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Abstract

In this paper we introduce a stochastic integral with respect to the process Bt=
∫ t

0
(t−s)−� dWs

where 0¡�¡ 1=2, and Wt is a Brownian motion. Su�cient integrability conditions are deduced
using the techniques of the Malliavin calculus and the notion of fractional derivative. We study
continuity properties of the inde�nite integral and we derive a maximal inequality. c© 2000
Elsevier Science B.V. All rights reserved.

1. Introduction

Fractional Brownian motion (fBm) of Hurst parameter H ∈ (0; 1) has been intro-
duced by Mandelbrot and Van Ness (1968) as a centered Gaussian process BH =
{BH

t ; t¿0} with covariance

E(BH
s BH

t ) =
VH

2
(s2H + t2H − |t − s|2H );

where VH is a normalizing constant given by

VH =
�(2− 2H)cos(�H)

�H (1− 2H) :

It is a process starting from zero with stationary increments, E(BH
t −BH

s )
2=VH |t−s|2H ,

which is self-similar, that is, BH
�t has the same distribution as �HBH

t . The constant H
determines the sign of the covariance of the future and past increments. This covariance
is positive when H ¿ 1

2 and negative when H ¡ 1
2 . The case H = 1

2 corresponds to
the ordinary Brownian motion. Furthermore it exhibits a long-range dependence in the
sense that the covariance between increments at a distance u decreases to zero as
u2H−2.
The self-similarity and long-range dependence properties make the fractional Brow-

nian motion a suitable driving noise in di�erent applications like mathematical �nance
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and network tra�c analysis. Recently, there have been several attempts to construct
a stochastic calculus with respect to the fBm. Since for H 6= 1

2 the fBm is not a
semimartingale we cannot use the classical Itô calculus, and di�erent approaches have
been proposed.
In the case 1

2 ¡H ¡ 1, Lin (1995) and Dai and Heyde (1996) have de�ned a
stochastic integral

∫ t
0 �s dBH

s as limit of Riemann sums. This integral does not satisfy
the property E(

∫ t
0 �s dBH

s ) = 0. For this reason, Duncan et al. (1998) have introduced
a new stochastic integral with zero mean which is the limit of Riemann sums de�ned
by means of the Wick product.
Since the fBm is a Gaussian process, one can apply the stochastic calculus of vari-

ations (see Nualart, 1995) and introduce the stochastic integral as the divergence op-
erator, that is, the adjoint of the derivative operator. This idea has been developed by
Decreusefond and �Ust�unel (1998a,b), in the general case H ∈ (0; 1). Given an integral
representation of the form BH

t =
∫ t
0 KH (t; s) dWs, where W is a Wiener process, the

stochastic integral of a process � constructed by this method turns out to be equal to∫ t
0 KH (t; s)�s dWs.
Using the notions of fractional integral and derivative, Z�ahle (1998) has introduced

a path-wise stochastic integral. The integral of a process � on a time interval [0; T ] is
de�ned as∫ T

0
�s dBH

s = (−1)�
∫ T

0
D�
0t �(s)D

1−�
T− BH (s) ds+ �(0+)BH

T ;

provided � is such that �− �(0+) belongs to the space I�0+(L
1([0; T ]) almost surely,

where D� denotes the fractional derivative of order �, and assuming �¿ 1−H . If the
process � has �-H�older continuous paths with �¿ 1 − H , then this integral can be
interpreted as a Riemann–Stieltjes integral.
Our aim is to construct a stochastic integral with respect to the fBm with Hurst

parameter 0¡H ¡ 1
2 , following the ideas introduced by Carmona and Coutin (1998).

Let us describe the main ideas of this approach. It is well-known that the fBm BH =
{BH

t ; t¿0} admits the following representation:

BH
t =

1
�(1− �)

{
Zt +

∫ t

0
(t − s)−� dWs

}
;

where {Ws; s ∈ R} is a standard Brownian motion, � = 1
2 − H ∈ (0; 12 ), and Zt =∫ 0

−∞ [(t − s)−� − (−s)−�] dWs. Taking into account that the process Zt has absolutely
continuous trajectories, in order to develop a stochastic calculus with respect to BH

t

it su�ces to consider the term
∫ t
0 (t − s)−� dWs, that will be denoted by Bt along the

paper.
The process Bt =

∫ t
0 (t− s)−� dWs can be approximated by the semimartingale B�

t :=∫ t
0 (t− s+ �)−� dWs. Then, the stochastic integral

∫ T
0 �s dBs will be de�ned as the limit

of
∫ T
0 �s dB�

s as � tends to zero. In order to �nd su�cient conditions for this limit to

exist we decompose
∫ T
0 �s dB�

s as the sum of a divergence term (Skorohod integral with
respect to W ) plus a complementary term involving the derivative operator. This kind
of decomposition has already been used to handle the Stratonovich and the forward
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and backward stochastic integrals with respect to the Brownian motion (see Nualart
and Pardoux, 1988).
With this method we �nd the following su�cient conditions for the existence of∫ T

0 �s dBs (see Theorem 5):
(i) � ∈ I �T−(L2([0; T ];D1;2)), that is, the right-fractional derivative of order � of �

exists in [0; T ] considering � as a function with values in the Sobolev space
D1;2, and

(ii)
∫ T
0

∫ r
0 |Ds�r|(r−s)−�−1 ds dr ¡∞ almost surely, where D denotes the derivative

in the sense of Malliavin calculus.
Notice that these conditions di�er from those imposed in the work by Z�ahle. On the
one hand, the order of di�erentiability we require (�= 1

2 −H) is lesser than the order
needed in Z�ahle (1998) (greater than 1−H). However, we assume additional conditions
on the smoothness in the sense of Malliavin calculus. We prove in Proposition 8 that
if � satis�es (ii) and is H�older-continuous in the norm of D1;2 of order �¿�, then
the integral

∫ T
0 �s dBs is the limit in probability of Riemann sums. As a consequence,

if in addition the paths of � are H�older continuous of order greater than 1
2 + � then

our integral coincides with that de�ned in Z�ahle (1998).
The paper is organized as follows. In Section 2 we recall some preliminaries on

the Malliavin calculus and on the fractional calculus. In Section 3 we prove the main
theorems on the existence of the stochastic integral

∫ T
0 �s dBs. Section 4 is devoted to

discuss the convergence of Riemann sums under suitable H�older continuity assumptions.
Finally, in Section 5 we study the existence and continuity of the inde�nite integral∫ t
0 �s dBs.

2. Some preliminaries

In this section we introduce some elements of stochastic calculus of variations and
fractional calculus.

2.1. Malliavin calculus

We recall here the basic facts of Malliavin calculus required along the paper. For
more precisions, see Nualart (1995).
Let (
;F; P) be the canonical probability space of the one-dimensional Brownian

motion W ={Wt; t ∈ [0; T ]}. Let H be the Hilbert space L2 ([0; T ]). For any h ∈ H we
denote by W (h) the Wiener integral W (h) =

∫ T
0 h(t) dWt . Let S be the set of smooth

and cylindrical random variables of the form

F = f(W (h1); : : : ; W (hn)); (2.1)

where n¿1; f ∈ C∞
b (Rn) (f and all its derivatives are bounded), and h1; : : : ; hn ∈ H .

Given a random variable F of the form (2.1), we de�ne its derivative as the stochastic
process {DtF; t ∈ [0; T ]} given by

DtF =
n∑

j=1

@f
@xj
(W (h1); : : : ; W (hn))hj(t); t ∈ [0; T ]:
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In this way the derivative DF is an element of L2([0; T ] × 
) ∼= L2(
;H). More
generally, we can de�ne the iterated derivative operator on a cylindrical random variable
by setting

Dn
t1 ;:::; tnF = Dt1 : : : DtnF:

The iterated derivative operator Dn is a closable unbounded operator from L2(
) into
L2([0; T ]n × 
) for each n¿1. We denote by Dn;2 the closure of S with respect to
the norm de�ned by

||F ||2n;2 = ||F ||2L2(
) +
n∑

l=1

||DlF ||2L2([0;T ]l×
):

We denote by � the adjoint of the derivative operator D that is also called the Skorohod
integral with respect to the Brownian motion W . The domain of � (denoted by Dom
�) is the set of elements u ∈ L2([0; T ]×
) such that there exists a constant c verifying∣∣∣∣E

∫ T

0
DtFut dt

∣∣∣∣6c||F ||2

for all F ∈ S. If u ∈ Dom �; �(u) is the element in L2(
) de�ned by the duality
relationship

E(�(u)F) = E
∫ T

0
DtFut dt; F ∈ S:

The Skorohod integral is an extension of the Itô integral in the sense that the set
L2a([0; T ]×
) of square integrable and adapted processes is included into Dom � and
the operator � restricted to L2a([0; T ]×
) coincides with the Itô stochastic integral (see
Nualart and Pardoux, 1988). We will make use of the following notation:

∫ T
0 ut dWt =

�(u).
Let Ln;2 = L2([0; T ];Dn;2) equipped with the norm

||v||2Ln; 2 = ||v||2L2([0;T ]×
) +
n∑

j=1

||Djv||2L2([0;T ]j+1×
):

We recall that L1;2 is included in the domain of �, and for a process u in L1;2 we can
compute the variance of the Skorohod integral of u as follows:

E(�(u)2) = E
∫ T

0
u2t dt + E

∫ T

0

∫ T

0
DsutDtus ds dt:

Let ST be the set of processes of the form

ut =
q∑

j=1

Fjhj(t);

where Fj ∈ S and hj ∈ H . We will denote by LF the closure of ST by the norm

||u||2F = E
∫ T

0
u2t dt + E

∫
{s¿t}

(Dsut)2 ds dt + E
∫
{r∨s¿t}

(DrDsut)2 dr ds dt:

That is, LF is the class of stochastic processes {ut ; t ∈ [0; T ]} such that for each time
t, the random variable ut is twice di�erentiable with respect to the Wiener process in
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the two-dimensional future {(r; s); r ∨ s¿t}. Notice that if u ∈ L2a([0; T ] × 
) then
we have Dsut = 0 for almost all s¿t. As a consequence, the space L2a([0; T ] × 
) is
contained in LF , and for any u ∈ L2a([0; T ] × 
) we have ||u||2F = E

∫ T
0 u2t dt. On the

other hand, in Al�os and Nualart (1998) it is proved that LF ⊂ Dom � and

E(�(u)2)62||u||2F (2.2)

for all u ∈ LF .
Let us conclude this section by the following property:

Proposition 1. Let u ∈ L1;2 and F ∈ D1;2 be such that E[F2 ∫ T
0 u2t dt]¡∞. Then Fu

is Skorohod integrable; and∫ T

0
Fut dWt = F

∫ T

0
ut dWt −

∫ T

0
DtFut dt; (2.3)

provided that the right-hand side of (2:3) is square integrable.

2.2. Fractional integrals and derivatives

We here use the notation of Samko et al. (1993), which gives a very complete survey
of fractional integrals and derivatives. Let f ∈ L1([0; T ]) and �¿ 0. The right-sided
fractional Riemann–Liouville integral of f of order � on [0; T ] is given at almost all
s by

I �T−f(s) =
1

�(�)

∫ T

s
(r − s)�−1f(r) dr:

These integrals extend the usual nth-order iterated integrals of f for �= n ∈ N. We
have the �rst composition formula

I �T−(I�T−f) = I �+�
T− f:

Fractional di�erentiation may be introduced as an inverse operation. Let us assume in
the sequel that 0¡�¡ 1 and p¿ 1. We will denote by I �T−(Lp) the class of functions
f in Lp([0; T ]) which may be represented as an I �T− -integral of some function � ∈
Lp([0; T ]). If f ∈ I �T−(Lp), the function � such that f = I �T−� is unique in Lp and it
agrees with the right-sided Riemann-Liouville derivative of f of order � de�ned by

D�
T−f(s) =− 1

�(1− �)
d
ds

∫ T

s

f(r)
(r − s)�

dr:

This derivative has the Weyl representation

D�
T−f(s) =

1
�(1− �)

(
f(s)

(T − s)�
− �

∫ T

s

f(r)− f(s)
(r − s)�+1

dr
)

;

where the convergence of the integrals at the singularity s= r holds in the Lp-sense.

Proposition 2 (Samko et al., 1993, Section 13). A function f ∈ Lp([0; T ]) with p¿ 1
belongs to I �T−(Lp) if and only if∫ T

0

|f(s)|p
(T − s)�p

ds¡∞;
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and the integral∫ T

s+�

f(r)− f(s)
(r − s)�+1

dr

converges in Lp([0; T ]) as � tends to zero; as a function of s.

The space I �T−(Lp) is a Banach space with the norm

||f||�;p = (||f||pLp([0;T ]) + ||D�
T−f||pLp([0;T ]))

1=p:

For p= 2, I �T−(L2) is a Hilbert space with the scalar product

〈f; g〉�;2 = 〈f; g〉2 + 〈D�
T−f;D�

T−g〉2:
If �p¡ 1, then I �T−(Lp)⊂Lq, where 1=q=1=p− �. If �p¿ 1, then any function in

I �T−(Lp) is (�−1=p)-H�older continuous on (0; T ). We will work in the case p=2 and
0¡�¡ 1

2 and let us notice that the functions in I �T−(L2) may not be continuous.
We can extend properly the above de�nitions and properties to the case of Hilbert-

valued functions. If V is a Hilbert space we will denote the space of functions which
can be written as the I �T− -integral of a function in Lp([0; T ];V ) by I �T−(Lp([0; T ];V )).
It is a Banach space with the norm

||f||�;p;V = (||f||pLp([0;T ];V ) + ||D�
T−f||pLp([0;T ];V ))

1=p:

Recall that by construction I �T−(D�
T−f) = f. We also have D�

T−(I �T−f) = f.
In a similar way we can introduce the left-sided fractional Riemann–Liouville integral

and derivative by the formulas

I �0+f(s) =
1

�(�)

∫ s

0
(s− r)�−1f(r) dr

and

D�
0+f(s) =

1
�(1− �)

(
f(s)
s�

+ �
∫ s

0

f(s)− f(r)
(s− r)�+1

dr
)

:

Notice that, if W={Wt; t ∈ [0; T ]} is a one-dimensional Brownian motion, for 0¡�¡ 1
2

we have∫ t

0
(t − s)−� dWs =

Wt

t�
+ �

∫ t

0

Wt −Ws

(t − s)�+1
ds= �(1− �)D�

0+Wt; (2.4)

that is, the process
∫ t
0 (t − s)−� dWs is equal to the left-sided fractional derivative of

the Brownian motion times the factor �(1− �).

3. Stochastic integral with respect to the fBm

Let W ={Wt; t ∈ [0; T ]} be a one-dimensional Brownian motion. We �x a parameter
0¡�¡ 1

2 and de�ne

Bt =
∫ t

0
(t − s)−� dWs:

We denote by FW
t the �-�eld generated by the family of random variables

{Ws; 06s6t}. Notice that FB
t ⊂FW

t , where FB
t is de�ned in a similar way.
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For every �¿ 0 we put

B�
t =

∫ t

0
(t − s+ �)−� dWs:

Notice that {B�
t ; t ∈ [0; T ]} is a continuous semimartingale with the following stochastic

di�erential, in the sense of Itô:

dB�
t = �−� dWt +

(∫ t

0
−�(t − s+ �)−�−1 dWs

)
dt:

As a consequence, the stochastic integral
∫ T
0 �t dB�

t is well de�ned for each square
integrable and adapted process �. If we assume that � is di�erentiable in the sense of
the Malliavin calculus, we can express the integral

∫ T
0 �t dB�

t in a di�erent form which
is more convenient to take the limit of as � tends to zero. Moreover, we will suppress
for the moment the hypothesis of adaptability.

Lemma 3. Let � ∈ L1;2. Then∫ T

0
�t dB�

t =
∫ T

0

{
�s(T − s+ �)−� − �

∫ T

s
(�r − �s)(r − s+ �)−�−1 dr

}
dWs

− �
∫ T

0

∫ r

0
Ds�r(r − s+ �)−�−1 ds dr:

Proof. We can write∫ T

0
�t dB�

t = �−�
∫ T

0
�t dWt − �

∫ T

0

(∫ t

0
(t − s+ �)−�−1 dWs

)
�t dt;

where
∫ T
0 �t dWt , since � may not be adapted, is a Skorohod integral. Then∫ T

0
�t dB�

t = �−�
∫ T

0
�t dWt − �

∫ T

0

(∫ t

0
�t(t − s+ �)−�−1 dWs

)
dt

− �
∫ T

0

∫ t

0
Ds�t(t − s+ �)−�−1 ds dt

= �−�
∫ T

0
�t dWt

− �
∫ T

0

(∫ t

0
(�t − �s)(t − s+ �)−�−1 dWs

)
dt

− �
∫ T

0

(∫ t

0
�s(t − s+ �)−�−1 dWs

)
dt

− �
∫ T

0

∫ t

0
Ds�t(t − s+ �)−�−1 ds dt:

Finally, applying Fubini’s theorem for the Skorohod integral, we deduce the desired
result, because∫ T

0

(∫ t

0
�s(t − s+ �)−�−1 dWs

)
dt

= − 1
�

∫ T

0
�s(T − s+ �)−� dWs +

1
�
�−�

∫ T

0
�s dWs:
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This leads to the following de�nition.

De�nition 4. Let � ∈ Dom �. We say that � is integrable with respect to B if
∫ T
0 �t dB�

t

converges in probability as � tends to zero. The limit will be denoted by
∫ T
0 �t dBt .

Though the hypothesis � ∈ Dom � is su�cient for the existence of the integral∫ T
0 �t dB�

t , our aim is to obtain an explicit expression for the limit
∫ T
0 �t dBt . This will

be done in Theorem 5, where we assume � ∈ L1;2 and we make use of Lemma 3.
Afterwards we will discuss the adapted case, and more generally, the case �∈LF .

Theorem 5. Let � be a process satisfying the following conditions:

�∈I �T−(L1;2); (C1)∫ T

0

∫ r

0
|Ds�r|(r − s)−�−1 ds dr ¡∞ a:s: (T1)

Then � is integrable with respect to B and we have∫ T

0
�t dBt = �(1− �)

∫ T

0
D�

T−�s dWs − �
∫ T

0

∫ r

0
Ds�r(r − s)−�−1 ds dr:

Remark 1. The stochastic integral appearing on the right-hand side of the above
equality is a Skorohod integral.

Remark 2. Notice that the �rst summand in the above equality can be heuristically
deduced from the fact that Bt =�(1−�)D�

0+Wt (see (2.4)), and the integration by parts
formula (see Samko et al., 1993):∫ T

0
�tD�

0+ t dt =
∫ T

0
D�

T−�t t dt;

provided that  ∈ I �0+(L
2).

Remark 3. If � is a deterministic function, the above conditions reduce to � ∈
I �T−(L2([0; T ])), and we have∫ T

0
�t dBt = �(1− �)

∫ T

0
D�

T−�s dWs:

As a consequence, the �rst Wiener chaos of the Gaussian process Bt is isometric to
I �T−(L2([0; T ])) equipped with the scalar product

〈�; ’〉= �(1− �)2
∫ T

0
D�

T−�s D�
T−’s ds:

Remark 4. The space I �T−(L1;2) = I �T−(L2([0; T ];D1;2)) is isometric to the space
D1;2(I �T−(L2([0; T ]))), and it contains all the processes in L1;2 such that the deriva-
tive {D�s; s ∈ [0; T ]} belongs to I �T−(L2([0; T ])). In other words, I �T−(L1;2) is a Hilbert
space with the norm(

E||�||2�;2 + E
∫ T

0
||Dr�||2�;2 dr

)1=2
= (||�||21;2 + ||D�

T−�||21;2)1=2:
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Proof. Condition (T1) implies that∫ T

0

∫ r

0
Ds�r(r − s+ �)−�−1 ds dr

converges in probability as � tends to zero to∫ T

0

∫ r

0
Ds�r(r − s)−�−1 ds dr:

Then it su�ces to show that

�s(T − s+ �)−� − �
∫ T

s
(�r − �s)(r − s+ �)−�−1 dr (3.1)

converges in the norm of L1;2 to

�s(T − s)−� − �
∫ T

s
(�r − �s)(r − s)−�−1 dr; (3.2)

as � tends to zero.
The fact that �∈ I �T−(L1;2) implies that there exists a process ’ ∈ L1;2 = L2([0; T ];

D1;2) such that �= I �T−’, that is

�s =
1

�(�)

∫ T

s
(� − s)�−1’� d�; (3.3)

and (3.2) equals to �(1− �)’s. Substituting (3.3) into (3.1) yields

�s(T − s+ �)−� − �
∫ T

s
(�r − �s)(r − s+ �)−�−1 dr

=
1

�(�)

{∫ T

s
(� − s)�−1(T − s+ �)−�’� d�

− �
∫ T

s

∫ T

r
(� − r)�−1(r − s+ �)−�−1’� d� dr

+ �
∫ T

s

∫ T

s
(� − s)�−1(r − s+ �)−�−1’� d� dr

}

=
1

�(�)

{
�−�

∫ T

s
(� − s)�−1’� d�

− �
∫ T

s

(∫ �

s
(� − r)�−1(r − s+ �)−�−1 dr

)
’� d�

}

=
1

�(�)

∫ T

s
��(s; �)’� d�;

where

��(s; �) = �−�(� − s)�−1 − �
∫ �

s
(� − r)�−1(r − s+ �)−�−1 dr:

Notice that ��(s; t) = �−1�((t − s)=�), where

�(u) = u�−1 − �
∫ u

0

(u− r)�−1

(r + 1)�+1
dr =

u�−1

u+ 1
;
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and the second equality follows after the change of variable y= (u+1)=(r+1)−1. Then
�(u)¿0 and

∫∞
0 �(u) du = �(�)�(1 − �). By the generalized Minkowski inequality,

we have that
∫ T

0

∣∣∣∣∣
∣∣∣∣∣
∫ (T−s)=�

0
�(u)’s+�u du− ’s

∫ (T−s)=�

0
�(u)du

∣∣∣∣∣
∣∣∣∣∣
2

1;2

ds



1=2

6
∫ ∞

0
�(u)

(∫ T

0
||’s+�u − ’s||21;2 ds

)1=2
du;

where we assume that ’s=0 if s 6∈ [0; T ]. For each �xed u¿ 0,
∫ T
0 ||’s+�u −’s||21;2 ds

converges to zero as � tends to zero because ’ ∈ L2([0; T ];D1;2). So by dominated
convergence∫ T

s

1
�
�
(
t − s
�

)
’t dt =

∫ (T−s)=�

0
�(u)’s+�u du

converges to �(�)�(1− �)’s in L1;2 as � tends to zero, which completes the proof.

Condition (T1) is a trace-class hypothesis, which cannot be avoided as soon as we
use Malliavin calculus. This condition is rather strong because it requires that Ds�r

tends to zero as s ↑ r faster than (r − s)�. It does not hold for Wt or for the process
Bt itself, but it holds for the process �t =

∫ t
0 (t − s)� dWs if �¿�.

In the adapted case, we can replace (C1) by the following conditions:

�∈I �T−(L2([0; T ]); L2(
)) ∩ L2a ∩ L1;2; (C2)

and

lim
�→0

D�

∫ T

s
(�t − �s)(t − s+ �)−�−1 dt = D�

∫ T

s
(�t − �s)(t − s)−�−1 dt; (C3)

where the convergence is in L2([0; T ]2 × 
). In fact, the convergence of
∫ T
0 �t dB�

t

to
∫ T
0 �t dBt in probability can be deduced by the following convergences in L2(
),

provided we have (T1):

lim
�→0

∫ T

0
�s(T − s+ �)−� dWs =

∫ T

0
�s(T − s)−� dWs; (3.4)

lim
�→0

∫ T

0

(∫ T

s
(�r − �s)(r − s+ �)−�−1 dr

)
dWs

=
∫ T

0

(∫ T

s
(�r − �s)(r − s)−�−1 dr

)
dWs: (3.5)

By (C2) and Proposition 2 we have E
∫ T
0 �2s (T − s)−2� ds¡∞, and this together with

the adaptability of � implies (3.4). The convergence (3.5) can be proved as in Theorem
5 using the fact that

∫ T
s (�r−�s)(r−s+�)−�−1 dr converges to

∫ T
s (�r−�s)(r−s)−�−1 dr

in the norm of L1;2 as � tends to zero, by conditions (C2) and (C3).
We also can weaken condition (C3) taking only derivatives of the process

∫ T
s (�t −

�s)(t − s)−�−1 dt at times �6s. The counterpart is to impose a trace-class hypothesis
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a little bit stronger. We thus have the following theorem, which covers the adapted
case.

Theorem 6. Let � be a process satisfying (C2) and the following additional conditions:

lim
�→0

1{�6s}D�

∫ T

s
(�t − �s)(t − s+ �)−�−1 dt

= 1{�6s}D�

∫ T

s
(�t − �s)(t − s)−�−1 dt; (C4)

where the limit holds in the L2([0; T ]2 × 
)-sense;

E
∫ T

0

(∫ T

s

|Ds�r|
(r − s)�+1

dr
)2
ds¡∞: (T2)

Then the conclusion of Theorem 5 holds.

Proof. It is clear that (T2) implies (T1). Then it su�ces to show that (C2),(C4) and
(T2) imply (C3). We can write

E
∫ T

0

∫ T

0

∣∣∣∣
∫ T

s
D�(�t − �s)[(t − s+ �)−�−1 − (t − s)−�−1] dt

∣∣∣∣
2

ds d�

6E
∫
{�6s}

∣∣∣∣
∫ T

s
D�(�t − �s)[(t − s+ �)−�−1 − (t − s)−�−1] dt

∣∣∣∣
2

ds d�

+E
∫
{�¿s}

∣∣∣∣
∫ T

s
D�(�t − �s)[(t − s+ �)−�−1 − (t − s)−�−1] dt

∣∣∣∣
2

ds d�:

On the one hand, the �rst term tends to zero owing to condition (C4). On the other
hand, the dominated convergence theorem and (T2) imply that the second term con-
verges to zero as well.

Remaining in the adapted case, we can work in an exact analogous way with the
space LF .

Theorem 7. Let � be a process satisfying

�∈I �T−(L2([0; T ]); L2(
)) ∩ L2;2 ∩ L2a (C5)

and

E
∫ T

0

(∫ T

s

|Ds�r|
(r − s)�+1

dr
)2
ds+ E

∫ T

0

∫ T

s

(∫ T

�

|D�Ds�r|
(r − s)�+1

dr
)2
d� ds¡∞:

(T3)

Then the conclusion of Theorem 5 holds.

Proof. It su�ces to show that

lim
�→0

∫ T

s

�t − �s

(t − s+ �)�+1
dt =

∫ T

s

�t − �s

(t − s)�+1
dt
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as a process of the variable s, in the LF -sense. The proof of this convergence is similar
to the proof of the previous theorem.

4. Riemann sum convergence

In this section we study the approximation of the stochastic integral
∫ T
0 �t dBt by

Riemann sums. In order to show the convergence of the Riemann sums we require an
additional H�older continuity assumption on the process �, similar to that introduced in
Carmona and Coutin (1998). The proof of the convergence of the Riemann sums is
based on Theorems 5 and 4:1:1. of Z�ahle (1998):
Let �∈L1;2, and consider a partition � = {0 = s0¡s1 · · ·¡sn = T} of mesh |�| =

maxi=0 ::: n−1|si+1 − si|. Let us set

��
s =

n−1∑
i=0

�si1[si ; si+1)(s):

We easily check that for p = 2 and � ∈ (0; 12 ), the process �� and its derivative
satisfy the conditions of Proposition 2, and then we conclude that �� ∈ I �T−(L1;2).
Furthermore, since it is clear that for �� condition (T1) holds, the assumptions of
Theorem 5 are satis�ed and we have∫ T

0
��

t dBt = �(1− �)
∫ T

0
D�

T−��
s dWs − �

∫ T

0

∫ r

0
Ds��

r (r − s)−�−1 ds dr:

(4.1)

Then we claim the following:

Proposition 8. If �∈L1;2 satis�es (T1) and is H�older-continuous in the norm of D1;2
of index �¿�; that is

||�s − �t ||1;26H�|s− t|�

for some constant H� ¿ 0; and for all s; t ∈ [0; T ]; then

lim
|�|→0

∫ T

0
��

s dBs =
∫ T

0
�s dBs

in probability.

Proof. Condition (T1) is clearly su�cient to prove the convergence of the second term
on the right-hand side of (4.1) to −�

∫ T
0

∫ r
0 Ds�r(r − s)−�−1 ds dr.

Then, it su�ces to show that

lim
|�|→0

‖ D�
T−�� − D�

T−� ‖L1; 2 = 0:

We can write

�(1− �)||D�
T−��

s − D�
T−�s||1;2

=
∣∣∣∣
∣∣∣∣(��

s − �s)(T − s)−� − �
∫ T

s
[(��

t − �t)− (��
s − �s)](t − s)−�−1 dt

∣∣∣∣
∣∣∣∣
1;2
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6||��
s − �s||1;2(T − s)−� + �||S�(s)||1;2;

where

S�(s) =
∫ T

s
[(��

t − �t)− (��
s − �s)](t − s)−�−1 dt:

On the one hand we have

||��
s − �s||1;2(T − s)−�6

n−1∑
i=0

||�si − �s||1;21[si ; si+1)(s)(T − s)−�

6
n−1∑
i=0

H�|si − s|�1[si ; si+1)(s)(T − s)−�

6 |�|�H�(T − s)−�;

hence ∫ T

0
||��

s − �s||21;2(T − s)−2� ds6(1− 2�)H 2
� |�|2�T 1−2�;

which vanishes when |�| tends to zero.
On the other hand, let us show that

lim
|�|→0

∫ T

0
||S�(s)||21;2 ds= 0:

We can write

S�(s) =
n−1∑
i=0

1[si ; si+1)(s)

{∫ si+1

s
[(�si − �t)− (�si − �s)](t − s)−�−1 dt

+
n−1∑

k=i+1

∫ sk+1

sk

[(�sk − �t)− (�si − �s)](t − s)−�−1 dt

}
;

and

||S�(s)||1;26I1(s) + I2(s) + I3(s);

where

I1(s) =
n−1∑
i=0

1[si ; si+1)(s)
∫ si+1

s
||�s − �t ||1;2(t − s)−�−1 dt;

I2(s) =
n−1∑
i=0

1[si ; si+1)(s)
n−1∑

k = i+1

∫ sk+1

sk

||�sk − �t ||1;2(t − s)−�−1 dt;

I3(s) =
n−1∑
i=0

1[si ; si+1)(s)||�si − �s||1;2
n−1∑

k = i+1

∫ sk+1

sk

(t − s)−�−1 dt:

Then we have

I1(s)6H�

n−1∑
i=0

1[si ; si+1)(s)
∫ si+1

s
(t − s)�−�−1 dt

6H�
1

�− �

n−1∑
i=0

1[si ;si+1)(s)(si+1 − s)�−�;
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∫ T

0
I1(s)2 ds6H 2

� (�− �)−2
1

2�− 2�+ 1
n−1∑
i=0

(si+1 − si)2�−2�+1

6H 2
� (�− �)−2

1
2�− 2�+ 1T |�|

2�−2�; (4.2)

I2(s)6H�

n−1∑
i=0

1[si ; si+1)(s)
n−1∑

k = i+1

(sk+1 − sk)�
∫ sk+1

sk

(t − s)−�−1 dt

6H�

n−1∑
i=0

1[si ; si+1)(s)|�|�
1
�
[(si+1 − s)−� − (T − s)−�];

∫ T

0
I2(s)2 ds6H 2

� |�|2��−2
n−1∑
i=0

∫ si+1

si
[(si+1 − s)−� − (T − s)−�]2 ds

6H 2
� |�|2�

�−2

1− 2�
n−1∑
i=0

(si+1 − si)1−2�

6 TH 2
� |�|2�−2�

�−2

1− 2� ; (4.3)

I3(s)6H�

n−1∑
i=0

1[si ; si+1)(s)(s− si)�
∫ T

si+1
(t − s)−�−1 dt

6H�
1
�

n−1∑
i=0

1[si ; si+1)(s)(s− si)�(si+1 − s)−�;

and since∫ b

a
(s− a)�(b− s)−� ds= (b− a)�−�+1�(�+ 1)�(1− �)

�(�− �+ 2)
; (4.4)

we obtain∫ T

0
I3(s)2 ds6H 2

� �
−2�(2�+ 1)�(1− 2�)

�(2�− 2�+ 2)
n−1∑
i=0

(si+1 − si)2�−2�+1

6H 2
� �

−2�(2�+ 1)�(1− 2�)
�(2�− 2�+ 2) T |�|2�−2�: (4.5)

Hence, from (4.2), (4.3) and (4.5) we obtain the result.

5. The integral process

De�ne
∫ t
0 �s dBs =

∫ T
0 �s1[0; t](s) dBs if this stochastic integral exists. Our aim is to

study the properties of the stochastic process {∫ t
0 �s dBs; t ∈ [0; T ]}. After checking

the existence of this process, we study its continuity properties and we also derive a
maximal inequality.
About the existence, we have the following result:
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Lemma 9. Under the hypotheses of Theorem 5; for almost all t ∈ [0; T ]; ∫ t
0 �s dBs

exists and∫ t

0
�s dBs = �(1− �)

∫ t

0
D�

t−�s dWs − �
∫ t

0

∫ r

0

Ds�r

(r − s)�+1
ds dr:

Proof. If � satis�es the trace-class hypothesis (T1), also does �1[0; t]. Let us prove
that �1[0; t] belongs to I �T−(L1;2) for almost all t ∈ [0; T ]. We will make use of the
characterization of I �T−(L1;2) given in Proposition 2. Clearly∫ t

0

||�s||21;2
(T − s)2�

ds¡∞

for all t ∈ [0; T ]. Assuming s¡ t we can write∫ T

s+�

�r1[0; t](r)− �s

(r − s)�+1
dr =

∫ t

t∧(s+�)

�r − �s

(r − s)�+1
dr −

∫ T

t∨(s+�)

�s

(r − s)�+1
dr

=
∫ t

t∧(s+�)

�r − �s

(r − s)�+1
dr

+
1
�
�s[((t − s) ∨ �)−� − (T − s)−�]:

As �∈L1;2 we have that for almost all t ∈ [0; T ], the process �s(t − s)−�1[0; t](s)
belongs also to L1;2, and as a consequence, �s((t − s) ∨ �)−�1[0; t](s) converges to
�s(t − s)−�1[0; t](s) in L1;2 as � tends to zero. On the other hand,∫ t

t∧(s+�)

�r − �s

(r − s)�+1
dr =

∫ T

t∧(s+�)

�r − �s

(r − s)�+1
dr −

∫ T

t

�r − �s

(r − s)�+1
dr;

which gives us that 1[0; t](s)
∫ t
t∧(s+�)(�r − �s)(r − s)−�−1 dr converges in L1;2, for all

t ∈ [0; T ], to

1[0; t](s)
∫ t

s

�r − �s

(r − s)�+1
dr

as � tends to zero. Hence, we have proved that in the L1;2 sense

lim
�→0

∫ T

s+�

�r1[0; t](r)− �s1[0; t](s)
(r − s)�+1

dr

= 1[0; t](s)
{∫ t

s

�r − �s

(r − s)�+1
dr +

1
�
�s[(t − s)−� − (T − s)−�]

}
:

Thus, 1[0; t](s)�s belongs to I �T−(L1;2) and adding to the above expression the term
(1=�)�s(T − s)−�, we obtain

D�
T−(�1[0; t])(s) = D�

t−�s

for all s6t, which completes the proof.

In a similar way we can prove Lemma 9 assuming the hypotheses of Theorem 7.
Let us now study the continuity of the integral process{∫ t

0
�s dBs; t ∈ [0; T ]

}
:
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To simplify the exposition we restrict ourselves to the adapted case. We need the
following lemma.

Lemma 10. Suppose that � is an adapted stochastic process satisfying the following
condition:∫ T

0
E|�s|p ds¡∞ (H1(p))

for some p¿ 2=(1− 2�); where 0¡�¡ 1
2 . Then the process∫ t

0
(t − s)−��s dWs

has a version which is �-H�older continuous for any �¡ 1
2 − �− 1=p; and we have the

maximal inequality

E
(
sup

06t6T

∣∣∣∣
∫ t

0
(t − s)−��s dWs

∣∣∣∣
p)
6C(p)

∫ T

0
E|�t |p dt: (5.1)

Proof. Taking 0¡�¡ 1− � and using (4.4) we can write∫ t

0
(t − s)−��s dWs = C(�; �)

∫ t

0

(∫ t

s
(t − r)�−1(r − s)−�−� dr

)
�s dWs;

where

C(�; �) =
�(1− �)

�(�)�(1− �− �)
:

Applying Fubini’s stochastic theorem, and assuming �¡ 1− 2� we obtain∫ t

0
�s(t − s)−� dWs =

∫ t

0
(t − r)�−1

(∫ r

0
(r − s)−�−��s dWs

)
dr: (5.2)

Choosing now � ∈ (1=p; 1=2 − �) and using H�older’s and Burkholder’s inequalities,
we get

E
(∫ t

0

∣∣∣∣(t − r)�−1
∫ r

0
(r − s)−�−��s dWs

∣∣∣∣ dr
)p

6
(

p− 1
�p− 1

)p−1
t�p−1

∫ t

0
E
∣∣∣∣
∫ r

0
(r − s)−�−��s dWs

∣∣∣∣
p

dr

6C(p; �; T )
∫ t

o
E
∣∣∣∣
∫ r

0
(r − s)−2(�+�)�2s ds

∣∣∣∣
p=2

dr

6C(p; �; T )
∫ t

0
E|�s|p ds;

which is �nite from hypothesis (H1(p)) and yields (5.1).
Set Xt=

∫ t
0 (t− s)−��s dWs, and Rt=

∫ t
0 (t− s)−�−��s dWs. For any r6t we can write

using (5.2)

Xt − Xr =
∫ r

0
[(t − s)�−1 − (r − s)�−1]Rs ds+

∫ t

r
(t − s)�−1Rs ds:
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Hence,

|Xt − Xr|62�(t − r)� sup
s∈[0;T ]

|Rs|;

and E(sups∈[0;T ]|Rs|p)¡ ∞ due to condition (H1)(p) provided p ¿ 2=(1 − 2(�+ �)),
which is equivalent to �¡ 1

2 − �− 1=p. This completes the proof of the lemma.

Let us consider the following hypotheses:

h1:=
∫ T

0

∫ r

0

E|�r − �s|2
(r − s)2(�+1)

ds dr ¡∞; (H2)

h2:=
∫ T

0

∫ r

0

∫ r

s

E|D��r|2
(r − s)2(�+1)

d� ds dr ¡∞; (H3)

h3:=
∫ T

0

∫ r

0

∫ r

0

∫ r

s

E|D�D��r|2
(r − s)2(�+1)

d� d� ds dr ¡∞: (H4)

We have the following result:

Theorem 11. Suppose that � is a process satisfying condition (C5) of Theorem 7;
together with condition (H1(p)) for some p¿ 2=(1−2�); and hypotheses (H2)–(H4).
Then the integral process {∫ t

0 �s dBs; t ∈ [0; T ]} has a version which is �-H�older
continuous for any �¡ 1

2 − �− 1=p.

Proof. Owing to Lemma 9 we can write∫ t

0
�s dBs =

∫ t

0
(t − s)−��s dWs − �

∫ t

0

(∫ t

s

�r − �s

(r − s)�+1
dr
)
dWs

−�
∫ t

0

∫ r

0

Ds�r

(r − s)�+1
ds dr: (5.3)

For the �rst integral we apply Lemma 10. It is clear that the last term of this sum
is 1

2 -H�older-continuous due to the hypothesis (H3). So it remains to study the second
term. Using the LF -estimate for the Skorohod integral (see the proof of (2.2) in Al�os
and Nualart, 1998), we have∫ t

0
E
∣∣∣∣
∫ r

0

�r − �s

(r − s)�+1
dWs

∣∣∣∣
2

dr62
{∫ t

0

∫ r

0

E|�r − �s|2
(r − s)2(�+1)

ds dr

+
∫ t

0

∫ r

0

∫ r

s

E|D��r|2
(r − s)2(�+1)

d� ds dr +
∫ t

0

∫ r

0

∫ r

0

∫ r

s

E|D�D��r|2
(r − s)2(�+1)

d� d� ds dr
}

;

(5.4)

which is �nite from hypotheses (H2)–(H4). Using now Fubini’s stochastic theorem,
we have∫ t

0

(∫ t

s

�r − �s

(r − s)�+1
dr
)
dWs =

∫ t

0

(∫ r

0

�r − �s

(r − s)�+1
dWs

)
dr;

and this allows us to complete the proof.
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Corollary 12. Under the hypotheses of Theorem 11 we can derive the following max-
imal inequality in probability:

P
{
sup

06t6T

∣∣∣∣
∫ t

0
�s dBs

∣∣∣∣¿�
}
6

(
�
3

)−p

C(p)
∫ T

0
E|�t |p dt

+
(

�
3�

)−2
2T (h1 + h2 + h3)

+
�
3�

∫ T

0

∫ T

s

E|Ds�r|
(r − s)�+1

dr ds

for all �¿ 0.

Proof. Using the decomposition (5.3), the result is a straightforward consequence of
Lemma 10 and the estimate (5.4).

Remark 3. In a similar way we can obtain an estimate for the expectation

E
(
sup

06t6T

∣∣∣∣
∫ t

0
�s dBs

∣∣∣∣
p)

;

with p¿ 2=(1 − 2�), using the estimates for the Lp-norm of the Skorohod integral∫ t
0 (
∫ t
s (r − s)−�−1(�r − �s ) dr) dWs given in Al�os and Nualart (1998, Theorem 2:4:3).

Remark 4. In the nonadapted case we can establish results similar to Lemma 10 and
to Theorem 11 using the Lp-estimates for the Skorohod integral given in Al�os and
Nualart (1998) and Nualart (1995).

6. For Further Reading

The following references are also of interest to the reader. Feyel and de la Pradelle,
1996; Garsia et al. 1970; Kleptsyna et al. 1996.
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