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Credal networks relax the precise probability requirement of Bayesian networks, enabling

a richer representation of uncertainty in the form of closed convex sets of probability mea-

sures. The increase in expressiveness comes at the expense of higher computational costs.

In this paper, we present a new variable elimination algorithm for exactly computing pos-

terior inferences in extensively specified credal networks, which is empirically shown to

outperform a state-of-the-art algorithm. The algorithm is then turned into a provably good

approximation scheme, that is, a procedure that for any input is guaranteed to return a so-

lution not worse than the optimum by a given factor. Remarkably, we show that when the

networks have bounded treewidth and bounded number of states per variable the approx-

imation algorithm runs in time polynomial in the input size and in the inverse of the error

factor, thus being thefirst known fully polynomial-time approximation scheme for inference

in credal networks.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Credal networks [11] are generalizations of Bayesian networks that allow for a richer representation of uncertainty in the

form of set-valued probabilities—in contrast to the sharp numeric values required by their Bayesian counterpart. They are

imprecise probabilistic models as advocated by Walley [24].

In a nutshell, a credal network relies on a directed acyclic graph (DAG) to compactly represent a closed convex set of

joint probability mass functions over a set of variables, much in the same way that a Bayesian network does for a single

joint probabilitymass function. For instance, the variables in a credal network are assumed to respect theMarkov condition:

each variable (uniquely represented by a node in the DAG) is independent of its non-descendant non-parents conditional

on its parents. Unlike the Bayesian case, however, independence between variables in a credal network can be characterized

in more than one way. In this paper, we adopt the concept of strong independence [12]. Strong independence is justified by

a sensitivity analysis interpretation, where we assume that there exists a single probability mass function (i.e., a Bayesian

network) representing our knowledge which we do not know precisely for lack of resources [24].

In order to enable efficient computation, additional constraints need to be imposed on the set-valued specifications of

the local probabilities. In this paper, we assume that credal networks are extensively specified, meaning that each variable in

themodel is associated to a set of conditional probability tables. An extensively specified credal network ultimately specifies

a set of Bayesian networks over the same DAG.

Inference with credal networks has been theoretically and empirically shown to be a difficult problem. For example,

computing bounds for marginal probabilities exactly in credal networks is known to be NP-hard even for singly connected

networks, 1 while the analogous inference in Bayesian networks can be performed in polynomial time [6].
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Table 1

Comparison of some existing algorithms for inference in credal networks.

Algorithm Complexity Restrictions Inference

2U [14] Polynomial
Singly connected
Binary variables

Exact

GL2U [3] Polynomial – Approximate

A/R+ [21] Exponential Singly connected Approximate

MILP [7] Exponential – Exact/approx.

MLP [5] Exponential – Exact/approx.

HC [8] Exponential – Exact/approx.

Despite the hardness of the problem, several algorithms are known to perform reasonably well under certain conditions.

For instance, the 2U algorithm [14] is able to perform exact posterior inference in polynomial time in singly connected,

separately specified credal networks with binary variables. The GL2U algorithm [3], which generalizes 2U to arbitrary

networks, runs inpolynomial time inmulti-connectednetworks. Unfortunately, GL2U’s efficiencymight comeat the expense

of accuracy in the results, since the algorithm does not provide any guarantee on the quality of the solutions it returns.

Recently, de Cooman et al. [10] developed an exact polynomial-time algorithm for tree-shaped credal networks that operate

under epistemic irrelevance, a different characterization of the Markov condition.

Another notable method, against which we compare the algorithms we devise in this paper, was proposed by de Campos

and Cozman [7]. They showed that it is possible to efficiently convert a problem of posterior inference in an arbitrary credal

network into a mixed integer linear program, which can then be solved using standard solvers. As with any mixed integer

linear program, the solver can be run until a desired accuracy is achieved, and stopped at any moment to produce a solution

with known error bounds. In practice, however, it might take a prohibitively long time to achieve a provably good solution,

and the bounds returned by the solver in any feasible time might be too loose.

Many other approaches have been proposed that implement a branch-and-bound method with local searches at each

step [5,8,21]. Table 1 contrasts some of the available algorithms according to time complexity, restrictions on the input

and accuracy of inferences. The only two polynomial algorithms are either constrained to a very restricted class of credal

networks (the class of singly connected, separately specified credal networkswith binary variables) or are arbitrarily inexact

(i.e., they can return solutions whose quality is arbitrarily low). The trade-off between time complexity and accuracy that

appears to occur is most likely not accidental. It is known that the existence of a polynomial-time algorithm that produces

provably good approximations would show that P=NP if the variables are allowed to take on arbitrary number of states,

even if we admit only networks of bounded treewidth [6]. Hence, it is a necessary condition to any efficient (provably good)

approximation algorithm that the number of states per variable be bounded.

In this paper, we present a new algorithm for computing posterior inferences exactly in extensively specified credal net-

works (Section 4). The algorithm implements a sophisticated variable elimination scheme in credal networks that mitigates

the explosion in the cardinality of propagated sets by discarding Pareto dominated points. We show how the algorithm can

be relaxed to provide a provably good approximation scheme, that is, an algorithm that finds a solution whose quality is not

worse than the optimumby a factor given as input (Section 5). Remarkably, we show that for networks of bounded treewidth

and bounded number of states per variable that algorithm runs in time polynomial in the input and in the inverse of the error

factor, and hence constitutes the first fully polynomial-time approximation scheme (FPTAS) for updating credal networks.

The FPTAS however is essentially a theoretical result due to very large constants that are hidden in the asymptotical running

time analysis.

We begin by stating the basic elements of our algorithm framework (Section 2), followed by a formal definition of

inference in extensively specified credal networks under strong independence (Section 3). We then evaluate the empirical

performance of both exact and approximation algorithms on a large collection of randomly generated networks (Section 6).

The experiments show that our exact algorithm is orders-of-magnitude faster than the mixed integer linear programming

approach of de Campos and Cozman, and it is able to solve networks substantially larger. Also, our experiments show that,

even though the FPTAS is intended as a theoretical result, it is able to solve problems which the exact method is unable to,

and for most cases its performance is comparable to the exact algorithm. We conclude in Section 7.

2. Background

In this section, we introduce themain ingredients of the variable elimination algorithms that we present later on, as well

as the basic results needed to guarantee the correctness and efficiency of computations.

2.1. Valuation algebra

From an algebraic viewpoint, the primitive entities of our formalism are the so-called labeled valuations (φ, x), which

encode information about a (local) domain through a valuation φ and a set of variables x. Here we adopt the equivalent

notation φx to denote the pair (φ, x), or simply φ when the associated domain x is either not important or clear from the
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context. Concretely, valuations can take straightforward forms like bounded real-valued functions (Section 2.4), or represent

more complicated objects such as sets of pairs of real-valued functions (Section 2.5).

The set of all variables we consider relevant to a problem, denoted by U, is the largest set of variables that can be

considered for a (labeled) valuation in our setting, whichwe assume to be finite.Wewrite variables with capital Latin letters

(e.g., X1, . . . , Xn ∈ U) and sets of variables with lowercase Latin letters (e.g., x = {X1, . . . , Xn}). Any variable X is assumed

to be associated with a finite set of values�X called its frame. The elements x ∈ �X are called states. If x is a nonempty set

of variables,�x is given by the Cartesian product of the frames of variables in x,�x �×X∈x �X . We call�x the frame of x.

An element x in�x is called a configuration and written using boldface lowercase Latin letters (even when x is a singleton).

Given y �= ∅, x �= ∅, and x ∈ �x , the notation x↓y denotes the projection of x onto y ⊆ x, that is, x↓y is the tuple of elements

of x that are associated with variables in y. By convention, we assume that the empty set contains a single configuration λ
in its frame, which is not an element of any other domain. Then, for any configuration x in the frame of a nonempty set, we

have that x↓∅ = λ.
The set of all valuationsφx over a subset x ⊆ U is denotedby�x . The set of all valuations is denotedby� � ⋃

x⊆U �x . The

algebra comeswith twobasic operations of combination andmarginalization. Intuitively, combination represents aggregation

of two pieces of information. If φx and φy are two arbitrary valuations, then φx × φy is a valuation φx∪y labeled by set

x ∪ y. Marginalization, on the other hand, acts by coarsening information. If φx is a valuation and y ⊆ x, the marginal

φ
↓y
x is a valuation labeled by y. It is notationally convenient to define the elimination operation, which is in a one-to-one

correspondence to marginalization. Formally, if φx is a valuation then φ
−y
x � φ

↓x\y
x is the result of the elimination of

variables in y from φx . When clear from the context, we write Y to denote a singleton y = {Y}, for example φ−Yx = φ↓x\{Y}x .

A system (�,U,×,↓) closed under combination and marginalization is said to be a valuation algebra if it satisfies the

following three axioms [19,22].

(A1) Combination is commutative and associative.

(A2) For y ⊆ x ⊆ z,
(
φ
↓x
z

)↓y = φ↓yz .

(A3) If x ⊆ z ⊆ x ∪ y then
(
φx × φy

)↓z = φx × φ↓z∩yy .

The purpose of a valuation algebra is the computation of marginals of the form (×i φui)
↓y, where the joint valuation×i φui is computationally too expensive to be obtained explicitly. The complexity of the operations of combination and

marginalization is given by the size of the valuations involved, which is in general a function of the cardinality of the

domain. Hence, as a rule-of-thumb, the larger the domain of a valuation the more expensive are the operations involving it.

Axioms (A1)–(A3) provide the necessary conditions for breaking down the computation of a marginal from a joint valuation

into a sequence of computations of marginals over smaller domains. The pseudo-code in Algorithm 1 exhibits the variable

elimination procedure (also known as fusion algorithm), which exploits the axioms of valuation algebra to more efficiently

compute a marginal of a factorized valuation.

Algorithm 1: Variable elimination

input : A finite set of valuations� , a set of target variables y ⊂ U � ⋃
φu∈� u, and an ordering o = (X1, . . . , Xn) of

the variables inU \ y
output: The marginal (×φ∈� φ)↓y

for i← 1 to n do
Set Bi ← {φu ∈ � : Xi ∈ u} ;
Compute� i � (×φ∈Bi φ)−Xi ;
Set� ← (� \ Bi) ∪ {� i};

end

return � �×φ∈� φ;

Instead of computing a valuation×φ∈� φ over a large domain�U and thenmarginalizing to y, the algorithm computes

marginals (×φ∈Bi φ)−Xi over possibly much smaller domains. The overall complexity of the algorithm is given by the size

of the largest valuation� i generated at the loop step. If such a size is bounded then (A1)–(A3) are sufficient to show that the

algorithm efficiently outputs the desired marginal [19]. The size of the largest valuation, and hence the complexity of the

algorithm, depends on the ordering given as input. Finding an optimal ordering (i.e, one that induces aminimummaximum-

size valuation� i) is an NP-hard problem [23]. Fortunately, there are good heuristics that find suboptimal orderings in time

polynomial in the number of variables [18,13].
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2.2. Ordered valuation algebra

Some optimization tasks like the credal network inferences we aim at here admit a partial order ≤ over the valuations

� (i.e., a reflexive, antisymmetric and transitive relation). An ordered valuation algebra [16,20] is a system (�,U,×,↓,≤),
where (�,U,×,↓) is a valuation algebra and≤ is a partial order monotonic with respect to× and ↓: 2

(A4) If φx ≤ ψx and φy ≤ ψy then (φy × φx) ≤ (ψy × ψx) and φ
↓y
x ≤ ψ↓yx .

Given a set of valuations � ⊆ �, we say that φ ∈ � is maximal if for all ψ ∈ � such that φ ≤ ψ it holds that ψ ≤ φ.
In other words, a valuation φ is maximal in � if there is no other valuation greater than it. The operation max(�) returns
the set of maximal valuations of a set� . If� is finite and nonempty, the set max(�) contains at least one valuation.

Given any relation R on� , a subset� ′ ⊆ � is an R-covering of� if for every φ ∈ � there isψ ∈ � ′ such that φRψ . For

example, the set max(�) is a≤-covering of� .

2.3. Set-valuations

The algorithms we develop use the more sophisticated entities of sets of valuations, called set-valuations. Theses entities

can nevertheless be cast in the algebra of valuations, andmanipulated by the variable elimination algorithm to produce sets

of marginal valuations.

Let 2
�x

f denote the set of all finite subsets of�x , that is, 2
�x

f contains all possible finite sets of valuations φx . Likewise, the

set 2�f denotes the set of all finite subsets of valuations in�. We call an element� ∈ 2�f a set-valuation.

If�x ∈ 2
�x

f and �y ∈ 2
�y

f are any two set-valuations, we define their set-combination⊗ as the set-valuation resulting

from element-wise combination of their elements,

�x ⊗ �y � {φx × φy : φx ∈ �x, φy ∈ �y} .
Likewise, we define the set-marginalization operation ⇓ on 2� as the element-wise marginalization of the valuations in a

set,

�⇓yx � {φ↓yx : φx ∈ �x} .
Proposition 1. The system (2�f ,U,⊗,⇓) of set-valuationswith set-combination and set-marginalization is a valuation algebra.

Proof. The result follows trivially from element-wise application of axioms (A1)–(A3). �

We show in Section 3 that inference in credal networks can be easily mapped into a problem of computing the maximal

valuation of a set of marginals. A naive way of doing this is to apply the variable elimination procedure in Algorithm 1 with

set-combination and set-marginalization to obtain a set of marginals and then find the maximal valuation of its output �.

The complexity of this method is given by the size of the set-valuations� i generated in the loop step, which is given by the

cardinality of the associated frame of a valuation in it times the cardinality of� i. This creates set-valuations with cardinality

exponential in the cardinality of the input sets.

We can mitigate this problem by “distributing” the max operation over the set-combination and set-marginalization

operations, that is, we remove non-maximal elements after each set-combination and set-marginalization performed. This

has the potential benefit of reducing the cardinality of set-valuations, and considerably speed up computations. To show

that this operation indeed produces the desired outcome (the maximal valuation of a joint set-valuation), we introduce

the concept of max-combination and max-marginalization, show that max is a homomorphism of set-valuation algebra to

max-valuation algebra, and finally show that maximal set-valuations with max-valuation and max-marginalization form a

valuation algebra.

Let max(2�f ) � {max(�) : � ∈ 2�f } denote the set of sets of maximal valuations in 2�f with respect to a partial order

≤ over�. The max-combination⊕ of set-valuations�x and�y is the set of maximal valuations of their set-combination:

�x ⊕ �y � max(�x ⊗ �y) .

Similarly, the max-marginalization of�x to y is defined as

��y
x � max(�⇓yx ) .

2 The ordered valuation algebra we define here is actually weaker than the one defined by Haenni [16], as we do not assume the existence of infima and neutral

elements, and it resemblesmore closely Kohlas andWilson’s definition [20]. Nevertheless, the concrete algebras withwhichwework can be shown to also satisfy

Haenni’s definition.
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If (�1,U,×1,↓1) and (�2,U,×2,↓2) are two valuation algebras, we say that a mapping h : �1 → �2 is a homo-

morphism if for any φx, φy ∈ �1 we have that h(φx) ×2 h(φy) = h(φx ×1 φy) and h(φx)
↓2y = h(φ

↓1y
x ). Thus, if we are

interested in computing h(φ
↓1y
1 ) for some valuation φ1 ∈ �1 that we know that factorizes as φ1 = ψ1 ×1 · · · ×1 ψm,

we can equivalently obtain (h(ψ1)×2 · · · ×2 h(ψm))
↓2y, which might be computationally more convenient. The following

result relates the algebras of set-valuations and maximal set-valuations (w.r.t. a partial order).

Lemma 2. max is a homomorphism from (2�f ,U,⊗,⇓) to (max(2�f ),U,⊕,�).
Proof. We need to show that for any two set-valuations�x and�y, and any set of variables z it follows that

(i) max(�x)⊕max(�y) = max(�x ⊗ �y),

(ii) max(�x)
�z = max(�

⇓z
x ).

Part (i) has been shown in [15, Lemma 1(iv)]. We use a similar argument to prove part (ii).

If �x is empty, the result follows trivially. Assume �x is non-empty. We first show that max(�
⇓z
x ) ⊆ max(�x)

�z;

note that max(�x)
�z = max(max(�x)

⇓z) by definition. Suppose the assumption is false and there is an element φ
↓z
x ∈

max(�
⇓z
x ), where φx ∈ �x , which is not an element of max(�x)

�z . By definition of max(�x), there is a ψx ∈ max(�x)

such that φx ≤ ψx . Hence, (A4) implies φ
↓z
x ≤ ψ↓zx , and because ψ

↓z
x ∈ �⇓zx it follows that φ

↓z
x = ψ

↓z
x , and therefore

φ
↓z
x ∈ max(�x)

⇓z . Since we assumed that φ
↓z
x /∈ max(�x)

�z , there must be a φz ∈ max(�x)
�z such that φ

↓z
x ≤ φz . But

this contradicts our initial assumption that φ
↓z
x ∈ max(�

⇓z
x ), as φz ∈ �⇓zx .

Let us now show that max(�
⇓z
x ) ⊇ max(�x)

�z . Assume to show a contradiction that there is a ψz ∈ max(�x)
�z \

max(�
⇓z
x ). Since max(�

⇓z
x ) ⊆ �⇓zx by definition, we have thatψz ∈ �⇓zx . Hence, ifψz is not in max(�

⇓z
x ) as we assumed

there must be a φz ∈ max(�
⇓z
x ) such that ψz ≤ φz . But we have shown that max(�

⇓z
x ) ⊆ max(�x)

�z , so that ψz ≤ φz

implies φz ≤ ψz (by definition of a partial order) and thusψz ∈ max(�
⇓z
x ), a contradiction. �

Proposition 3. The system (max(2�f ),U,⊕,�) of maximal set valuations with max-combination and max-marginalization

is also a valuation algebra.

Proof. Property (A1): Commutativity of ⊕ follows trivially from its definition and the commutativity of ⊗. To show that

associativity holds, consider three maximal set-valuations �1, �2, �3. Notice that �1 = max(�1), �2 = max(�2) and
�3 = max(�3). We have by definition of max-combination that �1 ⊕ (�2 ⊕ �3) = max(�1) ⊕ max(�2 ⊗ �3). By
Lemma 2, the latter equals max(�1⊗ (�2⊗�3)), which by associativity of set-combination equals max((�1⊗�2)⊗�3).

Finally, by applying Lemma 2 once more, we get to max(�1 ⊗ �2)⊕max(�3) � (�1 ⊕ �2)⊕ �3.

Property (A2): By definition, for y ⊆ x ⊆ zwe have that (�
�x
z )�y) equals max(max(�

⇓x
z )⇓y), which by Lemma 2 equals

max([�⇓xz ]⇓y), which in turn is equal to max(�
⇓y
z ) � �

�y
z by property (A2) for set-marginalization.

Property (A3): Let x ⊆ z ⊆ x ∪ y. By definition,

(�x ⊕ �y)
�z = max(max(�x ⊗ �y)

⇓z) ,

which by Lemma 2 equals max([�x ⊗ �y]⇓z). Since set-valuations with set-marginalization and set-combination form a

valuation algebra, it follows that the latter is equal to max(�x ⊗ �⇓zy ), which equals max(�x)⊕max(�
⇓z
y ) � �x ⊕ ��z

y

by Lemma 2. �

Since maximal set-valuations with max-marginalization and max-combination form a valuation algebra, we can use

Algorithm 1 to obtain maximal marginals; and since the set of maximal elements of a set-valuation is in the worst case as

large as the set-valuation itself but often much smaller, working with maximal set-valuations instead of set-valuations it is

computationally much more efficient.

2.4. Probability potentials

We now turn our attention to the concrete valuation algebras that we will use in our framework. We start with the most

basic structures of probability potentials, and then proceed to define pairs of potentials, and finally, the elements of our

algorithms, sets of (maximal) pairs of potentials.

Probability potentials are perhaps the most common example of a valuation algebra. They generalize (conditional) prob-

ability mass functions by dropping the requirement of numbers adding to one. If x ⊆ U is a nonempty set of variables, we

define a potential px as a mapping from �x to the set of nonnegative reals. A potential p∅ over the empty set is defined as
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Fig. 1. An α-equivalence relation over a set of two-dimensional potentials. Points inside the same rectangle are α-equivalent. Black points indicate maximal

elements of the set. t is the smallest value returned by a potential in the set.

a nonnegative real number. The size of a potential px is the cardinality of its domain. Combination of potentials is given by

element-wise multiplication: for z ∈ �x∪y,

(px × py)(z) � px(z
↓x)py(z↓y) . (1)

Marginalization is defined as the sum of compatible elements. For y ∈ �y,

p↓yx (y) �
∑

x∈�x:x↓y=y
px(x) . (2)

Note that if y = ∅, the marginal p
↓y
x is a (nonnegative real) number.

We define a partial order over potentials by weak Pareto dominance: given two potentials px and qx over the same set

of variables x, we define px ≤ qx if px(x) ≤ qx(x) for all x ∈ �x . In this case, we say that px is dominated by qx . Note that

if px and qx have equal sum (i.e.,
∑

x∈�x
px(x) = ∑

x∈�x
qx(x)) then px �≤ qx and qx �≤ px (unless px = qx). This is the

case, for example, of potentials representing (conditional) probabilitymass functions. Therefore, the identityPx = max(Px)
holds for any set Px of (conditional) probability mass functions. Let P denote the set of all probability potentials. Probability

potentials constitute the first example of an ordered valuation algebra [16]:

Proposition 4. The system (P,U,×,↓,≤) is an ordered valuation algebra.

The approximation algorithm we devise requires a function that groups similar potentials whose error introduced by

discarding elements from the group is not greater than a given real number. Mathematically, for a given real α > 1, we

define an equivalence relation≡α over potentials that identifies potentials that are not more than a factor α of each other:

any two potentials px and qx over the same set of variables x are α-equivalent (i.e., px ≡α qx) if for all x ∈ �x either

px(x) = qx(x) = 0 or px(x) and qx(x) are both positive and �logα px(x)� = �logα qx(x)�. For any set of variables x, the

relation≡α partitions the space Px of potentials over x so that any two potentials in the same partition do not differ in any

dimension by more than a factor α. This is depicted in Fig. 1.

2.5. Pairs of potentials

Inference in credal networks is basically a complicated combinatorial problem with a fractional objective function. This

implies (in the case of upper bounds) finding solutions with a good compromise between maximizing the numerator and

minimizing the denominator. It is in part this dichotomy in the objective that makes posterior inferences in credal networks

much harder than their Bayesian counterpart.We represent the dichotomy in a solution by a pair of potentials: one potential

contains the contribution of a (partial) candidate solution to the numerator, while the other potential is the contribution

to the denominator. The pairs of potentials corresponding to different contributions of the same (partial) solutions are the

primitive entities of the exact and approximate procedures we devise later on.

Let φx = (p
x, p
r
x) denote a pair of probability potentials associated to the same set of variables x. The potentials p
x

and prx are referred to as the left and right potentials of φx , respectively. For any two pairs of potentials φx = (p
x, prx) and
ψx = (q
x, qrx), we define a partial order≤ such that φx ≤ ψx if q



x ≤ p
x and prx ≤ qrx . The partial order reflects the nature of

computations with credal networks. For a given set of pairs of potentials over the same set of variables, we seek valuations

that partly dominate (according to right potentials) other potentials and partly are dominated by them (according to left

potentials).
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If φx = (p
x, prx) and φy = (p
y, pry) are two pairs of potentials, we define their combination as the pair of left and right

combinations of potentials, that is, φx × φy � (p
x × p
y, p
r
x × pry). Similarly, the marginalization of a pair φx = (p
x, prx) is

performed on both potentials: φ
↓y
x � ((p
x)

↓y, (prx)↓y).

Proposition 5. Let� denote the set of all pairs of potentials. The system (�,U,×,↓,≤) is an ordered valuation algebra.

Proof. Properties (A1)–(A3) follow directly from the corresponding properties for probability potentials. To show that

Property (A4) holds, consider a set of variables z and pairs of potentials φx = (p, q), ψx = (r, s), φy = (t, u), and

ψy = (v,w) such that φx ≤ ψx and φy ≤ ψy. We thus have that vr ≤ tp, uq ≤ ws, r↓z ≤ p↓z , and q↓z ≤ s↓z , which implies

φy × φx = (tp, uq) ≤ (vr,ws) = ψy × ψx and φ
↓z
x = (p↓z, q↓z) ≤ (r↓z, s↓z) = ψ↓zx . �

Let 2�f and max(2�f ) denote, respectively, the set of all finite sets of pairs of potentials and the set of all finite sets

of maximal pairs of potentials (where maximality is taken with respect to the partial order we defined). It follows from

Propositions 1 and 3 that the systems (2�f ,U,⊗,⇓) and (max(2�f ),U,⊕,�) are valuation algebras. Moreover, max is

a homomorphism from 2�f to max(2�f ). Thus, given a collection of finite sets of pairs �x1 , . . . , �xn , we can obtain the set

max(�y) � max((
⊗
�xi)
⇓y) of maximal marginal valuations potentially more efficiently by performing computations

in the algebra of sets of maximal pairs, that is, by computing max((
⊕

i max(�xi))
�y). Bentley et al. [4] showed that sets

of n uniformly distributed pairs of potentials over a domain �y have, on average, O((log n)2|�y|−1) maximal elements.

Unfortunately, the uniformity assumption does not hold in the computations we perform, as we deal with sets generated

by combination and marginalization of others. To our knowledge, it remains to be obtained any bounds or expectations on

the size of maximal sets obtained from propagated valuations such as those generated by variable elimination. Note that,

as with sets of probability potentials, if� contains only valuations whose left or right potentials specify a probability mass

function, then� = max(�).
The approximation algorithmwedevise enables the trade-off between accuracy and speed by relaxing the partial order to

an approximate Pareto dominance relation. Given a real number α > 1, we define a relation≤α such that φ ≤α ψ denotes

that by mistakenly assuming φ ≤ ψ we introduce an error factor no greater than α on each coordinate. More formally, we

define φ ≤α ψ if φ ≤ (α−1, α)×ψ . Note that≤α is neither transitive nor antisymmetric, and, more importantly, that we

may have φ ≤α ψ for φ �≤ ψ . This allows≤α-coverings to be much smaller than their corresponding≤-coverings (i.e., the
set of maximal elements with respect to the partial order).

The α-equivalence relation over potentials can easily be extended to pairs of potentials. Two pairs (p
x, p
r
x) and (p



y, p

r
y)

are α-equivalent if p
x ≡α p
y and pry ≡α pry. It is not difficult to see that φ ≡α ψ implies both φ ≤α ψ andψ ≤α φ.
An≤α-covering for a set of pairs of potentials�x provides an approximated version of�x , one in which for eachφx ∈ �x

we are guaranteed to have a pair ψx in the covering such that the left and right potentials of ψx and φx differ in each

coordinate by a factor no greater than α. We can easily obtain an ≤α-covering of �x of bounded cardinality by discarding

one of any two α-equivalent pairs in �x . We denote this operation by �x/α, in analogy to the notion of quotient sets. For

instance, we can obtain an ≤α-covering of the set of points in Fig. 1 by selecting exactly one point in each rectangle. As

the number of equivalency classes (i.e., hyper-rectangles) in a set of pairs of potentials over x is at most (1− �logα t�)2|�x|,
where t is the smallest value returned by a potential in the set, this procedure is guaranteed to produce≤α-coverings whose

cardinality is polynomial in t (but exponential in |�x|). Moreover, the smallest value t of a set of pairs of potentials produced

by set-combination and set-marginalization (e.g., during variable elimination) is a polynomial in the input number. The

approximation algorithmwe develop in Section 5 strongly relies on the following results that formalize and extend this idea.

Lemma 6. If k1, . . . , km are positive integers and�x1 , �
′
x1
, . . . , �xm, �

′
xm

are set valuations such that for i = 1, . . . ,m� ′xi is
an≤αki -covering for�xi , then�

′
x1
⊗ · · · ⊗ � ′xm is a≤β -covering for�x1 ⊗ · · · ⊗ �xm , where β = α∑m

i=1 ki .

Proof. We work by induction on j = 1, . . . ,m. The base case for j = 1 follows trivially since � ′x1 is an ≤αk1 -covering for

�x1 . Assume that the result holds for 1 ≤ j < m − 1, and consider a pair φ = φ′ × φ′′ in �x1 ⊗ · · · ⊗ �xj+1 , where

φ′ ∈ �x1 ⊗ · · · ⊗ �xj and φ
′′ ∈ �xj+1 . There is ψ = ψ ′ × ψ ′′ in � ′x1 ⊗ · · · ⊗ � ′xj+1 , where ψ ′ ∈ � ′x1 ⊗ · · · ⊗ � ′xj and

ψ ′′ ∈ �xj+1 , such that (by assumption) φ′ ≤ (α−∑j
i=1 ki , α

∑j
i=1 ki) × ψ ′ and φ′′ ≤ (α−kj+1 , αkj+1) × ψ ′′. It follows thus

from (A4) that φ ≤ (α−∑j+1
i=1 ki , α

∑j+1
i=1 ki)× ψ . �

Let�x1 , . . . , �xm denote sets of pairs of potentials which take values on the interval [0, 1], and let b be the number of bits

required to encode these sets as a bit string. Also, let�y � (�x1 ⊗ · · · ⊗�xn)
⇓y and�y/α be the set obtained by selecting

one valuation per α-equivalence class from�y. The following result shows that the cardinality of�y/α is polynomial in the

approximation factor α and size of the input b.
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Proposition 7. The cardinality of�y/α is O((bmα/(α − 1))2|�y|).

Proof. For any potential φxi = (p, q) ∈ �xi and xi ∈ �xi it follows that p(xi) and q(xi) are rational numbers that are either

zero or greater than or equal to 2−b (otherwise we would need more than b bits to encode it). Let t be the smallest positive

number in a pair φy ∈ �y. By definition of combination and marginalization, we have for some y ∈ �y that

t = ∑
x:x↓y=y

n∏
i=1

pxi(x
↓xi) ≥ max

x:x↓y=y

n∏
i=1

pxi(x
↓xi) ≥ 2−bn ,

where the pxi ’s are either the left or the right potential of pairs φxi ∈ �xi .

For any (p
y, p
r
y) ∈ �y and y ∈ �y the values �logα p
y(y)� and �logα pry(y)� are integers between zero and −�logα t�.

Hence, by definition of≡α over pairs of potentials, the number of elements of�y/α is not greater than (1− �logα t�)2|�y|
(the added one accounts for zero values). Since t ≥ 2−bn, the number of elements is smaller than (1+ bn/ log2 α)

2|�y|, and
it follows from the inequality ln(α) ≥ (α − 1)/α, valid for any α ≥ 1, that |�y| is O((bnα/(α − 1))2|�y|). �

The latter result is in fact an adaptation of Papadimitriou and Yannakakis’ result on the boundedness of ε-approximate

Pareto curves in multi-objective optimization problems [1, Theorem 1].

3. Credal networks

In this section we review the basic concepts and computational challenges of extensively specified credal networks.

3.1. Definitions

We start with some basic terminology from graph theory. Let G = (U, E) be a DAG, and X a node in U. We write

pa(X) � {Y ∈ U : (Y, X) ∈ E} to denote the parents of X , ch(X) � {Y ∈ U : (X, Y) ∈ E} to denote the children of X inU,

and fa(X) � {X} ∪ pa(X) to denote the family of X . We call Y a descendant of X if there is a directed path from X to Y in G.
In the language of (extensively specified) credal networks, the relationships among variables are quantitatively specified

using extensive credal sets. An extensive credal set is a set of probability potentials over the same domain. According to

Proposition 1, the system (2Pf ,U,⊗,⇓), where 2Pf denotes the set of all possible finite extensive credal sets over subsets

of U, is a valuation algebra. Given an extensive credal set Kx of potentials over x, we write H(Kx) to denote its convex hull

(i.e., the set obtained by all convex combinations of elements in Kx), and ext[H(Kx)] to denote its extreme points (i.e., the

elements of H(Kx) that cannot be written as a convex combination of other elements). The convex hull of a set and the set

of its extreme points are themselves extensive credal sets.

An extensively specified credal network is a triple (U,G,K), where U is a set of variables, G is a DAG over U, and

K is a collection of finite extensive credal sets KX , one for each X ∈ U, such that each potential pfa(X) ∈ KX satisfies∑
x:x↓pa(X)=π pfa(X)(x) = 1 for all π ∈ �pa(X) (i.e., they represent conditional probability mass functions p(X| pa(X)=π)).

Fig. 2 depicts a simple extensively specified credal network over five binary-valued variables. For instance, the extensive

credal sets associated to E and C are given, respectively, by KE = {p1(E), p2(E)}, KC = {p(C|A)}.
The strong extension of a credal network is the largest set of probability mass functions over U whose extreme points

factorize according to G and K . In other words, the strong extension S is the extensive credal set obtained by the convex

closure of the set-combination of all extensive credal sets in K:

S � H

⎛
⎝⊗

X∈U
KX

⎞
⎠ . (3)

3.2. Belief updating

When reasoning under uncertainty, we are most often interested in updating our initial model in the light of additional

information about some of the variables. In the credal network framework, this is done by computing upper and lower

bounds for the posterior probability of a target variable Q ∈ U taking on value q ∈ �Q given some evidence e ∈ �e on a

set of evidence variables e ∈ U \ {Q}. This is known as the belief updating task.
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Fig. 2. Example of an extensively specified credal network.

Assume p↓e(e) > 0 for all p ∈ S. The belief updating task consists in obtaining the lower and upper bounds

p(q|e) � min
p∈S

p↓Q ,e(q, e)
p↓e(e)

, (4)

p(q|e) � max
p∈S

p↓Q ,e(q, e)
p↓e(e)

. (5)

The computations of lower and upper bounds in Eqs. (4) and (5) are continuous optimization problems involving a

fraction of two complicated functions. Our goal in the rest of this section is to show that these continuous optimizations can

be mapped into combinatorial problems of computing sets of maximal marginal valuations. The latter problems can then

be solved by the variable elimination algorithm discussed in Section 2.

We begin with a well-known result that the solutions to the convex optimizations in Eq. (5) are attained at extreme

points of the strong extension [24]. Hence, the problem can be turned into a combinatorial one of selecting which extreme

of the set S maximizes or minimizes the ratio p↓Q ,e(q, e)/p↓e(e). Let S′ denote the set obtained by combining extremes of

local models:

S′ �
⊗
X∈U

ext[H(KX)] .

It is also well-known that any extreme of S can be obtained as a combination of local extrema [2], that is,

ext[S] ⊆ S′ .

These results imply that the potential p∗ that maximizes the optimization in Eq. (5) (i.e., the p∗ that achieves p(q|e)) is an
element of S′. Since S′ is, by definition, a subset of S, any solution p ∈ S′ cannot achieve a value higher than p(q|e). Hence,
we have that

p(q|e) = max
p∈S′

p↓Q ,e(q, e)
p↓e(e)

(6)

= max
p∈S′

p↓Q ,e(q, e)
p↓Q ,e(q, e)+ p↓Q ,e(¬q, e) , (7)

where p↓Q ,e(¬q, e) � ∑
q′∈�q:q′ �=q p↓Q ,e(q′, e). We can derive analogous equations for the lower bound optimization. The

passage from Eq. (6) to (7) follows from the definition of marginalization. Notice that Eq. (7) states a combinatorial problem
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over the set S′, which is obtained by a finite number of combinations. If p(q, e) > 0, we can divide the numerator and the

denominator of Eq. (7) by p↓Q ,e(q, e) > 0 and obtain3

p(q|e) = max
p∈S′

(
1+ p↓Q ,e(¬q, e)

p↓Q ,e(q, e)

)−1
. (8)

For any potential p ∈ S′, let pq|e denote the posterior probability obtained by p, that is,

pq|e �
(
1+ p↓Q ,e(¬q, e)

p↓Q ,e(q, e)

)−1
.

Now consider two potentials p and r such that p↓Q ,e(¬q, e) ≤ r↓Q ,e(¬q, e) and r↓Q ,e(q, e) ≤ p↓Q ,e(q, e). Clearly, rq|e ≤
pq|e, and r is not a solution of the maximization problem (conversely, p is not a solution of the minimization problem). This

allows us to define a partial ordering among solutions p ∈ S′.
Let�q|e denote the set of pairs of potentials (p↓Q ,e(¬q, e), p↓Q ,e(q, e)), where p ∈ S′. Then Eq. (8) can be rewritten as

p(q|e) = max
(p
,pr)∈max(�q|e)

(
1+ p
/pr

)−1
. (9)

Basically, what Eq. (9) states is that we can narrow down the optimization space to the set of potentials whose corre-

sponding pairs in�q|e are not dominated by any other pair in the set (conversely, we take the set of minimal elements in the

minimization case). Although this set could be as large as S′, our experiments show thatmost often it is significantly smaller.

Thus, if max(�q|e) is sufficiently small, we can find the solution by a simple enumerative scheme, and the optimization

problem is then converted into the problem of computing the maximal elements of �q|e, which can be done by variable

elimination, as we show in the following section.

4. Exact inference

In this section we describe an algorithm for exact computation of upper posterior probabilities in credal networks. An

algorithm for obtaining lower probabilities can be obtained in a very similar way.

For any variable X and a subset X ⊂ �X , we define the identity potential IX as a potential over X that returns 1 for x ∈ X
and 0 otherwise. If X = {x} is a singleton, we write Ix . For any x ∈ �X , we define the set¬x � �X \ {x}.

Consider a credal network (U,G,K), an elimination ordering X1, . . . , Xn of the variables inU, a query variable Q with

target state q ∈ �Q , and a set of evidence variables e set to e ∈ �e. An algorithm to compute the upper probability p(q|e)
can be obtained as follows. Let� be the set that contains

(i) A set-valuation�Q � {φQ = (I¬q, Iq)};
(ii) A set-valuation�X � {φfa(X) = (pfa(X), pfa(X)) : pfa(X) ∈ ext[H(KX)]} for each X ∈ U;

(iii) A set-valuation�E � {(Ie↓E , Ie↓E )} for each E ∈ e.

Run variable elimination (Algorithm 1) with inputs� , y = ∅, using max-combination and max-marginalization to perform

the operations, which computes the set of maximal marginals � = (�Q ⊕⊕
E∈e �E ⊕⊕

X∈U �X)
�∅, and return

pq|e � max
(p
,pr)∈�

(
1+ p
/pr

)−1
.

Theorem 8. The described procedure computes the upper posterior probability, that is, pq|e = p(q|e).
Proof. The sets�X, �Q , �E ∈ � as well as the sets� i generated during the variable elimination algorithm are valuations

in the valuation algebra of sets of maximal pairs of potentials. It follows from (A1)–(A3) and the repeated application of

Lemma 2 that

3 Checking whether p(q, e) > 0 can be done efficiently if the network has bounded treewidth.
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� =
(
�Q ⊕

⊕
E∈e

�E ⊕
⊕
X∈U

�X

)�∅
(10)

= max

([
�Q ⊗

⊗
E∈e

�E ⊗
⊗
X∈U

�X

]↓∅)
. (11)

Recall that combination of pairs is defined as the pair formed by the combination of left potentials and the combination of

right potentials. Therefore, � is a set of maximal pairs of potentials (p
, pr), where by definition of�Q ,�E , and�X ,

p
 =
(
I¬q ××

E∈e
Ie↓E ××

X∈U
pfa(X)

)↓∅
= p↓q∪e(¬q, e) , (12)

pr =
(
Iq ××

E∈e
Ie↓E ××

X∈U
pfa(X)

)↓∅
= p↓q∪e(q, e) , (13)

where p ∈ S′. Moreover, p
 and pr are compatible, that is, for any potential pfa(X) in p
 taken from a local extensive credal

set KX , the same was used to compute pr (and no other potential from KX ). Hence, � = max(�q|e). The result is obtained

by comparing the definition of pq|e and Eq. (9). �

The complexity of the algorithm is upper bounded by the cost of the combination of sets of pairs in computing� i during

the variable elimination part. Each of these computations takes time polynomial in the size of the largest set, which might

be exponential in the size of the input sets. For instance, the size of the largest potential is a function of the topology of G
and the given elimination ordering. The number of elements of a set, on the other hand, depends on the number of non-

maximal elements that are discarded at each combination or marginalization operation. In the worst-case scenario where

no element is ever discarded, the algorithm runs in exponential time even if the network treewidth and the cardinality of the

frames of the input sets are bounded (which is not surprising given that the problem is NP-hard even under such simplifying

assumptions).

An algorithm for computing lower posterior probabilities can be obtained by substituting sets of maximal valuations and

maximizations by sets of minimal valuations and minimizations, respectively. The correctness and complexity analysis are

analogous to the maximization case.

5. FPTAS

The computational bottleneck of the variable elimination procedure presented in Section 4 is the existence of large sets

at some point in the propagation step (apart from the inherent difficulty of manipulating potentials over large domains).

We can remedy the large set problem by trading off accuracy and running time. In this section, we devise a multiplicative

approximation scheme that runs in time polynomial in the number of potentials of the input extensive credal sets, but it is

still exponential in the size of the largest pair ψXi generated during the propagation step, which depends only on the sizes

of the frames of the variables and the network treewidth. For the rest of this section, we assume the size of variable frames

and the network treewidth to be bounded by a constant. Additionally, we require the input potentials to be represented by

rational numbers, so that the size of the input is well-defined. The approximation scheme we obtain is an FPTAS, that is, a

family of algorithms parameterized by ε > 0 that returns in time polynomial in 1/ε and the input size a feasible solution

that is no worse than the optimal solution by a factor of 1 + ε, that is, if x∗ is the optimal solution (of a maximization

problem), the approximation algorithm returns a solution x such that x∗/(1+ ε) ≤ x ≤ x∗.
Given a real numberα greater than one,we define theα-combination of two set-valuations�x and�y as the set obtained

by (repeatedly) discarding any of twoα-equivalent valuations from their set-combination, that is,�x�α�y � (�x⊗�y)/α.
The operation �α is not associative, that is, there are set-valuations �x , �y and �z for which (�x �α �y) �α �z differs

from�x �α (�y �α �z). Nevertheless, the order in which sets are α-combined does not alter the combined approximation

factor, as the following result states.

Lemma 9. If �x1 , . . . , �xm are set-valuations, then �x1 �α · · · �α �xm (where the operations are applied in any order) is an

≤αm−1-covering for�x1 ⊗ · · · ⊗ �xm .

Proof. We show by induction on k = 1, . . . ,m − 1 that �x1 �α · · · �α �xk+1 is a ≤β -covering for �x1 ⊗ · · · ⊗ �xk+1 ,
where β = αk . For k = 1, it follows directly from the definition of α-combination that �x1 �α �x2 is an ≤α-covering
for �x1 ⊗ �x2 (since the former is obtained by removing only α-equivalent elements). Assume for k ∈ {1, . . . ,m − 2}
that �x1 �α · · · �α �xk+1 is a ≤β -covering for �x1 ⊗ · · · ⊗ �xk+1 , where β = αk . Consider any pair φ = φ′ × φ′′ in
�x1 ⊗· · ·⊗�xk+2 , where φ′ ∈ �x1 ⊗· · ·⊗�xk+1 and φ

′′ ∈ �xk+2 . There isψ = ψ ′ ×ψ ′′ in�x1 �α · · ·�α �xk+1 ⊗�xk+2 ,
where ψ ′ ∈ �x1 �α · · · �α �xk+1 and ψ ′′ ∈ �xk+2 , such that φ′ ≤β ψ ′ (by assumption) and ψ ′′ = φ′′. Then it
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follows from (A4) that φ ≤β ψ , or equivalently that φ ≤ (β−1, β) × ψ . But since �x1 �α · · · �α �xk+2 is an ≤α-
covering for�x1 �α · · ·�α �xk+1 ⊗ �xk+2 , there isψ ′′′ ∈ �x1 �α · · ·�α �xk+2 such that ψ ≤α ψ ′′′, or equivalently that

ψ ≤ (α−1, α)× ψ ′′′. By combining both sides with (β−1, β) and applying (A4) we get to

φ ≤ (β−1, β)× ψ ≤ (β−1, β)× (α−1, α)× ψ ′′′ ,
and hence φ ≤ (α−(k+1), αk+1)× ψ ′′′, and φ ≤αk+1 ψ ′′′. The lemma follows from the induction. �

Thus, by properly choosing the value of α we can obtain a covering that approximates a combination of set-valuations

with errors as small as we want. In addition, Proposition 7 guarantees that the sets obtained after each α-combination have

cardinality polynomial in the input size and in the maximum error.

We can modify the exact variable elimination algorithm devised in Section 4 to provide an FPTAS by substituting max-

combination and max-marginalization with α-combination with α = 1 + ε/4n and set-marginalization. Let � i and � i
(α)

denote, respectively, the sets obtained in the ith iteration of the loop step of variable elimination using set-combination and

α-combinations (and both with set-marginalization). In other words, � i is the set obtained by a brute-force elimination

algorithm, whereas� i
(α) denote the sets obtained by the approximation algorithm. Similarly, we let � and �(α) denote the

outputs of variable elimination with set-combination and α-combination, respectively.

Let s1 denote the number of set-valuations that are combined to compute �1
(α) (and also �1) minus one, that is, s1 �

|B1| − 1. Then, for i = 2, . . . , n, we define si recursively as si � |Bi| − 1+∑
j:� j

(α)∈Bi sj . Intuitively, si denotes the number

of valuations from the input that are required either directly or indirectly to compute� i
(α) (and also� i) minus one. Hence,

if� is the set obtained after the loop step, we have that |�(α)| +∑
i:� i

(α)∈� si = n, since there are n set-valuations given as

input and each is used exactly once in the computation of some� i
(α) (or�

i).

The following lemma relates the set-valuations propagated by variable elimination with α-combination to the corre-

sponding sets obtained by set-combination.

Lemma 10. For i = 1, . . . , n, the set-valuation� i
(α) is an≤αsi -covering for� i.

Proof. For i = 1 the result follows directly from Lemma 9. Consider some 1 ≤ i < n, and let m = |Bi|. Without loss

of generality, let � i = [�x1 ⊗ · · · ⊗ �xk ⊗ · · · ⊗ �xm ]−Xi , where �x1 , . . . , �xk denote set-valuations given as input and

�xk+1 , . . . , �xm denote sets � j (j < i) generated in the propagation step. Similarly, let � i
(α) = [�x1 �α · · · �α �xk �α

� ′xk+1�α · · ·�α�
′
xm
]−Xi ,where, for k+1 < 
 < m,�x
 = � j implies� ′x
 = � j

(α). Assumeby induction that the result holds

for 1, . . . , i− 1. Hence, if� ′x
 = � j

(α) then�
′
x


is an≤αsj -covering for�x
 . Now, consider any pair φ = [φ′ ×φ′′]−Xi ∈ � i,

where φ′ ∈ �x1 ⊗ · · · ⊗�xk and φ
′′ ∈ �xk+1 ⊗ · · · ⊗�xm . It follows from Lemma 9 that there isψ ′ ∈ �x1 �α · · ·�α �xk

such that φ′ ≤ (α−k+1, αk−1)×ψ ′. Likewise, since� ′xk+1 �α · · ·�α �
′
xm

is an≤αm−(k+1)-covering for� ′xk+1 ⊗ · · · ⊗� ′xm
(by Lemma 9) and � ′xk+1 ⊗ · · · ⊗ � ′xm is an ≤α∑


 s
 -covering for �xk+1 ⊗ · · · ⊗ �xm (by Lemma 6 and the induction

hypothesis), there is ψ ′′ ∈ � ′xk+1 �α · · · �α �
′
xm

such that φ′′ ≤ (α−si+k, αsi−k) × ψ ′′. Since ≡α implies ≤α , there is

ψ ∈ (�x1 �α · · ·�α �xk)�α (�xk+1 �α · · ·�α �xm) such thatψ ′ ×ψ ′′ ≤ (α−1, α)×ψ . Thus, it follows from (A4) that

φ ≤ [(α−si , αsi) × ψ]−Xi . But from (A3) we have that [(α−si , αsi) × ψ]−Xi = (α−si , αsi) × ψ−Xi , where ψ−Xi ∈ � i
(α).

Since this is true for any φ ∈ � i, the result holds for i. The lemma follows from the induction. �

Consider a credal network (U,G,K), an elimination ordering X1, . . . , Xn of the variables inU, a query variableQ , a set of

evidence variables e, and a query-evidence pair (q, e) ∈ �{Q}∪e. Let� be a collection of sets of pairs as defined in Section 4,

and consider the variable elimination algorithmwith inputs� , y = ∅, and α-combination and set-marginalization. Finally,

return pq|e � max(p
,pr)∈�α (1+ p
/pr)−1 as the approximate solution.

Theorem 11. The described procedure is an FPTAS for computing upper posterior probabilities for networks of bounded treewidth

and number of states per variable.

Proof. First, we analyze the time complexity of the algorithm. We are thus interested in the maximum cardinality of a set

� i
(α), and in the cardinality of the domain of a valuation generated in the loop step. The boundedness assumptions imply that

the cardinality of the domain of any propagated valuation is smaller than a constant. Hence, the polynomial time complexity

depends on |� i
(α)| being bounded. For i = 1, . . . , n, any valuation φi ∈ � i

(α) is produced by first combining valuations that

are either in some previously generated set �
j

(α) (j < i) or in a set given as input, and then eliminating Xi from it. Thus,

by recursively applying (A1)–(A3) to factorize each valuation from a �
j

(α) into a combination of valuations and moving the
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eliminations out, we have that φi = [φx1 × · · · × φxsi+1 ]−{X1,...,Xi}, where each φxj is in a set-valuation given as input.

Hence, each � i
(α) can be factorized as [�x1 ⊗ · · · ⊗ �xsi

]−{X1,...,Xi}, where each �xj is a subset of a set-valuation given as

input. It follows then from Proposition 7 that � i
(α) has O([bsiα/(α − 1)]2ω) elements, where ω is a constant greater than

the cardinality of the domain of any φi. Since α = 1+ ε/4n, we have that

O

⎛
⎝

[
bsi

α

(α − 1)

]2ω
⎞
⎠ ≤ O

⎛
⎝

(
4n2b

ε

)2ω
⎞
⎠ ,

whereb is the sizeof the input inbits. Therefore thealgorithmruns in timepolynomial in the input, in thegivenapproximation

factor ε, and in the number of variables n.

Let p(q|e) � max(p
∗,pr∗)∈�(1 + p
∗/pr∗)−1 denote the optimum value. We now show that the approximation algorithm

yields a solution such that pq|e ≥ p(q|e)/(1+ ε) for any given positive ε. Let� ′x1 , . . . , �
′
xm

denote the sets� i
(α) in� after

the loop step of the approximation algorithm, where m = |�(α)|, and let �x1 , . . . , �xm be the sets � i in � after the loop

step of the brute-force version. Then, �(α) = � ′x1 �α · · · �α �
′
xm

and � = �x1 ⊗ · · · ⊗ �xm . It follows from Lemma 9

that �(α) is an ≤αm−1 -covering for � ′x1 ⊗ · · · ⊗ � ′xm , which in turn is an ≤αn−m-covering for �, by Lemma 10. Hence, for

any φ ∈ � there is ψ ∈ �(α) such that φ ≤ (α−(n−1), αn−1) × ψ an thus φ ≤ (α−n, αn) × ψ . In particular, there is

ψ = (p
, pr) ∈ �(α) such that (p
∗, pr∗) = φ∗ ≤αn ψ . Therefore, p
 ≤ αnp
∗, pr∗ ≤ αnpr , and

(1+ p
/pr)−1 ≥ (1+ α2np
∗/pr∗)−1 ≥ α−2n(1+ p
∗/pr∗)−1 .

Since α = (1+ ε/4n), we have that

(1+ p
/pr)−1 ≥ (1+ ε/4n)−2n(1+ p
∗/pr∗)−1 ≥ (1+ ε)−1(1+ p
∗/pr∗)−1 = (1+ ε)−1p(q|e) ,
where the second passage is due to the inequality (1+ x/z)z ≤ 1+ 2x, valid for any x ∈ [0, 1] and any positive integer z.

Hence, pq|e ≥ p(q|e)/(1+ ε). �

The asymptotical complexity analysis that verifies the efficiency of the FPTAS might hide huge constants, making that

the number of elements in a set � i
(α) might be, in practice, prohibitively high. For example, suppose that at some point

during variable elimination we generate a � i
(α) whose valuations are associated to a set of five four-state variables y (so

that |�y| = 45), and such the smallest value in a valuation φi ∈ � i
(α) is t = 0.05. For α = 1.1, we can only guarantee

that the cardinality of � i
(α) is no greater than (1 − logα t)2|�y| > 322·45 = 210240! The reason why this is still considered

polynomially bounded in the input is that the exponent is taken as a constant, since both the number of variable states and

the treewidth of the network are bounded, which hides the large cardinality of state spaces. However, computing such a set

would be prohibitively expensive with any current computer.

We can make the approximation algorithm more efficient in practice by discarding non-maximal pairs (with respect to

the partial order≤) from the sets� i
(α), like in the exact algorithm in Section 4. Since a dominated valuation is guaranteed to

induce a smaller probability than the dominating valuation, discarding non-maximal elements does not alter the accuracy

of the algorithm, butmight decrease the cardinality of sets considerably. This is done in our implementation of the algorithm

whose performance we evaluate in the next section.

6. Experiments

We compared the performance of the exact and the approximation variable elimination algorithms against the mixed

linear integer programming method of de Campos and Cozman [7] on a collection of 1860 extensively specified credal

networks randomly generated using the BNGen package [17]. The networks were generated containing treewidth no greater

than four, 10–30 nodes, 2–4 states per variable, and 2–16 potentials in each local extensive credal set. For each network, we

set some evidence to every leaf node (i.e., the set of evidence variables e correspond to set of leaves of the network) and

arbitrarily chose a nodewith no parents as query. This created belief updating problemswhere a brute-force approachwould

have to executeO(cn)Bayesiannetwork inferences,where c is themaximumcardinality of an extensive credal set in the input

and n is the number of variables in the network. The elimination ordering of the variable elimination procedures on each

problem was decided using the Maximum Minimum Neighborhood Weight heuristic that greedily attempts to minimize

the cardinality of the frame of propagated potentials [13]. The heuristic finds optimum orderings (in the sense of minimum

weighted treewidth) for singly connected networks, and it has been found to perform empirically well in multi-connected

networks [13,18]. To make the removal of non-maximal valuations more effective, we ensure the set-valuation�Q is in B1,
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Fig. 3. Comparison of the log running times (in sec) of the exact and approximation variable elimination procedure and the mixed integer linear programming.
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Fig. 4. Comparison of the log of the maximum set size of the exact and the approximate variable elimination procedures.

even if it is not required (i.e., if Q /∈ fa(X1)). Since the query has no parents, this increases the treewidth of the elimination

ordering by at most one. In all experiments, we used an approximation factor of ε = 0.1.
For each network, we granted each algorithm 12 h of CPU time and 2GB of RAM on a fast computer. Fig. 3 depicts the

running time of the exact variable elimination procedure (VARELIM) against the running time of the mixed integer linear

programming method (MILP) on a log–log scale (plots 3a and 3b), as well as the running time of the approximation against

the exact version of the variable elimination procedure (plots 3c and 3d). For each plot, only networks which both methods

being compared were able to solve within the time and memory limits are shown. Since the MILP method implements

an anytime procedure, we ran it in each problem until the difference between lower and upper bounds were smaller than
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0.0001. Hence, we considered a problemunsolved byMILP if the CPLEXmixed linear integer solverwas not able tomeet such

a requirement within the time and memory limits we set. The approximation and exact VARELIM solved, respectively, 805

and 660 out of the 1860 problems, whereas MILP was able to solve only 357 problems. The approximationmethod solved all

instances which the exact solved (but not the opposite). The exact VARELIM was able to solve 346 problems for which MILP

failed to find a solution. On the other hand, MILP was able to solve only 43 instances which the exact VARELIM was not able

to solve.

As one can see from the plots, the exact variable elimination algorithmwasmuch faster thanMILP on the largemajority of

problems (points on the right-hand side of the straight line indicate networks forwhich themethod on the x-axis performed

slower than the method on the y-axis). MILP was faster than VARELIM on 10 problems, and the converse was true on 304

instances. Regarding the 660 networks that both approximation and exact variable elimination algorithms were able to

solve, the exact was faster than the approximation on 282 cases (≈ 42%). This is due to the overhead in the approximation

introduced by finding α-equivalent valuations, and to the fact that the removal of non-maximal elements greatly reduces

the size of sets (so that the removal of α-equivalent valuations may cause a small decrease in many problems). On the other

hand, in more than half of the cases the gains in speed due to the removal of α-equivalent valuations in the approximation

was significant to overcome the overhead of the operation, causing the approximation to outperform the exact version (we

also remove dominated valuations in the approximation version). The maximum number of elements in a set produced

during variable elimination by the approximation and the exact procedures are compared in Fig. 4. We can see that for the

Table 2

Running time (in sec) of variable elimination algorithm grouped by topology type, number of nodes N, maximum number of variable states k and maximum

number of potentials in a input set c. Columns show percentage of solved cases, median, average (AVG) and standard deviation (SD) for each group. Numbers

greater than one are truncated.

Topology N k c Exact Approximation

% Solved Median AVG SD % Solved Median AVG SD

Multi-connected 10 2 16 20 824 5617 9923 21 955 6978 11157

Multi-connected 10 2 2 100 0.04 0.04 0.03 100 0.04 0.04 0.03

Multi-connected 10 2 4 100 4 1096 3906 100 3 276 1025

Multi-connected 10 4 2 100 0.19 0.38 0.46 100 0.2 0.41 0.49

Multi-connected 10 4 4 100 248 2030 4407 100 238 1992 4335

Multi-connected 20 2 2 95 113 1835 4304 96 95 1592 3747

Multi-connected 20 4 2 81 1154 5864 9584 81 1266 6009 9594

Multi-connected 30 2 2 26 8560 12170 11710 30 4032 13775 13734

Singly connected 10 4 16 10 15428 16877 14159 10 16719 16470 13080

Singly connected 10 4 2 100 0.04 0.04 0.03 100 0.04 0.05 0.03

Singly connected 10 4 4 100 4 1977 5075 100 4 2095 5476

Singly connected 20 4 2 100 39 2055 5097 100 32 1691 4483

Singly connected 20 4 4 6 20669 20669 20588 6 13484 13484 13400

Singly connected 30 4 2 6 8207 8207 1385 6 5171 5171 1306

Tree-shaped 10 4 16 13 1559 1381 687 16 1855 9778 16704

Tree-shaped 10 4 2 100 0.04 0.04 0.02 100 0.04 0.05 0.02

Tree-shaped 10 4 4 100 6 784 3554 100 6 674 3129

Tree-shaped 20 4 2 96 89 2415 6164 96 73 2597 7009

Table 3

Average (AVG) and standard deviation (SD) of the maximum number of pairs of a set. Numbers are truncated.

Topology N k c Exact Approximation

AVG SD AVG SD

Multi-connected 10 2 16 36046 28928 34579 28563

Multi-connected 10 2 2 154 141 130 109

Multi-connected 10 2 4 24642 64632 7254 9439

Multi-connected 10 4 2 225 128 224 127

Multi-connected 10 4 4 46147 65056 42664 55941

Multi-connected 20 2 2 37515 61606 28977 46774

Multi-connected 20 4 2 67573 73868 66185 73362

Multi-connected 30 2 2 93213 55519 81624 57996

Singly connected 10 4 16 104468 75687 92784 64183

Singly connected 10 4 2 115 100 114 100

Singly connected 10 4 4 37155 78008 31361 64117

Singly connected 20 4 2 24856 44469 20337 37219

Singly connected 20 4 4 76083 68966 58358 51241

Singly connected 30 4 2 92744 5476 65708 16654

Tree-shaped 10 4 16 11840 9570 11834 9572

Tree-shaped 10 4 2 135 108 132 107

Tree-shaped 10 4 4 17178 49396 13706 41225

Tree-shaped 20 4 2 57055 104187 49044 96469
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vast majority of cases, the approximation produces smaller sets than the exact version. This however need not be the case,

as the eye-catching point above the line and close to the center in Fig. 4a shows, because the approximation might discard a

valuation that otherwise would have caused the removal of many other instances. Nevertheless, we see from the plots that

in practice this is rarely the case.

To investigate how the performance of the variable elimination algorithms varies with respect to several important

features of the inferential tasks, we group networks according to the topology of the network, the number of nodes N, the

maximum number of states per variable k, and the maximum number of potentials in one of the initial sets c. The median,

average and standard deviation of running times and maximum set sizes for each group are shown in Tables 2 and 3,

respectively. As expected, the running time of the algorithms increases as we increase any of the selected features. The

standard deviation of running times for each group is very high, and often higher than the average. A similar phenomenon

occurs when we analyze the size of the largest set size generated. This shows that these parameters alone are not sufficient

to provide a good estimate of the performance of the algorithms, which are likely very sensitive to the numerical values of

the local potentials.

7. Conclusion

We derived a new variable-elimination algorithm for exact posterior inference in extensively specified credal networks

under strong independence. In our experiments, the algorithm outperforms a previous state-of-the-art method based on

integer programming, being able to solve many networks which previous algorithms fail to solve in feasible time. We then

showedhow to relax the algorithmso as tomake it deliver provably good approximations, that is, solutionswhose accuracy is

within a given factor of the optimum.We showed that for networks of bounded treewidth and bounded number of states per

variable, this leads to an algorithm that runs in time polynomial in the input size and in the inverse of the error; or, in other

words, to the first fully polynomial-time approximation scheme for inference in credal networks. Such a result is currently

mostly theoretical because the asymptotic complexity analysis hides large constants behind the boundedness assumptions.

Indeed, our experiments show that the approximation algorithm performs equally to the exact algorithm. Future work is

necessary to decrease the hidden constants, making it a more competitive procedure.

It is well known that points that are convex combination of other points can be discarded from the sets generated

during variable elimination at any step without affecting optimality [9]. Although this might significantly decrease the size

of set-valuations, in our implementation the additional complexity of finding the extrema of a set of points slowed down

considerably the algorithms, and increased the overall running time. Nevertheless,we believe that fast algorithms for finding

extreme points might be a good addition to both the exact and approximation algorithms devised here. This could be an

interesting avenue to explore in the future.
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