Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating

B. Mahanthesh a,b, B.J. Gireesha b,c,*, Rama Subba Reddy Gorla c

a Department of Mathematics and Statistics, Christ University, Bangalore 29, Karnataka, India
b Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta 577 451, Shimoga, Karnataka, India
c Department of Mechanical Engineering, Cleveland State University, Cleveland 44114, OH, USA

Received 29 June 2015; revised 20 May 2016; accepted 23 May 2016

KEYWORDS
Eyring-Powell fluid; Joule heating; Convective boundary condition; Brownian motion; Viscous dissipation; Nanofluid

Abstract
The purpose of this study is to investigate the unsteady magnetohydrodynamic three-dimensional flow induced by a stretching surface. An incompressible electrically conducting Eyring-Powell fluid fills the convectively heated stretching surface in the presence of nanoparticles. The effects of thermal radiation, viscous dissipation and Joule heating are accounted in heat transfer equation. The model used for the nanofluid includes the effects of Brownian motion and thermophoresis. The highly nonlinear partial differential equations are reduced to ordinary differential equations with the help of similarity method. The reduced complicated two-point boundary value problem is treated numerically using Runge–Kutta–Fehlberg 45 method with shooting technique. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. At the end, the effects of influential parameters on velocity, temperature and nanoparticles concentration fields are also discussed comprehensively. Further, the physical quantities of engineering interest such as the Nusselt number and Sherwood number are also calculated.

1. Introduction

A boundary layer flow, heat and mass transfer over a stretching surface is a topic of great interest to the researchers in view of their engineering and industrial applications. Few applications are, metal and polymer extrusion, paper, glass and fiber production, wire drawing, metal spinning, drawing of plastic films etc. In these processes the final product is significantly depends on heat transfer rate. In addition, magnetohydrodynamics of
an electrically conducting fluid is also important as it finds applications in various stretching sheet problems. For example in metallurgical processes, the magnetic field effect has a pivotal role. By drawing strips in MHD fluid, the rate of cooling can be controlled and the desired quality of end product can be achieved. Boundary layer flow of viscous fluid bounded by a moving surface was first studied by Sakiadis (1961). After the pioneering work of Sakiadis (1961), several attempts (Crane, 1970; Grubka and Bobba, 1985; Ishak et al., 2009) have been made on this topic.

On the other hand, several industrial fluids such as polymer solutions shampoo, paints, granular suspension, paper pulp, slurries, drilling mud’s and certain oils are of the non-Newtonian fluid nature. The non-Newtonian boundary layer flow induced due to stretching of sheet has tremendous applications in many industrial and manufacturing processes. Thus researchers have shown their attention to study different non-Newtonian fluid models under different physical situations. For instance, Hayat et al. (2012a) Hayat et al. (2012b) presented the simultaneous effects of heat and mass transfer on flow of third grade fluid between two heated porous sheets. They employed similarity technique and Homotopy analysis method to obtain the analytical solutions. A steady Poiseuille flow and heat transfer of couple stress fluids between two parallel inclined plates with variable viscosity is presented by Farooq et al. (2013). An exact similarity solution is presented by Gorla et al. (1995) for steady three dimensional flow of power law fluid motion caused by stretching of the flat boundary in the lateral directions. They found that, pseudo plastic fluids display drag reduction. Rashidi et al. (2011) obtained the analytic approximate solutions for the radiative heat transfer of a micropolar fluid through a porous medium. Flow and heat transfer analysis of a viscoelastic fluid over a stretching sheet was addressed by Cortell (2006). Time-dependent three-dimensional flow of Maxwell fluid over a bidirectional stretching surface was examined by Awais et al. (2014). They have modeled the three-dimensional momentum equation for the unsteady flow of Maxwell fluid and resultant equations are solved analytically. Akbar et al. (2014a,b) addressed the MHD stagnation point flow due to shrinking of the sheet utilizing Carreau fluid. Later, this work has been extended to Prandtl fluid by Akbar et al. (2014a,b), Gireesha and Mahanthesh (2013) analyzed the flow and heat transfer of an unsteady Walters-B fluid through a porous medium with Hall effect and convective boundary condition. The heat and mass transfer flow of non-Newtonian Casson fluid under the influence of chemical reaction was discussed by Gireesha et al. (2015a,b) Gireesha et al. (2015c). Recently, Mahmood et al. (2015) reported an optimal solution for Oblique stagnation flow of Jeffery fluid toward a stretching surface.

Despite all the above mentioned non-Newtonian fluid models, the Eyring-Powell fluid model has two advantages. First, it is deduced from kinetic theory of liquid rather than the empirical relation as in the case of Power-law model. Secondly, it reduces to Newtonian behavior at low and high shear rates. Keeping this in view, Hayat et al. (2012a) Hayat et al. (2012b) considered the Powell-Eyring fluid flow over a moving surface with convective boundary condition and constant free stream. Jalil et al. (2013) studied the boundary layer flow and heat transfer of Powell-Eyring fluid over a continuously moving permeable surface in a parallel free stream. The authors employed scaling group of transformations to transform the governing partial differential equations into ordinary differential equations and then same are solved numerically using the Keller-box method. Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity was analyzed by Malik et al. (2013). Later, the numerical solutions for free convection heat and mass transfer of MHD Eyring-Powell fluid through a porous medium were presented by Eldabe et al. (2012). Hayat et al. (2013) investigated the radiation effects on the three-dimensional boundary layer flow of an Eyring-Powell fluid over a linear stretching sheet in the presence of a magnetic field via Homotopy analysis method. Recently, Akbar et al. (2015) reported the numerical solution for boundary layer flow of Eyring-Powell fluid over a stretching surface in the presence of uniform magnetic field.

Additionally, nanofluids are a new kind of energy transport fluid; it is a suspension of nanoparticles and a base fluid. Ordinary heat transfer fluids cannot be used for cooling rate requirements, since they have lower thermal conductivity. By embedding nanoparticles into ordinary fluids, their thermal performance can be improved significantly. Such thermal nanofluids for heat transfer applications represent a class of its own difference from conventional colloids for other applications. Nanofluids have a wide range of applications such as engine cooling, solar water heating, cooling of electronics, cooling of transformer oil, improving diesel generator efficiency, cooling of heat exchanging devices, improving heat transfer efficiency of chillers, domestic refrigerator-freezers, cooling in machining, in nuclear reactor, defense, space and ete Saidur et al. (2011), Choi (1995) was the first to prove that embedding nanoparticles into the base fluid enhances the thermal behavior of base fluid. Later on, Buongiorno (2006) addressed a comprehensive survey of convective transport in nanofluids. Oztop and Abu-Nada (2008) investigated the influence of various nanoparticles on flow and heat transfer due to buoyancy forces in a partially heated enclosure. They found that the use of nanoparticles causes heat transfer enhancement in the base fluid and this enhancement is more pronounced at a low aspect ratio than at a high one. Nield and Kuznetsov (2009) examined the nanoparticles influence on natural convection flow past a vertical plate saturated by porous medium. They have employed Brownian motion and thermophoresis effects by means of Buongiorno nanofluid model. The effect of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary condition was studied by Alsaeedi et al. (2012). Makinde and Aziz (2011) addressed the boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. A thermal radiation effect on boundary layer flow of a nanofluid over a heated stretching sheet with an unsteady free stream condition was numerically investigated by Das et al. (2014). They found that the heat transfer rate at the surface increases in the presence of Brownian motion but reverse effect occurs for thermophoresis. Chamkha et al. (2011) analyzed the mixed convection flow of a nanofluid past a stretching surface in the presence of Brownian motion and thermophoresis effects. Gireesha et al. (2014) obtained the numerical solutions for nanoparticle effect on boundary layer flow and heat transfer of a dusty fluid over a non-isothermal stretching surface. The influence of aligned magnetic field and melting heat transfer on stagnation point flow of nanofluid due to stretching surface was addressed by Gireesha et al. (2015a,b) Gireesha et al. (2015c). Nadeem et al. (2014a),(Nadeem et al., 2014b) studied...
the Oblique stagnation point flow and heat transfer of non-Newtonian fluid over stretching surface in the presence of nanoparticles. Later, Nadeem et al. (2015) discussed the oblique stagnation point flow and heat transfer of nonNewtonian fluid over stretching surface in the presence of nanoparticles. An approach to calculate the flow and heat transfer of non-Newtonian fluid over stretching surface in the presence of nanoparticles is carried out by Akbar (2015). Aforementioned studies on nanofluid are only concerned with two-dimensional flow situations. Only few attempts have been made to study three dimensional flow utilizing nanofluids (see Khan et al., 2014a,b; Mansur et al., 2014; Farooq and Hang, 2014; Hayat et al., 2015; Nadeem et al., 2014a,b; Gireesha et al., 2015a; Gireesha et al., 2015b; Gireesha et al., 2015c). Moreover, the viscous dissipation and Joule heating effects in most of the preceding attempts are ignored.

So far, no investigation is made which illustrates the unsteady three-dimensional flow of an Eyring-Powell fluid in the presence of nanoparticles. Therefore, current investigation deals with unsteady three-dimensional magnetohydrodynamic (MHD) flow of a nano Eyring-Powell nanofluid over a convectively heated stretching surface in the presence of radiation, viscous dissipation and Joule heating. Combined effects of heat and mass transfer involving Brownian motion and thermophoresis are also accounted. The conversion of mass, momentum, energy and nanoparticle volume fraction results in the complete formulation of nonlinear mathematical problem. The nonlinear analysis has been carried out for the velocity, temperature and nanoparticle concentration profiles using fourth-fifth order Runge–Kutta–Fehlberg method. To the best of our knowledge, this study has not been considered by any authors.

2. Mathematical formulation

Consider an unsteady three-dimensional boundary layer flow of an electrically conducting Eyring-Powell fluid past a convectively heated stretching sheet in the presence of nanoparticles. The Cartesian coordinates (x, y, z) are chosen with the origin O and the sheet coincides with the plane at z = 0 and flow occupies the region z > 0 as shown in Fig. 1. By keeping the origin fixed, the sheet is stretched in two laterals x- and y-directions with the velocities respectively in the form:

\[u_a(x, t) = \frac{ax}{1 - \alpha t} \quad \text{and} \quad v_a(y, t) = \frac{by}{1 - \alpha t} \]

where \(a\) and \(b\) are positive constants.

Figure 1 Physical model and coordinate system.

In polymer extrusion processes the material properties as well as elasticity of extruded sheet vary with time even though the sheet is pulled by constant force. It is also assumed that, \(T_f\) and \(C_v\) represent the convective temperature and concentration of nanoparticles at the sheet respectively, while \(T_w\) and \(C_{w\infty}\) respectively denote the ambient fluid temperature and concentration. It is assumed that the Reynolds number is small so that an induced magnetic field is neglected. The applied transverse magnetic field is assumed to be variable and is considered in the special form as:

\[B = \frac{B_0}{(1 - \alpha t)^{\frac{1}{2}}} \]

The Cauchy stress tensor \(T\) for Eyring-Powell fluid can be given as

\[T = -pI + \tau \]

\[\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \nabla \cdot \mathbf{F} + \mathbf{F} \cdot \nabla \mathbf{u} + \mu \nabla^2 \mathbf{u} \]

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \frac{\partial^2 u}{\partial x^2} + \frac{1}{2 \beta} \left(\frac{\partial u}{\partial z} \right)^2 \frac{\sigma B^2}{\rho_j} u, \]

where \(\beta\) and \(\gamma\) are the characteristic length. By considering

\[\sinh \left(\frac{1}{\gamma} \frac{\partial u}{\partial x} \right) \approx 1 - \frac{1}{\gamma} \left(\frac{\partial u}{\partial x} \right)^2, \quad \left| \frac{\partial u}{\partial x} \right| < 1 \]

and using boundary layer approximations; the governing time-dependent three-dimensional equations for nano Eyring-Powell fluid are expressed in the presence of thermal radiation, viscous dissipation and Joule heating as Hayat et al. (2013);

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \]

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \frac{\partial^2 u}{\partial x^2} + \frac{1}{2 \beta} \left(\frac{\partial u}{\partial z} \right)^2 \frac{\sigma B^2}{\rho_j} u, \]

\[\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \frac{\partial^2 v}{\partial y^2} + \frac{1}{2 \beta} \left(\frac{\partial v}{\partial z} \right)^2 \frac{\sigma B^2}{\rho_j} v, \]

\[\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = \frac{\partial^2 w}{\partial z^2} + \frac{1}{2 \beta} \left(\frac{\partial w}{\partial z} \right)^2 \frac{\sigma B^2}{\rho_j} w, \]

\[\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} = \left[D_T \left(\frac{\partial^2 C}{\partial x^2} + \frac{D_T}{T_w} \frac{\partial^2 C}{\partial z^2} \right) \right] - \frac{\partial}{\partial z} \left(\frac{\partial C}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial x} \left(\frac{\partial C}{\partial x} \right) + \nabla \cdot \mathbf{F} C_w \]

where \(u\), \(v\) and \(w\) are velocity components along \(x\), \(y\) and \(z\) directions respectively, \(T\) and \(C\) are temperature and volume fraction of nanoparticles respectively, \(\nu\) – kinematic viscosity,
\(\mu \) – dynamic viscosity, \(\sigma \) – electrical conductivity, \(\kappa_m = k/\rho c_f \) – thermal diffusivity of the fluid, \(k \) – thermal conductivity of the fluid, \(D_B \) – Brownian diffusion coefficient, \(D_T \) – thermophoretic diffusion coefficient, \(\tau = (\rho_c/\rho)(\tau_c/\tau) \) ratio of the effective heat capacity of the nanoparticle and the heat capacity of the ordinary fluid and \(t \) is the time.

Following Rosseland approximation, the radiative heat flux \(q_r \) is given by:

\[
q_r = \frac{4e^* \partial T^4}{3k_i},
\]

(2.12)

where \(e^* \) – Stefan–Boltzmann constant and \(k_i \) – mean absorption coefficient. In this model, optically thick radiation is considered. Assuming that the differences in temperature within the flow are sufficiently small such that \(T^4 \) can be expressed as a linear combination of the temperature about \(T_\infty \) as follows:

\[
T^4 = T^4_\infty + 4T^3_\infty (T - T_\infty) + 6T^2_\infty (T - T_\infty)^2 + \ldots
\]

(2.13)

Now by neglecting higher order terms beyond the first degree in \((T - T_\infty)\), one can get

\[
T^4 = 4T^3_\infty, T - 3T^2_\infty
\]

(2.14)

Using Eq. (2.14), the Eq. (2.12) takes the following form

\[
\frac{\partial q_r}{\partial z} = -\frac{16e^* T^4_\infty}{3k_i} \frac{\partial T}{\partial z}.
\]

(2.15)

Therefore using (2.15), the energy Eq. (2.10) becomes;

\[
\frac{\partial^2 u}{\partial t^2} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial w}{\partial z} = \kappa \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)^2 \frac{\partial u}{\partial x} + \frac{\partial w}{\partial y} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\partial v}{\partial z} \left(\frac{\partial u}{\partial z} \right)^2.
\]

(2.16)

The relevant boundary conditions for the present problem are:

\[
\begin{align*}
&u = u_0(x, t), \quad v = v_0(y, t), \quad w = 0, \quad k \frac{\partial T}{\partial z} = h_0(T - T_f), \quad C = C_{\infty}, z = 0, \\
&U \rightarrow 0, v \rightarrow 0, \frac{\partial u}{\partial z} \rightarrow 0, \frac{\partial v}{\partial z} \rightarrow 0, \quad T \rightarrow T_\infty, \quad C \rightarrow C_{\infty} \text{ as } z \rightarrow \infty.
\end{align*}
\]

(2.17)

The Eqs. (2.7), (2.8), (2.9), (2.11) and (2.16) subject to the boundary conditions (2.17) admit similarity solutions in terms of the similarity functions \(f, g, \theta, \phi \) and the similarity variable \(\eta \) are defined as:

\[
\begin{align*}
u &= \frac{ax}{(1-\alpha)} f(\eta), \\
\omega &= \frac{hy}{(1-\alpha)} g(\eta), \\
\theta(\eta) &= T - T_\infty, \\
\phi(\eta) &= C - C_{\infty}.
\end{align*}
\]

(2.18)

In view of the Eq. (2.18), the continuity Eq. (2.7) is automatically satisfied and the remaining equations are reduced to the following set of non-linear ordinary differential equations;

\[
(1 + \epsilon)f'' + \left(f + g \right)g'' - \left(f' \right)^2 - S\left(f' + \frac{1}{2} \eta \right) - \phi_1(f')^2 f' - M^2 f = 0,
\]

(2.19)

\[
(1 + \epsilon)g'' + \left(f + g \right)g'' - \left(g' \right)^2 - S\left(g' + \frac{1}{2} \eta \right) - \phi_0(g')^2 g' - M^2 g' = 0,
\]

(2.20)

\[
\left(3 + 4R \right) \frac{\partial \theta}{\partial z} + (f + g) \theta' - \frac{S}{2} \eta \theta' + N_b \phi \theta' + N_t \theta^2 \]

\[
+ Ec_f f^2 + Ec_g g^2 + M^2 Ec_f f^2 + M^2 Ec_g g^2 = 0,
\]

(2.21)

\[
\frac{1}{Le} \phi'' + (f + g) \phi' - \frac{S}{2} \eta \phi' + N_t \eta \phi' = 0.
\]

(2.22)

The corresponding boundary conditions become:

\[
f(0) = 0, \quad g(0) = 0, \quad f' = 1, \quad g' = c,
\]

\[
\theta(0) = \theta(1), \quad \phi(0) = 1, \quad \theta(\eta) \rightarrow \infty \text{ as } \eta \rightarrow \infty.
\]

(2.23)

where \(\delta_1, \delta_2 \) and \(\alpha \) are Eyring-Powell fluid parameters, \(c, M^2, S, \) \(Pr, Nb, Nt, R, Ec_f, Ec_g, Bi \) and \(Le \) are stretching ratio parameter, magnetic parameter, unsteady parameter, Prandtl number, Brownian motion parameter, thermophoresis parameter, thermal radiation parameter, Eckert number along \(x \) direction, Eckert number along \(y \) direction, Biot’s number and Lewis number correspondingly. These parameters are defined as:

\[
\begin{align*}
\delta_1 &= \frac{u_0^2}{2\eta C^2}, \quad \delta_2 = \frac{v_0^2}{2\eta C^2}, \quad \epsilon = \frac{1}{\mu B C}, \quad c = \frac{b}{a}, \quad Le = \frac{v}{D_g}.
\end{align*}
\]

(2.24)

\[
M^2 = \frac{\sigma E_{zz}}{\rho a}, \quad S = \frac{\alpha}{a}, \quad Pr = \frac{\nu}{\kappa_m}, \quad Nb = \frac{-D_g(C_m - C_{\infty})}{\nu}, \quad Bi = \frac{h_0}{k_1\sqrt{\nu/a}}.
\]

(2.24)

\[
Nt = \frac{\tau D_r(T_f - T_\infty)}{T_\infty v}, \quad R = \frac{4\alpha T_\infty^4}{T_f - T_\infty}, \quad Ec_f = \frac{u_0^2}{c_p(T_f - T_\infty)}, \quad Ec_g = \frac{v_0^2}{c_p(T_f - T_\infty)}.
\]

It is worthy to mention that, for \(\epsilon = \delta_1 = \delta_2 = 0 \), the present problem reduces to Newtonian nano fluid problem and if \(Nb = Nt = 0 \) in Eq. (2.21), then it reduces to classical boundary layer heat equation.

2.1. Solution for particular case

Look at, for \(\epsilon = 0 \), the two dimensional case can be recovered. The Eq. (2.19) associated its boundary conditions with \(\delta_1 = S = 0 \) takes the following form

\[
(1 + \epsilon)f'' + \left(f + g \right)g'' - \left(f' \right)^2 - M^2 f = 0,
\]

(2.25)

\[
f(0) = 1, \quad f(0) = 0, \quad f(\infty) = 0.
\]

(2.26)

The exact solution of the Eq. (2.25) with respect to (2.26) is given by Hayat et al. (2013);
f(\eta) = \frac{1 - e^{-\theta}}{\zeta} \equiv \sqrt{1 + \frac{M^2}{1 + \epsilon}}, \quad (2.27)

The physical quantities of interest of nanofluid problems are local Nusselt number Nu or wall heat transfer and the local Sherwood number Sh or volume fraction mass transfer are defined as follows;

\[Nu = \frac{x q_w}{k(T_f - T_\infty)} \quad \text{and} \quad Sh = \frac{x j_w}{D_B(C_u - C_\infty)}. \quad (2.28) \]

where \(q_w \) and \(j_w \) are the surface heat flux and surface mass flux respectively. Using similarity variables, we obtain

\[Nu = -\left(1 + \frac{4}{3} R\right)\theta'(0), \quad Sh = -\phi'(0), \quad (2.29) \]

where \(Re_x = u_w x/\nu \) is the local Reynolds number.

3. Method of solution and validation

The set of Eqs. (2.19)–(2.23) are highly nonlinear and coupled in nature, thus they are not amenable to closed form solutions. Therefore, they are solved numerically using a shooting technique coupled with fourth-fifth order Runge–Kutta–Fehlberg scheme with the help of algebraic software Maple. First, the non-linear boundary value problem has been reduced to system of linear differential equations by setting

\[f_1 = f_2, \]

\[f_2 = f_3, \]

\[(1 + \epsilon - \omega_0 h) f_3 = -(f_1 + f_4) f_3 + f_4^2 + S(f_2 + 0.5\eta f_3) + M^2 f_2, \]

\[f_4 = g, \]

\[f_4 = f_5, \]

\[f_5 = f_6, \]

\[(1 + \epsilon - \omega_2 h) f_6 = -(f_1 + f_4) f_6 + f_4^2 + S(f_2 + 0.5\eta f_6) + M^2 f_5, \]

\[f_7 = f_8, \]

\[\left(\frac{3 + 4R}{3Pr}\right) f_8 = -(f_1 + f_4) f_8 + 0.5S\eta f_8 - (Nb f_{10} + Nt f_6^2 + Ec f_8 f_3 + Ec f_8 f_5 + M^2 Ec f_8 f_2 + M^2 Ec f_8 f_2), \]

\[f_9 = f_{10}, \]

\[\left(\frac{1}{Le}\right) f_{10} = -(f_1 + f_4) f_{10} + 0.5S\eta f_{10} - \frac{Nt}{NbLe} f_9, \]

and relevant to the initial conditions are

\[f_1 = 0, \quad f_2 = 1, \quad f_3 = m_1, \quad f_4 = 0, \quad f_5 = c, \]

\[f_6 = m_2, \quad f_7 = m_3, \quad f_8 = Bi(m_3 - 1), \quad f_9 = 1, \quad f_{10} = m_4, \]

where unknown initial conditions \(m_1, m_2, m_3 \) and \(m_4 \) are calculated using iterative method called shooting method. The Shooting method is based on Maple implementation ‘shoot’ algorithm and is proven to be precise and accurate and which has been successfully used to solve wide range of non-linear problems in transport phenomena especially flow and heat transfer problems. A brief explanation of shooting method on maple implementation can be found in Meade et al. (1996). Then the resultant initial value problem has been solved using Runge–Kutta–Fehlberg fourth-fifth order method. The formula of RKF-45 method is given below;

\[y_{m+1} = y_m + h \left(25/216 k_0 + 1408/2565 k_2 + 2197/4090 k_3 - \frac{1}{5} k_4\right), \quad (3.1) \]

\[y_{m+1} = y_m + h \left(16/135 k_0 + 6656/12825 k_2 + 28561/56430 k_3 - \frac{9}{50} k_4 + \frac{2}{55} k_5\right). \quad (3.2) \]

where \(m = f(m_m, y_m) \),

\[k_1 = f \left(y_m + \frac{h}{4}, \quad y_m + \frac{hb_3}{4} \right), \]

\[k_2 = f \left(y_m + \frac{3}{8} h, \quad y_m + \left(\frac{3}{32} k_0 + \frac{9}{32} k_3\right) h \right), \]

\[k_3 = f \left(y_m + \frac{12}{13} h, \quad y_m + \left(\frac{1932}{2197} k_0 - \frac{2700}{2197} k_1 + \frac{7296}{2197} k_2\right) h \right), \]

\[k_4 = f \left(y_m + h, \quad y_m + \left(\frac{439}{216} k_0 - 8k_1 + \frac{3860}{513} k_2 - \frac{845}{4104} k_3\right) h \right), \]

\[k_5 = f \left(y_m + \frac{5}{2} h, \quad y_m + \left(-\frac{8}{27} k_0 + 2k_1 - \frac{3544}{2565} k_2 + \frac{1859}{4104} k_3 - \frac{11}{40} k_4\right) h \right), \]

where (3.1) and (3.2) are fourth and fifth order Runge–Kutta respectively. The inner iteration is counted until nonlinear solution converges with a convergence criterion of \(10^{-6} \). In addition, the step size is chosen as \(\Delta \eta = 0.001 \). In this scheme, it is most important to choose the appropriate finite values of \(\eta_\infty \). In accordance with standard practice in the boundary layer analysis the asymptotic boundary conditions at \(\eta_\infty \) are replaced by \(\eta_0 \).

The accuracy and robustness of the present method have been repeatedly confirmed in our previous publications (Gireesha et al., 2014). As a further check, the numerical results of \(-\theta(0) \) for different values of \(Nt \) and \(Nb \) are compared with that of Makinde and Aziz (2011) and Khan et al. (2015) for Newtonian fluid in the absence of viscous dissipation and Joule heating with \(S = 0, Bi = 0.1, Le = Pr = 10 \) and \(c = 0 \) in Table 1. This table shows that comparison results are found to be an excellent agreement.

4. Result and discussion

In this section, the influence of various physical parameters like Eyring-Powell fluid parameters (\(\epsilon, \delta_1, \delta_2 \)), magnetic parameter (\(M^2 \)), thermophoretic parameter (\(Nt \)), Brownian motion parameter (\(Nb \)), radiation parameter (\(R \)), Eckert numbers (\(Ec, Ec_\epsilon \)) and Lewis number (\(Le \)) on axial velocity, transverse velocity, temperature and nanoparticles concentration profiles have been analyzed. Figs. 2–12 represent the velocity, temperature and the nanoparticle volume fraction profiles; and these profiles satisfy the far field boundary conditions (2.23) asymptotically, which also support the accuracy of the obtained numerical results. Table 2 presents the numerical
values of Nusselt number and Sherwood number with respect to the variation of different parameters. It is observed that the Nusselt number increases with ε and Bi, but decreases qualitatively with an increase in M^2, S, Nh, Nt, Le, Ec_x, and Ec_y. However, the Sherwood number is an increasing function of ε, Le, Nh, Ec_x, and Ec_y, whereas this trend is quite opposite for S, Bi, R and Nt. Further it is observed that, the rate of heat and mass transfer for unsteady flow case ($S \neq 0$) is smaller as compared with steady flow case ($S = 0$).

Fig. 2 depicts the primary and secondary velocity fields in steady and unsteady flow situations. The velocities are smaller for unsteady flow situation when compared to steady flow situation as shown in **Fig. 2**. It is also noted that, the velocity of Eyring-Powell fluid is larger than that of Newtonian fluid.

Fig. 3 displays the temperature profile versus η for both steady and unsteady flow situations. It is observed that, the temperature field is higher for unsteady flow when compared to steady flow. Also, the temperature of nano-Newtonian fluid is higher than that of nano-Eyring-Powell, Newtonian and Eyring-Powell fluid in order. **Fig. 4** portrays the effects of M^2, ε, Bi, R, Nh, Nt, Le, Ec_x, and Ec_y for $Pr = 3$.

Table 1	Comparison of computed numerical values of $-\theta'(0)$ for different values of Nb and Nt with that of Makinde et al. (2011) and Khan et al. (2015) for $c = 0$, $Le = Pr = 10$, $Ec_x = Ec_y = R = 0$ and $Bi = 0.1$.		
Nt	Makinde et al. (2011)	Khan et al. (2015)	Present study
$-\theta'(0)$	$-\theta'(0)$	$-\theta'(0)$	
$Nb = 0.1$	0.1	0.1	0.1
	0.092907	0.038325	0.092906
$Nb = 0.5$	0.038325	0.038325	0.038324

Table 2	Numerical values of the Nusselt number $Re_{x}^{-1/2}Nu$ and the Sherwood number $Re_{x}^{-1/2}Sh$ for different values of M^2, S, ε, Bi, R, Nh, Nt, Le, Ec_x, and Ec_y for $Pr = 3$.		
M^2	S	ε	Bi
	R	Nh	Nt
	Le	Ec_x	Ec_y
	$Re_{x}^{-1/2}Nu$	$Re_{x}^{-1/2}Sh$	
0	0.4	0.5	0.4
0.5	0.4	0.5	0.4
1	0.4	0.5	0.4
0.5	0.4	0.5	0.4
0.5	0.4	0.5	0.4
0.5	0.4	0.5	0.4
0.5	0.4	0.5	0.4
0.5	0.4	0.5	0.4
0.5	0.4	0.5	0.4

Please cite this article in press as: Mahanthesh, B. et al., Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating. Journal of the Association of Arab Universities for Basic and Applied Sciences (2016), http://dx.doi.org/10.1016/j.jaubas.2016.05.004
whereas opposite behavior is observed for \(g' \). This is due to the fact that, the large values of \(c (= b/a) \) lead to either increase in \(b \) or decrease in \(a \). Consequently the velocity in \(x \)-direction decreases and velocity in \(y \)-direction increases respectively. This result is consistent with the results obtained by (Hayat et al., 2015).

Fig. 5 depicts \(f', g' \) profiles for different values of \(e \) and \(S \). Analysis of this figure shows that by increasing \(e \) the velocity fields \(f', g' \) increases. Further, the \(f', g' \) field’s decreases initially with \(S \), but increase after a certain distance \(\eta \) from the sheet. The variation of \(Ec_x \) and \(Ec_y \) on temperature \(\theta \) and nanoparticle volume fraction \(\phi \) for steady and unsteady flow situations are respectively plotted in Figs. 6 and 7. These figures indicate that, \(\theta \) and \(\phi \) increases notably with an increase in Eckert number. Physically, by increasing the Eckert number, the heat energy is stored in the fluid due to the frictional or drag forces. As a result the fluid temperature field increases.
The Brownian motion and thermophoresis parameters appeared in both thermal and concentration boundary layer equation. It is worth to mentione that, \(Nb \) and \(Nt \) are coupled with the temperature and concentration field, and they play a tough role in determining the heat diffusion and concentration of nanoparticles in the boundary layer. We next move to analyze the effects of \(Nb \) and \(Nt \) on \(\theta \) and \(\phi \) profiles through the Figs. 8 and 9 respectively. It is observed that the temperature of the fluid increased considerably with an increase in \(Nb \) and \(Nt \). On the other hand, the volume fraction of nanoparticle increase with an increase in \(Nt \) and an opposite trend has been observed as \(Nb \) varies. This is because, the random motion of nanoparticles get increased with an increase in Brownian motion parameter, which in turn an enhancement of fluid temperature and reduction of the nanoparticle diffusion.

Fig. 10 demonstrates the effect of unsteady parameter \(S \) on \(\theta \) and \(\phi \) profiles. It is observed that the temperature and nanoparticle concentration are augmented throughout the boundary layer region as \(S \) increases. It is due to the fact that \(S \) is inversely proportional to the stretching coefficient \(a \). Thus, an increase in \(S \) decreases the stretching rate. As a consequence the velocity decreases. This is responsible for an enhancement of temperature and nanoparticle volume fraction distributions in the boundary layer. We can also observe that \(\theta \) and \(\phi \) profiles are smaller for steady flow (\(S = 0 \)) case in comparison with an unsteady flow (\(S \neq 0 \)) case. Further, both \(\theta \) and \(\phi \) profiles are higher in the presence of viscous dissipation than in the absence.

The impact of Biot’s number on temperature, and nanoparticle concentration is illustrated in Fig. 11. Physically, Biot’s number is expressed as the convection at the surface of the body to the conduction within the surface of the body. When thermal gradient is applied on the surface, the ratio governing the temperature inside a body varies significantly, while the body heats or cools over a time. Normally, \(Bi < 1 \) represents uniform temperature field inside the surface, and \(Bi > 1 \) indicates the non-uniform temperature field inside the surface. From this plot it is observed that, temperature as well as nanoparticle concentration profiles monotonically increase with Biot’s number. Finally, Fig. 12 illustrates the variation of \(\theta \) and \(\phi \) profiles within the boundary layer as \(R \) varies in both steady and unsteady flow situation. The temperature field as well as its corresponding thermal boundary layer thickness increased notably as \(R \) increases. Physically speaking, by strengthening radiation parameter provides more heat into the fluid, which leads to an intensification of the thermal boundary layer. It is also noted that, the effect of \(R \) is to decrease the nanoparticle volume fraction distribution near the stretching sheet, whereas reverse effect is observed far away from the sheet.

Figure 8 Effect of \(Nb \) on \(\theta(\eta) \) & \(\phi(\eta) \) profiles.

Figure 9 Effect of \(Nt \) on \(\theta(\eta) \) & \(\phi(\eta) \) profiles.

Figure 10 Effect of \(S \) on \(\theta(\eta) \) & \(\phi(\eta) \) profiles.

Figure 11 Effect of \(Bi \) on \(\theta(\eta) \) & \(\phi(\eta) \) profiles.
Unsteady three-dimensional MHD flow

5. Concluding remarks

The problem of an unsteady 3-D boundary layer analysis of Eyring-Powell fluid over an impermeable linearly stretching sheet is studied in the presence of nanoparticles. A set of similarity transformation is presented to alter the boundary layer equations into self-similar form and then solved numerically. It is found that, the velocity field is larger for Eyring-Powell fluid than that of ordinary fluid. The influence of applied magnetic field reduces the velocity profile whereas opposite behavior is found for Eyring-Powell fluid parameter. The Brownian motion and thermophoresis mechanisms enhance the thermal behavior of the fluid. Further, an impact of viscous dissipation and thermal radiation plays a vital role in cooling and heating process. They should be kept minimum as much as possible in cooling systems.

Conflict of interest

The authors declare that there is no conflict of interest.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Greek symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha, \beta)</td>
<td>(\phi) dimensionless temperature</td>
</tr>
<tr>
<td>(\gamma, \delta)</td>
<td>(\phi) dimensionless nanoparticle volume fraction</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(\nu) kinematic viscosity of the fluid (m(^2) s(^{-1}))</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>(\epsilon, \delta_1, \delta_2) Eyring-Powell fluid parameters</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>(\alpha_0) thermal diffusivity</td>
</tr>
<tr>
<td>(\mu)</td>
<td>(\beta) constant</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(\mu) dynamic viscosity (kg m(^{-1}) s(^{-1}))</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>(\beta, \gamma) characteristics of Eyring-Powell fluid</td>
</tr>
<tr>
<td>(\kappa_1)</td>
<td>(\sigma) electric conductivity</td>
</tr>
<tr>
<td>(\Lambda)</td>
<td>(\beta) magnetic number</td>
</tr>
<tr>
<td>(\sigma^*)</td>
<td>(\sigma^*) Stefan–Boltzmann constant (W m(^{-2}) K(^{-4}))</td>
</tr>
<tr>
<td>(\tau)</td>
<td>(\tau) ratio of the effective heat capacity of the nanoparticle to that of an ordinary fluid</td>
</tr>
<tr>
<td>(\tau_0)</td>
<td>(\tau_0) extra stress tensor of Eyring-Powell fluid</td>
</tr>
<tr>
<td>(\eta_0)</td>
<td>(\rho) local Nusselt number</td>
</tr>
<tr>
<td>(\rho)</td>
<td>(\rho) density (kg/m(^3))</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>(\Omega) origin</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>(\sigma) pressure</td>
</tr>
<tr>
<td>(\Pr)</td>
<td>(\tau_i) derivative with respect to (\eta)</td>
</tr>
<tr>
<td>(\eta_w)</td>
<td>(\eta_w) heat flux</td>
</tr>
<tr>
<td>(\eta_\tau)</td>
<td>(\eta_\tau) radiative heat flux (W m(^{-2}))</td>
</tr>
<tr>
<td>(\rho)</td>
<td>(\rho) nanoparticles</td>
</tr>
<tr>
<td>(\Re_e)</td>
<td>(\Re_e) local Reynolds number</td>
</tr>
<tr>
<td>(\Re_e)</td>
<td>(\Re_e) parameter</td>
</tr>
<tr>
<td>(\S)</td>
<td>(\S) unsteady number</td>
</tr>
<tr>
<td>(\S)</td>
<td>(\S) Sherwood number</td>
</tr>
</tbody>
</table>

Acknowledgement

The author B.J. Gireesha gratefully acknowledges the financial support of UGC, New Delhi, India for pursuing this work under Raman Fellowship for Post Doctoral Research for Indian Scholars in USA 2014-2015.

References

