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Introduction and preliminaries

We consider the following problem: Given a functor /:M — § (where d = sets),
find the equational completion of /. That is to find an equational category ST (o
gether with a factorization of { through the underlying set functor (as I —» ch -
d), which is “best possible” (so that if W~ STo - & is another such factorization
of I there exists a unique Uy ST - 3To which makes everything commute). The
existence (and a precise definition) of the equational completion if given by Linton
{151 who shows the class of n-ary operations for the completion of / can be regard-
ed as the class of all natural transformations from /" to / where n € . Thus the
problem becomes, given /: M~ I, find some way of obtaining enough information
about the natural transformations from /" to [ so that a reasonable description of
ST can be given. A straightforward approach using the definition of a natural trans-
formation is generally difficult because there often are many horribly infinitary
operations for the equational completion. For example, if M = finite sets and
I:9M~ J is the inclusion functor then a natural transformation from /" to I corres-
ponds to an ultrafilter on n (and the equational completion is the category of com-
pact Hausdorff spaces). If M = fields the completion is the category of products of
fields and continuous ring homomorphisms but the operations are difficult to des-
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cribe usefully. (We do not know how to describe the category of algebras that results
if one considers only the finitary operations.) Another difficulty with, say, simply
making a list of natural transformations from /" to I for various n is that it is hard
to tell when one has listed enough operations to determine ST One can frequently
find enough operations to determine a subtheory Ty of T such that every M € I
has the structure of a T-algebra, the Ty-homomorphisms are precisely the admis-
sible homomorphisms (in dT) between members of W, and such that the To-sub-
algebras and finite products will exactly determine the behaviour of subobjects and
finite products in ST of (lifted) members of M. However TO might still be much
smaller than T. (For example if M= finite groups, / the obvious underlying functor,
then Ty = the theory of groups has the above properties, but the completion T is
the theory of profinite groups.)

Nonetheless once such a subtheory Ty has been found (cf. the definitions of
separating triple and of normal separating triple and the procedure in Example 4.1)
then one can often make effective use of a topological approach to ST based on
tripies and embed ST in the topological T,-algebras.

Fairly complete descriptions (Theorems 3.1, 3.2 and 3.3) of ST asa subcategory
of topological Tj-algebras are given if each M € W is finite or satisfies a descending
chain type of condition. In these cases ST is related to the Pro-objects for W (which
are briefly reviewed in Section 2). Examples involving pseudocompact rings, modules
and algebras and the case W = countable sets show that the topological approach
works well in specific cases too.

The equational completions that we shall examine turn out to be varietal, hence
arise from triples on . If cST is the completion of /: M — o we shall regard T as
a triple (rather than as a varietal equational theory) in which case T is the model
induced triple arising from /: M — . (This follows from the argument sketched
below and from the results of [1] where the dual notion, of a model induced co-
triple is defined. These triples are called codensity triples in [14] and their relation-
ship to equational completions is there established in a general setting. Therefore
this paper gives some techniques for computing examples of the categories of alge-
bras discovered by Linton, Appelgate and Tierney when we consider relatively
specific cases. Incidentally we shall also relate S ¥ to a model induced triple over
Top (= Topological spaces and maps).)

Let us recall that if T = (7, n, ) is the model induced triple for /:M - & then
T(n)=lim|(n, I) >3 | where n € & and (n, /) is the comma category of all func-
tions n = /(M) where M ranges over the class of models (i.e. objects of M), The
functor (n, 1) = < assigns /(M) to the function n ~ I(M). (This limit exists iff T is
well-defined iff / is tractable (i.e. the collection n.t. (I, I') is small) iff the equational
completion is varietal. A practical test for /: M — d to be tractable is given in the
discussion preceeding 1.3 below.) For each g:n - IM)in (n, Iy we let(g): T(n) =
1(M) be the corresponding projection. Then n and p are defined by (g)n = g and
{ghu = «g». I f1n > m then T(f)is defined by () T(f) = <gf).7Moreover every nat-
ural transtormation A /" — [ gives rise to X € T'((n) where (g)(\) = Ay (g) for
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g:n = I(M), that is for g € I"(M). Thus every such natural transformation A gives
rise to an n-ary operation X of T. This correspondence in one-one and onto and itlus-
trates why the model induced triple gives rise to the equational completion. (We
shall generally speak of n-ary operations of triples when strictly speaking we mean
an n-ary operation of the corresponding varietal theory.)

In general if T is a triple on #f then the statement (A4, 0) € AT or (A4.0)isa T-
algebras means that A € f and 6 :T(A4) = A is a structure map. The morphisms of
AT shall be referred to as T-homomoarphisms or as morphisms of s{ which are ad-
missible. If Ty is a triple over sets then a topological Ty-algebra with a topology
such that the n-ary operations are continuous, using the product topology.

We shall use the term “limit” to refer to generalized inverse limits (i.e. the left
roots in [6] ). For emphasis, limits in ST shall sometimes be called T-imits. Limits
in Top shall sometimes be referred to as Top-limits. We say that a small category D is
filtered if d, e € D imply there exists ¢ € D and morphisms from ¢ to d and from
ctoe. Also if f, g € D(c, d) then there exists i with fh = gh. A filtered diagram is a
functor whose domain is filtered and its limit is a filrered limir. (Aside from the use
of contravariant functors in [2], this definition is effectively equivalent to the defi-
nition of filtered limit in [2].) If & is a category then s{°P is the dual category and
#A(X, Y) is the set of morphisms from X to Y. If X is an object of o then X also de-
notes the identity morphism in s{(X, X). If ¢ and B are categories then (s, B ) de-
notes the possibly illegitimate category of functors from of to “B. A subcategory o
of B is reflective if the inclusion functor A = ‘B has a lef't adjoint. (This follows
Freyd [6].) A morphism is a split epi if it has a right inverse. The term quotient map
is always used in the ropological sense. Parentheses in expressions such as 7'(n) are
sometimes omitted when they are not needed particularly in complicated formulas
(when only the crucial parentheses are included).

The authors would like to express their thanks to Michael Barr for a stimulating
seminar on triples given at McGill University. Among other things he posed the
problem of finding the equational completion of the category of fields. We also
wish to thank Myles Tierney for a helpful conversation concerning pro-objects and
M-objects.

§1. Some topological observations

Notation. From here on /: 9 — J shall denote a tractable functor and T = (T.n, u)
shall be the model induced triple on . The category of T-algebras shall be ST
with Ut: ST Sand F1:S = 37T the underlying and free functors.

Given M E M then (M) € ST shall be defined by the structure map
(TM): TIM ~ IM (here IM denotes the identity map on /M - this notation for iden-
tity map is used throughout). This defines the lifted model functor /: M > ST,

If there is no danger of confusion and if M € <yt we shall also use M to denote
I(M)E S and T(M) e ST,
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The topology on a T-algebra. Let M € M. Then T(n) can be topologized by the
smallest topology rendering each {g): T(n) > M continuous, when each M is given
the discrete topology. (Thus the &-limit, 7(n), is regarded as a topological limit of
discrete spaces.)

If(n,0)e ST (so that 6 T(n) = nis the structure map) we define Q(n, 8) as
the quotient topology induced by 0. Then Q: sT- Top is easily seen to be a func-
tor. Let U: Top = & be the underlying functor and D: - Top the left adjoint,
Wthh assigns the discrete topology to a set. Let /py : W~ Top be defined by

% Qo) and let T= (T, m, 1) be the model induced triple on Top. Let
U Top - Top, F: Top — Topf 1 :9M~Top" be the obvious functors. For con-
vemence if X € Top and g: X = M is continuous (thatisg: X > > Ip(M)) we let
[g] T(X) - M be the corresponding projection which makes T(X) the limit of
Ip) = Top. There exists a comparison functor p: Top* — ST since the adjoint-
ness FD 4 UU generates the triple T. Finally, if M € 9 we shall also use M to de-
note (M) € Top and I(M) € Top! (aswell as /(M) € Sand T (M) € cST) so long
as the context makes the exact meaning clear. To summarize the above and to re-
cord some immediate properties of O we state:

1.1. Proposition. (We suggest drawing a diagram of the above categories and functors.
For clarity the category || M and the functors I, T, ID and Iy, and T might be omitted.)

(@) Urp = UU and ¢[~D Fy and ¢ preserves limits.

(b) Q preserves quotients (meaning that if A = B is an onto T-homomorphism
then Q(f) is a quotient map in the topological sense).

Q preserves the topology of T(n) (meaning that Q(T,,. 1) is the limit topology
on Tn mentioned above).

However, Q need not assign the relative topology to a T-subalgebra nor does Q
generally preserve limits not is Q necessarily equal to U. We can say that Q(llmA P
is at least as large (has at least as ma ¥ open sets) as Top-lim Q(A)), that QX ) is
at least as large in U(X ) for Xe Top! and that Q(A) is at least as large as the relative
topology on A induced by Q(B) if A € B is a T-subalgebra.

(c) If X € Top then IXN(= Xy): TUX ~ TX defined by [g] X\ = (Ug). Then \ is
continuous and can be regarded as a natural transformation from QFTU~ T. If
X e TopT then o(X, 0) = (UX, 6 \y). Moreover if X is discrete then \y is the
identity.

Proof. (a) follows from the construction of ¢, see [4].

As for (b) we first note that u: T2(n) > T(n)isa quotient map as it is split epi in
Top with T(n) as right inverse. Thus Q(7n, 1) has the limit topology, Now if
(X, 8)~> (Y, ¥)isonto and admissible then f6 = Y Tf and Tfis a quotient map
(in fact Tf is split epi in Top as f'is split epi in I). Thus f8 is a quotient map and @
is continuous, so fis a quotient map.

Next Q(limA)) has at least as many open sets as Top-lim Q(A)) as the projections
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are Q-continuous. Similarly the Q topology on 4 is at least as large as the relative
topology as the inclusion A > B is Q-continuous.

Finally let X = (X, 8)€TopT. By (¢), ¢(X,0) = (UX. 0 \y). Clearly 0 Xy is con-
tinuous from TUX to UX . Hence Qo(X, 0), the space with the quotient topology
induced by 0 Ay has at least as many open sets as UX.

(c) Since n: UX — TUX is a front adjunction there is a unique A : TUX ~ TX
which is T-admissible and satisfies An = 7. Note that [g] A = (Ug) follows. Also 0
is the structure map of (X, 8) as 8\ is T-admissible and 0 An = X.

1.2. Proposition. (Continuity of the operations. ) Let Ty be any equational theory
generated by some finitary operations of T. Then:

@ If(X 0)e ST and if 0% [T(X)) % > Xk is a quotient map (between the
product topologies) for all finite k, then (X, 0), with the Q topology, is a topological
Ty-algebra. (In general, products of quotient maps need not he quotient maps.
However if T admits a group operation or if every model is finite then 0% will be a
quotient map. )

(b) If w is any k-ary operation of T, for k finite, and if A € ST then w is con-
tinuous from Q(AX) = Q(A4) (where AX is the product algebra in ST Note that
Q(4%) may fail to be Q(AY*.)

(c) Each T-algebra is a topological Ty-algebra using the U—tupologv, and is
Hausdorff.

Remark. The infinitary operations of T are usually not continuous.

Proof. (a) T(X) is always a topological Tj-algebra as it is a topological and algebraic
limit of models which are (discrete) topological T -algebras. Thus the operations of
Ty are continuous from [T(X)] kK to T(X). 1f 0 is a quotient map then clearly all
Ty-operations are continuous from X* - X (by the naturality of operations).

If T admits a group operation then a well known argument shows that @ is an
open mapping. (Usually the argument is stated in the presence of Hausdorffness
which however is not needed.) If 8 is an open onto mapping then 0% is a quotient
map for all .

If every model if finite then the Q topology is always compact, Hausdorff (as
shown in the proof of 3.1) and every continuous onto map is closed hence a quo-
tient map.

(b) Notice that there exists a continuous map from T(4%) > [T(4)] % whose
projections are T(4k - 4). But every k-ary operation gives rise to a continuous
map from T(A)’é - T(A) [as in (a)} hence there exists a continuous map from
T(A%) > T(A). By taking quotients one can readily show that the operation is
continuous from 0(4%) to Q(A).

(c) Let (X, 6) be a T-algebra where 8 : T(X) -~ X, Then 6 induces a Ty-structure
on X (which coincides with the underlymg To -structure_ of (X, 0), see a smular
discussion in 1.4). Moreover U@) is split epi in Top as 7 is continuous. Hence § and
0 are quotient maps for all k and the above arguments apply.
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Since 0 is split epi. U(X) is topologically equivalent to a subspace of T(X) hence
is Hausdorff.

Definition. Ty= (T, 1. 1g) is a separating triple for I: M — & if each model has
the structure of a Tj-algebra: the models are closed under the formation of Ty-sub-
algebras and the maps between models are precisely the Ty-homomorphisms. In
more precise terms T is a separating triple for [ if / factors as M~ S10 > & where
M - ST0 embeds M as a full subcategory closed under the formation of Tj-sub-
algebras, and where ST0 - o is the underlying set functor.

We say that Ty, is finitary if the corresponding equational theory is (i.e. if it is
generated by the finitary operations).

Notation and remarks. If T is a separating triple and n € S then we let (n, [), be
the full subcategory of (n, I) consisting of those f:n =M such that f(n) generates

M as a Ty-algebra (i.e. the extension Tyy(n) > M is onto). We observe:

(HIffy :n—>M|andjy :n—>M,arein(n, I)y and if e : f} = f, (that is e:M,>M,
and ef] = f5), then e is onto as its range contains f,(n) which generates M,. Also e

is unique as it is determined on f} (n). Thus (n, /) is partially ordered.

(2) (n, 1)y is initial in (n, 1) and T(n) = lim [(n, [} — d]. Moreover, (n, I)q is always
small so T(n) exists hence /: ‘M~ d is automatically tractable if a separating triple
exists.

(3) Suppose that M has and / preserves finite products. Let f1 :n > M, and f; :n—>M,
bein (n, I). Let (f}.f3):n > M| X M, be the obvious map. Let M be the To-subal-
gebra generated by the range of (|, f;). Denote by f} A /5 :n >M the map induced
by (f1.f3). Then f] A fy €(n, I)y and is the inf of f} and f; whenever f) . f; €(n, .
(4) If £ € T(n) then the open sets of the form (g)~1(m) for g:n > M in (n, I)g and

m = {gX$) form a base for the neighborhoods at {. (Since T(n) has the limit topology
these neighborhoods form a subbase at { and they are also closed under finite inter-
sections in view of the construction in (3) above.) This argument clearly applies to
any filtered topological limit of discrete spaces.

1.3. Proposition. (Consequences of a separating triple. ) Let TO be a separating
triple for 1 : M~ S (thus 1 is tracable by (2) above). Assume that ‘W has and [
preserves finite products. Then:

() There is a natural map t: To(X) ~ T(X) which has dense range for all X€ .
If(X.6)& ST then (X, 01y € S0 and is the underlying TO-aIgebra of (X, 6).

(b) If (X, 8)and (Y, Y ) are T-algebras and Q(Y, V) is Hausdorff then a T-homo-
morphism from (X, 0) to (Y, V) is the same thing as a continuous To-homom()r-
phism.

(¢) A cloged Ty-subalgebra of a T-algebra is a T-subalgebra.

(d) Top! is co-complete (as well as complete) s0 ¢ : TopT > ST hasa left adjoint.
Moreover if Q= U then @ is a full embedding.
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) If TO is finitar_y then TopT can be fully embedded into the topological Tyy-
algebras (using the U topology ).

Proof. Since T(X) is a filtered limit of models over (X, 1) (which is filtered by (3)
above) a basic neighbourhood of § € T(X) has the form (gy Y (m) where m = ()(})
and g €(X, ). Given g: X =M in (X, )y let g : Ty(X) > M be the extension (so
gno = g). Define r by (ghr =g for all g €(X, I). Since g is always onto, the range
of ¢ meets all basic neighbourhoods of each { € TX. Thus r has dense range. It is
clear that r: Ty = T can be regarded as a natural Irdnstormduon Finally we know
that the underlying Ty-algebra of TX is Tyy-lim {(X. I)g - sT 0] as limits are pre-
served. Thus 7: Tp(X) -~ T(X) and 8 are (underlying) T;-homomorphisms. More-
over tng =nso 6 t ng = X and 61 is therefore the structure map of the T, -algebra
underlying (X, 8).

As for (b) if f:(X, 0) = (Y, ¥) is a continuous T-homomorphism then f0 ¢ =
Y T(f)tso fO = Y T(f)ast has dense range and Q(Y, ¥) is Hausdortt.

As for (¢) let (X, 8) be in ST and let 4 C X be a closed Ty-subaigebra. Let
i:A - X be the inclusion and Y : To(A4) = A the Tyy-structure map. 1t suffices to
show that the range of 0 T(7) is continued in 4. But 0 T(i) ¢4 = 01, T((i) = iy,
hence 8T(i)14 has range in A. But the range of 07'(i)t4 is dense in the range of
6T(i) (as t, has dense range) and A4 is closed so that range of 07(i) is conlained in
A.

As for (d) we. observe that if (X, 8) &€ TopT then U(X, 0)= X is Hausdorff as it
is a retract (via n and 6) of T(X) Also N TU(X) ~ T(X) has dense range for the
same reason that t does. Thus by the above arguments a U-closed T() suhalgcbrd of
a T-algebrais a T- -subalgebra. Thus Top has coequalizers for if g, h: Y - Z are T-
homomor;hlsms then the set of all e with dense range and eg = eh is a solution set.
Thus TopT is cocomplete (by [14] ) and v has a left adjoint (by [4]).

Also the above arguments show that a T-homomorphism is the same thing as a
U-continuous Ty-homomorphism. So v is obviously full it Q¢ = U By construction
¢ is faithful.

As for (e) every T-algebra can be regarded as a topological Ty-algebra by 1.2(¢).
The analog of (b) shows that this is a full embedding. q.e.d.

We are particularly interested in the case when Ty admits a group operation
(which will usua]]y be denoted multiplicatively). In this case A is said to be a T0
kernel of X € STO if there exists a Ty-homomorphism f with K = f~ L(1) (where 1
denotes the group identity). As usual a TO quotient of X is an (onto) image of X

in $T0. Thus a Ty-quotient of X can be represented as X/K for K a Tj-kernel. The
following lemma is useful.

1.4. Lemma. Let Ty be a triple over § which admits a group operation. Then the
notions of Ty-kernel and Ty-quotient are defined above and satisfy the following
properties:
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(a) Let X and Y be To-algcbras and fX—->Ya To-h()momorphism. IfKCYisa
Ty-kernel then so is f1(K). If fis onto and if N < X is a Ty-kernel then so is f(N).

(b) If K and N are Ty-kernels of X then so is KN.

(c) Let X be a topological Ty-algebra. Then KU is an open Ty-kernel if U is an
open Ty-kernel and K is any Ty-kernel. Moreover if K is a closed TO-kemel and if X
admits a base {Ua} of open Ty-kernel neighbourhoods of 1 then K = NK U,

Proof. Let N be a normal subgroup of the Ty-algebra X. Then NV is a Ty-kernel iff
the equivalence relation, mod M, is a Tj-congruence (i.e. is compatible with every
operation of Ty. We are regarding T, as an equational theory). (a) is an immediate
consequence of this observation, and the argument below.

As for (b) let w be an n-ary operation of Tjy and let (x|, ..., x, ) and (v, ..., ¥,))
be n-tuples of X with x; = y; mod KN for all i. {Despite our notation we do not as-
sume that n is finite.) Then there exist k; € K and n; EN with x; = k; n; y, for all i.
Let z; = n;v;, then w(x;) = w(z;) as K is a Ty-kernel and w(z;) = w(y;) as N is a T;-
kernel.

(¢} is obvious. g.e.d.

1.5. Proposition. Let Ty be a separating triple with a group operation. Assume that W
has and I preserves finite products. Then:

(a) The discrete members of ST are precisely the Ty-quotients of models. (That
is if M is any model and K any Ty-kernels then M/K € S* the projection M ~ M/K
is a T-homomorphism, Q(M/K) is discrete and every discrete T-algebra is of this
form.)

(b) Ler (X, 0) € sT (By 1.2 the Q topology makes (X, 0)a topological group. )
The open To-kernels form a basic system of neighbourhoods at the group identity
1€ X.

Moreover U € X is an open Ty-kernel iff U is a closed Ty-kernel and X/U is Ty
equivalent to a Ty-quotient of a model, which is true iff U is a T-kernel and X/U is
T-equivalent 10 a Ty-quotient of a model.

(¢) 4 closed Ty-kernel of a T-algebra is a T-kernel.

Remark. 1f we increase M by closing up under the formation of Ty-quotients, this
will not change ST, in view of (a), and will not change the basic neighbourhoods of
(b) so Q will not be affected either. Note that the hypotheses of this proposition are
also preserved. Hence we shall often assume that N is closed under the formation
of Ty-quotients in cases when this entails no real loss of generality. Then the above
statements are somewhat simplified.

Proof. (a) If M is a model and K is a Ty-quotient of M then M/K € ST, the projection
M — M/K is a T-homomorphism and Q(M/K) is discrete in view of the Lemma 1.6,
below. Conversely, every discrete T-algebra is of this form in view of (b) proven
below.
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(b) Let N be a neighbourhood of 1 € X. Then 0 “1(NV) is a neighbourhood of
1 € TX so there exists h:X = M with Ker (Y S 0 (V). Thus 0 (Ker (4)) C© N and
6(Ker <h)) is an open Ty-kernel as 6 is an onto. open mapping. Thus the open T,-
kernels are a base at 1.

Next let U € X be an open Ty-kernel. Then 0-1(U) is an open neighbourhood
of 1 € T(X). Using the fact that T(X) is a filtered limit of models there exists
h:X =M in (X, I)g with Ker (1) € 0-1(U). Since (i) is onto, (D0 1(U)isa T
kernel of M by 1.4(a). Let K = (h) 6 ~1(U). Let p:M —> M/K be the projection, then
p is a T-homomorphism by (a). Note that Ker p (&) = 0 '1(U) (since Ker p () =
(hy=YhY (8-1UY and Ker (1) € 6 -1 (U). Thus U = 6 (Ker p <)) is a T-kernel by ap-
plying 1.4(a) to T. Hence X/U is equivalent to M/K as they are both quotients of
TX by the same kernel.

Conversely let U be a closed Ty-kernel with X/U T, equwalem 10 a Tj-quotient
of a model. By (c) proved below, U is a T-kernel so X/UE sT .Letf:M/K - X/U
be the Tj-equivalence where M € M. By (a), M/K is discrete hence f'is continuous.
Since U is closed and since Q(X/U) has the quotient topology, Q(X/U) is Hausdorf¥.
Thus by 1.3(b), f is a T-homomorphism. Since f'is one-one and onto it is a T-equiv-
alence. Thus Q(X/U) = Q(M/K) which is discrete and U is open. The other charac-
terisation of open Ty-kernels follows readily.

(c) Let K be a closed To-kerne] of X and let {Ua}be the set of open TO-kcrncls.
Then K = NKU, and each KU, is an open Ty-kernel (hence a T-kernel) by 1.4(b)
and (c). By considering products it follows that intersections of T-kernels are T-
kernels, so K is a T-kernel. q.e.d.

1.6. Lemma. Let Ty be a separating triple and assume that ‘W has and [ preserves
finite products. Ler (X, 0) be a T-algebra (then (X, 8) has a topology supplied by Q
and an underlying Ty-structure). Let (Y, ) be a Ty-algebra and f:X - Y an onto
Ty-homomorphism. Assume that the quotient topology on Y induced by [is Haus-
dorff. Then there exists a unique structure map ¥ with (Y, V) a T-algebra and f a
T-homomorphism. It necessarily follows that (Y, ¥) is compatible with (Y, V) and
that Q(Y, V) coincides with the quotient topology induced by f. (Note that in effect
this lemma gives sufficient conditions for a Ty-congruence to be a T-congruence.)

Proof. Since f'is a Ty-homomorphism, Yo Ty(f) = f01y. Lete:Y > X be any right
inverse of f(so fe = Y) and define Y = f0 T(e). Then Yty = Yo To(NTy(e) = Y.
Moreover a density argument shows that YT(f) = f9. Using this fact and the facts
that £ and T2(f) are epi (note T2(e) is a right inverse for 72(f)) and the fact that

6 is a structure map it readily follows that y is a structure map. Using 1.1(b) the
lemma follows. q.e.d.

Added in proof. The above Lemma (1.6) was independently obtained by Karl Lind-
blad a student of J.F. Kennison.
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§ 2. Pro-objects and ‘M-objects

The (dual of the) notion of an 9ff-object was introduced by Appelgate and
Tierney [1] using “atlases”. AnWM-object was shown to be the same thing asa T-
algebra which is a limit of models (by dualizing [1]). A pro-object for M was
described in [2] pp. 154—166. To within categorical equivalence, the pro-objects
can be regarded as the category of all small filtered limits of representable in
(M, $ )OP (that is certain colimits in (M, & )). We shall regard M & Pro-objects by
identifying M € M with the corresponding representable MM, —) € (M., S )°P.
For empbhasis limits in the category of pro-objects shall be denoted by *pro-lim”.

If {M,}is filtered then each map pro-lim {M,} > M must factor through a projec-
tion as pro-lim {M,-}—»Mi — M. Moreover suppose that the diagram {M, }arises ex-
plicitly as A: D - M (where M; = A (). Suppose that f: pro-lim A » M has two
factorizations f = fp; and f=f2p]~ through projections p; and p;- Then there exists
k€Dandd,:k—i,d:k—jinDsuchthatf (d|) = f,(d,). (Conversely this
condition implies fy p; = f,p;.) From this it is possible to obtain a purely formal de-
finition of the pro-objects as formed filtered limits (see [2] ).

We wish to know when the category of “W-objects is equivalent to the category
of pro-objects for M. In this section we show that this question is closely related to
the question of when Q preserves limits of models. In the next section we give some
conditions which imply that Q preserves limits of models.

We proceed to discuss pro-objects and to introduce some definitions which are
technically useful. Following [1}. observe that there is a lifted singular function

s:3T->@m, o )°P given by s(4) = 3T(A, ). This functor generally has a nght
ad]omt r and r s gives rise to the lifted model induced triple T=(7". n, u) on ST
(Thus T(4) =lim [(4,1)~> sT ] etc. r exists if this limit exists which is true 1me
is small or if there is a separating triple for /.) We now rephrase our question as:
“When is s a full embedding of the M-objects onto the pro-objects or onto some
special class of pro-objects?”

In order to get a reasonable answer to this question we would like s to at least
preserve the models. That is s (M) must be can_onically eq_uivalent to the represent-
able, M (M, -). This happens precisely when / : M~ S ! is full and faithful (which
is usually true, for example the existence of a separating triple guarantees it). When
[ is full and faithful we shall identify s(M) with M (M, —) for all models M.

2.1. Proposition. Let I be full and faithful. Then the following statements are equiv-
alent:

(1) 5 fully and faithfully embeds the category of “Meobjects into Pro-M (the
category of pro-objects).

(2) Every M-object N can be represented as N = T-lim M; where {M, Ll} is filtered
and 5 (N) = pro-lim s (M;) (recall that T-lim M, is the limit of {M;}in ST and pro-
lim s (M) is the limit in Pro-M).

Moreover, either of the above equivalent statements imply that T is idempotent and
T reflects ST onto the M-objects.
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Proof. (1) = (2): Assume that 5 is such an embedding, and let N be an M-object.
Then s (V) € Pro-W so s(N) = pro-lim 5 (M;). Since s is full and faithful it follows
that N = T-lim M.

(2) = (1): If X is a T-algebra and M € M then s maps cST(X, M) into the set of
natural transformations from “M(M, -) to cST(X, ). By Yoneda's lemma (in effect)
it follows that the action of § on the hom set dT(X, M) is one-to-one and onto.
Moreover, if NV is a limit of models and s preserves this limit then s is still one-to-
one and onto on the hom set cST(X, N). Thus (2) implies that s is full and taithful
and also that s maps each ‘M-object into a pro-object.

Finally, if N is an M-object and N = T-lim M, with s (V) = pro-lim s(M;) then every
map from N into a model must factor through a projection (as this is true in Pro-<M).
This means that the projections are initial in the comma category (N, 1) so that
T(N)=lim (N, I)=lim M, = N. g.e.d.

Remarks. The next proposition will extend 2.1. We must find some technical re-
marks and definitions concerning different types of limits. Recall that a Tj-aigebra
M has d.c.c. for Ty-subalgebras if every strictly descending chain M QMz 2. of
Ty-subalgebras is necessarily finite. This is equivalent to the minimum condition for
Tj-subalgebras (that every filtered family of Ty-subalgebras has 4 smallest member).

Remark (1). If T is a separating triple for W and if the 9M-objects = pro-objects
(vias) then each M € M has d.c.c. for To-subalgebras. For assume M, 2 M, o
are Ty-subalgebras of M. Let M, = "M, and let (n) : M, =M, be the inclusion.
We also let {m, n) : M, =M, be the inclusion for m 2 n. Then M., = lim M,, in
the category of M-objects, hence also in the category of pro-objects as s is un equiv-
alence. Therefore the identity map M, : M_ - M_ must factor as r (1) for some
r:M, —»M_, (as this is true in pro-objects.) Clearly <n)r{n) =M, (n) hence (n)r and
M,, must be equalized by some map in the diagram, that is <) rim, n> = M, (m.n)
for some m 2 n (as this happens in pro-objects). This implies M, = M.,

We can avoid the d.c.c. for subalgebras if we wish to establish conditions for the
weaker statement that Mobjects = Regular pro-objects (via's ). Regular pro-objects
are defined below and from the largest possible class of pro-objects in which -
objects can be embedded. As we shall show, given d.c.c. for subalgebras, all pro-
objects are regular.

Definition. Let / : M ~ & be given. Let D be a filtered category. A diagram

A1 D - M is regular if (in addition to being filtered) A (d) is onto for all morphisms
d of D (that is IA(d) is onto for all such d). A regular limit is the limit of a regular
diagram. We are interested in regular limits in ST and also in pro-objects. A regular
pro-object is a regular limit of representables (i.e. we regard M S (M, S )°P).

Remark (2). If A : D —> WM is regular then we may as well assume that D is partially
ordered with i < iff there exists d : i —j. Thus if we were to take the dual of D and
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allow A to become contravariant, then D°P is directed and A would be a classical
inverse limit system all of whose maps are onto. But we do nor do this. All functors
and diagrams are covariant here. To prove the assertion note that if d. d':i - j are
morphisms of D then there exists e with de = d'e hence A(d) = A(d") as A(e) is
onto. We can thus identity d and d' without affecting the value of lim A in STor
in pro-objects.

Remark (3). Let T, be a separating triple and let every M € M have d.c.c. for Tj-
subalgebras. Then every pro-object would be regular. Given a filtered diagram
A:D—>M, for each i € D let A'(7) be the smallest Tj-subalgebra of A (i) which is
the image of some model A(j) under some map A(d). Then A is regular and

lim A = lim A" is obvious for S T and not difficult to show for pro-objects.

Remark (4). Let M have and / preserve ‘inite products and let Ty be a separating
triple. Then every Of(-object can be represented as a regular limit of models. If

X =lim {M_la € A}, let M. = lim { M la € I} for each finite subset /€ 4. Let
M',,- be the image of X in M. Then {M'f} is a regular diagram in M with F, < Fy
iff F| 2 F5, and the obvious maps. Moreover X = lim My..

We need the following definition for technical reasons.

Definition. A regular diagram {M,} of models is T-regular if every projection
p;: X = M;is onto where X = Jim M, in sT. (1t obviously suffices to let X = lim M,
in & or in ST0 if T, is a separating triple in order to test for T-regularity.) A T-
regular diagram is clearly regular.

Let 1-M — ST be full and faithful. Then a pro-object F is a T-regular pro-object
if F = pro-lim s (M;) in (M, $)°P where {M,}is T-regular.

Remark (5). The reason for the above definition is that, as we show in the proposi-
tion below, the T-regular pro-objects are the largest class of pro-objects in which §
can embed the f-objects. Thus we have sharpened our comments about regular
pro-objects. Also the T-regular pro-objects often have a nice topological representa-
tion (see 2.4).

It would be interesting to know for which triples T does regular imply T-regular.
1t is definitely not true for all T as it is not true for the identity triple (i.e. it is not
true for sets as shown by Henkin in [10]). It is true in compact spaces and in the
linearly compact triples as can be shown by the arguments in Section 3. We do not
know if it is true tor groups. Collecting our remarks we have

2.2. Proposition. Assume that M has and | preserves finite products and that T is
a separating triple. Then:
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(a) If s :M-objects —~ Pro-objects is an embedding of the W-objects into a full
subcategory then the range of s is contained in the T-regular pro-objects and is pre-
cisely the T-regular pro-objects iff 5 preserves T-regular limits.

(b) If {M,} is T-regular and X = T-lim {M;} then s(X) = pro-lim s (M;) iff every
map X ~M €M factors as X > M; > M (through a projection). (If {M,}is filtered
this condition is still necessary.)

(¢) Every M-object is the limit of a T-regular diagram.

(d) s : M-objects - Pro-objects is an equivalence of categories iff the condition
in (b) holds for all T-regular diagrams, every regular diagram (of models) is T-reguiar
and each model has d.c.c. for Ty-subalgebras.

Proof. We prove (b) first. Let A: D - WM be T-regular and let X = T-limA. Assume
that every map X =M € WM factors as X = M; > M for some i € D, where M, = A(i)
and X - M, is the projection. We claim that s (X) takes on the same values (as a
functor in (M, & )°P) as the functor pro-lim {s(M;)}. This boils down to showing
that if f1p; =f2p]- (where i, j € D and p;, p; are projections) then there exists K € D,
and mapdy .k > i,d,: k =>jwith f{A(dy) = f,A(d,).

But as D is filtered there exist k, dy. d such that A(d|)p; =p; and A(dy)py =
p;. Then f)Ad))py = [,8(d|)py and py isepias & is T-regular. The necessity in
(b) is trivial. (c) is a consequence of the construction in Remark (4). As for (a) let
N = T-lim M; and assume 5 (V) = pro-lim 5 (M,) where { M;} is filtered. Let M'; =
image of N under the projection N > M. Then {M;}is T-regular and N = T-lim {M',}
and s preserves this limit by (b). (The necessary condition for s to preserve {M,} im-
plies the sufficient condition for s to preserve {M;}.) Thus s (V) is a T-regular pro-
object. By 2.1 the range of § is contained in the T-regular pro-objects. 11 the range
of s is the T-regular pro-objects and if {M,}is a T-regular diagram then s (lim M) is
the limit (in the range of §) of {s(M,)} which must be the pro-lim s(M,) as this pro-
limit is in the range of s. The converse follows from (¢) and 2.1.

Finally (d) is a consequence of (a), 2.1 and Remarks (1) and (3). q.e.d.

We shall now relate the above notions to the case when Q preserves limits of
models. First we need:

2.3. Proposition. (Consequences of Q preserving limits of models. ) Let WM have and
I preserve finite products and let Ty be a separating triple. Assume that Q preserves
limits of models. Then:

(a%T is idempotent and its range, the ‘M-objects, is thus a reflective subcategory
of L.

(b) An M-object is precisely a closed Ty-subalgebra of a product of models. Each
such closed subaigebra is given the relative topology by Q.

(c) The restriction Q|\‘M-objects has ¢ F as left adjoint. This pair of adjoint func-
tions generate T on Top. Thus there is a comparison functor

T :M-objects = Topf .
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Moreover, using ¢ and 1 one can regard:
M-objects S Topl CST .
(d) Qv=U.

Proof. (a) Let X = lim M; be an WM-object and let n: X = T(X) be the unit of T at X.
By construction of T(X) there exists a retraction 8 : T(X)} -~ X. Since n and 8 are
Thomomorphlsms they are Q-continuous hence 7(X) is closed in the Q- topology
on T(X). But n(X) is dense in the limit topology (by using the type of argument
used in 1.4). By hypothesis, we see n(X) = T(X)hence X=T(X)and T is idempot-
ent. The rest of (a) is obvious.

(b)Let X C I“IMO( la €A be aclosed TO-subalgebra of a product of models. Let
D be the class of all finite subsets F € 4 partically ordered by F < Fy iff Fy 2 Fy.
(Then D happens to be filtered.) Given F € D let Mg be the projection of X on
I IM la€F . Let L = Tlim {M,} then we can construct L so that XS L C[ In1,.
By the now familiar argument, X is dense in L but X is closed so X = L. Thus X is
an OM-object. (Note that in view of the hypothesis the topologies on L and Il M,
are unambigious.) The converse is obvious.

(c) Let X € Top be given, Then F(X) isa T- limit of models and since Qy pre-
serves limits of models, Qy F(X) = T(X). We claim that n X- T(X) is a front ad-
junction. Let N = lim M; be an M-object and let h: X - Q(N) be continuous. By
construction of T(X) there exists a unique T-homomorphism f: T(Xl* N such that
jn h (by considering projections). It follows from this proof that T is the triple
generated by the adjointness between ¢F and Q1(‘M-objects). Hence the comparison
function 7 exists. The last part of (c) is the statement that ¢ is a full embedding
(which will follow from 1.4(d) and 2.3(d) (proven below)) and that ¢7 is the inclu-
sion if M-objects into S T. But ¢ and 7 both preserve models and both preserve
limits (as they are compgrison functions). Hence o7 preserves M-objects.

(d) Let (X, 8)E Top". Then T(X) has an unambigious topology. § : T(X) ~> X is
a quotient map (onto the U topology) since Gn X. But § in Q-continuous so every
Q-open subset of X is U- -open. On the other hand O X is Ucontmuous but by defini-
tion is a quotient map from T(X) onto Q(X, 8X) = Qp (X, 0). Thus a U-open subset
is Q-open. q.ed.

Definition. Let Tjy be a finitary triple over & which admits a group operation. Then
the notion of a complete topological Ty-algebra is clear (using the usual notion of a
complete topological group).

If M is any collection of (discrete) Ty-algebras we say that the topological Ty-
algebra, X, is W-generated if X has a basic system of neighbourhoods {Ua} at |
such that each U is an open Ty-kernel and X/U,, is algebraically equivalent to a
member of M.
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2.4. Lemma. Let M and Ty be as in the above definition and assume that W has
and [ preserves finite products. Then the category of T-regular pro-objects is equiv-
alent to the category of T-regular limits (in the category of topological Ty-algebras)
of discrete models. This is precisely the category of complete, Hausdorff, ‘M-gene-
rated topological Ty-algebras.

Proof. Let {Mi}be a T-regular diagram of models. Let lim M, be the limit in topo-
logical Tjy-algebras (so that it has the limit topology). Let f lim M, > M be a con-
tinuous Ty-homomorphism. Then Ker fis open so there exists a projection p; with
Ker p; C Ker f (as {Ker p,}is a base at 1). Thus f factors through p; as p; is onto.
The proof of 2.2(b) now applies.

If X is complete and Hausdorff and has a base {U} of open Ty-kernels with
X/U, € Mthen {X/U,} is a T-regular diagram whose limit is Y. g.c.d.

2.5. Proposition. Assume that ‘W has and | preserves finite products. Let Ty, be a
finitary separating triple which admits a group operation. Further, for convenience
(see 1.5) assume that the models are closed under the formation of Ty-quotients.
Then: -
(a) The T-regular pro-objects is equivalent fo the category of complete 'T-algebras.
(b) If Q preserves limits of models, then the following five categories are canoni-
cally equivalent (see 2.2, 2.3(c) and (a) above):
M-objects = complete T-algebras
= complete, Hausdorff T-algebras
= T-regular pro-objects
= complete, Hausdorff, M-generated Ty-algebras.
(¢c) Conversely, if Meobjects = T-regular pro-objects (via s ) then Q preserves
limits of models.

Proof. (a) The proof of 1.5(b) can be applied to show that all T-algebras are N
generated (the additional use of 1.3(e) makes this easier to see). By 1.3(e) and 2.4
and the observation that all models are T-algebras and that Top" has all limits,
which are preserved by U, (a) follows.

(b) It easily follows from 2.4, 1.3(b) and (a) above, that all five of these categories
are equivalent to the category of complete, Hausdorff, M-generated topological Ty-
algebras. That these equivalence are “canonical” follows from noting that all of the
equivalencegreserve the models and limits and the topology (by 2.3(d) and the fact
that Q and U preserve topological limits of models). That the 9-objects are equiv-
alent to the T-regular pro-object via s follows from 2.3(a), 2.2 and the proof of 2.4.

(c) Conversely, assume that the M-objects are equivalent to the T-regular pro-
objects via 5. Then the condition in 2.2(b) holds for every T-regular diagram.

Now let X = T-lim {Mi}. Claim that @(X) = Top-lim {M,-}. We may as well assume
that {M;} is T-regular (as we can replace {M,} by the diagram {M'} used in Remark
(4) without changing X or the limit topology. By construction {M'F} is T-regular).
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By 1.5(b), Q(X) is the smallest topology rendering each T-homomorphism X > M
continuous. By assumption each such X — M factors as X -~ M; > M where X > M,
is a projection. Hence Top-lin {M; }renders each such X - M continuous and the
claim follows (e.g. by 1.1(b)). ge.d.

§3. The compact and linearly compact cases

Definition. Following Manes |16, p. 104] we say that a full subcategory BC ST s

a Birkhoff subcategory of ST if B is closed under the formation of products, T-sub.
algebras and T-quotients. Manes proves that Birkhoff subcategories are tripleable
over &. Conversely, if ST isa full tripleable subcategory of ST and if the induced
map T(X)— T'(X) is onto for all X then ST is a Birkhoff subcategory. From an
equational point of view, a Birkhoff subcategory is determined by equational iden-
tities (so that the Birkhoff subcategory is the class of all algebras satistying the iden-
tities). In the category of rings, for example, the subcategory of all commutative
rings is the Birkhoftf subcategory determined by the identity xy = yx.

3.1. Theorem (the compact case). Let W have and | preserve finite products. Let T,
be a finitarv separating triple and assume that every model is finite. Then ST s the
smallest Birkhoff subcategory (containing the modcis ) of the compact, Hausdorff
T0~algebras, Moreover Q preserves limits and Qp = U hence ¢ is a full embedding.
Finally:

M-objects = Pro-objects © TopT csT
If Ty admits a group operation these categories coincide.

Proof. Since the category C of compact Hausdorff Tj-algebras is equational (see [16])
and contains the models, there exists a limit preserving forgetful functor V: 3T ¢
(by definition of the equational completion or since every operation of C is an ope-
ration of cST). If (X, e ST then V(0): VT(X) - VX is a closed mapping hence a
quotient map so the C-topology on VX is precisely Q(X, 0). Thus, by 1.3(b), Visa
full embedding. Moreover if -1 & = Cis the free functor then by 1.4(c) the cano-
nical map F(X) > T(X) is dense hence onto. Thus ST is a Birkhoff subcategory
and clearly the smallest one containing the models by the fact that cST is an equa-
tional completion. By 1.1(b) the Q-topology on a T-limit is at least as big as the
topological limit but both are compact, Hausdorft hence they coincide. Thus Q
preserves limit so Q¢ = U by 2.3(d) and ¢ is a tull embedding by 1.3(d).

It remains to show that M-objects = Pro-objects in view of 2.3(¢). (The state-
ment concerning the case when T; has a group operation is a special case of Theo-
rem 3.3 proved below.) Using 2.2(b) let M, be T-regular and let X = T-lim M,. Let
f: X » M be given. Each x € X has a neighbourhood of the form p; ! (nzl.) on which
/is constant as M is discrete. Using compactness and filteredness there exists a pro-
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jection p; such that f'is constant on all sets of the form pl.“1 (m2). Since p; is onto,
[ factors through p; by considering congruence relations.

We shall pursue 2.2(d). Note that T is idempotent by 2.3(a) and d.c.c. for Ty-
subalgebras of models is trivial as all models are finite. Thus it suffices to show that
if M, is regular then it is T-regular. By a previous remark we may as well assume
that i varies in a filtered, partially ordered set. Let X = T-lim M, and let p,;: X =~ M,
be the projection. Regard X QHM,- and let pi:[ IMi - M; be the projection for the
product. For each d:Mf - M, in the diagram, let:

Ag={y EnMildﬁj(y) =pr (N}

Then 4, is closed and we can regard X = N 4. Let {; and m €M, be chosen.
Then (pio)"‘(m) M A, has fip. (as can readily be shown by using the fact that
the diagram is filtered). By compactness of 1 1 M; there is an x in the intersection so
X€ENA;=X and Pigy (x) = m. Hence the projections are onto. q.e.d.

Definition. Let T be a finitary triple over sets which admits a group operation.
Then a Ty-kernel coset is a set of the form Ux where U is a T-kernel. The notion
of a topological Ty-algebra is well known. A topological Ty-algebra is linearly com-
pact if every family of closed Ty-kernel cosets with f.i.p. (finite intersection proper-
ty) has non-void intersection.

Notice that a discrete Ty-algebra is linearly compact if it has d.c.c. for T-kernels.
The converse is not true (see [18]). The term *'pseudocompact™ is used for a special
case of linear compactness in [5].

Definition. T is a normal separating triple for [: M~ & if Ty, is a finitary triple
with a group operation; the models are closed under Ty-quotients (see 1.5); and M
has and 7 preserves finite products.

I:M —~ S satisfies the linearly compact conditions (abreviated LCC) with respect
to Ty, if Ty is a normal separating triple and each M € WM is linearly compact in the
discrete topology.

Definition. Let Ty admit a group operation. Let M be a given class of (discrete) T
algebras. Let X be a topological Ty-algebra. Then X is strongly “M-generated if it is
M-generated and if K € X is open whenever K is a closed Tjy-kernel with X/K alge-
braically equivalent to some M €M

Remarks. Linearly compact modules have often been examined in the literature
(e.g. see [5, 12, 13, 18], however their tripleability properties over § and sometimes
Top seem not to have been established before). It is convenient here to list some of

the elementary results that extend to the general case of Tj-algebras and which are
useful below or in considering examples.
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(1) Discrete linearly compact Ty-algebras are closed under the formation of finite
products and Ty-quotients, but not necessarily under the formation of Ty-subalge-
bras. (In fact, infinite nested intersections of linearly compact To-subalgebras need
not be linearly compact.)

(2) Hausdorff linearly compact Tj-algebras having a base of open Tj-kernels at 1
are closed under the formation of regular limits and arbitrary products and To-quo-
tients (by closed Ty -kernels).

(3) If NMis any full subcategory of discrete linearly compact T-algebras then,
for M-generated, Hausdorff topological Ty-algebras, completeness is equivalent to
linear compactness. Also the complete (or linearly compact) Hausdorff M-generated
topological Tj-algebras are category equivalent to the regular pro-objects for M.

These remarks can easily be proved either by generalizing the proofs in [12] and
[18] or by using the methods in this section. We shall however sketch the proofs.
If A and B are discrete, linearly compact Tj-algebras, let F be a maximal filter of
Ty-kernels cosets of 4 X B. Let F,4 = {p,(F)|F € F}. There existsa €N ¥, hence
p4~'(a) € F as it meets all members of F and F is maximal. Similarly there exists
b € B with pB“l(b) € Fso(a, b) €N F. Thus 4 X B is linearly compact. A similar
argument (replacing p 4 (F) by its closure) can be used to prove (2). Alternatively
one can generalize the proof of 3.13. Most of (3) follows from 2.4 (that regular lim-
its are T-regular is essentially known and also proved as 3.11 below). That linear
compactness implies completeness follows since maximal filters containing small
sets have subfilters of closed Ty-kernel cosets.

Remark. Several of the other interesting properties for linear compactness (cf. [18])
can be generalized to Tj-algebras. Also some of the lemmas below such as 3.9, 3.10,
3.12 and 3.14 can be generalized to Hausdorff linearly compact Ty -algebras having
a base of open Ty-kernels.

3.2. Theorem ('the linearly compact case). Assume that I: M - S satisfies LCC with
respect to Ty,. Then:

(a)d T equivalent (using the Q-topology ) to the category of strongly M-gene-
rated complete, Hausdorff Ty-algebras. Every member of $Tis linearly compact.
Moreover L is the identity triple on S Tso that ST = (%Il-objects.

(b) Top! = Regular Pro-objects. Alternatively, Top' is equivalent (using the (7
topology ) to the, category of M-generated complete Hausdorff T -algebrgs. Every
member of TopT is linearly compact, Note that we can regard ¢ P - Top-glzv
Top Ty-algebras. In this case y: Top .~ STisa coreflective functor (that is the right
adjoint of the inclusion ST TopT). Explicitly ¢ preserves the underlyirzf Ty-al-

« gebra structure and simply increases the number of open sets. If X € Top " then
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the set of all closed To-kernels K such thar X/K is algebraically a model becomes a
base at 1 for ¢(X). The case when ¢ is a category equivalence is discussed in 3.3.

(c) A is a T-subalgebra of X € sT iff A is a closed Ty-subalgebra (in the Q-topo-
logy ). (Q(A) may presumably fail to be the relative topology, but see 3.3.)

3.3. Theorem (the d.c.c. case). Let Ty be a normal separating triple for [ :M— <.
Assume that each model has d.c.c. with respect to Ty-kernels (thus LCC is satisfied).
Then (in addition to the results of 3.2):

(2) ¢ is a category equivalence.

(b) Q preserves all limits.

(c)IfA §~X is a T-subalgebra then Q(A) has the relative topology.

(d) Qe =U. (Thus sTis tripleable over Top via Q.)

(e) If f:A — Bisan onto T-homomorphism then f admits a continuous section
(that is Q(f) is a split epi). This was proved by Serre [17] for pro-finite groups and
by Brumer [5], for pseudocompact modules (see Example 4.3).

Moreover if T(J is a normal separating triple, then (b) and (c) together imply the d.c.c.
assumption on Ty-kernels. This d.c.c. assumption is, in the preserve of LCC equiv-
alent to (a), (b) and (d), individually.

The proofs of 3.2 and 3.3 shall be postponed until we establish some lemmas
concerning certain regular limits of models. For technical reasons we set up the fol-
lowing notation and definitions.

Notation. In what follows D shall always denote a small, filtered, partially ordered
category and A: D — M shall be regular. If g € D then we generally let M, = A(g)
and if g < h in D then the induced map M, ~ M), shall be denoted as & (g, h) or just
& if there is no danger of confusion.

The canonical projection limA — M, shal! be denoted by {g>. This extends the
notation for the important case where D = (X, I); and A is chosen so that
limA = T(X) etc.

Definition. Let A: D — M be as above. Given g, h € D and a EM,, we choose
k<g handletd, =8(k, h)and 5, = 5(k, g). We define Ton(@) =8,(8, ).
Then 74 ;(a) c M, is independent of the choice of k. (For b €M, is in 7,  (a) iff
there exists x € My with §,(x) = a and §,(x) = b. If k' <k then there exists such
an x € M iff there exists a suitable x' € My as § :M;. > M, is onto. Since D is fil-
tered, given ky and k, there exists k' < ki, k5 and the independence of the choice
of k is obvious.)

We note that if { €lim A and (h)(§) = @ and (g)(§) = b then b €7, (a). We shall
establish a general result which proves the converse.

Definition. Let A:D —> M be as above. Then (H, v) is a A-prescription (or simply a
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prescription) if HS D and if v is a function such that y(h) €M, forallh € H. We
call (Hy, 7o) a subprescription of (H, v) [and (H, ¥) an extension of (Hy, o)l if
H, CHandy IHy =g A solution of (H, v) is a point { € lim A such that (h)(§) =
y(h)forallhE€H.

(H. ) is consistent if it has a solution and is finitely consistent if every finite sub-
prescription is consistent.

Definition. Let (H, v) be a A-prescription and let g € D be given. Then we define
7@) =N {1, @ hEH, a=y(h)}.

We say that (H, v) is formally consistent if 5(g) # 0 for all g € D. We call (H, 7)
finitely formally consistent if every finite subprescription is formally consistent.
Observe that a (finitely) consistent prescription in (finitely) formally consistent.

Definition. A : D — W is very regular if (4 is regular and) D has infs (denoted g A h)
and the induced map A(g A 1) > A(g) X A(h) is one-one. (For example if D=(X, Do
and T(X) = limA etc. then 4 is very regular, see discussion preceeding 1.3 assuming
there exists a well-behaved Tj.)

Definition. Let A: D — M be very regular. Then the A-prescription (H, ) is A-closed
if hy A h, € H whenever hy,hy €Hand v(h| A hy) is the unique element of
A(hy A hy) which maps into (y(hy), y(h3)) € A(hy) X A(hy).

Most of the following lemmas have straightforward proofs which are omitted or
sketched.

3.4. Lemma. Ler A:D > M be very regular. If (H, v) is a-closed then (H, v) is fini-
tely formally consistent.

3.5. Lemma. Given LCC, a finitely formally consistent diagram is formally consis-
tent. (Note 74, (a) is a Ty-kernel coset by applying 1.4.)

3.6. Lemma. Let f, g, h €D with fS g Lera€M,. Thend :Mf—>Mg maps rfh(a)

onto g (). Therefore if (H, ) is a prescription and f <gthens map ¥ (f) into
7).

3.7. Lemma. Assume LCC and that A :D -~ WM is very regular. Let (H, ¥) be a-closed
and let f< g Thend map Y(f) onto ¥(g).

Proof. Given s € ¥(g) then 571y Tﬁh(a) (where h € H and a = y(h)) has f.i.p.
(by 3.6 and as H has finite infs). Apply LCC. q.e.d.
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3.8. Lemma. Assume LCC and that A:D — W is very regular. Let (H, v) be a-closed.
Let g €D and b € §(g) be given. Let G = {g Ahth € H}U {g} U H. Then there exists -
a unique § such that (G, B8) is a a-closed extension of (H, y) and 3(g) = b.

Proof. Given h € Hlet 6 :A(gah) > A(g) and 8, : A(g ATt) > A(h). By 3.7 there
exists X € ¥(g A h) such that & 1{(x) = b. Then 8 5(x) must be y(/1) (by 3.6)and x is
uniquely determined as A is very regular. Define 8(g A 1} = x. Since x is determined
by 8,(x) = b we see that this definition is unambigious in case gah = ga(h'). By
the same argument if we further define 3(g) = b and S(h) = y(h) tor h € H we see
that 8 is still well-defined and (G, 8) is A-closed.

3.9. Lemma. Assume LCC and that A:D — W is very regular. Then every a-closed
prescription is consistent.

Proof. Let (H, v) be A-closed. By Zorn's Lemma there exists a maximal a-closed ex-
tension {H*, v*). By 3.8 we seen that H* = D hence y* defines a member of limA
which is a solution of (H, 7). q.e.d.

3.10. Lemma. Assume LCC (and let A:D — W be regular). Then every finitelv con-
sistent A-prescription is consistent.

Proof. Given i1, ..., h, € D choose < hijfori=1, .., nandlet A() > Ah)X ..
.. X A(h,) be the obvious map. Then the image of A(f) is independent of the
choice of f(for the same reason that 7, (a) i< independent of the choice of k).

We now extend D to D' by adjoining formal finite infs to D and extend A to A’
so that A'(hl A ... Ahy) is the above defined image of A(f). Then D is initial in D’
so limA =limA' and A': D' - WM is very regular by construction.

If (H, v) is a finitely consistent A-prescription then (H, ) can readily be extended
to a A-closed A'-prescription which is consistent by 3.9. Thus (#, 7) is consistent.

q.e.d.

3.11. Corollary. Assume LCC. Then every regular diagram is T-regular.

Proof. Using Remark (2), preceeding 2.2, it suffices to show that the regular diagram
A:D M is T-regular where D is partially ordered. Let h € D and a € M,, be given.
Let H={h}and a = y(h). Then (H, v) is a A-closed prescription for the extended
diagram A’:D' > WM constructed above. By 3.9 there exists § € limA’ such that
(W) =a so A is T-regular. g.e.d.

Definition. Given LCC then the T(X)-diagram (for X €J) shall refer to the canoni-
cal functor (X, I)g =M. This diagram is very regular (see the discussion proceding
1.3). A prescription for this diagram shall be called a T(X)-prescription,
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3.12. Proposition. Assume LCC. Let (X, 0)€ ST and let H be a set of T-homomor-
phisms from X into models. For each h: X -~ M in H let y(h) EM. If (H, ) is fini-
rely consistent (i.e. given H C H, a finite subset, there exists x € X with h(x) =
v(h) for all h € Hy) then (H, ) is consistent (i.e. there exists x € X with h(x) =
y(h) forall h € H).

Proof. We may as well assume that each h € H is onto. Then H S (X, 1), and (H, v)
may be regarded as a T(X)-prescription. If x € X is such that h(x) = y(h) for all

h € Hy then (h) (n(x)) = y(h) for all h € Hy so (H, v) is obviously finitely consistent.
By 3.10 there exists ¢ € T(X) with (h)(€) = v(h) for all k € H. Then x = () has the
desired property. (Note (h) = h8 since h is a T-homomorphism for all h € H.) q.e.d.

3.13. Proposition. Assume LCC. Let (X, 6)€ ST Then {using the Q-topology )
(X, 0) is a linearly compact Ty-algebra. It follows that (X, 8) is complete from the
remark preceeding Theorem 3.2.

Proof. By 1.2. (X, 8) with the Q-topology can be regarded as a topological Ty -algebra.
Let {U;}be a collection of closed Ty-kernels of X and assume that the cosets {U;x;}
have f.i.p. We must show N {U,-xi} # 0. Since each closed Tj-kernel is an intersection
of open Tjy-kernels (see 1.4 which applies in view of 1.5(b)) it clearly suffices to as-
sume that each U, is an open Ty-kernel. By 1.5(b) it follows that X/U = M; is a mod-
el. Let h;: X = M, be the corresponding projection. Let i = {h,-} and v (h;) = h(x;).
Then (H, v) satisfies the hypotheses of 3.12 as finite consistency is here equivalent

to the f.i.p. condition. The conclusion of 3.12 implies N {U,x;}# §. qe.d.

3.14. Lemma. Assume LCC. Let (X, 0) and (Y, V) be T-algebras with (X, 0) =
T-lim M; (a limit of models). Let g:(X, 8)~ (Y, V) be a T-homomorphism. Then
Ker g is closed in the limit topology on X.

Proof. We first claim that Ker g = 0 (Ker Tg). For if { € Ker Tg theng(6 {) =

Y (Tg)(§) = 1 hence 8 () € Ker g. Conversely, let x € Kerg. Thenx = 6 (nx(n1)~1)
and nx(n1)~! €Ker Ty as (Tg)nx = ny (gx) and (TgXn 1)~ = [ny(g1)] ~! and
gx=gl=1.

We next claim that 8 (Ker Tg) is closed in the limit topology. Assume that ¢ is in
the closure of (Ker 7g) in the limit topology. Then for any finite set of indices say
{1, 2, ..., n}(so labelled for convenience), there exists { € Ker Tg with p;0(¢) = p(r)
fori=1, ..., n (where p;: X > M, is the projection). But p;60($) = (p;}(§) as p; is ad-
missible and ¢ € Ker Tg iff (N(Tg)(€) = (ghX(§) =1 for all /1Y > M. By applying
3.12 to T(X) we can find { € TX such that (p)(§) = p; (1) for all i and (gN(¢) = 1
forall f:Y > M. Then 0(¢)=tand ¢ €Ker Tgso t €0 (Ker Tg). q.e.d.

3.15. Corollary. Assume LCC. Let (X, 8) € ST Then Q(X, 0) is Hausdorff.
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Proof. 8 : TX — X is a T-homomorphism and TX is a limit of models hence Ker ¢ is
closed in TX. Thus | € X is closed in the quotient topology, Q(X, 0), which implies
Q(X, 8) is Hausdorff as X is a topological group. g.e.d.

3.16. Corollary. Assume LCC. Then T is idempotent and trzvzal (that is T is the
identity functor). Thus ST = M-objects and every X € ST is a canonical limit of
models.

Proof. Let XEST. Thenn: X - T(X) is one-one in view of 1.5(b) since Q(X) is

Hausdorff. But by applying 3.11 and by representing T(X) as a regular filtered limit
of models we see that n(X) is dense in T(X) (when T(X) is given the limit topology
which need not be QT(X)). By 3.13, X is complete hence is closed in the limit topo-
logy on T(X). Thus 7 is onto, hence is an equivalence. q.e.d.

Proof of Theorem 3.2.(a) Let Uy: ST STo be the forgetful functor and define
Qp from S$Tinto topological Tj-algebras by using the Q topology together with U,
for the TO -structure. By 1.2, 1.3 and 3.15 we see that Q is a full embedding. If

X€ ST then Qo(X) is complete, Hausdorff, ‘W-generated and linearly compact by
1.5 and the above results. Moreover suppose K € X is a closed Ty -kernel with X/K
algebraically equivalent to a model. Then X = X/K is a T-homomorphism by 1.5(c).
so Q(X) > Q(X/K) is contmuous But Q(X/K) is discrete so K is open. Hence X is
strongly M-generated. Also sT=on -objects by 3.16. Converscly let X be a com-
plete, Hausdorff strongly M-generated Ty -algebra. Let {U,, } be the base of all open
Ty kernels for which X/U, €M. Then {X/U } is a regular filtered, partially ordered
diagram in the obvious way. Since X is Hausdorff and complete X = Top- hm{X/U }
(or more precisely the limit in topological Ty-algebras). We claim that

Q(Tim {X/U,}) = Top-lim {X/U_} which shows X = Qy( T-im {X/U}), hence we
can regard X € =T, Let f: T-lim {X/Ua} >MENMbea T-homomorphism. Then
Ker f closed in the limit topology by 3.14 hence is open as X is strongly M-generated.
The claim now follows, from 1.5.

(b) In view of the remarks preceeding the statement of Theorem 3.2 T(X) is
linearly compact for all X € Top hence every T- -algebra is linearly compact, there-
fore complete. Since every regular diagram is T-regular for M, we see that much of
(b) follows from 2.4 and 2.5. That ¢ is a coreflection and behaves as stated follows
from 1.5 and 3.14 and the observation that ¢ preserves models and their limits and
everything is a limit of models.

(c) Let A € X be a T-subalgebra of the T-algebra X. Let a:4 — X be the inclusion
and let x € X be in the closure of a(4). Let H be the set of all T-homomorphism
h:A - M which factor through « as # = ga where g: X - M is onto and T-admissible.
Then for each h € H let v (h) = g(x) where g is chosen so that h=ga (note that g(x)
is uniquely determined even though g is not). Claim that (#, v) is finitely consistent.
Let hy, ..., h, € H be given and chose g; with ; = g;a. Then Ng;~! (g;(x)) is an open
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neighbourhood of x so there exists 2 € A with g;(aa) = g;(x) or h;(a) = y(h;) for
i=1,..,n By applying 3.12 to 4 there existsa €4 with g(a) = g(x) for all
g:X - M. Since X is Hausdorff a = x which shows that 4 is closed. ge.d.

Proof of Theorem 3.3. (a %We have LCC so Theorem 3.2 applies and it cl%arly suf-
fices to show that every T-algebra is strongly M-generated. Let X € Top* and K a
closed T-kernel with X/K algebraically equivalent to a model be given. Then there
exists a smallest Ty-kernel U of X for which U is open and K = C U by applying the
d.c.c. (or the minimum condition) for X/K. By 1.4(c) we have K = U so K is open.

(b), (c) and (d). By (a) above and the fact that y preserves limits and models we
see that the U-topology on lim M; coincides with the Q-topology. Thus Q preserves
limits of models hence 2.3 applies. Q preserves all limits as Q has a left adjoint by
3.2(a) and 2.3(c). Also (c) follows straightforwardly from 3.2(c) and 2.3(b), and
(d) is the same as 2.3(d).

(e) The idea of the proof is to obtain a “continuous version” of 3.12. Let f: 4> B
be a given onto T-homomorphism. Note that by 3.16 we have 4 = T(4) =
lim {M lge(A, 1)0} where g:4 > M, is in (4, I)O iff g is admissible and onto. We
define (H v) to be a A-closed contmuous B-prescription if H< (A, T )g and for each
h € H, y(h) is a continuous function from B to M;,. Moreover if b € B we let (H, v,)
be the ordinary prescription with v, (k) = y(h)(b). It is further required that (H, v,)
be a-closed for all b €B.

Now let (H. ) be such a continuous prescription and g:4 > M, be arbitrary in
(4, I')g with g & H. Choose & € H such that g(Ker k) is a minimum in Mg. Let My =
Mg/g (Ker h) and let p:M, > M, be the projection. Observe that there exmts
r: Mh -> M, with rh = pg. lt is readily shown, from the choice of i, that ¥ (g) is a
coset of precisely g(Ker h) for each b € B. Moreover, if m €7, (g) then p(m) =
r(vp (1) (in view of 3.7)so p~ Lr 7p (M) = 7 (8) as they are both cosets of g(Kerh)
and have points in common. (Note 7 v, () is a single point as y(h) is a function.)
Thus if s: My = M, is any section (that is ps = M and s is not required to be a T
homomorphism) then (#, ¥) can be extended to a a-closed continuous extension
(G, B) where B(g) = sr y(h) as the method used in 3.8 can be applied pointwise. By
Zorn's Lemma, every A-closed continuous B-prescription can be extended to one
with H=(4, 7)0 which gives rise to a continuous map p:B > A (thatisu oB)~»
Q(A) but is not necessarily T-admissible) such that hu = y(h) for all h € (4, 1)

Now observe that B = T(B) = lim {M |k € (B, I)o}. Let Hy = {kf1k € (B, 1)0} and
define v, so that v, (kf) =k (which is determined as fis onto).

Clearly (Hy. 7q) is 2 a-closed continuous B-prescription so there exists a contin-
uous s: B > A4 such that kfs = k for all k € (B, I ), which implies fs = B. Finally the
d.c.c. hypothesis is implied by (b) and (¢). Let ME M and 4, 2 4, 2 ... be a des-
cending chain of Ty-kernels. By (b) and (c) the image of M in TIM/A,, has the rela-
tive topology induced by the product topology. But the image of M must be discrete
by 1.5(a) which implies that the descending chain is ultimately constant. Moreover,
given LCC it is readily shown that (a) = (b) = (d) by the above arguments. Using
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3.2 we can readily obtain (d) = (a) and (b) = (¢). Thus (a), (b) and (d) each indivi-
dually imply (b) and (c). g.e.d.

§4. Examples

Most of the applications of Theorem 3.1 are immediate (e.g. the equational com-
pletion o%fmlte sets is the category of compact Hausdorff spaces and the correspon-
ding Top! is the subcategory of totally disconnected members of ST. Also the
equational completion of finite groups is pro-finite groups which is tripleable over
Top, cf. [7] and [8]). Applications of Theorems 3.2 and 3.3 sometimes require
some preliminary work with individual operations to get a normal separating triple
as 4.1 and 4.2 show. A number of interesting papers have been written on linearly
were an equational completion led to Theorems 3.2 and 3.3. Example 4.4 shows that
even if Q grossly fails to preserve limits the topology can still be very useful in des-
even if Q grossly faisl to preserve limits the topology can still be very useful in des-
cribing the equational completion. In 4.5 the subject is briefly discussed from the
point of view of operations.

Notrarion. Unless otherwise specified, rings are assumed to have units and ring homo-
morphisms and modules are unitary. In contrast to the previous sections, the group
operations here happen to be Abelian and are denoted by *‘+”. Also **0” instead of
13 1 -

is used for the group identity, so one must exercise care in applying the previous
results.

4.1. Fields. Let ¥ be the category of fields and (unitary) ring homomorphisms. As
it stands % does not admit an obvious separating triple (as subrings of fields are
not always fields) nor does F have finite products. We first observe that if & is the
category of all finite products of fields (and unitary ring homomorphisms) then F
and Fg have the same equational completion. (It can readily be shown that if

HK € ff and if F € F, then any homomorphism [1K; - F factors through a projec-
tion [1K; = K; = F. Hence every operation of F is also an operation of F.)

We next observe that the theory of commutative regular rings is a separating
triple for F. In any ring R we say that r is the semi-inverse of s if rsr = r, srs = s and
sr=rs. If the semi-inverse exists it is determined by the ring structure. (If ¢ is another
semi-inverse of 7 then tr2 = r=sr2 and £ = 13r2 = 25r2 = 5372 = 5.) It follows that
every ring homomorphism preserves semi-inverses when they exist, hence the semi-
inverse is an operation in any category of rings with semi-inverses. A commutative
ring has semi-inverses for every element iff it is regular (for each r there exists an
with rr'r = ).

Every field is clearly regular (with 0 its own semi-inverse) and every member of
F is regular. Moreover it can be easily verified that a subregular ring of a finite prod-
uct of fields is in F. (Look at'idenpotents.) Also F is closed under the formation of
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quotients (this can be done by considering idempotents or by observing that the
members of F are precisely the commutative regular Artin rings). Thus the theory
of commutative regular rings is a normal separating triple for F.

We now can apply Theorems 3.2 and 3.3 (as every member of F has d.c.c. for
ideals). Thus the equational completion of F is the category of regular pro-objects.
It is also the category of topological limits of members of F, hence also of F.
Clearly if X € 3! then X = lim K| and it can be arranged that K, is a field and the
projection map X — K; is onto, for all i. It follows that every map in the diagram
{K,} is onto hence is an isomorphism. Thus X is a product of fields. Thus the equa-
tional completion of the category of fields is the category of all products of fields
and ring homomorphisms which are continuous in the product topology.

(The same argument works if one allows non-unitary homomorphisms and/or
skew-fields or ordered fields (which have a lattice operation).)

The category of fields obviously has a large number of weird operations. For ex-
ample one can define w(x, y) = x +y in characteristic O fields but w(x, y) = xy else-
where. In fact if we wish to describe an arbitrary n-ary operation, w, we have to
consider all collections of n-tuples (x|, ... x,)) in fields F. One obvious restriction
on w(xy, ..., X,,) is that it must lie in the subfield generated by xy, ..., x,, and this
is essentially the only restriction on w. Formally, define an n-pointed field as a field
F together with an n-tuple (xy, ..., x,;) such that no proper subfield of F contains
each x;. Let F(n) be a representative collection of r-pointed fields such that each
n-pointed field is isomorphic to a unique member of F(n) (where isomorphisms
must preserve the n-tuple). Then one can define an operation w by choosing
w(xy. ..., x,) € F entirely at random for each [F, (xq, ..., x,)] € F(m). (Notice
that £ has no non-trivial automorphism preserving the n-tuple.) In other words
T(n) = [1¥(n) (despite the notation we have not assumed that # is finite). It clearly
follows that the theory of fields does not have rank.

1t would be of some interest perhaps to describe the theory generated by finitary
field operations. Consider for example the unary operation r such that r(x) = 1 iff
x is rational (in the usual characteristic O sense) and r(x) = 0 otherwise. (This de-
fines r on fields and by an obvious extension r is defined for all products of fields.)
Not every ring homomorphism f:QV — K preserves r (where OV is a countable prod-
uct of rationals and K is any field). In fact f'is continuous iff f preserves r (in this
case). This refutes the conjecture that the topology is used only to handle infinitary
operations. Also the theory generated by the finitary operations is richer than the
theory of commutative regular rings.

4.2. Artin rings. In |S] a pseudocompact ring is defined as a complete Hausdorff
ring R which admits a base at O of two-sided open ideals / for which R/I is an Artin
ring. It is easily seen that in our terminology this is the same thing as an “*Artin-
generated” Hausdorff, linearly compact ring or, alternatively a regular pro-object
for Artin rings.

In view of Theorems 3.2 and 3.3 it seems reasonable to conjecture that the cate-
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gory of pseudocompact rings is the equational completion of the category of Artin
rings. We shall show that this is not quite the case but that for certain classes of of
Artin rings the s{-generated pseudocompact rings is the equational completion of s{.

Notice that the Artin rings are closed under finite products but not under the
formation of subrings so the theory of rings is not a separating triple. Moreover as
implied by the example below there is no way of enriching the theory of rings so as
to obtain a separating triple. There are however separating triples for certain classes
of Artin rings.

If the category of all pseudocompact rings were equational the underlying set
functor would preserve and create limits hence the discrete pseudocompact rings
(i.e. the Artin rings) would have to be closed under finite limits and arbitrary inter-
sections. The following counter-example shows this is not so. Let A4 be the Artin
ring of all 2 by 2 real matrices. For convenience, for the remainder of the paragraph,
let (7, s) denote the 2 by 2 matrix (a;;) € A for which @1y =432 = rand ay) =0 and
a5 = 5. Let P=(1, 1). Define ®(X) = PXP~! then ®:4 - 4 is a ring homomor-
phism. Let £ be the equalizer of ® and the identity on A. Then £ is the ring of all
matrices of the form (g, b). Let C be the complex numbers and let 8 : '~ C be de-
fined by 6<a, b) = a. Then the intersection of all equalizers of § and ¥ (fory an
automorphism of C) is the ring £’ of all (a, b) for which a is rational and b is real.
Then £’ is not an Artin ring. (Observe that the reals are an infinite dimensional vec-
tor space of the rationals. If V is any linear subspace, then the set of all (0, b> with
b E V is an ideal of £'. Clearly the ideals of £’ do not satisfy the d.c.c. nor even the
a.c.c..)

We now construct a triple T, whose algebras shall be rings R endowed with a 3-
tuple of unary operations that map x into (xy, x5, x3) such that

x=x1 +x,
X1Xy=Xx3%; =0

x5 is the semi-inverse of x-
(thatis x| x3x; = xy, x3¥x3 =x3 and x;x3 = x3x,).

A Tj-algebra R shall be called canonical if x5 is nilpotent for all x € R. For a cano-
nical Ty-algebra the operations are uniquely determined by the ring structure (and
the requirement that x, be nilpotent). Thus the Ty-homomorphisms between cano-
nical Tj-algebras are precisely the ring homomorphisms. (To prove this, let R be a
canonical Tj-algebra and assume x = r+p where p is nilpotent, r has semi-inverse s
and rp = pr = 0. Claim r = x|, p = x, and s = x5. Observe that for sufficiently large
m we have x™ = P = x, M This implies s = x,™. Hence x| =x"*1x;"
P™*1gm = r. Therefore, s = x4 and p = x;.)
A ring shall be called canonical if it can be endowed with a canonical Ty-struc-

ture. Notice that canonical rings are closed under finite products, quotients, the for-
mation of Ty-subalgebras (but not under infinite products). Moreover every simple
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Artin ring (i.e. ring of all linear transtormations of a finite dimensional vector space)
is canonical in view of Fitting’s Lemma.

We now construct a class s of Artin rings. Start with all canonical rings which
contain a minimal field (i.e. either the rationals or Z,, for some prime p) as a (uni-
tary) subring and which are finite dimensional as vector spaces over the minimal
field. To this collection of rings adjoin all finite products to get #{. Then every mem-
ber of L is an Artin ring and T, is a separating triple for . Thus the oA-generated
pseudocompact rings is the equational completion of & and is also the category of
pro-object for sl by 3.3 and 2.2. (Each object of o satisfies d.c.c. for both Ty-sub-
algebras and Ty-kernels.)

One can also adjoin all fields and skew fields to o and close up under finite prod-
ucts. Then the resulting rings are still Artin and Ty- is still a separating triple (so 3.3
still applies) but d.c.c. for T-subalgebras is lost. If any additional simple Artin rings
are adjoined then the argument of the above counter-example will apply.

4.3. Linearly compact modules. Let R be any ring. Then the (discrete) linearly com-
pact R-modules have an equational completion that can be computed by 3.2. The
theory of R-modules is still a4 separating triple even it one treats the more general
case of topological R-modules for a topological ring R (as done in [18]) provided
the models are always discrete, topological linearly compact R-modules. A number
of interesting properties of linearly compact modules can be found in [ 13} and
[18]. The case in which R is a pseudocompact ring is treated in [5]. Then a discrete
topological R-module has the d.c.c. iff it is of finite length. The case of pseudocom-
pact algebras is also discussed in [5] and provides another straightforward example
for Theorem 3.3.

4.4. Countable sets (a realcompact case). Let M be the category of countable sets
and all functions. Let /: M —~ J be the inclusion. Then the theory of sets is a separa-
ting triple. Moreover, as we shall point out, the Q topologies are all Hausdorff, hence
the equational completion is a full subcategory of Top. The main step in computing
this full subcategory are:

Definition. A topological space is nearly discrete if it is Hausdorff and if every non-
measurable collection of open sets has open intersection.

Lemma. (a) A nearly discrete space is realcompact iff every open cover has a non-
measurable subcover.

(b) The nearly discrete spaces are coreflective in the category of Hausdorff spaces.
The nearly discrete, realcompact spaces are closed under the formation of (coreflec-
ted) limits.

(¢) The category of nearly discrete, realcompact spaces is tripleable over .
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Proof (sketch). Most of the proof follows by mimicking the corresponding proofs
for compact Hausdortt spaces. The coreflection into nearly discrete spaces is accom-
plished by letting the class of all non-measurable intersections of open sets be a base
for the new topology. If X is realcompact then it is a closed subset of R” for some
n. Moreover X is still closed in the nearly discrete topology on R" so X has the co-
vering property (which is inherited by nearly discrete products and closed subsets).
Conversely the covering property implies realcompactness using the z-ultrafilter
characterization of realcompact spaces (see ref. {9]). q.e.d.

Corollary. The equational completion of the category of countable scts is the cate-
gory of realcompact, nearly discrete topological spaces. (1f every cardinal is non-
measurable this is the category of discrete spaces or simplv S in effect.)

Proof (sketch). If X is realcompact then X can be embedded as a closed subset of a
product of real lines [9]}. If, in addition, X is nearly discrete, then it easily follows
that X is equivalent to a closed subset of a (coreflected) product of discrete coun-
table spaces. Using the fact that the continuous image of a realcompact space is (in
the category of nearly discrete spaces) realcompact, hence closed, X is the canonical
limit of discrete countable spaces. The result now follows straightforwardly. q.e.d.

4.5. What do the operations look like? We have dealt with the general theory of
equational completions primarily from the point of view of triples. At this point we
collect a few observations about the operations. Recall that the set of n-ary opera-
tions is 7(n), hence we have a topological space of n-ary operations. Thus the corres-
ponding equational theory F (say, the category with F(n, k)= T(n)*) can be regar-
ded as a category with topological hom sets. However, it is nor a topological catego-
ry in the sense of Beck [3] since composition T(n)* X T(k) = T(n) although con-
tinuous for all finite k (which can be shown by using the type of argument given in
1.2) is nonetheless almost never continuous for infinite k. However, for any fixed
k-tuple on a T-algebra X the evaluation map 7(k) = X is continuous (as it is T-ad-
missible).

We know that T(n) = lim(n, I'). Moreover if To is any normal separating triple
and if LCC is satisfied then T'(n) = lim(n, /) and for every full, filtered subdiagram
AC(n, I the canonical map T'(n) — lim A is onto (using the argument of 3.10).
Thus one can obtain an n-ary operation by prescribing its behaviour on a set & of
n-tuples and lifting it from lim A to T'(n) (the lifting depends on a choice). Moreover,
if the models all satisfy d.c.c. for Ty-kernels then by (b) and (e) of Theorem 3.3, the
entire space, lim A, can be continuously lifted to a topologically equivalent closed
subspace of T'(n).

Our final observation is that the equational completions generally do not have
rank. For example suppose that the hypotheses of 3.3 are satisfied and that T has
(infinite) rank r. Let X € Y be any T-subalgebra and let s be the (cardinal) successor
of r. Let A € Y* be the set of all points which project into X for all but at most r
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projections. Then A would be a non-closed T-subalgebra contradicting 3.2(c). The
same contradiction works for the compact case. It also works for countable sets iff
at least one measurable cardinal exists. We note that here the n-ary operations are
the w-ultrafilters on n.

Note. The discontinuity of the property infinitary operations has led us to restrict
ourselves at times to the case where the separating triple is finitary. However, all
hypotheses of the form T}, is finitary” can be eliminated if we agree that a topolo-

gical Ty-algebra is to be a T-algebra with topology such that the finitary operations
are continuous.

References

[1} H. Appelgate and M. Tierney, Categories with models, Lecture Notes in Mathematics, Vol.
80 (Springer-Verlag, 1969) 156—-244.
{2] M. Artin and B. Mazur, Etale Homotopy II, Lecture Notes in Mathematics, Vol. 100
(Springer-Verlag, 1969).
{3] 1. Beck, On H-spaces and infinite loop spaces, Lecture Notes in Mathematics, Vol. 99
(Springer-Verlag, 1969) 139-153.
(4] J. Beck, untitled manuscript.
[S] A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4
(1966) 442-410.
[6] P. Freyd, Abelian categories (Harper and Row, 1964).
[7] D. Gildenhuys, On varicties of groups and inverse limit groups.
[8} D. Gildenhuys and Chong-Keang Lim, Free pro-C groups, Math. Zeitschrift, to appear.
{9] L. Gilman and M. Jerison, Rings of continuous functions (D. Van Nostrand, Princeton,
1960).
[10] L. Henkin, A problem on inverse mapping system, Proc. Am. Math. Soc. 1 (1950) 224 -225.
[11] J. Lambek, Lectures on modules and rings (Blaisdell, Waltham, 1966).
112} S. Lefschetz, Algebraic topology, Colloquim Publications, Vol. 27 (Am. Math. Soc, New
York, 1942).
[13] H. Leptin, Linear kompakte Moduln and Ringe, Math. Zeitschrift 62 (1955) 241-267.
[14] F. Linton, An outline of functorial semantics, Lecture Notes in Mathematics, Vol. 80
(1960) 7-52.
{15} F. Linton, Some aspects of equational categories, Proc. Conf. on Categorial algebra, LaJolla
1965 (Springer-Verlag, 1966) 84--94.
[16] E. Manes, A triple theoretic construction of the compact algebras, Lecture Notes in Mathe-
matics, Vol. 80 (Springer-Verlag, 1969) 91 -118.
[17] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol, § (Springer-
Verlag, 1965).
[18] D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953) 79-90.



	Ahamad_150129-005240_0001
	Ahamad_150129-005240_0002
	Ahamad_150129-005240_0003
	Ahamad_150129-005240_0004
	Ahamad_150129-005240_0005
	Ahamad_150129-005240_0006
	Ahamad_150129-005240_0007
	Ahamad_150129-005240_0008
	Ahamad_150129-005240_0009
	Ahamad_150129-005240_0010
	Ahamad_150129-005240_0011
	Ahamad_150129-005240_0012
	Ahamad_150129-005240_0013
	Ahamad_150129-005240_0014
	Ahamad_150129-005240_0015
	Ahamad_150129-005240_0016
	Ahamad_150129-005240_0017
	Ahamad_150129-005240_0018
	Ahamad_150129-005240_0019
	Ahamad_150129-005240_0020
	Ahamad_150129-005240_0021
	Ahamad_150129-005240_0022
	Ahamad_150129-005240_0023
	Ahamad_150129-005240_0024
	Ahamad_150129-005240_0025
	Ahamad_150129-005240_0026
	Ahamad_150129-005240_0027
	Ahamad_150129-005240_0028
	Ahamad_150129-005240_0029
	Ahamad_150129-005240_0030

