase C

(PKC), which has been shown to play a role in PTP at synapses

between the CA3-CA1 neurons of the hippocampus (Brager

et al., 2003) and at the calyx of Held (Korogod et al., 2007).

Synaptic depression is generally thought to be a result of

vesicle depletion during trains of action potentials (Zucker and

Regehr, 2002). At the calyx of Held, synaptic depression caused

by a decrease in release probability is a prominent feature of

transmission (Wu and Borst, 1999). Physiological studies indi-

cate that Ca2+-dependent inactivation of the presynaptic Ca2+

current, rather than vesicle depletion, causes rapid synaptic de-

pression for stimuli ranging from 2 to 30 Hz (Forsythe et al., 1998;

Xu and Wu, 2005). Introduction of peptides that disrupt CaM

interactions reduced both Ca2+-dependent inactivation of the

P/Q-type Ca2+ current and paired-pulse depression of synaptic

Figure 6. PPF and PPD Mediated by CaV2.1 Channel
Facilitation and Inactivation
(A) Representative EPSPs in which CaV2.1 channels are the only active
channels in the presynaptic terminal were evoked by paired action
potentials with 15 ms or 50 ms interstimulus interval. The amplitude
of the second EPSP was measured from the intercept of the decay
of the first EPSP with the rise of the second EPSP.
(B) Paired-pulse ratio (PPR, P2/P1) at the interstimulus interval (tested
range 10–200 ms) of maximum facilitation (top) and maximum depres-
sion (bottom). Adapted from Mochida et al. (2008).
(C) Model illustrating CaV2.1-mediated mechanisms of synaptic en-
hancement (facilitation and augmentation) and synaptic depression.
In synaptic facilitation and augmentation, facilitation of the Ca2+

current caused by residual Ca2+ binding to CaS proteins interacting
with the IQ-like motif increases Ca2+ entry and subsequently neuro-
transmitter release. In synaptic depression, CaS proteins interact
with the CBD to cause channel inactivation and reduce Ca2+ entry,
thus reducing neurotransmitter release.

transmission (Xu and Wu, 2005). In contrast, stimulation

at 100 Hz induced more robust synaptic depression that

was likely caused by vesicle depletion (Xu and Wu,

2005). The rate of Ca/CaM-dependent inactivation and

its role in synaptic depression is greatest at immature ca-

lyx of Held synapses and diminishes in mature synapses

(Inchauspe et al., 2007; Nakamura et al., 2008). Synaptic

vesicles remaining after complete depression of synaptic

transmission at the calyx of Held are resistant to release

by action potentials (Moulder and Mennerick, 2005).

However, this remaining pool of vesicles can be released

with normal Ca2+ sensitivity by uncaging Ca2+ throughout

the nerve terminal, suggesting that these remaining syn-

aptic vesicles are located at a distance from CaV2.1 chan-

nels such that the Ca2+ entering during the action poten-

tial does not reach them (Wadel et al., 2007).

In transfected SCG neurons (Mochida et al., 2008), deletion of

the CaM-binding domain (CBD) in the intracellular C terminus of

full-length CaV2.1 channels, a mutationknown to reduce Ca2+-de-

pendent inactivation in heterologous expression systems (Lee

et al., 1999, 2003), blocked paired-pulse depression (Figure 6)

and reduced synaptic depression during trains up to 40 Hz (Mo-

chida et al., 2008), suggesting that binding of CaS proteins to

the CBD induces inactivation of presynaptic CaV2.1 channels, re-

sulting in rapid synaptic depression. During trains at 30 Hz and

40 Hz, a slower phase of synaptic depression was observed that

may have been caused by vesicle depletion. Together, the data

from the calyx of Held and transfected SCG neurons suggest

that Ca2+-dependent inactivation of presynaptic Ca2+ channels,

mediated by Ca2+-dependent binding of CaS proteins to the

C-terminal of CaV2 channels, is a conserved mechanism generat-

ing rapid synaptic depression evoked by stimuli of physiological

rate and duration (%40 Hz for 1 s) at multiple synapses.

Results of studies with cultured hippocampal neurons also

support an important role for modulation of CaV2 channels in

synaptic plasticity. Expression of CaVb subunits has a strong in-

fluence on synaptic facilitation in hippocampal synapses through

their effects on Ca2+ channel function (Xie et al., 2007). Overex-

pression of CaVb4a favors facilitation whereas overexpression of

CaVb2a favors depression (Xie et al., 2007). Similarly, modulation
892 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
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of the rate of inactivation of CaV2.2 channels by overexpression

of the 14-3-3 protein also modulates the rate of synaptic depres-

sion in cultured hippocampal neurons, adding further support

for a role of inactivation of presynaptic Ca2+ channels in rapid

synaptic depression (Li et al., 2006).

Regulation of Synaptic Transmission and Synaptic
Plasticity by Ca2+ Regulatory Proteins
The short-term facilitation and depression of synaptic transmis-

sion observed in transfected SCG synapses resembles regula-

tion of CaV2.1 channels by CaM (Mochida et al., 2008).

Because regulation of CaV2.1 channels by CaBP1 and VILIP-2

is strikingly different from CaM (Lautermilch et al., 2005; Lee

et al., 2002), it would be predicted that differential expression

of different nCaS proteins in different synapses would result in

different ratios of synaptic facilitation and depression. Consis-

tent with this idea, injection of the nCaS protein NCS-1, a close

relative of VILIP-2, into presynaptic nerve terminals at the calyx

of Held synapse promotes facilitation of P/Q-type Ca2+ currents,

and activity-dependent facilitation of P/Q-type Ca2+ currents at

this synapse can be prevented by injection of NCS-1-inhibitor

peptides (Tsujimoto et al., 2002). Similarly, NCS-1 can enhance

facilitation of synaptic transmission in cultured hippocampal

neurons (Sippy et al., 2003). Although these experiments did

not identify the site of NCS-1 action, these effects of NCS-1 on

P/Q-type Ca2+ currents and synaptic facilitation suggest that lo-

cal expression of nCaS proteins can markedly alter Ca2+ channel

activity, synaptic function, and synaptic plasticity, thereby fine-

tuning the encoding properties of different classes of synapses.

It will be of great interest to determine whether NCS-1 is acting at

the same site as CaM, CaBP1, and VILIP-2 in regulating CaV2.1

channels and to define the range of regulatory properties of dif-

ferent nCaS proteins on the activity of CaV2 channels, synaptic

transmission, and synaptic plasticity.

CaMKII has an important presynaptic effect on synaptic plas-

ticity (Chapman et al., 1995; Lu and Hawkins, 2006), in addition

to its well-known postsynaptic effects. The unexpected nonca-

talytic effect of CaMKII binding to enhance the activity of

CaV2.1 channels described above (Jiang et al., 2008) raises the

possibility of a role for this noncatalytic mechanism of regulation

of CaV2.1 channels in presynaptic plasticity. Studies of mutant

mice with knockout and knockin mutations in CaMKII provide ev-

idence for a possible synaptic counterpart of this novel form of

channel regulation. Deletion of CaMKII increases augmentation

and decreases synaptic fatigue (Chapman et al., 1995; Hojjati

et al., 2007), whereas loss-of-function CaMKII mutations do

not (Hojjati et al., 2007), indicating that loss of CaMKII protein,

but not loss of CaMKII activity, increases augmentation and re-

duces depression. As augmentation is measured as a ratio of

stimulated EPSP amplitude over basal EPSP amplitude, it is pos-

sible that loss of CaMKII protein decreases the strength of basal

synaptic transmission by a noncatalytic mechanism and thereby

increases the subsequent ratio of augmentation by trains of stim-

uli. A noncatalytic decrease in basal synaptic strength caused by

CaMKII (Hojjati et al., 2007) could result from loss of its noncata-

lytic enhancement of the activity of CaV2.1 channels (Jiang et al.,

2008) in the knockout mice. The role of CaMKII in presynaptic

plasticity is an important area for future research.
Targeting of Presynaptic Ca2+ Channels
to the Active Zone
In the postsynaptic membrane, dynamic internalization and rein-

sertion of glutamate receptors mediated by SNARE proteins is

a crucial mechanism of regulation of synaptic strength in long-

term potentiation and depression (Luscher et al., 2000). Compa-

rable dynamic regulation of the presynaptic membrane by

regulated internalization and reinsertion of Ca2+ channels has

not yet been described. However, interactions with SNARE pro-

teins and several other novel interacting proteins are required for

efficient targeting and specific localization of presynaptic Ca2+

channels in active zones in the presynaptic plasma membrane.

Deletion of the synprint site on the Cav2.1 channel results in

a substantial reduction in neurotransmitter release in transfected

SCG neurons, correlated with reduced localization of the mutant

channels to presynaptic terminals (Mochida et al., 2003a,

2003b). Transfer of the synprint sequence from Cav2.1 to

Cav1.2 channels, which conduct L-type Ca2+ currents and are in-

effective in supporting synaptic transmission, was sufficient to

allow these channels to initiate synaptic transmission. Similarly,

mouse pheochromocytoma cells (MPC 9/3L), which lack volt-

age-gated Ca2+ channels, require the synprint site of CaV2.2

channels for efficient reconstitution of secretion (Harkins et al.,

2004). In addition, in transfected neurons in cell culture, localiza-

tion of CaV2 channels to nerve terminals was substantially

reduced when the synprint site was partially or completely de-

leted (Szabo et al., 2006). Finally, the SNARE protein regulator

RIM increases the number of docked readily releasable vesicles

in pheochromotocytoma cells through interactions with CaVb

subunits (Kiyonaka et al., 2007). These studies support the con-

cept that the SNARE protein binding to CaV2 channels is neces-

sary for efficient presynaptic localization and functional coupling

of Cav2.1 and Cav2.2 channels to vesicle exocytosis.

While these studies show that interaction of the synprint site of

presynaptic Ca2+ channels with SNARE proteins enhances the

efficiency of neurotransmitter release in vertebrate neurons,

three lines of evidence indicate that this interaction is unlikely

to be the primary mechanism for targeting presynaptic Ca2+

channels to nerve terminals. First, inhibition of synprint interac-

tion or deletion of the synprint site on both Cav2.1 and Cav2.2

channels reduces the efficiency of exocytosis but does not

completely abolish synaptic transmission or hormone secretion

(Harkins et al., 2004; Mochida et al., 1996, 2003b; Rettig et al.,

1997). Second, although invertebrate Cav2 channels effectively

initiate synaptic transmission, they lack a synprint site (Spafford

et al., 2003). Third, SNARE proteins are not selectively localized

at nerve terminals themselves, making it unlikely that SNARE

proteins provide the primary targeting information. Evidently, in-

teractions with other proteins are also involved in targeting and

trafficking of presynaptic Ca2+ channels.

Consistent with this idea, the active zone scaffolding proteins

Mint and CASK play critical roles in the presynaptic targeting of

CaV2.2 channels in cultured mammalian neurons via direct inter-

actions with PDZ and SH3 targeting motifs in the C-terminal tail

(Maximov and Bezprozvanny, 2002). Moreover, for snail Ca2+

channels that lack a synprint site, Mint and CASK are required

for targeting of presynaptic Ca2+ channels to the synapse (Spaf-

ford et al., 2003; Spafford and Zamponi, 2003). In addition, the
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 893
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Drosophila protein Bruchpilot, a large coiled-coil domain struc-

tural protein, is required for formation of functional neuromuscu-

lar synapses and clustering of Ca2+ channels in the presynaptic

membrane (Kittel et al., 2006). The presynaptic plasma mem-

brane glycoprotein neurexin is similarly required for development

of functional synapses containing presynaptic Ca2+ channels in

mice (Missler et al., 2003). From these multiple studies, it seems

that interactions with Mint, CASK, Bruchpilot and neurexins, as

well as interactions with SNAREs and the SNARE regulator

RIM, are all involved in efficient and accurate targeting and traf-

ficking of presynaptic Ca2+ channels. It will be interesting to see

whether these proteins also participate in dynamic regulation of

Ca2+ channels in active zones, in analogy to the dynamic regula-

tion of glutamate receptors in the postsynaptic membrane

(Luscher et al., 2000; Shepherd and Huganir, 2007).

Because presynaptic Ca2+ channels must form specific inter-

actions with multiple scaffolding and targeting proteins for

efficient and accurate localization in active zones, it is possible

that they must occupy a fixed number of sites in or near active

zones in order to be effective in release of neurotransmitters. Ev-

idence in favor of the idea of ‘‘slots’’ for presynaptic Ca2+ chan-

nels comes from experiments in which wild-type and mutant

CaV2.1 channels were found to ‘‘compete’’ functionally for initia-

tion of synaptic transmission in cultured neurons (Cao et al., 2004;

Cao and Tsien, 2005). Expression of inactive mutant channels re-

duced the efficiency of synaptic transmission, as if they had dis-

placed wild-type channels from a fixed number of saturable sites

(Cao and Tsien, 2005). This apparent competitive interaction be-

tween wild-type and mutant channels may reflect saturable com-

petitive interactions of transfected Ca2+ channels with any of their

essential binding partners that are available in limited amounts in

neurons, including the auxiliary a2d, b, and g subunits; any of the

individual trafficking, targeting, and scaffolding proteins dis-

cussed above; or preformed slots in the presynaptic plasma

membrane containing these interacting proteins.

Our working hypothesis is that the SNARE proteins and target-

ing/scaffolding proteins play complementary roles at the active

zone. The targeting and scaffolding proteins (Mint, CASK, Bruch-

pilot neurexin, etc.) are essential for targeting CaV2 channels to

the presynaptic terminal and for formation of the structure of

the active zone, which brings together CaV2 channels and other

fixed components of the exocytosis machinery. No doubt the

protein composition of the active zone is dynamic, like the post-

synaptic density, but there is no clear evidence for that at pres-

ent. We suppose that dynamic changes in active zone composi-

tion and structure would take place on the relatively slow

timescale of seconds and longer. We hypothesize that the inter-

actions of CaV2 channels with SNARE proteins have comple-

mentary roles. For Cav2 channels containing a synprint site,

binding of SNARE proteins to newly synthesized CaV2 channels

is necessary in a permissive sense for efficient targeting of CaV2

channels to presynaptic terminals, but it does not provide the pri-

mary targeting information. More importantly, dynamic interac-

tions between CaV2 channels and SNARE proteins at the active

zone bring docked synaptic vesicles close to the source of enter-

ing Ca2+ and regulate the activity of CaV2 channels such that

those channels with nearby docked vesicles are more likely to

open. These proposed complementary roles for targeting/scaf-
894 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
folding proteins versus SNARE proteins are also consistent

with their modes of binding—high affinity and therefore relatively

slowly reversible binding for targeting/scaffolding proteins

versus lower affinity and therefore more rapidly reversible and

dynamic binding for SNARE proteins.

Presynaptic Ca2+ Channels and Inherited
Neurological Disease
As expected from the essential role of presynaptic CaV2

channels in synaptic function and plasticity and the exquisitely

detailed regulation of their activity, mutations in these channels

cause human diseases. Missense mutations in CaV2.1 chan-

nels cause familial hemiplegic migraine (FHM), a rare inherited

form of migraine with aura and hemiparesis (Ophoff et al.,

1996; Pietrobon and Striessnig, 2003). Studies of these muta-

tions by expression in nonneuronal cells and neurons provided

evidence for both loss of function owing to reduced levels of ex-

pression and gain of function owing to negatively shifted volt-

age dependence of activation (Hans et al., 1999; Kraus et al.,

1998, 2000), suggesting a complex mechanism of action in

causing migraine. FHM mutant CaV2.1 channels with reduced

functional expression also reduced synaptic transmission in

transfected neurons, apparently by competing with endoge-

nous wild-type CaV2.1 channels for essential interacting

proteins or slots in the presynaptic plasma membrane (Cao

et al., 2004; Cao and Tsien, 2005). This apparent diversity of

mutational effects was resolved in part by single-channel re-

cording studies in transfected neurons, which revealed that

all FHM mutations cause an increase in the single-channel

Ca2+ current at the foot of the activation curve, even though

their reduced level of expression decreases the peak of the

whole-cell Ca2+ current at positive membrane potentials (Tot-

tene et al., 2002). As activation at more negative potentials

has the greatest effect on the rapid Ca2+ entry that initiates syn-

chronous neurotransmitter release, this effect of FHM muta-

tions would provide a gain of function in synaptic transmission.

Moreover, it is likely that the trafficking and scaffolding mecha-

nisms described above assure that a correct number of Ca2+

channels are inserted at each mature active zone, even if fewer

Ca2+ channels are present in the cell soma, so the gain of

single-channel function is likely to be the dominant effect at

mature active zones. Incorporation of FHM mutations into the

mouse genome has confirmed that they indeed have a gain-

of-function effect in synaptic transmission and in increasing

the cortical spreading depression that is a key pathological el-

ement in migraine with aura (Pietrobon, 2007; van den Maag-

denberg et al., 2004). Thus, it seems most likely from the current

results that the gain-of-function negative shift of the voltage de-

pendence of activation of presynaptic CaV2.1 channels caused

by FHM mutations in turn causes enhanced synaptic transmis-

sion, cortical spreading depression, and hemiplegic migraine

with aura (Pietrobon, 2007).

Mutations in CaV2.1 channels also cause episodic ataxia (EA)

type 2 and spinocerebellar ataxia (SCA) type 6 (Ophoff et al.,

1996; Zhuchenko et al., 1997), which result from cytotoxicity to

cerebellar neurons. Loss-of-function truncations and missense

mutations that have dominant-negative effects are the cause

of EA-2 (Guida et al., 2001; Jeng et al., 2006; Mezghrani et al.,
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2008; Raike et al., 2007). Polyglutamine expansions in the C-ter-

minal domain of CaV2.1 channels are the likely pathogenic mech-

anism for SCA-6. These polyglutamine expansions increased

Ca2+ channel activity when expressed in cultured cells (Pied-

ras-Renteria et al., 2001). However, insertion of a SCA-6 muta-

tion into the mouse genome caused ataxia and neurodegenera-

tion, but did not cause any change in CaV2.1 channel activity

(Watase et al., 2008). The expanded CaV2.1 polyglutamine tract

did accumulate with age, and the accumulation of mutant protein

is the likely cause of cytotoxicity in this disease rather than

gain-of-function alterations in the expression or function of

Ca2+ channels.

The Presynaptic Ca2+ Channel as a Regulatory
Node in Dynamic, Activity-Dependent Control
of Synaptic Transmission
Regulation of synaptic transmission is central to the function of

the nervous system in learning, memory, and physiological con-

trol. In molecular systems biology, regulatory networks are

represented as a series of nodes with connecting regulatory

pathways that lead to specific physiological endpoints (Brom-

berg et al., 2008; Eungdamrong and Iyengar, 2004). Nodes in

such regulatory networks serve as decision points to integrate

many incoming signals and initiate specific physiological events.

On the postsynaptic side of excitatory synapses, receptors for

glutamate are the major transmembrane signaling proteins that

receive neurotransmitter and transduce its binding into electrical

excitation of the postsynaptic cell. They form large signaling

complexes—including SNARE proteins, scaffolding proteins,

Ca2+-binding proteins, and CaMKII—which send downstream

signals into the postsynaptic cell and mediate feedback regula-

tion of synaptic transmission. Dynamic regulation of function and

localization of glutamate receptors mediate many complex

forms of postsynaptic plasticity, including long-term potentiation

of synaptic strength, long-term depression of synaptic strength,

and coupling of synaptic activity to regulation of gene expression

(Luscher et al., 2000; Shepherd and Huganir, 2007). Thus, post-

synaptic glutamate receptors serve as a regulatory node for dy-

namic control of synaptic transmission on the postsynaptic side

of the membrane (Weng et al., 1999).

Because of the power law relationship between Ca2+ entry and

neurotransmitter release, regulation of the Ca2+ channel is a

natural control point for synaptic transmission on the presynaptic

side of the synapse. In analogy to glutamate receptors, pre-

synaptic Ca2+ channels are the major transmembrane trans-

ducers of the electrical signal of the action potential to a chem-

ical signal—Ca2+ entry and neurotransmitter release—and

they form a large signaling complex containing SNARE proteins,

Ca2+-binding proteins, CaMKII, and scaffolding proteins. How-

ever, far less attention has been given to the possibility that the

presynaptic Ca2+ channel may be a major site of synaptic regu-

lation and presynaptic plasticity. Based on the work reviewed

here, we propose that the presynaptic Ca2+ channel signaling

complex serves as a regulatory node to mediate multiple layers

of control of synaptic transmission, presynaptic plasticity, and

feedback regulation of Ca2+ entry (Figure 7A), analogous to

the well-established role of the glutamate receptor signaling

complex at the postsynaptic side of the membrane.
Presynaptic CaV2 channels have three crucial functions.

First, the presynaptic Ca2+ channel provides the rapid, spatially

focused Ca2+ entry that initiates rapid and synchronous synaptic

transmission. Second, through specific protein-protein interac-

tions with SNARE proteins and scaffolding proteins, the presyn-

aptic Ca2+ channels bring docked synaptic vesicles close to the

source of Ca2+ entry, allowing them to respond efficiently to the

microdomain of high Ca2+ concentration. Third, through specific

protein-protein interactions with Ca2+-binding proteins and

CaMKII, the presynaptic Ca2+ channels respond to residual

Ca2+ in nerve terminals and mediate multiple forms of short-

term synaptic plasticity. Each of these Ca2+ channel functions

serves as a substrate for regulation of neurotransmitter release

in a multilayered, activity-dependent network that controls syn-

aptic function in response to neurotransmitters, synaptic vesicle

dynamics, and cytosolic Ca2+ (Figure 7B).

In the broadest layer of this activity-dependent regulatory

system, neurotransmitters in the extracellular milieu bind to G

protein-coupled receptors in the presynaptic nerve terminal,

activate heterotrimeric Gi/Go proteins, catalyze release of their

Gbg subunits, and thereby inhibit activation of presynaptic Ca2+

channels and reduce the Ca2+ entry that initiates synaptic trans-

mission. This broad layer of regulation allows neurotransmitters

released homosynaptically from the same synaptic terminal or

heterosynaptically from other synaptic terminals to regulate pre-

synaptic function and synaptic transmission on the timescale of

milliseconds to minutes. This form of regulation integrates inputs

from many neurons in the control of presynaptic function.

In a second layer of activity-dependent regulation, SNARE

proteins and SNARE protein regulators like synaptotagmin and

RIM tune the function of presynaptic Ca2+ channels in response

to locally docked synaptic vesicles. Interaction with free plasma

membrane SNARE proteins (syntaxin or SNAP-25) inhibits chan-

nel activity, whereas formation of a complete SNARE complex

with synaptotagmin and RIM bound to it relieves this inhibition

and enhances Ca2+ channel activity. This form of regulatory

interaction serves to draw docked synaptic vesicles into the

microdomain of high Ca2+ required for their efficient exocytosis,

reduce the activity of Ca2+ channels distant from docked vesi-

cles, and enhance the activity of Ca2+ channels interacting with

nearby docked synaptic vesicles through binding of SNARE

proteins.

The third layer of this activity-dependent regulatory network

depends on residual Ca2+ near the active zone and mediates

classical short-term synaptic plasticity in response to trains of

action potentials. This form of regulation allows information con-

tained in the frequency and pattern of action potential generation

to be transmitted to the postsynaptic cell as a change in the

amplitude of the postsynaptic response. Surprisingly, recent

research has provided strong evidence that synaptic enhance-

ment by facilitation, augmentation, and possibly PTP are all

mediated, at least in part, by Ca2+-dependent facilitation of pre-

synaptic CaV2.1 channels. Moreover, rapid synaptic depression

during brief trains of impulses is also mediated, at least in part, by

Ca2+-dependent inactivation of presynaptic Ca2+ channels. Both

of these regulatory processes depend on binding of CaM and re-

lated nCaS proteins to a bipartite regulatory site in the C-terminal

domain of CaV2.1 channels. This protein interaction site
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 895
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therefore serves as a key transducer of information encoded in

the frequency and pattern of presynaptic action potentials into

changes in the EPSPs generated in the postsynaptic cell.

Each tier of this multilayered regulatory network has been

shown to be operative in multiple types of synapses in cell cul-

ture and in native synapses isolated from the calyx of Held.

Therefore, it is likely that many native synapses are controlled

in this way in situ. However, the integration of these three differ-

ent layers of regulation of presynaptic function has not yet been

extensively analyzed, and the impact of differential expression of

multiple subtypes of G proteins, SNARE proteins, and CaS

proteins within this regulatory network has not been extensively

explored. In addition, the impact of this regulatory network on

neural function and animal behavior in vivo has not yet been ad-

dressed by incorporating mutations into the genomes of mice or

other model organisms. We look forward to the results of these

new generations of experiments that will further define the

multifaceted roles of presynaptic Ca2+ channels in regulation of

synaptic function.

Figure 7. A Regulatory Network that
Controls Neurotransmitter Release
(A) The pathway diagram of the Ca2+ channel reg-
ulatory network. The two major outputs generated
by this regulatory network are Ca2+ entry into the
presynaptic terminal and neurotransmitter re-
lease. The three signaling pathways regulating
these outputs are (1) modulation of G protein bg
subunits of the Gi/o family coupled to receptors
activated by neurotransmitters like glutamate
(Glu), GABA, and acetylcholine (ACh) (blue); (2)
regulation by SNARE proteins either binding as in-
dividual tSNAREs (syntaxin or SNAP-25, red) or as
a complete SNARE complex with its associated
docked vesicle (red and orange); and (3) modula-
tion by Ca2+, CaM, and nCaS proteins as well as
CaMKII (purple). Arrows indicate forward flow of
regulatory information. Positive and negative reg-
ulatory effects are denoted by (+) and (�). Dashed
lines indicate feedback loops.
(B) Diagram showing the details of the regulatory
network and the location of its components
relative to the plasma membrane. Activating
interactions are indicated by arrows; interactions
leading decreased channel activity are indicated
by bars.
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