Some Inequalities Involving Meromorphically Multivalent Functions

Shigeyoshi Owa

Department of Mathematics, Kinki University, Higashi-Osaka, Osaka, 577, Japan

Oh Sang Kwon

Department of Mathematics, Kyungsung University, Pusan, 608-736, Korea

and

Nak Eun Cho

Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Pusan, 608-737, Korea

Submitted by H. M. Srivastava

Received November 22, 1996

While presenting an interesting improvement of a result of R. M. Robinson (Trans. Amer. Math. Soc. 61, 1947, 1–35), S. Owa, M. Nunokawa, and H. Saitoh (Ann. Polon. Math. 59, 1994, 159–162) obtained a number of inequalities for functions belonging to the class of normalized p-valent analytic functions. The main object of this paper is to derive analogous inequalities involving certain meromorphically multivalent functions.

1. INTRODUCTION

Let A_p be the class of functions of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad (p \in \mathbb{N} = \{1, 2, 3, \ldots\}) \quad (1.1)$$
which are regular in the unit disk $U = \{z : |z| < 1\}$. We denote Σ_p by the class of functions of the form

$$f(x) = \frac{1}{z^p} + \frac{a_0}{z^{p-1}} + \cdots + a_{k+p-1}z^k + \cdots \quad (p \in \mathbb{N}) \quad (1.2)$$

which are regular in the punctured disk $D = \{z : 0 < |z| < 1\}$.

In 1947, Robinson [5] proved the following

Theorem A. Let $S(z)$ and $T(z)$ be regular in U and let $\Re(\log S(z)/S(z)) > 0 (z \in U)$. If $|T'/(z)/S'(z)| < 1 (z \in U)$ and $T(0) = 0$, then $|T(z)/S(z)| < 1 (z \in U)$.

Recently, Owa, Nunokawa, and Saitoh [4] improved Theorem A and investigated some interesting inequalities for functions belonging to the class A_p. In the present paper, we derive some inequalities involving meromorphically multivalent functions belonging to the class Σ_p. Our results are analogous to Theorem A and to the results obtained by Owa, Nunokawa, and Saitoh [4]. For various other interesting developments involving functions in the classes A_p and Σ_p, the reader may be referred (for example) to the recent work of Srivastava and Owa [6].

To establish our results, we shall make use of the following lemmas.

Lemma 1 [1, 2]. Let $\omega(z)$ be regular in U with $\omega(0) = 0$. If $|\omega(z)|$ attains its maximum value in the circle $|z| = r < 1$ at a point $z_0 \in U$, then we can write

$$z_0 \omega'(z_0) = k \omega(z_0), \quad (1.3)$$

where k is real and $k \geq 1$.

Lemma 2 [3]. Let $p(z)$ be regular in U with $p(0) = 1$. If there exists a point $z_0 \in U$ such that

$$\Re(p(z)) > 0 \quad (|z| < |z_0|),$$

$$\Re(p(z_0)) = 0, \quad \text{and} \quad p(z_0) \neq 0,$$

then $p(z_0) = ia$ ($a \neq 0$) and

$$\frac{z_0 p'(z_0)}{p(z_0)} = i \frac{k}{2} \left(a + \frac{1}{a} \right), \quad (1.4)$$

where k is real and $k \geq 1$.
2. THE MAIN RESULTS

By using Lemma 1, we first derive

Theorem 1. Let $S(z) \in \Sigma_m$, $T(z) \in \Sigma_n$ with $p = n - m \geq 1$. Let $S(z)$ satisfy $\text{Re}(S(z)/zS'(z)) < -\alpha$ ($0 \leq \alpha < 1/m$). If

$$\text{Re}\left(\frac{S(z)}{zS'(z)} \frac{zT'(z) + q}{T(z)}\right) > 1 + (q - p)\alpha \quad (z \in U) \quad (2.1)$$

with $q \geq p$, then

$$\left|\frac{T(z)}{S(z)}\right| < \frac{1}{|z|^{p+1}} \quad (z \in U). \quad (2.2)$$

Proof. Since $T(z)/S(z) = 1/z^p + \cdots \in \Sigma_p$, we define the function $\omega(z)$ by

$$T(z) = \frac{\omega(z)S(z)}{z^{p+1}}.$$

Then $\omega(z)$ is regular in U with $\omega(0) = 0$. It follows from the definition of $\omega(z)$ that

$$\frac{T'(z)}{S'(z)} = \omega(z) \left\{1 + \left(\frac{z\omega'(z)}{\omega(z)} - p - 1\right)\frac{S(z)}{zS'(z)}\right\},$$

or

$$\frac{S(z)}{zS'(z)} \left(\frac{zT'(z)}{T(z)} + q\right) = \left(\frac{T'(z)}{S'(z)}\right) \left(\frac{S(z)}{T(z)}\right) + q \frac{S(z)}{zS'(z)}$$

$$= 1 + \left(\frac{z\omega'(z)}{\omega(z)} + q - p - 1\right)\frac{S(z)}{zS'(z)}. \quad (2.3)$$

If we suppose that there exists a point $z_0 \in U$ such that

$$\max_{|z| \leq |z_0|} |\omega(z)| = |\omega(z_0)| = 1,$$

then Lemma 1 gives us

$$z_0 \omega'(z_0) = k \omega(z_0) \quad (k \geq 1).$$
Therefore, we have

\[
\Re\left(\frac{S(z)}{z S'(z)} \left(\frac{zT'(z)}{T(z)} + q \right) \right) = 1 + (k + q - p - 1) \Re\left(\frac{S(z_0)}{z_0 S'(z_0)} \right)
\]

\[
\leq 1 - (k + q - p - 1) \alpha
\]

\[
\leq 1 - (q - p) \alpha.
\] (2.4)

This contradicts the hypothesis of Theorem 1, so that \(|\omega(z)| < 1\) for all \(z \in U\). This completes the proof of Theorem 1.

Next, by applying Lemma 2, we prove

Theorem 2. Let \(S(z) \in S_m, T(z) \in S_n\) with \(p = n - m \geq 1\). Let \(S(z)\) satisfy \(-\Re\{S(z)/z S'(z)\} > \alpha\) \((0 \leq \alpha < 1/2)\) and \(-\alpha/p \leq \Im\{-S(z)/(z S'(z))\} \leq \alpha/p\) \((0 \leq \alpha < 1/m)\). If

\[
-\Re\left(\frac{z^p T'(z)}{S'(z)} \right) > 0 \quad (z \in U),
\] (2.5)

then

\[
\Re\left(\frac{z^p T(z)}{S(z)} \right) > 0 \quad (z \in U).
\] (2.6)

Proof. Defining the function \(q(z)\) by \(T(z) = z^{-p} q(z) S(z)\), we see that \(q(z)\) is regular in \(U\) with \(q(0) = 1\). Note that

\[
\frac{z^p T'(z)}{S'(z)} = q(z) \left\{ 1 + \left(p - \frac{z q'(z)}{q(z)} \right) \left(-\frac{S(z)}{z S'(z)} \right) \right\}.
\] (2.7)

Suppose that there exists a point \(z_0 \in U\) such that

\[
\Re(q(z)) > 0 \quad (|z| < |z_0|),
\]

\[
\Re(q(z_0)) = 0, \quad \text{and} \quad q(z_0) \neq 0.
\]

Then, by applying Lemma 2, we have \(q(z_0) = ia\) \((a \neq 0)\) and

\[
\frac{z_0 q'(z_0)}{q(z_0)} = \frac{k}{2} \left(a + \frac{1}{a} \right) \quad (k \geq 1).
\]
Therefore, writing \((-S(z_0))/(z_0S'(z_0)) = \alpha_0 + i\beta_0\), we obtain
\[
-\Re \left(\frac{z^d T'(z_0)}{S'(z_0)} \right) = pa\beta_0 - \frac{k}{2}a(a + 1)\alpha_0 \leq pa\beta_0 - \frac{1 + a^2}{2}\alpha_0 < pa\beta_0 - \frac{1 + a^2}{2}\alpha. \tag{2.8}
\]

Since \(-\alpha/p \leq \beta_0 \leq \alpha/p\), if \(a > 0\), then
\[
pa\beta_0 - \frac{1 + a^2}{2}\alpha \leq a\alpha - \frac{1 + a^2}{2}\alpha = -\frac{\alpha}{2}(1 - \alpha)^2 \leq 0, \tag{2.9}
\]
and if \(a < 0\), then
\[
pa\beta_0 - \frac{1 + a^2}{2}\alpha \leq -a\alpha - \frac{1 + a^2}{2}\alpha = -\frac{\alpha}{2}(1 + a)^2 \leq 0. \tag{2.10}
\]

This contradicts the condition (2.5). Consequently, \(\Re(q(z)) > 0\) for all \(z \in U\), so that \(\Re((z^p T(z))/S(z)) > 0\) \((z \in U)\).

Lastly, by applying, the same technique as in the proof of Theorem 2, we obtain

Theorem 3. Let \(S(z) \in \Sigma_m, T(z) \in \Sigma_n\) with \(p = m - n \geq 1\). Let \(S(z)\) satisfy \(-\Re(S(z)/(zS'(z))) > \alpha\) \((0 \leq \alpha < 1/m)\) and \(-\alpha/p \leq \Im((-S(z))/(zS'(z))) \leq \alpha/p\) \((0 \leq \alpha < 1/m)\). If
\[
-\Re \left(\frac{T'(z)}{z^p S'(z)} \right) > 0 \quad (z \in U), \tag{2.11}
\]
then
\[
\Re \left(\frac{T(z)}{z^p S(z)} \right) > 0 \quad (z \in U).
\]
Remark. Theorem 2 and Theorem 3 are comparable with the results given earlier by Owa, Nunokawa, and Saitoh [4] for analytic functions in the class A_p.

ACKNOWLEDGMENTS

The authors express their gratitude to Professor H. M. Srivastava (of the University of Victoria, Canada) for much valuable advice in the preparation of this paper. This work of second and third authors was supported in part by Non-Directed Research Fund, Korea Research Foundation, 1996 and the Basic Science Research Program, Ministry of Education, Project No. BSR1-96-1440.

REFERENCES