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Abstract

A method for linear statistical analysis of multidimensional imaging data is presented. It
is applicable for a class of design and covariance matrices which involve Kronecker products.
An efficient algorithm which allows for application of the method to large multidimensional
data volumes is given. This has direct application to neuroimaging, and here the technique is
applied to positron emission tomography (PET) data. PET is an in vivo functional imaging
technique that measures biological processes such as blood flow and receptor concentrations.
Here, the algorithm is used to correct for resolution degradation in these images. This process
is typically referred to as PET partial volume correction. Examples involving both measured
phantom and human data are given. This rapid algorithm leads to advances in the types of
quantitative brain imaging studies that can be performed.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Estimation through the use of linear models is a fundamental technique in statis-
tics. A linear model can be used to form the simplest regression through to the most
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complex analysis of variance, by specification of appropriate design and covariance
matrices. However, in the case of large data sets with complex inner structures, the
design and covariance matrices are often difficult to handle computationally.

This paper investigates methods for a specific class of matrices which can be
formed from Kronecker products of other smaller matrices. Taking advantage of
these properties allows for the efficient application of linear models to multidimen-
sional data sets, which would otherwise involve large matrices (e.g. 106 in each
dimension).

Matrices of this class are routinely used in functional neuroimaging. Positron
emission tomography (PET) is one such technique (see Fig. 1) which enables
researchers to study the function of the human brain in vivo [1,2]. After intrave-
nous injection of a radiolabelled compound of interest, it is possible to record the
subsequent spatial and temporal radioactivity distribution using a ring of external
gamma detectors [3]. This is based on recording the projection data (coincident
gamma rays) and subsequently reconstructing three-dimensional image volumes for
each temporal time frame to generate a four-dimensional dynamic data set (see
Leahy and Qi [4] for a description of the PET reconstruction process). The applica-
tion of bio-mathematical models to these 4-D data sets enables the estimation of 3-D
images of the biological parameters [5]. Common applications include the measure-
ment of blood flow, glucose metabolism and receptor concentrations. However, the
resolution of these images is limited by the intrinsic properties of the scanner. Linear
methods can be used to recover the data at a local level, using a characterisation of the
point spread function, and adjunct structural data. To put the technique in context, a
3-D PET image volume typically contains about 128 × 128 × 64 voxels (a voxel is a
3-D generalisation of a pixel whose size is about 2 × 2× 4 mm3). The blurring of the
data introduced by the tomograph is of the order of 6 mm full width half maximum
(FWHM) in each direction.

The methods presented here allow for the application of resolution recovery tech-
niques to PET data on a local level which improve the quantitative nature of the final
results and allow further interpretation of the data than was previously possible. In
PET, this technique is known as partial volume correction [6] and assumes a homo-
geneous radioactivity concentration in a set of regions defined from an anatomical
parcellation of the brain using structural magnetic resonance imaging (MRI) data.

Fig. 1. Positron emission tomography (PET)––A radiolabelled compound of interest is injected intrave-
nously in a subject of interest. The compounds spatial distribution is measured within a PET tomograph
(a ring of gamma detectors wired up to detect coincident events). This generates three-dimensional image
volumes of the radiotracers concentration.
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This parcellation can be extended, by applying tissue classification techniques to
the MRI data, to account for tissue type (such as grey and white matter) as well
as the gross anatomical structures (such as cerebellum, striatum etc). The resultant
technique will allow assessment of biological parameters even in cases where the
brain structure is complex due to disease or abnormality, areas which are often the
focus of neurological research i.e. it will allow for an assessment of true functional
changes by removing the effect of confounding structural changes.

2. Theory

The method is primarily developed from the structural limitations imposed by the
PET data. The tomographic scanner can be modelled as a three-dimensional linear
filter, which spreads a point (in the object) over an area (in the reconstructed image).
For these scanners, it is possible to describe this filter by a separate function in each
of the three dimensions. The function that describes the blurring operator can be
constructed as a convolution of the blurring kernels in each dimension, i.e. the point
spread function is separable. This does not imply that the blurring model is spatially
invariant, but merely that each direction can be modelled separately.

The design matrix requires information about the local anatomical neighbour-
hood. Higher resolution structural MRI data allows for the accurate determination of
these anatomical regions based on their location and tissue type [7]. These images
are coregistered to the PET images using a mutual information technique [8]. The
regions are assumed to be homogeneous, that is, within each region there is a constant
level of radiotracer, subject to noise. For a one-dimensional signal the problem can
be formulated as

PRx + ε = b, ε ∼ N(0, �), (1)

where P is a non-singular matrix characterising the filter (or point spread function),
R is a matrix of full column rank containing the region definitions, x contains the true
mean regional concentrations, ε is the noise in the data, and b is the PET data. � is
the covariance matrix of the noise in the data, and is assumed to be positive definite.

Fig. 2 gives a graphical representation of this PET resolution recovery problem
for a slice of the three-dimensional image volume. The goal is to estimate x, the true
radiotracer concentration within each structurally defined region, from the PET data.

This could, in theory, be solved by vectorisation of the image volume which trans-
forms the problem into the form of Eq. (1). Whilst this is not practically possible for
PET image volumes, it can be helpful to discuss the problem in this way before
moving onto the multimatrix operator approach which provides a viable solution.

2.1. One-dimensional implementation

For a one-dimensional implementation, images are vectorised, and the inherent
three-dimensional structure of the image volume is ignored. The problem is simply
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Fig. 2. Partial volume correction scheme. Images are (left to right) Filter (or Point Spread Function); Ana-
tomical Region Definitions; Reconstructed PET Image. x represents the true regional radiotracer concen-
trations and ε the noise. Whilst this figure represents the general scheme, in practice the region definitions
are more complex and in addition account for different tissue types.

described by Eq. (1). If the image size is a k × m × n, then b is a kmn × 1 vector,
but more importantly P and � are kmn × kmn matrices. R has dimension kmn × r

and x dimension r × 1 where r is the number of regions identified, and r � kmn.
Using weighted least squares allows x to be estimated as

x̂ =
(
RTP T�−1PR

)−1
RTP T�−1b. (2)

However, whilst this is theoretically straightforward, in practice its computation is
compromised by the size of the matrices.

2.2. Multimatrix operator implementation

Here, multimatrix operations are defined. These are the operations of a set of
matrices on a volume in order to replicate the operation of a much larger single
matrix on a vectorisation of the volume. Convolutions or Kronecker products are
well known to be applicable to image volumes. For instance, this is true in the field
of wavelets where wavelet filters are operated dimension by dimension.

The use of multimatrix operators is required to provide an efficient calculation of
products of the form

(P1 ⊗ P2 ⊗ · · · ⊗ Pn)q, (3)

where the Pi are matrices and q is a vector. In the case where n = 2,

(P1 ⊗ P2)q = vec(P2 unvec(q) P T
1 ), (4)

where vec(X) stacks the columns of a matrix X and unvec is an appropriate inverse
operation of vec [9, Section 4.5.5]. This result generalizes for larger values of n.

Such multimatrix operators can be applied to a three-dimensional image volume
(n = 3). A three-dimensional point spread operator is constructed as the operation
of one small matrix in each of the three dimensions (cf. r.h.s of Eq. (4))

P = Px ⊗ Py ⊗ Pz, (5)

where Px , Py , Pz are separable point spread matrices in the x, y, and z, directions
respectively (see Fig. 3).
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Fig. 3. Multimatrix point spread operator (P ). The three-dimensional box represents the image volume
(b), and the arrows indicate the direction of operation of the constituent matrices (Px , Py , Pz) on the
multidimensional volume. The constituent matrices operate on each slice taken in the same orientation as
the matrix before moving to the next slice.

2.3. Covariance structures

The use of the multimatrix operator is of importance, not only, in the operation
on the image volume and regional definition, but also, as a component of the covari-
ance matrix. The class of covariance matrices that are of interest here (characterisa-
tion of noise in a PET image) consist of two additive components. The first noise
component is a spatially uncorrelated component (D1, a diagonal matrix). The sec-
ond is a spatially correlated component which results from the intrinsic noise in
the data source and follows a Poisson distribution. However, as there are a large
number of counts, they can be treated as a signal dependent normally distributed
noise component (PD2P

T where D2 is also diagonal).
Eq. (1) can be rearranged to give

Rx + η = P −1b, η ∼ N(0, P −1�(P −1)T). (6)

This is a theoretical construct, as opposed to a practical implementation, because a
deconvolution of the filter is unstable due to the first noise (uncorrelated) component
in the data. However, this representation will lead to an algorithm where the squared
blurring operator (P 2) is involved as opposed to the squared deconvolution opera-
tor (P −2) which is inherently less stable. In this framework, �2 = P −1�(P −1)T is
defined to be of the following form:

�2 = P −1(D1 + PD2P
T)(P −1)T = P −1D1(P

−1)T + D2, (7)

where D2 is the signal dependent variance component (which can be approximated
by Rx). The structure for �2 is derived from the properties of the two noise compo-
nents, the intrinsic (D2) and the reconstruction and measurement (P −1D1(P

−1)T).
D1 and D2 are positive definite diagonal matrices. Thus our estimate for the true
concentrations becomes

x̂ =
(
RT(P −1D1(P

−1)T + D2)
−1R

)−1

×RT(P −1D1(P
−1)T + D2)

−1P −1b. (8)
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A similar expression can be derived for the variance of the estimates. If W = �−1
2

then

var(x̂) =
(
RTWR

)−1
(Rx̂ − P −1b)TW(Rx̂ − P −1b)

kmn − r
. (9)

However, there is a problem with the calculation of these estimates. While the
matrices which combine to make P can easily be defined in the multimatrix form
above, �2 contains a sum of two different components. The individual components
are easy to operate but the inverse of their combination is not. However, the following
solution is proposed. If

Z = WR = (P −1D1(P
−1)T + D2)

−1R, (10)

then

W−1Z = P −1D1(P
−1)TZ + D2Z = R, (11)

Eq. (11) can be solved iteratively for Z using the multimatrix structure of P and
diagonal properties of D1 and D2.

2.3.1. Iterative method
A first-order stationary iterative scheme was chosen

Zn+1 = Zn − τC−1(W−1Zn − R), (12)

where C is a non-singular matrix and τ is the relaxation parameter which will ensure
convergence given C and W (see below). If C is chosen to be P −1D1(P

−1)T then
the algorithm is

Zn+1 = (1 − τ)Zn + τP TD−1
1 P(R − D2Zn). (13)

The solution Z is then incorporated into the weighted least squares solution as

x̂ = (ZTR)−1ZTP −1b, (14)

and for the variance estimate as

var(x̂) = (ZTR)−1Z∗(Rx̂ − P −1b)

kmn − r
, (15)

where Z∗ = (Rx̂ − P −1b)TW is solved using the same iterative procedure as the
one above with R replaced by (Rx̂ − P −1b).

2.3.2. Convergence
Let C = P −1D1(P

−1)T and W = (P −1D1(P
−1)T + D2)

−1 as above. Then the
iterative scheme (Eq. (13)) is given by

Zn+1 = Zn + τC−1(R − W−1Zn). (16)

If C−1 and W−1 are positive definite (which is elementary from their definitions)
then the iterative scheme will converge for 0 < τ < 2

λmax(C−1W−1)
where λmax(·)

is the maximal eigenvalue [10, Theorem 5.6]. Thus, to guarantee convergence, it
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remains to calculate an upper bound for the maximal eigenvalue of C−1W−1 which
enables an appropriate selection of τ .

C−1W−1 = P TD−1
1 P(D2 + P −1D1(P

−1)T)
(17)

= P TD−1
1 PD2 + I.

A corollary [10, Corollary 3.14] of the Courant–Fischer theorem [10, Lemma
3.13] gives an upper bound for the maximal eigenvalue in the case of a product
of a positive definite matrix (D−1

1 or D2) and a matrix with non-negative maximal
eigenvalue (P ). The addition of the identity matrix I simply adds 1 to the bound,
giving

λmax(C
−1W−1) � λmax(D

−1
1 ) λmax(P

TP) λmax(D2) + 1, (18)

where λmax(Di) is the largest element of the diagonal matrix Di and λmax(P
TP)

is the square of the maximum singular value of P . Thus smax(P ) = √
λmax(P TP),

which is just the product of the maximal singular values of each individual matrix
component of P . The singular values of the Kronecker product are the product of
the singular values of the individual component matrices [11]. For example for a
Kronecker product matrix P

P = P1 ⊗ P2 = (U1S1V 1
T) ⊗ (U2S2V 2

T)

= (U1 ⊗ U2)(S1 ⊗ S2)(V
T
1 ⊗ V T

2 ) = USV T. (19)

An alternative derivation of Eq. (18) arises from the matrix norm

λmax(C
−1W−1) � ||C−1W−1||2 � ||P T||2 ||D−1

1 ||2 ||P ||2 ||D2||2 + ||I ||2
= λmax(D

−1
1 ) λmax(P

TP) λmax(D2) + 1 (20)

A value for τ that guarantees convergence of the iterative scheme, although not
necessarily optimal, can then be chosen as

τ = 2

λmax(D
−1
1 ) smax(P )2 λmax(D2) + 2

. (21)

2.3.3. Special case
If there is no signal dependent component (D2 = 0), the weighting matrix reduces

down to

W = (P −1D1(P
−1)T)−1 = P TD−1

1 P. (22)

In this special case, the solution is explicit and does not require an iterative
approach. The solution then becomes

x̂ =
(
RTP TD−1

1 PR
)−1

RTP TD−1
1 b, (23)

which can be determined solely using the multimatrix methods above. The special
case can be used to construct an initialization (Z0) for the iterative method with
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more complex noise models. The iterative process can be initialized with Z0 =
P TD−1

1 PR which is calculated using the multimatrix method. Similarly, for the var-
iance estimation, Z∗

0 = (Rx̂ − P −1b)TP TD−1
1 P can be used for the initialization.

This special case can occur when partial volume correction is being applied to a
parametric image generated from previous kinetic modelling of the data (here b is
a parametric image). Kinetic modelling can include weighting factors that account
for signal dependent noise in the data. With linear kinetic models the two phases
of analysis (temporal modeling and partial volume correction) can be interchanged
without effecting the parameter estimates. When non-linear models are used and the
temporal modelling is applied before partial volume correction the resulting para-
meters are a good approximation as opposed to being exact (see Gunn et al. [5] for a
description of PET kinetic modelling).

3. Examples

The partial volume problem is an important problem for quantitative PET imaging
which arises from the limited resolution of the scanner. In essence, regions of dif-
fering concentrations get blurred together making it difficult to accurately estimate
the true concentration in each region. However, the process is also noisy and it is
not possible to remove the blurring through a simple deconvolution of the blurring
operator due to ill-conditioning.

Measured phantom and human PET data have been acquired for validation and
subsequent application of the methods developed here [12]. The iterative approach,
with a complex noise model, is applied to a phantom data set and the direct multim-
atrix method, with a simple noise model, is applied to human brain data.

3.1. Phantom data

Cylindrical syringes were scanned to verify the effectiveness of the recovery in
known situations of partial volume (i.e. a simple geometry involving a homogeneous
radioactivity concentration which is known). Four different syringes were scanned
each with a different inner diameter (15, 12, 9, 5 mm), each containing a solution
of known radioactive concentration. The blurring kernel of the scanner is 6 mm in
the x–y directions and 6.5 mm in the z-direction. The P matrices are characterised
from empirical measurements performed on the scanner with a point source, D2 is
proportional to the measured counts and D1 was assumed to be a multiple of the iden-
tity matrix, where the multiplier is determined from the background of the image.
τ was calculated using Eq. (21) as 0.0911 (smax(Px) = 0.9994, smax(Py) = 0.9994,
smax(Pz) = 1, smax(P ) = 0.9989, λmax(D

−1
1 ) = 0.0007321, λmax(D2) = 27320).

This is not necessarily an optimal value but it does guarantee convergence. The activ-
ity concentrations prior to and post partial volume correction are given in
Table 1.
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Table 1
Results of partial volume correction for measured phantom data: activity concentration (kBq/ml) before
correction (BC) and after correction (AC) for the four syringes (true activity was 75 kBq/ml)

Syringe diameter (mm) BC AC AC Sd

15 51.4 72.7 0.80
12 50.5 78.2 1.01
9 39.7 78.5 1.52
5 20.1 75.1 3.59

The recovery coefficient for the concentration in each syringe (percentage of the
true signal) was low without partial volume correction (∼70 % for the large syringe
and ∼25% for the smallest). This shows how large partial volume effects can be,
especially with small structures. When the presented algorithm was used, recov-
ery was much better (90–110% recovery). Full results can be found in Aston et al.
[12]. In addition, the method provides estimates of the associated error on these
parameters which has not previously been possible.

3.2. Human data

[11C]Flumazenil is a radiotracer which images the concentration of benzodiaze-
pine receptors in the brain. A data set obtained from a human subject is shown in Fig.
4(a). The blurring kernel of the scanner was again approximately 6 mm in the x–y

directions and 6.5 mm in the z-direction. The R matrix was determined from regional
parcellation and tissue classification of a coregistered [8] structural MRI image.
Whilst the coregistration is not perfect between the images, previous studies have
shown this has little effect on partial volume correction when the misalignment is
small [13]. The covariance structure of the noise in this image was completely spec-
ified by the D1 matrix due to the prior temporal modelling. This allows for the appli-
cation of the explicit solution given by Eq. (23). The regional concentrations, before
and after partial volume correction, are given for a selected set of regions in Table 2.

For display, the local regional concentrations are projected back onto the ana-
tomical parcellation (Fig. 4(b)). The concentrations shown in Fig. 4(b) and Table 2
have been shown to be well recovered using additional simulation studies and also
compared to the results from other methods [12]. Without application of partial vol-
ume correction to the data it is evident that the concentrations can be significantly
underestimated.

4. Discussion

A new algorithm has been presented for the application of linear models to mul-
tidimensional imaging data. It is based on the representation of a large matrix by
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Fig. 4 Human [11C]Flumazenil images (volume of distribution) of benzodiazepine receptor concentra-
tion (ml of plasma/ml of tissue): (a) prior to partial volume correction, (b) projection onto anatomical
parcellation after partial volume correction.

Table 2
Results of partial volume correction for measured human [11C]Flumazenil data: volume of distribution
(ml of plasma/ml of tissue) values before correction (BC) and after correction (AC) for a representative
set of anatomical regions (R––Right, L––Left)

Region Grey matter White matter
BC AC AC Sd BC AC AC Sd

R Amygdala 3.30 7.21 0.39 2.78 0.48 0.38
L Amygdala 4.01 5.83 0.40 2.68 0.37 0.31
R Frontal Lobe 5.78 9.23 0.03 3.55 2.31 0.01
L Frontal Lobe 5.35 8.81 0.03 3.91 2.96 0.01
R Occipital Lobe 5.47 7.51 0.07 4.86 4.19 0.03
L Occipital Lobe 5.42 6.73 0.06 4.77 4.46 0.03
R Thalamus 2.10 4.76 0.20 1.55 1.81 0.04
L Thalamus 3.06 5.32 0.19 1.13 1.10 0.03
R Cerebellum 4.29 6.26 0.03 2.88 2.31 0.01
L Cerebellum 4.49 6.61 0.03 3.03 2.12 0.01

set of much smaller matrices which operate on the data through Kronecker prod-
ucts. Through the use of this multimatrix algorithm, it is now possible to use more
complex linear models to address the problem of partial volume effects in PET. This
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algorithm is general and has broader applications in neuroimaging and to other mul-
tidimensional data sets. For certain covariance structures an explicit solution is pos-
sible and for more complex covariance structures the solution is achieved through
an iterative scheme. Conditions for convergence for the iterative method have been
derived.

Several methods have previously been applied to the PET partial volume problem.
These methods have been implicitly based on finding least squares solutions to the
vectorisation of the problem (Section 2.1). However, these solutions were restricted
to using simple forms for the covariance matrices which made the computation feasi-
ble. Labbé et al. [14] investigated the ordinary least squares solution to the problem
which is equivalent to using � = I in Eq. (2). Rousset et al. [15] took a differ-
ent approach, that although not explicitly formulated as a least squares solution, is
equivalent to taking � = P T in Eq. (2). However, in both methods, the inherent
three-dimensional structure was not taken into account, and as such the process was
incredibly time consuming even for a small volume and a small number of regions.
The presented method offers a great improvement in computation time over previ-
ous methods (a factor of 50 × faster––taking 30 min for one standard volume), and
allows for more complex and accurate models to be applied.

This new algorithm is now in routine use in several large clinical imaging studies
into neurological diseases such as epilepsy. Partial volume effects can have a major
impact due to the structural changes in these pathologies. The tractability and rapid
nature of these algorithms has permitted the analyses of functional brain imaging
studies that were not previously possible.
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