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a b s t r a c t

In this paper, we introduce four Ulam’s type stability concepts for impulsive ordinary
differential equations. By applying the integral inequality of Gronwall type for piecewise
continuous functions, Ulam’s type stability results for impulsive ordinary differential
equations are obtained. An example is also provided to illustrate our results.
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1. Introduction

In 1940, the stability of functional equations was originally raised by Ulam at Wisconsin University. The problem posed
by Ulam was the following: ‘‘Under what conditions does there exist an additive mapping near an approximately additive
mapping’’? (for more details see [1]). The first answer to the question of Ulam [2] was given by Hyers in 1941 in the case of
Banach spaces. Thereafter, this type of stability is called the Ulam–Hyers stability. In 1978, Rassias [3] provided a remarkable
generalization of the Ulam–Hyers stability of mappings by considering variables.

As a matter of fact, the Ulam–Hyers stability and the Ulam–Hyers–Rassias stability have been taken up by a number of
mathematicians and the study of this area has grown to be one of the central subjects in the mathematical analysis area.
For more details on the recent advances on the Ulam–Hyers stability and the Ulam–Hyers–Rassias stability of differential
equations, one can see themonographs [4–6] and the research papers [7–26]. However, to the best of our knowledge, Ulam’s
type stability results of impulsive ordinary differential equations have not been investigated yet.

In this paper, we discuss Ulam’s type stability of the following impulsive ordinary differential equations
x′(t) = f (t, x(t)), t ∈ J ′ := J \ {t1, . . . , tm} , J := [0, T ], T > 0,
∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m, (1)

where f : J × R → R is continuous, Ik : R → R and tk satisfy 0 = t0 < t1 < · · · < tm < tm+1 = T < +∞,
x(t+k ) = limϵ→0+ x(tk + ϵ) and x(t−k ) = limϵ→0− x(tk + ϵ) represent the right and left limits of x(t) at t = tk.
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Wewill introduce fourUlam’s type stability definitions for Eq. (1) andmainly present the generalizedUlam–Hyers–Rassias
stability results by virtue of the integral inequality of Gronwall type for piecewise continuous functions due to Samoilenko
and Perestyuk [27].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts. Throughout this paper, let C(J, R) be the Banach
space of all continuous functions from J into R with the norm ∥x∥C := sup{|x(t)| : t ∈ J} for x ∈ C(J, R). We also introduce
the Banach space PC(J, R) := {x : J → R : x ∈ C((tk, tk+1], R), k = 0, . . . ,m and there exist x(t−k ) and x(t+k ), k =

1, . . . ,m, with x(t−k ) = x(tk)}with thenorm∥x∥PC := sup{|x(t)| : t ∈ J}. Denote PC1(J, R) := {x ∈ PC(J, R) : x′
∈ PC(J, R)}.

Set ∥x∥PC1 := max{∥x∥PC , ∥x′
∥PC }. It can be seen that endowed with the norm ∥ · ∥PC1 , PC1(J, R) is also a Banach space.

Integral inequalities play an important role in the qualitative analysis of the solutions to ordinary differential equations.
Samoilenko and Perestyuk [27] have first studied the following integral inequality of Gronwall type for piecewise continuous
functions which will be used in the sequel.

Lemma 2.1. Let for t ≥ t0 ≥ 0 the following inequality hold

x(t) ≤ a(t)+ b
 t

t0
x(s)ds +


t0<tk<t

βkx(tk), (2)

where x, a ∈ PC([t0,∞), R+), a is nondecreasing and b, βk > 0.
Then, for t ≥ t0, the following inequality is valid:

x(t) ≤ a(t)


t0<tk<t

(1 + βk) exp
 t

t0
b(s)ds


.

For more integral inequalities of Gronwall type for piecewise continuous functions, one can see [28,29].

3. Ulam’s type stability concepts

In this section, we introduce Ulam’s type stability concepts for Eq. (1). Let ϵ > 0, ψ ≥ 0 and ϕ ∈ PC(J, R+) is
nondecreasing. We consider the following inequalities

|y′(t)− f (t, y(t))| ≤ ϵ, t ∈ J ′,
|∆y(tk)− Ik(y(t−k ))| ≤ ϵ, k = 1, 2, . . . ,m, (3)
|y′(t)− f (t, y(t))| ≤ ϕ(t), t ∈ J ′,
|∆y(tk)− Ik(y(t−k ))| ≤ ψ, k = 1, 2, . . . ,m, (4)

and 
|y′(t)− f (t, y(t))| ≤ ϵϕ(t), t ∈ J ′,
|∆y(tk)− Ik(y(t−k ))| ≤ ϵψ, k = 1, 2, . . . ,m. (5)

Definition 3.1. Eq. (1) is Ulam–Hyers stable if there exists a real number cf ,m > 0 such that for each ϵ > 0 and for each
solution y ∈ PC1(J, R) of inequality (3) there exists a solution x ∈ PC1(J, R) of Eq. (1) with

|y(t)− x(t)| ≤ cf ,mϵ, t ∈ J.

Definition 3.2. Eq. (1) is generalized Ulam–Hyers stable if there exists θf ,m ∈ C(R+, R+), θf ,m(0) = 0 such that for each
solution y ∈ PC1(J, R) of inequality (3) there exists a solution x ∈ PC1(J, R) of Eq. (1) with

|y(t)− x(t)| ≤ θf ,m(ϵ), t ∈ J.

Definition 3.3. Eq. (1) is Ulam–Hyers–Rassias stable with respect to (ϕ, ψ) if there exists cf ,m,ϕ > 0 such that for each
ϵ > 0 and for each solution y ∈ PC1(J, R) of inequality (5) there exists a solution x ∈ PC1(J, R) of Eq. (1) with

|y(t)− x(t)| ≤ cf ,m,ϕϵ(ϕ(t)+ ψ), t ∈ J.
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Definition 3.4. Eq. (1) is generalized Ulam–Hyers–Rassias stable with respect to (ϕ, ψ) if there exists cf ,m,ϕ > 0 such that
for each solution y ∈ PC1(J, R) of inequality (4) there exists a solution x ∈ PC1(J, R) of Eq. (1) with

|y(t)− x(t)| ≤ cf ,m,ϕ(ϕ(t)+ ψ), t ∈ J.

Remark 3.5. It is clear that: (i) Definition 3.1H⇒ Definition 3.2; (ii) Definition 3.3H⇒ Definition 3.4; (iii) Definition 3.3 for
ϕ(t) = ψ = 1 H⇒ Definition 3.1.

Remark 3.6. A function y ∈ PC1(J, R) is a solution of inequality (3) if and only if there is g ∈ PC(J, R) and a sequence gk,
k = 1, 2, . . . ,m (which depend on y) such that

(i) |g(t)| ≤ ϵ, t ∈ J and |gk| ≤ ϵ, k = 1, 2, . . . ,m;
(ii) y′(t) = f (t, y(t))+ g(t), t ∈ J ′;
(iii) ∆y(tk) = Ik(y(t−k ))+ gk, k = 1, 2, . . . ,m.

One can have similar remarks for inequalities (4) and (5).
So, Ulam’s type stabilities of the impulsive differential equations are some special types of data dependence of the

solutions of impulsive differential equations.

Remark 3.7. If y ∈ PC1(J, R) is a solution of inequality (3) then y is a solution of the following integral inequalityy(t)− y(0)−

k
i=1

Ii(y(t−i ))−

 t

0
f (s, y(s))ds

 ≤ (m + t) ϵ, t ∈ J. (6)

Indeed, by Remark 3.6 we have that
y′(t) = f (t, y(t))+ g(t), t ∈ J ′,
∆y(tk) = Ik(y(t−k ))+ gk, k = 1, 2, . . . ,m.

Then

y(t) = y(0)+

k
i=1

Ii(y(t−i ))+

k
i=1

gi +
 t

0
f (s, y(s))ds +

 t

0
g(s)ds, t ∈ (tk, tk+1].

From this it follows thaty(t)− y(0)−

k
i=1

Ii(y(t−i ))−

 t

0
f (s, y(s))ds

 ≤

m
i=1

|gi| +

 t

0
|g(s)|ds

≤ mϵ + ϵ

 t

0
ds

≤ (m + t) ϵ.

We have similar remarks for the solutions of inequalities (4) and (5).

4. Main results

Now, we are ready to state our main results in this paper.

Theorem 4.1. Assume f : J × R → R is continuous and there exists a constant Lf > 0 such that |f (t, u)− f (t, v)| ≤ Lf |u − v|
for each t ∈ J and all u, v ∈ R. Moreover, Ik: R → R and there exist constants ρk > 0 such that |Ik(u)− Ik(v)| ≤ ρk|u − v| for
all u, v ∈ R and k = 1, 2, . . . ,m. If there exists a λϕ > 0 such that

 t
0 ϕ(s)ds ≤ λϕϕ(t) for each t ∈ J where ϕ ∈ PC(J, R+) is

nondecreasing, then Eq. (1) is generalized Ulam–Hyers–Rassias stable with respect to (ϕ, ψ).

Proof. Let y ∈ PC1(J, R) be a solution of inequality (4). Denote by x the unique solution of the impulsive Cauchy problemx′(t) = f (t, x(t)), t ∈ J ′,
∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,
x(0) = y(0).

(7)
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Then we have

x(t) =



y(0)+

 t

0
f (s, x(s))ds, for t ∈ [0, t1],

y(0)+ I1(x(t−1 ))+

 t

0
f (s, x(s))ds, for t ∈ (t1, t2],

y(0)+ I1(x(t−1 ))+ I2(x(t−2 ))+

 t

0
f (s, x(s))ds, for t ∈ (t2, t3],

...

y(0)+

m
k=1

Ik(x(t−k ))+

 t

0
f (s, x(s))ds, for t ∈ (tm, T ].

Like in (6), by differential inequality (4), for each t ∈ (tk, tk+1], we havey(t)− y(0)−

k
i=1

Ik(y(t−i ))−

 t

0
f (s, y(s))ds

 ≤

m
i=1

|gi| +

 t

0
ϕ(s)ds

≤ (m + λϕ)(ϕ(t)+ ψ), t ∈ J.

Hence for each t ∈ (tk, tk+1], it follows

|y(t)− x(t)| ≤

y(t)− y(0)−

k
i=1

Ii(y(t−i ))−

 t

0
f (s, y(s))ds


+

k
i=1

|Ii(x(t−i ))− Ii(y(t−i ))| +

 t

0
|f (s, y(s))− f (s, x(s))|ds

≤ (m + λϕ)(ϕ(t)+ ψ)+ Lf

 t

0
|y(s)− x(s)| ds +

k
i=1

ρi|y(t−i )− x(t−i )|.

By Lemma 2.1, we obtain

|y(t)− x(t)| ≤ (m + λϕ)(ϕ(t)+ ψ)

 
0<tk<t

(1 + ρk)eLf t

,

≤ cf ,m,ϕ(ϕ(t)+ ψ), t ∈ J,

where

cf ,m,ϕ := (m + λϕ)

m
k=1

(1 + ρk)eLf T > 0.

Thus, Eq. (1) is generalized Ulam–Hyers–Rassias stable with respect to (ϕ, ψ). The proof is completed. �

Remark 4.2. (i) Under the assumptions of Theorem 4.1, we consider Eq. (1) and inequality (5). One can repeat the same
process to verify that Eq. (1) is Ulam–Hyers–Rassias stable with respect to (ϕ, ψ).

(ii) Under the assumptions of Theorem 4.1, we consider Eq. (1) and inequality (3). One can repeat the same process to verify
that Eq. (1) is Ulam–Hyers stable.

(iii) One can extend the above results to the case of Eq. (1) with T = +∞.

Example 4.3. We consider the impulsive ordinary differential equation
x′(t) = 0, t ∈ (0, 1] \


1
2


,

∆x

1
2


=

x  1
2

−
 12

1 +

x  1
2

−
 12 ,

(8)
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and the inequalities


|y′(t)| ≤ ϵ, t ∈ (0, 1] \


1
2


,∆y


1
2


−

y  1
2

−
 12

1 + |y


1
2

−


|
1
2

 ≤ ϵ, ϵ > 0.
(9)

Let y ∈ PC1([0, 1], R) be a solution of inequality (9). Then there exist g ∈ PC1([0, 1], R) and g1 ∈ R such that:

(i) |g(t)| ≤ ϵ, t ∈ [0, 1], |g1| ≤ ϵ, (10)

(ii) y′(t) = g(t), t ∈ [0, 1] \


1
2


, (11)

(iii)∆y

1
2


=

y  1
2

−
 12

1 +

y  1
2

−
 12 + g1. (12)

Integrating (11) from 0 to t via (12), we have

y(t) = y(0)+ χ
( 12 ,1]

(t)


y  1

2
−
 12

1 +

y  1
2

−
 12 + g1

+

 t

0
g(s)ds,

for the characteristic function χ
( 12 ,1]

(t) of ( 12 , 1].

Let us take the solution x of (8) given by

x(t) = y(0)+ χ
( 12 ,1]

(t)

x  1
2

−
 12

1 +

x  1
2

−
 12 .

Then we have

|y(t)− x(t)| =

χ( 12 ,1](t)


y  1
2

−
 12

1 +

y  1
2

−
 12 −

x  1
2

−
 12

1 +

x  1
2

−
 12 + g1

+

 t

0
g(s)ds


≤ χ

( 12 ,1]
(t)
y1

2

−


− x

1
2

−


1
2

+ |g1| +

 t

0
|g(s)|ds

≤ χ
( 12 ,1]

(t)
y1

2

−


− x

1
2

−


1
2

+ ϵ + ϵ

 t

0
ds

≤ χ
( 12 ,1]

(t)
y1

2

−


− x

1
2

−


1
2

+ 2ϵ, t ∈ [0, 1],

which gives

|y(t)− x(t)| ≤ 2ϵ +
√
2ϵ, t ∈ [0, 1].

Thus, Eq. (8) is generalized Ulam–Hyers stable, which is a special case of generalized Ulam–Hyers–Rassias stable.
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Remark 4.4. We replace (9) by the following inequalities:
|y′(t)| ≤ ϕ(t), t ∈ (0, 1] \


1
2


, ϕ ∈ PC([0, 1], R+),∆y


1
2


−

y  1
2

−
 12

1 +

y  1
2

−
 12

 ≤ ψ, ψ > 0.
(13)

Moreover, we replace (10) by

|g(t)| ≤ ψ, t ∈ [0, 1], |g1| ≤ ψ.

One can repeat the same process in Example 4.3 to verify the main result in Theorem 4.1.

5. Other results

Motivated by the nonlinear impulsive terms in Example 4.3, we can prove generalized Ulam–Hyers–Rassias stability for
Eq. (1) under assumptions that f : J × R → R is continuous and there exists a constant Lf > 0 such that |f (t, u)− f (t, v)| ≤

Lf |u − v| for each t ∈ J and all u, v ∈ R. Moreover, Ik: R → R and there exist nondecreasing functions ρk ∈ C(R+, R+),
ρk(0) = 0 such that |Ik(u)− Ik(v)| ≤ ρk(|u − v|) for all u, v ∈ R and k = 1, 2, . . . ,m.

Indeed, following the proof of Theorem 4.1, we are led to the inequality

|v(t)| ≤ (m + T )ϵ + Lf

 t

0
|v(s)| ds +

k
i=1

ρi(|v(t−i )|), t ∈ (tk, tk+1] (14)

for v(t) := y(t)− x(t). LetMk := supt∈[tk,tk+1]
|v(t)| for k = 0, . . . ,m. Then (14) implies

|v(t)| ≤ (m + T )ϵ + Lf

 t

0
|v(s)| ds +

k
i=1

ρi(Mi−1), t ∈ (tk, tk+1]

and using the standard Gronwall inequality we get

Mk ≤


(m + T )ϵ +

k
i=1

ρi(Mi−1)


eLf T . (15)

Setting

θ0(ϵ) = (m + T )ϵeLf T ,

θk(ϵ) =


(m + T )ϵ +

k
i=1

ρi(θi−1(ϵ))


eLf T , k = 1, . . . ,m.

Obviously, inequality (15) implies

Mk ≤ θk(ϵ), k = 0, . . . ,m.

Hence

|v(t)| ≤ θf ,m(ϵ) = max{θk(ϵ) : k = 0, . . . ,m}.

Clearly θf ,m ∈ C(R+, R+) and θf ,m(0) = 0. This proves our statement.

6. Final remark

Concerning the Lipschitz condition on f in Section 5, we may change it to the non-Lipschitz condition, i.e., there exists a
nondecreasing function G ∈ C(R+, R+) and G(0) = 0, G(u) > 0 for u > 0 such that |f (t, u)− f (t, v)| ≤ G(|u − v|) for each
t ∈ J and all u, v ∈ R. The first difficulty arises with the existence and uniqueness of the impulsive Cauchy problem (7). But
suppose that the corresponding solution exists on J . Then like above, we have

|v(t)| ≤ (m + T )ϵ +

 t

0
G(|v(s)|)ds +

k
i=1

ρi(Mi−1), t ∈ (tk, tk+1].
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Considering the Bihari inequality instead of Gronwall one and repeating the same process in Section 5, one can obtain the
same result after putting some additional conditions on G.

To see this, applying a Bihari inequality [30] we get

Mk ≤ Ω−1


Ω


(m + T )ϵ +

k
i=1

ρi(Mi−1)


+ T


, t ∈ J,

where

Ω(v) =

 v

v0

dσ
G(σ )

, v0 > 0, (16)

andΩ−1 is the inverse ofΩ and

Ω


(m + T )ϵ +

k
i=1 ρi(Mi−1)


+ t


∈ D(Ω−1) for all t ∈ J .
Setting
θ0(ϵ) = Ω−1 (Ω ((m + T )ϵ)+ T ) ,

θk(ϵ) = Ω−1


Ω


(m + T )ϵ +

k
i=1

ρi(θi−1(ϵ))


+ T


, k = 1, . . . ,m.

Obviously,
Mk ≤ θk(ϵ), k = 0, . . . ,m.

Hence
|v(t)| ≤ θf ,m(ϵ) = max{θk(ϵ) : k = 0, . . . ,m}.

To obtain the same result as in Section 5, we have to put some additional conditions (maybe very strong) on G such
that Ω−1

∈ C(R+, R+) with the property: there is a function ω ∈ C(R+, R+), ω(0) = 0 such that Ω−1(x + y) ≤

ω(Ω−1(x))ω(Ω−1(y)) for any x, y ∈ R+. For Ω−1(v) = v0eLv we take ω(x) =
√
v0x and then G(x) = Lx, so we obtain

the Lipschitz case of Section 5.
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