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A b s t r a c t - - I n  this paper, we present the concept of fuzzy information granule based on a relatively 
weaker fuzzy similarity relation called fuzzy TL-similarity relation for the first time. Then, according 
to the fuzzy information granule, we define the lower and upper approximations of fuzzy sets and 
a corresponding new fuzzy rough set. Furthermore, we construct a kind of new fuzzy information 
system based on the fuzzy TL-similarity relation and study its reduction using the fuzzy rough set. 
At last, we apply the reduction method based on the defined fuzzy rough set in the above fuzzy 
information system to the reduction of the redundant multiple fuzzy rule in the scheduling problems, 
and numerical computational results show that the reduction method based on the new fuzzy rough 
set is more suitable for the reduction of multiple fuzzy rules in the scheduling problems compared 
with the reduction methods based on the existing fuzzy rough set. @ 2006 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - F u z z y  rough set, Fuzzy information granule, Fuzzy information system, Reduction, 
Scheduling. 

1. I N T R O D U C T I O N  

As a tool for processing uncertain and incomplete information, the rough set theory was originally 
proposed by Pawlak [1]. This theory deals with the approximations of an arbitrary subset of a 
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universe by two definable subsets called lower and upper approximations, respectively. Addition- 
ally, the fuzzy set theory [2] for processing vagueness and uncertainty is also a generalization of 
the crisp set theory. It is generally accepted that these two theories are related, but distinct and 
complementary [3 6]. Many attempts have been made to combine these two theories. Dubois and 
Prade [4] first studied the fuzzifieation problem of rough sets. Furthermore, they defined the up- 
per and lower approximations of the fuzzy sets with respect to a fuzzy min-similarity relation [4]. 
Additionally, the above definitions of the fuzzy rough set were generalized to a more general ease 
in [7]. At present, the fuzzy rough set has been applied to practical problems. For example, the 
fuzzy rough set theory was used to extract the fuzzy decision rules from the fuzzy information 
systems [8,9] and to reduce the redundant condition attributes in information systems [10,11]. 

Up to now, the existing fuzzy rough sets are all defined with respect to fuzzy rain-similarity 
relation having the following characteristics. First, the lower and upper approximations of a fuzzy 
set are defined just by its membership function, and they can not be expressed as the unions of 
some elementary information granules so that they have not some properties as the crisp rough 
sets do. Second, the lower and upper approximations of a definable fuzzy set may not always be 
definable. Third, the condition needed for the fuzzy min-transitivity in the fuzzy min-similarity 
relation R defined seems too strict so that the similar degree between two objects in U cannot be 
measured effectively by means of the fuzzy rain-similarity relation. Due to these characteristics, 
the application fields of the existing fuzzy rough sets are limited. 

In this paper, we use a relatively weaker fuzzy similarity relation called fuzzy Tf-similarity 
relation [12,13] to measure the similar degree between two objects in universe U. Based on the 
fuzzy TL-similarity relation, we present the concept of fuzzy information granule for the first time. 
Then, on the basis of the fuzzy information granule, we define the lower and upper approximations 
of fuzzy sets and a corresponding new fuzzy rough set. Furthermore, we construct a kind of new 
fuzzy information system based on the fuzzy Tf-similarity relation and study its reduction using 
the new fuzzy rough set. At last, we apply the reduction method based on the defined fuzzy rough 
set in the new fuzzy information system to the scheduling problems. Numerical computational 
results show that the reduction method based on the new rough set is more suitable for the 
reduction of the redundant multiple fuzzy rules in the scheduling problems compared with the 
one based on the existing fuzzy rough set. 

This paper is organized as follows. In Section 2, some basic notions of the crisp rough sets are 
given. In Section 3, we define a new fuzzy rough set. In Section 4, we construct a kind of new 
fuzzy information system and study its reduction. In Section 5, we apply the proposed reduction 
method to the scheduling problems and give the numerical computational results. At last, some 
conclusions are presented in Section 6. 

2. L O W E R  A N D  U P P E R  A P P R O X I M A T I O N S  
A N D  C R I S P  R O U G H  S E T S  

Let U be a finite and nonempty universe, and let R C U x U be an equivalence relation on U, 
i.e., R is reflexive, symmetric, and transitive. Then, the equivalence relation R partitions the 
universe U into disjoint subsets, each of which is an equivalence class defined by R. Elements in 
the same equivalence class are indistinguishable. Additionally, equivalence classes are also called 
elementary sets or information granules and any union of elementary sets is called a definable 

set [1]. Also, (U, R) is called an approximation space. 
Given an arbitrary set X C_ U, we can characterize X by a pair of lower and upper approxi- 

mations. The lower approximation apr.nX is the greatest definable set contained in X and the 
upper approximation aprRX is the least definable set containing X. They can be obtained by 
the following two formulas respectively, 

aprRX = {x I [x]R C X} or aprRX = tO {[X]R I [X]R C_ X},  

api:RX = {x I [x]R n X # ¢} or aprRX = tO {[x]R I [x]R n X # ¢}. 



Reduction Method 1573 

The lower and upper approximation operators apr R and g0-fpr R have the following properties. 

(1) aprRU = ~-O-/prRU = U, gp--fprR¢ - aprR¢ -- ¢; 
(2) aprR(X n Y) = aprRX A aprRY , g~prn(X U Y) = ~-p-fprRX U g~prRY; 
(3) aprRX~ - (g~prRX) ~, g-p-fprRX ~ = (aprRX)~; 
(4) aprRX c_ X, X C_ g~prnX; 
(5) X c_ apr/~(g-p-/prnX), g~prR(aprRX ) C_ X; 
(6) aprRX C_ ap rn (ap rnX) ,  g~prR(ff-~prnX ) C_ g~prnX. 

Let R be a family of equivalence relations on U, then AR = {ARt  R E R}  is also an equivalence 
relation on U, where n R  is called indiscernibility relation on R and is denoted as ind (R). It is 

clear that  [X]~nd (a) = C~{[x]R I R C R}. Additionally, (U, R) is called an information system. 
Suppose that  R E R,  if ind(R) = ind (R  - {R}), R is called unnecessary in R,  otherwise R 

is called necessary in R.  If every R E R is necessary in R,  R is called independent, otherwise 
R is called dependent. Suppose that  P C_ R,  if P is independent and ind (P)  = ind (R), P is 
called a reduction of R.  It is clear that  R may have more than one reduction. The intersection 
of all reductions of R is called core of R which is denoted as core(R). If core(R) ¢ ¢, we have 
core(R) - Nred(R), where red(R) is the set of all reductions of R.  

3 .  F U Z Z Y  I N F O R M A T I O N  G R A N U L E  A N D  L O W E R  

A N D  U P P E R  A P P R O X I M A T I O N S  O F  F U Z Z Y  S E T S  

In the above section, we give some basic notions of crisp rough sets. In this section, crisp rough 
sets are generalized to fuzzy rough sets. 

The existing fuzzy rough sets are all defined on the basis of the fuzzy min-similarity relation. 
Let U be a nonempty universe. For any x, y G U, let R(x, y) denote the similar degree between 
two objects x and y. Then, a fuzzy binary relation R on U is called a fuzzy min-similarity relation 
iff R is 

(1) reflexive: _R(x,x) = 1 for any object x C U; 
(2) symmetric: R(x, y) = R(y, x) for any x, y C U; 
(3) min-transitive: R(x, y) >_ sup minzeu {R(x, z), R(z, y)} for any x, y, z E U. 

According to the above fuzzy min-transitivity, we have that  

R ( x , z )  = R ( y , z ) ,  when R ( x , y )  > R ( y , z ) ,  

R (~, z) = R (x, y) ,  when n (x, y) < R (y, z) ,  

for any x, y, z C U. It is obvious that  at least two of three values R(x, y), R(y, z), and R(x, z) are 
equal to each other. The above condition needed for the fuzzy min-transitivity in the fuzzy min- 
similarity relation R defined seems too strict so tha t  the similar degree between two objects in U 
cannot be measured effectively by means of the fuzzy min-similarity relation. In this section, 
we define a new fuzzy rough set based on a relatively weaker transitive relation called fuzzy 
Tn-similarity relation by the well-known Lukasiewicz t-norm TL which is defined as TL(a, b) = 
max{0, a + b - 1} [7]. A fuzzy TL-similarity relation R on U is 

(1) reflexive: R(x, x) = 1 for any object x e U; 
(2) symmetric: R(x, ~) = R(y, x) for any ~, y e U; 
(3) TL-transitive: R(z, y) _> TL {R(~, z), R(z, y)} for any x, y, z C Y. 

For any three objects x, y, z E U, if R(x, z) and R(y, z) are both close to 1, R(x,y) should 
be close to but may not equal R(x, z) or R(y, z). For example, if we take tha t  R(x, z) = 0.8, 
R(z, y) = 0.9, and R(x, y) = 0.75, it is obvious that  R(x,y), R(y, z), and R(x, z) satisfy the 
TL-transitivity and are not equal to each other. From the above example, we can see that  the 
condition needed for the TL-transitivity in the fuzzy TL-similarity relation is relatively weaker 
than that  needed for the fuzzy min-transitivity. 
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Let R be a fuzzy min-similari ty relation on U, then, for any fuzzy set A C F(U),  the fuzzy rough 
set is a pair of fuzzy sets (R,(A) ,  R*(A)) in [4], where R, (A) (x )  = infyeu max{1 - R(x, y), A(y)} 
and R* (A)(x) = sup~eu min{R(x,  y), A(y)} for any x C U. The  lower and upper  approximation 
operators R,  and R* above satisfy that R*(A c) = (R , (A) )  c and R . ( A  ~) = (R*(A)) ~, but do not 
satisfy tha t  R*(R.(A))  = R . (A)  and R.(R*(A))  = R*(A), tha t  is, the lower and upper  approxi- 
mations of a definable fuzzy set may be undefinable. So, the lower and upper  approximations of 
a definable fuzzy set have not the corresponding characteristics of the definable set in the crisp 
rough set theory. Also, from the above definitions of R .  and R*, there do not exist the elementary 
sets for construct ing R.  and R*. For generalizing reasonably the concepts of the lower and upper 
approximations of a definable set in the crisp rough set theory to fuzzy cases, we define the fuzzy 
information granule in Definition 3.1. 

First, we introduce the definition of fuzzy point. For any object  x E U and A C (0, 1], fuzzy 
point x~ is a fuzzy set defined as 

j" ,~, y = x ,  
xp~ (y)  

O, y ~ x .  

It  is obvious tha t  any fuzzy set A on U can be expressed as a union of some fuzzy points, and 
every fuzzy point can always be expressed as a union of some smaller elements (fuzzy points) in 
the fuzzy set theory. In contrast,  every point is the smallest element and cannot  be expressed as 
a union of other elements in the crisp set theory. 

Then,  based on the above fuzzy point, we define the fuzzy information granule in Definition 3.1. 

DEFINITION 3.1. Let R be a fuzzy TL-similarity relation on U, and let x~ be a fuzzy point, then 
fuzzy set [x~]R defined by [x~]R(y) = TL ( ;~, R(x, y) ) is called the fuzzy information ~anule with 
respect to x~. 

It  is obvious tha t  fuzzy information granule [x;~]R(y) can be constructed by means of fuzzy 
point x~ and the corresponding fuzzy TL-similarity relation R. 

The fuzzy information granule has the following properties in L e m m a  3.2. 

LEMMA 3.2. For anyx,  y C U, A,# E (0, 1], we have the following. 

(1) [x),]R(x) = /k  = supyeu[x),]R(y ). 
(2) If  y ,  C [x;~]R, we have that [Yu]R C [x~]R. 
(3) [x~]R = [2~,~I~I~[y,,]R. 

PROOF. 

(1) [x~]R(x) : TL(A, R(x, x)) : TL(;~, 1) : max(0, A + I  1) : A. Since TL(a, b) is a monotone 
increasing function with respect to b, we can infer tha t  

sup [x~]n (y) = sup TL ( l ,  R (x, y)) : TL (;~, R (x, x)) : A. 
yCU yCU 

(2) I f y ,  < [x~]/~, we have # _~ TL(A,R(x,y)) .  For any z C U, 

[y,]R(z) = TL ( # , R ( y , z ) )  <_ TL (TL (A ,R (x , y ) ) ,  R ( y , z ) ) .  

Due to TL(a, TL(b,c)) = TL(TL(a,b),c) [14], we have tha t  

TL (TL (A, R (x, y)) ,  R (y, z)) = TL (A, TL (R (x, y) ,  R (y, z))) < TL (A, R (x, z)) = [x~]R (z).  

Thus, [yu]R(z) ~_ [x~]R(z), tha t  is, [y,]R C_ [x~]n if y,  C [x~]R. 
(3) According to (2), we have tha t  [xx]R D ~V,C_[~]R[Yu]R" And, since xx C_ [xx]R, it is 

obvious tha t  [x~]R _C [.Jy,.c_[~]R[y,] R. Thus, [x~]R = [.Jy, C[~]n[y , ]n  holds. 

According to the above definition of the fuzzy information granule, for any fuzzy set A ~ F(U),  
we can define the lower approximat ion RA and the upper  approximat ion RA of A in Definition 3.3. 
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DEFINITION 3.3. Let R be a fuzzy TL-similarity relation on U. Then, for any fuzzy set A E 
F(U),  based on the fuzzy information granule, the lower approximation R A  and the upper 
approximation R A  of A with respect to l~ are de~ned ~ _RA = U{[xx]R I [xx]R C A} and 
RA = U[XA(x)]R = U{[x.X]R I A __ A(x)}, respectively. 

If _/~ is a crisp equivalence relation, we have that  

(1) A = 1, x.~ is a crisp point, and A is a crisp set; 
(2) [x~]R is just the equivalence class [x]R; 
(3) R-A tA{[x]R I [x]R C_ A} and RA = tA{[X]R ] [X]R N A ~ ¢}, tha t  is, the crisp lower 

and upper approximation operators apr R and apr R are the special cases of __R and R, 
respectively. 

Hence, the definitions of the lower and upper approximation operators __R and R given in this 
paper are a generalization of the corresponding lower and upper approximation operators apr R 

and apt R in the crisp rough set theory, in which _R and R have the following properties in 
Theorem 3.4. 

THEOREM 3.4. Suppose R is a fuzzy TL-similarity relation on U and A, B E F(U).  Let R- and R 
be the lower and upper approximation operators with respect to i~, respectively, then we have 

(1) RA C A C RA; 
(2) Rx~, = [x~]R; 
(3) (R(AC)) c = R A, (R(AC)) c = RA; 

(4) R(SLIA~]) SLIRA,•I), R(TLIA,~[) = TLIRA,•]; 
(5) A C_ B ~ RA c RB,  RA  C_ RB; 
(6) R ( A  n B) = R-An R B, R(A  u B) = R A u  RB; 
(7) R(A u B) D_ R_A u R-B, R(A n B) c_ R A  o RB;  
(8) R(R-A) = R(R-A) = R A, R(RA)  = R_(RA) = RA; 
(9) R U  = R u  = u ,  R ¢  = R-¢ = ¢; 

(10) R ( U -  {y})(x) : _ R ( U  - {x})(y), -Rx1(y) : - R y l ( x )  : R(x ,y ) ;  
(11) R A  = A ¢=~ R_A : A. 

Where x, y E U, xl and Yl are two fuzzy points, S L is the dual t-conorm of TL defined as 
SL(a, b) = min{1, a+b}, SLIA, B] is defined as SLIA, Bi(x) = SL(A(x),  S ( x )  ), TLIA, B] is defined 

T~IA, BI(x)  = T L ( A ( ~ ) , B ( ~ ) ) ,  and ~ is defined ~ ~(~)  = ~, V x ~ U. 

PROOF. By the definitions of R and R, (1) and (2) are clear. 

(3) According to Lemma 3.2, we have that  [Y~,]R C_ [x~]R when y~ c [x;,]R. Thus, R A  = 

u{[x~iR I ~ -< A(x)} = U{[x~]R I ~ -- A(x)}. Then, 

R A ( y )  = sup [x~]R (y) = sup T L ( A , R ( x , y ) )  = s u p T n ( d ( x ) , R ( x , y ) ) .  
xEU, ,k=A(x) xEU, A=A(z) xEU 

Furthermore, for any A E F(U) and y C U, we have 

(R (d~)) c (y) = 1 - (R (dC)) (y) 

: 1 - supTL (A ~ ( x ) , R ( x , y ) )  
xEU 

= 1 - sup TL(1 -- A(x),  R(x ,y ) )  
xEU 

= ~ - sup ma×{0 ,  R(~ ,  y) - A ( ~ ) }  
xEU 

= inf min{1, 1 - R(x,  y) + A(x)}. 
xEU 

Let FL(a, b) = rain{l, 1 - a + b} is the residuation implicator of TL(a, b) [7]. Then, we 
have that  i n f ~ u  rain{l, 1 - R ( x ,  y )+A(x)  } = infxeu FL(R(x,  y), A(x)).  Thus, (R(A~))~(y) 
= infx~u FL(R(x,  y), A(x)).  



1576 M. LIU et  al. 

Due to TL(a, TL(b,c)) = TL(TL(a,b),c) 

R × (RA) (y) _> inf sup FL (R (x, y), TL (R (x, 
x c U  z C U  

Let __R × A(y) = infxeu FL(R(x, y), A(x)), then, for any y c U, we have 

R × (RA) (y) = inf FL ( R ( x , y ) , R A  (x)) .  
- -  x E U  

Since RA(x)  = SUpzcu TL(R(x, z), A(z)), TL(a, b) is a monotone increasing function 
with respect to a and FL(a, b) is a monotone increasing function with respect to b, we 

have that  

- -  x E U  \ z E U  / 
> inf sup FL (R (x, y) ,  TL (R (z, z) ,  A (z))) 
- -  x c U  z C U  

> inf suprL (R (x, y),TL (TL (R(x,y),R(y,z)),A(z))). 
- -  x c U  z E U  

[14], 

y) ,TL (R(y,z), A (z)))) 

= inf sup min {1, 1 - R (x, y) + max {0, R (x, y) + TL (R (y, z) ,  A (z)) - 1}}. 
x C U  z C U  

When R(z,y) +TL(R(y,z),A(z)) - 1 > O, 

R × (RA) (y) > inf supmin{1 ,1  - R ( x , y )  + R ( x , y )  + TL (R(y,z) ,A (z)) - 1} 
- -  z E U  z E U  

= inf supmin{1 ,TL (R(y,z),A(z))} 
x E U  z c U  

= inf sup TL (R (y, z), A (z)) 
x E U  z E U  

= sup TL (R (y, z) ,  A (z)).  
z E U  

And, when R(x, y) + TL(R(y, z), (A(z)) - 1 < 0, we have that  

R × (RA) (y )  > inf supmin{1 ,1  - R ( x , y ) }  
- -  - -  x c U  z C U  

inf sup (I - R (x, y)) 
x c U  z E U  

> inf sup TL (R (y, z ) ,  A (z)) 
x E U  z E U  

= sup TL (R (y, z) ,  A (z)) .  
z E U  

Thus, R × (RA)(y) >_ supze U TL(R(y, z), A(z)) = RA(y). 
Also, since R× A(y) = infxcu FL(R(x,  y), A(x)) < FL(R(y, y), A(y)) = A(y), we have 

that  _R × (-RA)(y) >_ -RA(y). 
Therefore, R × (RA) = RA. 
Additionally, we have that  

R(_RXA) (y) _< supTL (R(x,y),RXA(x)) 
x E U  

= ~uSUp TL (R(x,y)zcuinf FL (R(x,z) ,A(z)))  

< s u p i n f T L ( R ( x , y ) , F L ( R ( x , z )  A(z))). 
- -  x C U  z c U  

Since TL(a, b) is a monotone increasing function with respect to b and FL(a,b) is a 
monotone decreasing function with respect to a, we have that  

(R×A) (y) < sup inf TL (R (x, y),  FL (TL (R (x, y) ,  R (y, z)) ,  A (z))) .  
- -  x E u  z C U  
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Additionally, since FL(TL(a, b), c) = FL(a, rL(b, c)) [14], 

(R x A) (y) = sup inf TL (R (x, y) FL (R (x, y) FL (R (y, z) A (z)))) 
x ~ U  z ~ U  ~ 

= sup inf max {0, R (x, y) + rain {1, 1 - R (x, y) + FL (R (y, z) A (z))} - 1}. 
z ~ U  z ~ U  

When 1 - R(x,y) ÷ rL(R(y,z),A(z)) <_ I, 

R ( R X A )  (y) < sup inf max {O,R(x,y) + 1 - R(x,y) + F L  (R(y,z) ,A(z))  - 1} 
z E U  z C U  

= sup inf max {0, FL (R (y, z) ,  A (z))} 
x E U  z c U  

= s u p i n f  ( C L ( R ( y , z )  A(z))) 
x E U  z c U  

= inf ( F L ( R ( y , z )  A(z))). 
z ~ U  

And, when 1 - R(x, y) + FL(R(y, z), A(z)) > 1, we have 

R (__RXA) (y) < sup inf max{0,  R (x,y) + 1 - 1} 
- -  z E U  z C U  

= sup inf R (x, y) 
x c U  z C U  

< sup inf FL (R (y, z) d ( z ) )  
x c U  z c U  

= inf FL ( R ( y , z ) , A  (z)).  
z c U  

Thus, R ( R  x A)(y) <_ inf~ev FL(R(y, z), A(z)) = R__ x A(y), tha t  is, R(RXA) = RXA. 
Then, (RAt)  c = RXA = R(RXA) = U{[X~]R ] x~ C R×A}.  Since R(RXA)  = R×A,  we 

have that  [x~]R C RXA when x~ C RXA. Furthermore, since _RXA(y) ~ A(y), we can 
infer that  (RAt) c = U{[x~]R [ [x),]R C_ _R×A} C_ U{[x~]R [ [xx]R C_ A} = __RA. 

When Rx~, = [x),]r~ c_ A, since Fn(a,b) is a monotone increasing function with re- 
spect to b, we have R×A(y)  = inf~eu FL(R(z,  y), A(z)) >_ inf~eu FL(R(z, y), [x~]R(z)) = 
RX[x~]R(y), tha t  is, RXRx~ C RXA. So, we can infer tha t  R×Rx~, = Rx:~ = [x),]R C_ 
R × A  = (RAt)  ~ when Rx~ = [x~]R C_ A. Then, RA = U{[x~]R I [xx]R C_ A} C__ (RAC) c. 

Since (RA~) ~ C RA and (RA~) ~ D RA have been proved above, (RAC) ~ = R__A holds. 
Similarly, we can infer tha t  (R(A~)) c = RA. 

(4) For any x E U, from the proof of (3), we can infer tha t  

RA(x) = (R(AC)) c = inf ra in{l ,  1 - R ( x , y )  + A (y)} = inf SL (1 -- R ( x , y ) , A  (y)).  
- -  y E U  y c U  

So, 

(SL A,~ ) ( z ) =  inf S L ( 1 - R ( x , y )  SL(A(y) cO) R 
- -  y E U  ~ 

Since SL(a, SL(b, c)) = SL(SL(a, b), c) [14], we have 

R(SLI A,a ) ( x ) =  inf SL(SL(1 - R ( x , y ) , A ( y ) )  e~) 
y C U  

= SL \y~u(inf SL (1-- R(x,y) ,A(y)) ,oz)  

= SL R A,~ (x). 

That  is, R_(&IA, 7~1) = &IR_A, gl. 
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Similm'ly, we can prove that R(TLIA, ~l) = TL IRA, ~l" 
(5) According to the definitions of R and R, it is clear that  RA C R B  and RA C R B  when 

A C B .  
(6) From the proof of (3), RA(y) = sup~eu TL(R(x,y) ,  A(x)).  Then, for each x • U, since 

TL(a, b) is a monotone increasing function with respect to b, we have that  

R (A U B) (x) 

That  is, R(A U B) = RA  U R B  holds. 
Similarly, we can prove that R(A n B) = RA A RB. 

According to (5), since A C_ A U B, we have that  RA C R(A  U B). 

sup TL (R (x, y) ,max {A (y), B (y)}) 
y ¢ U  

sup max {TL (R (x, y),  d (y)), TL (R (x, y) ,  B (y))} 
y c U  

max ~ sup TLt.yeU (R (x, y) ,  A (y)), sup TLyeg (R (x, y) ,  B (y)) } 

m a x  

v (x). 

(7) Similarly, RB C 
R(A U/3). Thus, R(A U B) D RA U RB  holds. Additionally, according to the definitions 
of R and R, it is obvious that R(A N B) C_ R A n  R B  holds. 

(8) According to the definitions of R and R, due to (2) in Lemma 3.2, we can infer easily that 
R(RA)  = R(RA)  = R A and R(RA)  = R_(RA) = RA. 

(9) According to (1), it is obvious that RU = _RU = U and R e  = Re  = ¢. 
(10) According to the crisp rough set theory, it is obvious that  _R(U- {y})(x) = _R(U- {x})(y). 

Additionally, we have that  Rxl(y)  = [x~]R(y) = TL(1, R(x ,y) )  = R(x ,y) .  Similarly, we 
can infer that  Ryl (x) = R(x, y). Thus, Rxl(y)  = Ryl  (x) = R(x, y) holds. 

(11) I f R A = A ,  w e h a v e t h a t  R A =  R(RA) = R A =  A. And, i f R A = A ,  R A = R ( R A )  = 
RA = A holds. 

According to Theorem 3.4, the lower and upper approximations RA and RA of a definable 
fuzzy set A ~ F(U),  which satisfies that RA = A = RA, are also definable, while the lower and 
upper approximation operators R. and R* of a definable fuzzy set may be undefinable [4]. 

Based on the above approximation operators R and R, we give the definition of a new fuzzy 
rough set. For any A E F(U),  the pair (RA, RA) is called a TL-fuzzy rough set. According to 
the proof of Theorem 3.4, the membership functions of RA and R A  are R_A(x) = infyeu S L ( 1  --  

R(x, y), A(y)) and RA(x)  supyeu TL(R(x, y), A(y)), respectively. 
Furthermore, in Theorem 3.5, we give the axiomatic characteristics of RA and RA. 

THEOREM 3.5 .  S u p p o s e  A, B • F(U). Let L : F(U) --+ F(U) and H : F(U) ~ F(U) be a pair 
of fuzzy set operators, then there exists a fuzzy TL-similarity relation R such that L = R and 
H = R iff L and H satisfy the following axioms. 

(1) (L(A~)) ~ = HA,  (H(AC)) ~ = LA; 

(2) L(SL[A,~I) = SL[LA,~[, H(TL[A,~I) = TL[HA,~]; 
(3) L ( A n  B) = L(A) n L(B),  H(A  U B) = H(A) u H(B);  
(4) LA C_ A, A c HA; 
(5) LA c_ L(LA),  H(HA)  c_ HA; 
(6) L(U - {y})(x) = L(U - {x})(y), HXl(y) = Hyl(x) .  

PROOF. Due to the limited length of the paper, we omit the procedure of proof. In the above 
part, we define a new fuzzy rough set based on the fuzzy information granule and give some 
properties of the lower and upper approximations of the fuzzy sets. In the following section, we 
will define a new fuzzy information system based on the fuzzy TL-similarity relation and study 
its reduction using the new fuzzy rough set. 
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4. R E D U C T I O N  M E T H O D  B A S E D  O N  T H E  N E W  F U Z Z Y  

R O U G H  S E T  I N  F U Z Z Y  I N F O R M A T I O N  S Y S T E M  

First, we define the fuzzy approximation space based on the fuzzy TL-sinfilarity relation. Let U 
be a nonempty universe, and let R be a fuzzy TL-similarity relation on U, then (U, R) is called 
a fuzzy approximation space. We denote the collection of all the definable sets on U with 
respect to R as FR(U), i.e., FR(U) = {A • F(U) ] R A  = A = RA}, in which definable 
set A is the union of some fuzzy information granules. By (8) in Theorem 3.4, we have that  
FR(U) = {RA [ A • F(U)}  = {R_A [ A • F(U)}.  

Then, we analyze the property of the fuzzy approximation space based on the fuzzy TL- 
similarity relation in Lemma 4.1. 

LEMMA 4.1. Suppose (U,R) is a fuzzy approximation space and A • FR(U). IrA(x) = A, we 
have that [xx]R C A. 

PROOF. Since A • FR(U), -RA = A. According to A(x) = A, we have x~ C_ A, thus [X~]R -- 
Rx~ C_ R A  = A. 

Furthermore, based on the above property of the fuzzy approximation space in Lemma 4.1, we 
give the relation between two fuzzy approximation spaces in Theorem 4.2. 

THEOREM 4.2. Suppose (U, R1) and (U, R2) are two fuzzy approximation spaces, then the fol- 
lowing three statements are equivalent. 

(1) FR~(U) C_ FR~(U); 
(2) R2 c_ R, ; 

(3) For any A • F(U), -R2A C_ -RIA and R__zA D_ R IA. 

PROOF. 

(1) ::~ (2) Suppose that  FRI(U) c FR~(U). For any x • U, we have [Xl]Rx • FRI(U). Thus, 
[x l ]~  • FR~(U). According to Lemma 4.1, since [Xl]Rl(X) = 1, we have that  
[x]],% C_ [xx]R1. Also, for any x • U, Rl(x,y) = TL(1,RI(X,y)) = [xl]Rl(y), 
and Rz(x,y) = TL(1,R2(x,y)) = [Xl]R:(y). Then, Rl(x,y) >_ R2(x,y), that  is, 

R2 C_ R1 holds. 
(2) ~ (1) According to the proof of Theorem 3.4, for any A C FRI(U), we have that  A(x) = 

RIA(X) = supycu TL(RI(x,y), A(y)). Then, A(x) > TL(RI(X, y), A(y)) for any 
y • U. Additionally, when R2 C R1, Rl(x,y) > R2(x,y). Furthermore, since 
TL(a, b) is a monotone increasing function with respect to a, we have that  A(x) > 
TL(R2(x,y),A(y)) for any y E U. So, A(x) > supyeuTL(R2(x,y),A(y)). Addi- 

tionally, TL(R2(x, x), A(z)) = A(x). Thus, A(x) = supye U TL(R2(x, y), A(y)) = 
R2A(x). Therefore, A • FR~(U). So, FR,(U) c_ FR2(U) holds. 

(2) ~ (3) Prom the definitions of R and R, (2) =~ (3) is clear. 
(3) ~ (2) According to (3), R2A C RxA for any A • F(U). Since xl • F(U) ,  it is obvious 

that ~2Xl c ~ 1 .  Also, ~ ( y )  = [x~]R,(y) = TL(L/~2(z,y)) = R~(~,~). 
Similarly, we can obtain tha t  R~xl(y)  = Rx(x, y). Thus, R2(x, y) < Rl(X, y). So, 
R2 C_ R1 holds. 

For two fuzzy approximation spaces (U, R1) and (U, Rz), if every fuzzy information granule on 

(U, R1) is a definable set on (U, R2), we have that  FR1 (U) C FR2 (U). Then, according to Theo- 
rem 4.2, for any A E F(U), we have R2A c_ R1A and R2A _D _RIA , tha t  is, fuzzy set A on U can 
be characterized more precisely by means of the corresponding lower and upper approximations 
in (U, R2) than in (U, R~). Theorem 4.2 can offer a significant theoretical foundation for studying 
further the suitable fuzzy TL-similarity relations facing the special applications. 

Subsequently, on the basis of fuzzy approximation space (U, R), we define a kind of new fuzzy 
information system in Definition 4.3. 
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DEFINITION 4.3. Suppose that R is a family of fuzzy TL-similarity relations on U, then (U, R) 
is called a fuzzy information system, in which all objects in U can be characterized by some 
attributes, and every attribute corresponds to one fuzzy TL-similarity relation /2, which can be 
obtained according to the attribute values of the corresponding attribute. 

Suppose/2 E R, if i n d ( R ) - i n d ( R -  {R}), _R is called unnecessary in R,  otherwise _R is called 
necessary in R. If every/2 E R is necessary in R, R is called independent, otherwise R is called 
dependent. Suppose P C_ R, if P is independent and ind(P) = ind(R) ,  P is called a reduction of R 
and accordingly, (g, P) is called a reduction of (U, R). The objective of the reduction of (U, R) 
is to find a minimal set P (a reduction of R) of the fuzzy TL-similarity relation /2 in order that 
ind(P) ind(R) holds, in which R and (U,R) can have more than one reduction, respectively. 
Additionally, it can be proved that  core(R) = C3red(R), where c o r e r  is the set of all the necessary 
fuzzy TL-similarity relations in R and red(R) is the set of all the reductions of R.  

In order to reduce the fuzzy information system (U, R) based on the fuzzy TL-similarity relation, 
we construct (U,R) according to the following procedure. First, aiming at every attribute of 
objects in U, we obtain one fuzzy TL-similarity relation R on U based on the corresponding grades 
of membership functions of the fuzzy attribute values according to the following procedure. Let Xp 
and Zq be any two objects in U. For every object in U, let pik, i = 1, 2 , . . . , I ,  k = 1 , 2 , . . . , K i  be 
the membership functions of the attribute values of attributes i, i = 1, 2 , . . . ,  I ,  then the similar 
degree between x v and Xq can be obtained by /2(Xp,Xq) : infff_~l(1 - t P i k ( X p ) -  J~ik(Xq)[), in 
which I is the total number of the attributes of objects in U and Ki is the total number of the 
attribute values of attribute i (i = 1, 2 , . . . ,  I) .  

Then, let R be the set of all fuzzy TL-similarity relations R. 
Consequently, we can construct a fuzzy information system (U,R) based on the fuzzy TL- 

similarity relation using U and R obtained above. 

5. A P P L I C A T I O N  

In this section, we apply the reduction method based on the new fuzzy rough set to the 
reduction of the redundant premises of the multiple fuzzy rules used in the larger scale resource 
constrained project scheduling problem (RCPSP) [15-17], which can be described as follows. 
Given some activities (no activity preemption allowed) and some renewable resources, where 
each resource has a fixed capacity. Every activity has a given processing time (duration) and 
needs a certain units of several resources. Additionally, there exist precedence relations between 
some activities. The objective is to find a feasible schedule so as to make the makespan minimized. 

5.1. T h e  Multiple Fuzzy Rules w i t h  
Multiple Premises for Solving the Larger Scale R C P S P  

The multiple fuzzy rules with multiple premises for solving the larger scale RCPSP can be 
given as follows. 
R1 : if A1 is low, A3 is low, . . . ,  A20 is low, then B is very high; 
R2 : if A1 is low, A5 is high, . . . ,  A19 is middle, then B is high; 

: 

/22o if A2 is middle, A3 is low, . . . ,  A20 is middle, then B is middle; 

/249 if A5 is high, A7 is middle, . . . ,  Als is high, then B is low; 
/250 if A1 is low, A5 is high, . . . ,  A20 is high, then B is very low. 

The above fuzzy rules have multiple different premises and the same consequence. Ai, i = 
1, 2 , . . . ,  20 as Table 1 [17] are linguistic variables of all premises representing the condition at- 
tributes, which are also the premises of multiple fuzzy rules. B is a linguistic variable representing 
the decision attribute (scheduling priority), which is also the consequence of multiple fuzzy rules. 
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Table 1. Premises of the multiple fuzzy rules above. 

Linguistic Rule 
Variable 

A1 Spt 

Meaning 

Shortest processing time 

Earliest start time 

Earliest finish time 

Minimum slack 

Least immediate s u c c e s s o r s  

Least total successors 

Dynamic earliest start time 

Dynamic earliest finish time 

Dynamic minimum slack 

hnproved resource scheduling method 

Worst case slack 

A2 Est 

A3 Eft 

A4 Mslk 

As Lis 

A6 Lts 

A7 Estd 

As Eftd 

A9 Mslkd 

Alo Irsm 

All Wcs 

A12 Grpw Greatest rank positional weight of the activity considered and its immediate successors 

A13 Grpwa Greatest rank positional weight of the activity considered and i t s  t o t a l  successors 

A14 Grd Greatest resource demand 

Greatest cumulative resource demand 

Weighted resource utilization and precedence 

Resource equivalent duration 

Cumulative resource equivalent duration 

Composite priority rules of Spt and Grd 

Composite priority rules of Eft and Red 

A15 Gcumrd 

A16 Wrup 

A17 Red 

A18 Cumred 

A19 Compl 

A2o Comp2 

Low Middle High 

0 0 . 5  1 

Figure 1. Membership function of Ai. 

[ , ~ V © r y  Low Low Midd1© High V©ry High 

0 0.25 0.5 0.75 1 

Figure 2. Membership function of B. 

Each linguistic variable Ai (i = 1 ,2 , . . . ,  20) has three attribute values, whose membership func- 
tions are given in Figure 1, and linguistic variable B has five attribute values, whose membership 
functions are given in Figure 2. 

5.2. T h e  R e d u c t i o n  o f  t h e  M u l t i p l e  F u z z y  R u l e s  

In this paper, we use the above multiple fuzzy rules to solve the RCPSP. In order to apply the 
reduction method based on the new fuzzy rough set to the reduction of the redundant premises of 
the multiple fuzzy rules, we need to construct dynamically the fuzzy information system (U, R) 
in the scheduling process. Furthermore, we transform the reduction of the redundant premises 
of multiple fuzzy rules into the reduction of (U, R). Then, by the reduction of (U, R), we remove 
the redundant premises. We construct (U, R) according to the following procedure. 

At every decision point, we adopt the above multiple fuzzy rules with multiple premises to 
generate dynamically the corresponding activity priority list and take an activity in the activity 
priority list as an object in U, in which the start  time of the corresponding unscheduled activities 
are determined in the order of the activities in the above priority list. In this way, we can obtain 
universe U when the scheduling process ends. Additionally, since the multiple fuzzy rules used in 
this paper include 20 premises, every object has 20 condition attributes and a decision attribute. 
Also, every condition attribute Ai (i = 1, 2 , . . . ,  20) has three fuzzy attribute values Low, Middle 
and High as Figure I, and the decision attribute B has five fuzzy attribute values Very Low, Low, 
Middle, High and Very High as Figure 2. Let C~, k = I, 2, 3 denote the grades of membership 
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1 

2 

M. LIU et al. 

Table 2. Grades of membership functions of evcry object  in universe. 

A1 A2 . . . . . .  A2o B 

C~ C~ C~ C~ C~ C~ . . . . . .  C~ 0 C~ 0 D2 D3 04 Ds 

0 0.4 0.6 

0.8 0.2 2 

0.5 0.5 0 

0 0.2 0.8 

0 0.3 

0 0.4 

C~ ° D, 
0.7 0 
0.6 0 

0 1 0 0 
0.5 0.5 0 0 

functions of the three fuzzy attr ibute values of Ai respectively, and let Dl, l = 1, 2 , . . . ,  5 denote 
the grades of membership functions of the five fuzzy at t r ibute values of B, then we give the 
grades of membership functions of every object in universe U in Table 2. 

According to every three grades of membership functions C~, k = 1, 2, 3 of the fuzzy attr ibute 
ip values of Ai (i = 1 ,2 , . . .  ,20), we can construct one fuzzy TL-similarity relation. Let E k , i = 

1, 2 , . . . ,  20, k = 1,2, 3 denote the grades of membership functions C~, i = 1, 2 , . . . ,  20, k = 1, 2, 3 
for object p. Suppose that  p and q are two objects in U, then we can obtain one fuzzy TL- 
similarity relation R by R(p,q)  . a mfk= 1 (1 - [EkP -- E~ q I), which is the similarity degree between 
objects p and q. 

Similarly, according to the grades of membership functions Dz, I = 1, 2 , . . . ,  5 of the five fuzzy 
at tr ibute values of B, we can also obtain one fuzzy TL-similarity relation R by R(p, q) = inf,= 1 (1 - 
IF~ - Fl q 1), where Ft p, l = 1, 2 . . . .  ,5 denote the grades of membership functions DL, l = 1, 2 , . . . ,  5 
for object p. 

Then, the above 21 fuzzy TL-similarity relations including 20 fuzzy TL-similarity relations 
corresponding to condition attributes Ai, i = 1, 2 , . . . ,  20 and one fuzzy TL-similarity relation 
corresponding to decision at tr ibute B constitute the fuzzy TL-similarity relation family R.  Con- 
sequently, we obtain a fuzzy information system (U, R)  based on the fuzzy TL-similarity relation• 

After constructing (U, R),  by the reduction method based on the new fuzzy rough set in Sec- 
tion 4, we reduce only the redundant  condition attributes of the objects in (U, R).  Consequently, 
the corresponding redundant premises of the above multiple fuzzy rules can be removed. 

5.3. N u m e r i c a l  C o m p u t a t i o n  

In this paper, aiming at benchmark problems in the PSPLIB [18], we compare the performances 
of the reduction method based on the new fuzzy rough set defined with those of the reduction 
method based on the existing fuzzy rough set. 

First, we construct (U, R) based on the above two kinds of fuzzy rough sets according to the 
above method for constructing the fuzzy information systems respectively, in which the fuzzy 
min-similarity relation used in the existing fuzzy rough set can be obtained by the transitive 
closure of the fuzzy TL-similarity relation above [19]. Then, the redundant  condition attributes 
in (U, R) are reduced by means of the above two kinds of fuzzy rough sets, and the corresponding 
premises of the above multiple fuzzy rules can be removed. Consequently, we can obtain the 
reduced multiple fuzzy rules. Then, based on the initial multiple fuzzy rules and the reduced 
multiple fuzzy rules respectively, we can get the corresponding sequences of all activities needed 
to be scheduled. 

On the basis of the above two sequences, we can judge the correctness of the corresponding 

reduction, tha t  is, if the above two sequences are consistent, the reduction is thought  to be right, 
otherwise it is wrong• For example, when the sequences obtained by the former and the latter are 
(1, 2, 3, 4) and (1, 2, 4, 3) respectively, the reduction is wrong whether the scheduling objectives 
obtained corresponding to the above two sequences are same or different• 

Additionally, considering that  the defuzzification method has influences on fuzzy reasoning 
consequences, we compare the performance of the reduction methods corresponding to different 
defuzzification methods• 
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Table 3. NumericM computat ionM results. 

Problem M1 M2 Ma M4 M5 

Scale RN (%) RE (%) RN (%) RE (%) RN (%) RE (%) RN (%) RE (%) RN (%) RE (%) 

30 44 0 41 0 42 0 18 0 14 0 

60 65 1 65 0 81 0 62 0 61 0 

90 66 0 70 0 82 0 77 0 82 0 

120 74 1 76 1 86 0 81 0 84 1 

1583 

In Table 2, aiming at different scale benchmark scheduling problems, different defuzzification 
methods and different reduction methods of the fuzzy information systems, we list the percentage 
of the scheduling problems in which the reduction result is right. Where R N  and R E  denote 
the correctness of the reductions when we adopt the reduction method based on the new rough 
set and the one based on the existing rough set respectively, and M~, i = 1, 2 , . . . ,  5 denote the 
following defuzzifieation methods respeetivley: the centroid of area method, the bisector of area 
method, the mean of maximum method, the smallest of maximum method and the largest of 
maximum method. 

From Table 3, it can be seen that the reduction method based on the new rough set is obvious 
advantageous over the reduction method based on the existing rough set for the reduction of 
redundant premises of nmltiple fuzzy rules in RCPSP. 

Aiming at the problems with 30, 60, 90, and 120 activities, by the defuzzifieation method M1 
in the fuzzy reasoning, the percentage of the right reductions by the reduction method based on 
the new rough set is 44%, 65%, 66%, and 74%, respectively, while the percentage of the right 
reductions by the reduction method based on the existing rough set is almost zero. Furthermore, 
the above conclusion is also correct when defuzzification methods Ms, Ma, M4, and M~ are used, 
respectively. These show that the reduction method based on the new rough set is more suitable 
for the reduction of the redundant premises of the multiple rules for solving RCPSP compared 
with the reduction method based on the existing rough set for different defuzzification methods. 

Additionally, with different defuzzification methods, the percentages of the right reductions 
by the reduction method based on the new rough sets are different, in which we can obtain the 
best reduction effect comparatively for larger scale scheduling problems by the defuzzification 
method Ma. 

Furthermore, for different scale scheduling problems, the reduction effects of the reduction 
method based on the new rough set have also distinction. This may be explained as follows. 
With the scale of the scheduling problem increasing, the total number of the objects in U becomes 
larger, which leads to more classifications. Then, the total number of the premises which can 
be removed decreases. Thus, for larger scale scheduling problems, the percentage of the right 
reduction is relatively larger. For example, for the scheduling problems with 120 activities, by 
the defuzzification method Ma, the percentage of the right reductions has achieved 86%. 

5.4. Ana lys i s  

From the numerical computational results, we can see that the reduction method based on the 
new rough set is more suitable for the reduction of the redundant premises of the multiple fuzzy 
rules for solving RCPSP compared with the reduction method based on the existing rough set. 
This can be analyzed as follows. 

Compared with the fuzzy TL-similarity relation, the condition needed for the fuzzy min-trans- 
itivity in the fuzzy min-similarity relation is too strict so that  the similar degree between two 
objects in U cannot be measured effectively by means of the fuzzy min-similarity relation. In fact, 
a fuzzy similarity relation R given directly can often not satisfy the fuzzy min-transitivity and 
fuzzy min-similarity relation R is usually gotten by the following method. First, a fuzzy similarity 
relation /~ satisfying reflexivity and symmetry is constructed. Then, we can obtain the fuzzy 
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rain-similarity relation R by the transitive closure of R' [19]. In the procedure for solving the 
transitive closure of R', a great of data is assimilated, that is, a lot of significant information is 
lost. Thus, the assimilation of data must lead to that some efficient attributes may be reduced 
in the reduction of the fuzzy information system by the reduction method based on the existing 

fuzzy rough set. 

6. C O N C L U S I O N  

In this paper, we present the concept of fuzzy information granule based on the fuzzy TL- 
similarity relation for the first time. Also, according to the fuzzy information granule, we define 
the lower and upper approximations of fuzzy sets with the fuzzy information granules and a 
corresponding new fuzzy rough set. Furthermore, based on the fuzzy TL-similarity relation, we 
construct a new fuzzy information system and study its reduction using the new fuzzy rough set. 
Additionally, we apply the reduction method based on the new fuzzy rough set to the scheduling 
problems. Numerical computational results show that the reduction method based on the new 
rough set is more suitable for the reduction of the redundant premises of the multiple fuzzy rules 
used for scheduling problems compared with the reduction method based on the existing rough 
set. Our future work will focus on the study of more effective reduction methods based on rough 
sets for scheduling problems. 
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