Spin Models on Triangle-Free Connected Graphs

KAZUMASA NOMURA*

Tokyo Icashika University, Kounodai, Ichikawa, 272 Japan

Received August 19, 1994

Spin models were introduced by V. Jones (Pac. J. Math. 137 (1989), 311–334) to construct invariants of knots and links. A spin model is defined as a pair $S = (X, w)$ of a finite set X and a function $w: X \times X \rightarrow \mathbb{C}$ satisfying several axioms. Let $G = (X, E)$ be a connected graph with the usual metric $d: X \times X \rightarrow \{0, 1, \ldots, d\}$, where d denotes the diameter of G. It is shown that, if G has no 3-cycle, and if $S = (X, t \cdot \delta)$ is a spin model for a mapping $t: \{0, 1, \ldots, d\} \rightarrow \mathbb{C}$ satisfying some conditions (which hold if t is injective), then G is an almost bipartite distance-regular graph.

1. Introduction

Spin models for invariants of links were introduced by Jones [10]. A spin model is a pair $S = (X, w)$ of a finite set X, $|X| = n > 0$, and a complex-valued function w on $X \times X$ such that (for all $x, y, z \in X$)

(S1) $w(x, y) = w(y, x) \neq 0$,
(S2) $\sum_{x \in X} w(y, x) w(z, x)^{-1} = n \delta_{y, z}$,
(S3) $\sum_{u \in X} w(x, u) w(y, u) w(z, u)^{-1} = \sqrt{n} w(x, y) w(x, z)^{-1} w(y, z)^{-1}$.

Equation (S3) with $x = z$ becomes

$$\sum_{u \in X} w(y, u) = \sqrt{n} w(x, y)^{-1}. \tag{1}$$

This shows that $w(x, x) = \alpha$ is a constant, not depending on the choice of $x \in X$, which is called the modulus of S. We remark that our w corresponds to w_+ in [10], and our modulus is the inverse of the modulus introduced in that paper. See [1–3, 6–8, 10] for spin models and related invariants of links.

Let $G = (X, E)$ be a connected graph with the usual metric d on X, i.e., $d(x, y), x, y \in X$, is the length of a shortest path connecting x and y. The set of vertices x at distance i from a fixed vertex z is denoted by $I_i(z)$. For two

* E-mail: nomura@tm.ac.jp.
vertices $z, x \in X$ at distance i, let $c(z, x)$ (resp. $a(z, x)$, $b(z, x)$) denote the number of neighbours of x in $\Gamma_{i-1}(z)$ (resp. $\Gamma_i(z)$, $\Gamma_{i+1}(z)$). Γ is said to be \textit{distance-regular} if $c(z, x), a(z, x), b(z, x)$ depend only on the distance $\delta(z, x) = i$, rather than on the individual vertices x, z with $\delta(z, x) = i$. In this case, the numbers $c_i = c(z, x), a_i = a(z, x), b_i = b(z, x)$ are called the \textit{intersection numbers} of Γ. As is easily shown a distance-regular graph Γ is bipartite if and only if $a_i = 0$ for all i. Γ is said to be \textit{almost bipartite} when $a_1 = \cdots = a_{d-1} = 0$. See [4, 5] for precise informations about distance-regular graphs.

We say a spin model $S = (X, w)$ is constructed on a connected graph $\Gamma = (X, E)$ if $w = t \cdot \tilde{c}$ for some mapping $t: \{0, 1, \ldots, d\} \to \mathbb{C}$, where d denotes the diameter of Γ. In this case we say also $\Gamma = (X, E)$ affords $S = (X, w)$. Some new spin models were constructed on distance-regular graphs without 3-cycles. Examples are Jaeger's model on the Higman–Sims graph [7] and models on Hadamard graphs which we call Hadamard models [11]. Related link invariants of these spin models were determined by Jaeger [7–9]. Bipartite distance-regular graphs which afford spin models were determined in [13].

In this paper, we prove the following result.

Theorem 1.1. Let $\Gamma = (X, E)$ be a connected graph of diameter d having on 3-cycle, and let $t: \{0, 1, \ldots, d\} \to \mathbb{C}$ be a mapping with $t_1 \neq t_i$ and $t_{i-2} \neq t_i \neq t_{i-1}$ ($i = 2, \ldots, d$), where $t_i = t(i)$. If $S = (X, t \cdot \tilde{c})$ is a spin model, then Γ is an almost bipartite distance-regular graph.

We remark that Jaeger’s Higman–Sims model and Hadamard models satisfy the assumptions of Theorem 1.1.

The proof of Theorem 1.1 is based on the matrix $N_{Y, Z}$ which was introduced in [12]. In Section 2, we review $N_{Y, Z}$ and give a slight extension of Lemma 1.1 of [12], which will be used in Section 3 to obtain some formulas. The proof of Theorem 1.1 will be given in Sections 4 and 5.

2. The Matrix $N_{Y, Z}$

Let $S = (X, w), |X| = n$, be a spin model. Let W denote the $n \times n$-matrix, indexed by $X \times X$, having (x, y)-entry $w(x, y)$, $x, y \in X$, and let $u_{y, z}$ denote the n-dimensional column vector, indexed by X, whose x-entry is $w(y, x) w(z, x)^{-1}$. Then Eq. (S3) can be written as

$$W u_{y, z} = \sqrt{n} w(y, z)^{-1} u_{y, z},$$

so that $u_{y, z}$ is an eigenvector of W corresponding to the eigenvalue $\sqrt{n} w(y, z)^{-1}$. As is easily shown from (S2), for a fixed $y \in X$, the n vectors
u_y z \in X$ are linearly independent, and hence form a basis of the space of n-dimensional column vectors. Therefore the values $\sqrt{n} w(y, z)^{-1}$, $z \in X$, are exactly all the eigenvalues of W, and the multiplicity $m(\theta)$ of an eigenvalue $\sqrt{n} \theta^{-1}$ agrees with the number of elements $z \in X$ such that $w(y, z) = \theta$:

$$m(\theta) = \# \{ z \in X \mid w(y, z) = \theta \}.$$

Put

$$m'(\theta) = \# \{ z \in X \mid w(y, z) = \theta, z \neq y \}.$$

Then $m'(\theta) = m(\theta)$ if $\theta \neq \alpha$, and $m'(\theta) = m(\theta) - 1$ if $\theta = \alpha$, where α denotes the modulus of S. For a subset Y of X and a subset Z of $X \times X$, we define a matrix $N_{Y, Z}$, indexed by $Y \times Z$, whose $(x, (y, z))$-entry is

$$(N_{Y, Z})_{(x, (y, z))} = w(x, y) w(x, z)^{-1}, \quad x \in Y, \quad (y, z) \in Z.$$

We remark that the $(x, (y, z))$-entry of the matrix $N_{Y, Z}$ is the x-entry of the vector $u_y z$.

Lemma 2.1. Let $S = (X, w)$ be a spin model, and let θ be a value of w. Let Y be a subset of X and let Z be a subset of $X \times X$ with $Z \cap A = \emptyset$, where $A = \{ (x, x) \mid x \in X \}$. If $Z \subset w^{-1}(\theta)$ and $|Y| = |Z| > m'(\theta)$, then $\det N_{Y, Z} = 0$.

Proof. Since the rank of $N_{Y, Z}$ cannot exceed the rank of $N_{X, Z}$, it will be enough to show that the rank of $N_{X, Z}$ is at most $m'(\theta)$. First consider the case $\theta \neq \alpha$, where α is the modulus of S; in this case we have $m'(\theta) = m(\theta)$. Since every column vector of $N_{X, Z}$ is an eigenvector of W corresponding to the eigenvalue $\sqrt{n} \theta^{-1}$, the dimension of the subspace spanned by the column vectors of $N_{X, Z}$ cannot exceed $m(\theta)$. So the rank of $N_{X, Z}$ is at most $m(\theta) = m'(\theta)$. Next consider the case $\theta = \alpha$. Let V_z denote the eigenspace of W corresponding to the eigenvalue $\sqrt{n} \alpha^{-1}$. Then V_z has dimension $m(\alpha)$. Let V_0 be the subspace spanned by j, where j denotes the vector with all entries 1. Then V_0 is included in V_z by (1). Now consider the orthogonal complement V_0^\perp of V_0 in V_z. Then $u_y z \in V_0^\perp$ for all $(y, z) \in Z$, since we have $\sum_{x \in X} w(y, x) w(z, x)^{-1} = 0$ by (S2) and $y \neq z$. Therefore the rank of $N_{X, Z}$ cannot exceed the dimension of V_0^\perp which is equal to $m(\theta) - 1 = m'(\theta)$.

3. Some Formulas

Throughout this paper, let $\Gamma = (X, E)$ be a connected graph of diameter $d > 1$ on $|X| = n$ vertices with no 3-cycle, let $\tau : \{0, 1, \ldots, d\} \to C$ be a
mapping such that $t_0 \neq t_2$ and $t_1 \neq t_i$ for $i > 1$, and assume $S = (X, w)$ is a spin model, where $w = t \cdot \delta$. Note that Γ is regular of valency $k = m'(t_1)$ by our assumption $t_i \neq t_i$ for $i > 1$. We put $s_i = t_{i-1}^{-1} t_i$ for $i = 1, \ldots, d$.

Lemma 3.1. Let $x, z \in X$, and let y_1, \ldots, y_k be the neighbours of x. Put $w(x, z) = \theta$ and $w(y_i, z) = \theta_i$. Then for $j = 1, \ldots, k$:

$$s_1^2 - s_2^2 \sum_{i \neq j} (\theta_i \theta_i^{-1} - 1) = (s_1 s_2 - 1)(s_1^2 - \theta^2)^2).$$

Proof. We may assume $j = 1$. We consider the matrix $N_{Y, Z}$ for

$$Y = \{x, z, y_2, \ldots, y_k\}, \quad Z = \{y_1, (x, y_1), (x, y_2), \ldots, (x, y_k)\}.$$ We fix an ordering of Y and Z as above and arrange the entries of $N_{Y, Z}$ according to this ordering. Since $|Y| = |Z| = k + 1 > k = m'(t_1)$, we have $\det N_{Y, Z} = 0$ by Lemma 2.1. We have $w(x, x) = w(y_i, y_j) = t_0$ and $w(x, y_i) = t_2$. Moreover, we have $w(y_i, y_j) = t_2$ for $i \neq j$, since Γ has no 3-cycle. So the matrix $N_{Y, Z}$ is

$$N_{Y, Z} = \begin{pmatrix} \theta_1 \theta_1^{-1} & \theta_2 \theta_2^{-1} & \ldots & \theta_k \theta_k^{-1} \\ s_1 & s_1^{-1} & \ldots & s_k^{-1} \\ s_2 j & s_2^{-1} j & \ldots & s_k I + s_2^{-1} (J - I) \end{pmatrix},$$

where τ indicates the transpose, j denotes the column vector of size $k - 1$ with all entries 1, I denotes the unit matrix of size $k - 1$, and J denotes the $(k - 1) \times (k - 1)$-matrix with all entries 1. The determinant of $N_{Y, Z}$ can be calculated as follows. Multiply the first row by θ^{-1}, the second row by θ_1, and the other rows by s_2. Then $N_{Y, Z}$ becomes

$$\begin{pmatrix} \theta_1 \theta_2^{-2} & \theta_1^{-1} & \theta_2^{-1} \ldots \theta_k^{-1} \\ s_1^2 \ldots \theta_1^{-1} \\ s_2^2 j j & s_1 s_2 I + (J - I) \end{pmatrix}.$$ Multiply the first column by s_2^{-2}, and subtract the second column from each of the other columns. Then we obtain

$$\begin{pmatrix} s_2^{-2} \theta_1 \theta_2^{-2} - \theta_1^{-1} & \theta_1^{-1} \theta_2^{-1} - \theta_1^{-1} \ldots \theta_k^{-1} - \theta_1^{-1} \\ s_1 s_2^{-2} - 1 & 1 & 0 \tau \\ 0 & j & (s_1 s_2 - 1) I \end{pmatrix},$$

where 0 denotes the zero column vector of size $k - 1$. Note that $s_1 s_2 - 1 \neq 0$ by our assumption $t_0 \neq t_2$. Subtract $(s_1 s_2 - 1)^{-1} (\theta_i^{-1} - \theta_i^{-1})$ times the $(i+1)\text{th}$ row from the first row for $i = 2, \ldots, k$. Then the matrix becomes
\[
\begin{pmatrix}
(s_2^2 \theta_1 \theta_2^2 - \theta_1^{-1} \theta_1) - q & 0^t \\
(s_1 s_2^2 - 1) & 1 & 0^t \\
0 & j & (s_1 s_2 - 1) I
\end{pmatrix},
\]

where

\[q = (s_1 s_2 - 1)^{-1} \sum_{i=2}^{k} (\theta_i^{-1} - \theta_1^{-1}).\]

Thus \(\det NY, Z = 0\) implies

\[s_2^2 \theta_1 \theta_2^2 - \theta_1^{-1} - (s_2^2 s_2 - 1)(\theta_1^{-1} - q) = 0.\]

The result now follows from an easy computation. \(\square\)

Corollary 3.2. \((k - 1)(s_1^2 - s_2^2) = s_1^{-1} s_2 (1 - s_1^2).\)

Proof. In Lemma 3.1, take \(z = y_1\), so that we have \(\theta = \theta_1, \theta_1 = \theta_0,\) and \(\theta_i = \theta_2 (i = 2, ..., k).\) Then taking \(j = 1,\)

\[(s_1^2 - s_2^2) \sum_{i=2}^{k} (t_0 t_1^{-1} - 1) = (s_1 s_2 - 1)(s_1 t_1^{-2} t_2^2) .\]

Replacing \(t_1^{-1} t_2\) by \(s_1 (i = 1, 2),\) we get

\[(k - 1)(s_1^2 - s_2^2)(s_1^{-1} s_2^{-1} - 1) = (s_1 s_2 - 1)(s_1^2 s_2 - 1).\] \(\square\)

Lemma 3.3. Let \(x \in X,\) and let \(y_1, ..., y_k\) be the neighbours of \(x.\) Let \(z_1 z_2\) be an edge, and put \(w(x, z_1) = \theta, w(x, z_2) = \eta, w(y, z_1) = \theta, w(y, z_2) = \eta, (i = 1, ..., k).\) Then

\[\sum_{i=1}^{k} \theta \eta_i^{-1} = (s_1 s_2 + k - 1) s_1 s_2^{-1} \theta \eta^{-1} .\]

Proof. We consider the matrix \(NY, Z\) for

\[Y = \{x, y_1, y_2, ..., y_k\}, \quad Z = \{(z_1, z_2), (x, y_1), (x, y_2), ..., (x, y_k)\} .\]

Since \(|Y| = |Z| = k + 1 > k = m'(t_1)|,\) we have \(\det NY, Z = 0\) by Lemma 2.1. The matrix \(NY, Z\) is

\[NY, Z = \begin{pmatrix}
\theta \eta^{-1} & s_1^{-1} I \\
\theta \eta_1^{-1} & s_1 I + s_2^{-1} (J - I) \\
\theta \eta_2^{-1} & \end{pmatrix} .\]
where \(j, I, \) and \(J \) are of size \(k \). Multiply the first row by \(s_1 \), the other rows by \(s_2 \), and the first column by \(s_2^{-1} \). Then the above matrix becomes

\[
\begin{pmatrix}
\psi_1 s_2^{-1} \theta \eta^{-1} & j \\
\psi_1 \theta \eta^{-1} & \vdots \\
\theta \eta_k^{-1} & s_1 s_2 I + (J - I)
\end{pmatrix}.
\]

Subtract the first row from the other rows. Then we obtain

\[
\begin{pmatrix}
\psi_1 s_2^{-1} \theta \eta^{-1} & j \\
\psi_1 \theta \eta^{-1} - s_1 s_2^{-1} \theta \eta^{-1} & \vdots \\
\theta \eta_k^{-1} - s_1 s_2^{-1} \theta \eta^{-1}
\end{pmatrix}.
\]

Multiply the \(i \)th row by \((s_1 s_2 - 1)^{-1}\) for \(i = 2, \ldots, k + 1 \), and multiply the first column by \((s_1 s_2 - 1)\). Then the matrix becomes

\[
\begin{pmatrix}
(s_1 s_2 - 1) s_2^{-1} \theta \eta^{-1} & j \\
\psi_1 \theta \eta^{-1} - s_1 s_2^{-1} \theta \eta^{-1} & \vdots \\
\theta \eta_k^{-1} - s_1 s_2^{-1} \theta \eta^{-1}
\end{pmatrix}.
\]

Subtract the \(i \)th row from the first row for \(i = 2, \ldots, k + 1 \); then we obtain

\[
\begin{pmatrix}
q & \mathbf{0} \\
\psi_1 \theta \eta^{-1} - s_1 s_2^{-1} \theta \eta^{-1} & \vdots \\
\theta \eta_k^{-1} - s_1 s_2^{-1} \theta \eta^{-1}
\end{pmatrix}.
\]

where

\[
q = (s_1 s_2 - 1) s_2^{-1} \theta \eta^{-1} - \sum_{i=1}^k (\psi_1 \theta \eta_i^{-1} - s_1 s_2^{-1} \theta \eta^{-1}).
\]

Now \(q = \det N_{Y, \sigma} = 0 \).

4. **Distance-Regularity: General Case**

Fix an integer \(r \) with \(1 < r \leq d \), and pick two vertices \(x, z \) at distance \(r = \delta(x, z) \). Put \(c = c(z, x) = |\Gamma_{r-1}(z) \cap \Gamma_1(x)|, a = a(z, x) = |\Gamma_r(z) \cap \Gamma_1(x)| \) and
$b=b(z, x)=[\Gamma_{r+1}(z) \cap \Gamma_1(x)]$. Note that $c>0$. To simplify our arguments, we assign to t_{r+1} a non-zero value different from t_r and $t_{r'}$.

Lemma 4.1. (i) $(s_1^2 - s_2^2)(a(s_2 - s_1 - 1) + b(s_1 - s_2 + 1)) = (s_1 s_2 - 1) \times (s_1^2 - s_2^2)$,

(ii) $(s_1^2 - s_2^2)(a(s_2 - 1) + b(s_1 - s_2 + 1)) = (s_1^2 s_2 - 1)(s_2^2 - s_1^2)$.

Proof. Let y_1, \ldots, y_k be the neighbors of x, where we choose the labels such that $y_1, \ldots, y_c \in \Gamma_1(z), y_{c+1}, \ldots, y_{c+a} \in \Gamma_{r+1}(z)$, and $y_{c+a+1}, \ldots, y_k \in \Gamma_r(z)$. Put $w(z, y_i) = \theta_i$; then we have $\theta_i = t_{r+1}$ for $1 \leq i \leq c$, $\theta_i = t_r$ for $c+1 \leq i \leq c+a$, and $\theta_i = t_{r+1}$ for $c+a+1 \leq i \leq k$. From Lemma 3.1 with $j=1$, we have

$(s_1^2 - s_2^2)((c-1)t_{r+1}t_{r-1} - 1) + a(t_{r-1}t_{r+1} - 1) + b(t_{r-1}t_{r+1} - 1))$

$=(s_1 s_2 - 1)(s_1^2 - s_2^2)$,

and this implies (i). Then (ii) is obtained from (i) by using the fact that $S=(X, w_\ast)$ is a spin model, where w_\ast denotes the function defined by $w_\ast(x, y) = w(x, y)^{-1}$; see Eq. (2.10) in [10].

Lemma 4.2. If $b>0$, then

(i) $(s_1^2 - s_2^2)(c(s_1 s_2 - 1) + a(s_1 - 1)) = (s_1 s_2 - 1)(s_1^2 - s_2^2)$,

(ii) $(s_1^2 - s_2^2)(c(s_2 - 1) + a(s_2 - 1)) = (s_1^2 s_2 - 1)(s_2^2 - s_1^2)$.

Proof. In the same way as for Lemma 4.1. Use Lemma 3.1 with $j=c+a+1$ in this case.

Lemma 4.3. If $a>0$, then

(i) $(s_1^2 - s_2^2)(c(s_1 - 1) + a(s_2 - 1)) = (s_1 s_2 - 1)(s_1^2 - 1)$,

(ii) $(s_1^2 - s_2^2)(c(s_2 - 1) + a(s_2 - 1)) = (s_1^2 s_2 - 1)(s_2^2 - 1)$.

Proof. In the same way as for Lemma 4.1. Use Lemma 3.1 with $j=c+1$ in this case.

Lemma 4.4. (i) $b(s_1^2 - s_2^2)(s_1 s_2 - 1) = (s_1 s_2 - 1)(s_1^2 - s_2^2)$.

(ii) $a(s_1^2 - s_2^2)(s_1 s_2 - 1) = (s_1 s_2 - 1)(s_1^2 - s_2^2)$.

Proof. Eliminate a (resp. b) from the two equations in Lemma 4.1 to get (i) (resp. to get (ii)).
Lemma 4.5. If $h > 0$, then

(i) $c(s_1^2 - s_2^2)(s_{r+1}^{-1} - 1)(s_1s_{r+1}^{-1} - 1) = (s_1s_2 - 1)(s_1^2 - s_2^2)(s_1s_2s_{r+1}^{-1} - 1)$,

(ii) $a(s_1^2 - s_2^2)(s_{r+1} - 1)(s_1 - 1) = (s_1s_2 - 1)(s_1^2 - s_2^2)(s_1s_2s_{r+1}^{-1} - 1)$.

Proof. These are obtained from Lemma 4.2.

Lemma 4.6. If $a > 0$, then

(i) $b(s_1^2 - s_2^2)(s_{r+1}^{-1} - 1)(s_1s_{r+1}^{-1} - s_r) = (s_1s_2 - 1)(s_1^2 - s_2^2)(s_1s_2s_{r+1}^{-1} - 1)$,

(ii) $c(s_1^2 - s_2^2)(s_{r+1}^{-1} - s_r^{-1}) = (s_1s_2 - 1)(s_1^2 - s_2^2)(s_1s_2s_{r+1}^{-1} - 1)$.

Proof. Obtained from Lemma 4.3.

Lemma 4.7. If $a > 0$, then $(s_1 - 1)(s_1^{-1}s_2 - s_2^{-1})(s_1^2 + s_2^{-1}) = 0$.

Proof. Obtained from Lemma 4.4(i) and Lemma 4.6(i).

Lemma 4.8. If $a > 0$ and $b > 0$, then $(s_1s_{r+1}^{-1})(s_1^r - s_2^{-1})(s_1^2 + s_{r+1}) = 0$.

Proof. Obtained from Lemma 4.5(i) and Lemma 4.6(ii).

Proposition 4.9. Assume $s_1^2 \neq s_2^2$ and t_{r-1}, t_r, t_{r+1} are distinct. Then $c(z, x), a(z, x)$, and $b(z, x)$ depend only on the distance $d(z, x) = r$, rather than on the individual vertices z, x with $d(z, x) = r$. Moreover, $a(z, x) = 0$ when $d(z, x) < d$.

Proof. We have $s_r \neq 1, s_{r+1} \neq 1, s_ts_{r+1} \neq 1$, since t_{r-1}, t_r, t_{r+1} are distinct. Therefore by Lemma 4.4, $b = b(z, x)$ and $a = a(z, x)$ can be written in terms of s_j's for all z, x at distance r. Therefore b, a, and $c = c(z, x) = k = a - b$ are determined by the weights $t_0, ..., t_d$ and the valency $k = m'(t_i)$. This means c, a, and b depend only on the distance $d(z, x) > 1$. The case $d(z, x) = 1$ is trivial since G is triangle-free.

Now assume $r < d$, so that $b = b(z, x) > 0$ for $z, x \in X$ with $d(z, x) = r$.

The l.h.s. of Lemma 4.4(i) is not 0, since we have $b > 0, s_{r+1} \neq 1, s_ts_{r+1} \neq 1$. Hence we must have $s_1^{-1}s_2 - s_2^{-1} \neq 0$. By the same argument, we have $s_1^{-1}s_2 \neq s_{r+1}$ by Lemma 4.5(i). If $a > 0$, then Lemma 4.7 implies $s_2^{-1} + s_1 = 0$, and Lemma 4.8 implies $s_1^2 + s_{r+1} = 0$, so that $s_ts_{r+1} = s_1^{-1}s_1 = 1$, contradicting $t_{r-1} \neq t_{r+1}$. Hence we must have $a = 0$.

Now Theorem 1.1 follows from Proposition 4.9 when $s_1^2 \neq s_2^2$. We consider the case $s_1^2 = s_2^2$ in the next section.
5. Distance-Regularity: Case $s_1^2 = s_2^2$

Proposition 5.1. If $s_1 = 1$, then Γ is a distance-regular graph with $d = 2$ and $c_2 = 2$, and one of the following two cases occurs:

(i) $k = 2$, $n = 4$, $t_0 = t_1 = \pm 1$, and $t_2 = -t_0$,

(ii) $k = 5$, $n = 16$, $t_0 = t_1 = \pm i$, and $t_2 = -t_0$, where $i^2 = -2$.

Proof. Corollary 3.2 with $s_1 = 1$ implies $s_2 = \pm 1$. If $s_2 = 1$, then $s_1 = s_2 = 1$ and, hence, $t_0 = t_2$, contradicting our assumption. So we have $s_2 = -1$. Lemma 4.1 implies $s_2^2 = 1$, so that $t_r = \pm t_{r-1}$ $(r = 2, \ldots, d)$; hence we have $-t_1 = t_2 = \cdots = t_d$ by our assumption $t_i \neq t_i$ $(i = 2, \ldots, d)$. Thus we have

$t_1 = t_0, \quad t_i = -t_0 \quad (i = 2, \ldots, d). \quad (2)$

Now we use (S2), given in the definition of a spin model. Let $u, v \in X$ with $u \neq v$, and put $D_j^r = \Gamma_j(u) \cap \Gamma_j(v)$. Then (S2) implies

$$\sum_{x \in X} w(u, x) w(v, x)^{-1} = 0. \quad (3)$$

First we consider Eq. (3) for u, v with $\partial(u, v) = 1$. We partition X as

$$X = \{u\} \cup \{v\} \cup D_2^1 \cup D_2^2 \cup \left(\bigcup_{i \geq 2, j \geq 2} D_i^j \right).$$

Taking the summation in (3) along with this partition, we obtain

$$t_0 t_1^{-1} + t_1 t_0^{-1} + (k - 1)(t_1 t_2^{-1} + t_2 t_1^{-1}) + \sum_{i=2}^d \sum_{j=2}^d t_i t_j^{-1} |D_j^i| = 0.$$

From Eq. (2), this implies

$$1 + 1 + (k - 1)((-1) + (-1)) + (n - 2 - 2(k - 1)) = 0,$$

so that

$$n = 4k - 4. \quad (4)$$

Next, we consider Eq. (3) for u, v with $\partial(u, v) = 2$. We partition X as

$$X = \{u\} \cup \{v\} \cup D_2^1 \cup D_2^2 \cup D_2^3 \cup D_2^4 \cup \left(\bigcup_{i \geq 2, j \geq 2} D_i^j \right).$$
So Eq. (3) implies
\[t_0 t_1^{-1} + t_2 t_0^{-1} + |D_1^1| t_1 t_1^{-1} + |D_2^1| t_1 t_2^{-1} + |D_3^1| t_1 t_3^{-1} + |D_4^1| t_2 t_1^{-1} + \sum_{i=2}^{d} \sum_{j=2}^{d} |D_i^j| t_i t_j^{-1} = 0. \]

Let \(|D_i^j| = \mu|\), then
\[|D_1^2 \cup D_3^2| = |D_1^2 \cup D_1^1| = k - \mu. \]

So we obtain
\[(-1) + (-1) + \mu + (k - \mu)((-1) + (-1)) + (n - 2 - \mu - 2(k - \mu)) = 0, \]
so that \(\mu = 2\) by (4). This means that \(c(x, y) = 2\) holds for all \(x, y \in X\) at distance \(d(x, y) = 2\).

Now assume \(d \geq 3\), and consider Eq. (3) for \(u, v\) with \(\partial(u, v) = 3\). We partition \(X\) as
\[X = \{u\} \cup \{v\} \cup D_1^2 \cup D_3^2 \cup D_1^1 \cup D_3^1 \cup \left(\bigcup_{i > j > 2} D_i^j \right). \]

Then we obtain
\[(-1) + (-1) + k((-1) + (-1)) + (n - 2 - 2k) = 0, \]
so that \(n = 4k + 4\), contracting Eq. (4). Therefore we have \(d = 2\), and \(\Gamma\) is distance-regular with \(c_2 = 2\). Equivalently, \(\Gamma\) is strongly regular with parameters \(n = 4k - 4, k, \lambda = 0, \mu = 2\) (see, for instance, [5] for definitions).

We must have \(n = 1 + k + k(k - 1)/2\) by counting the number of vertices in \(\Gamma_i(u)\) \((i = 0, 1, 2)\). Comparing this with Eq. (4), we obtain
\[1 + k + \frac{k(k - 1)}{2} = 4k - 4, \]
and this becomes \((k - 2)(k - 5) = 0\), so that we have \(k = 2\) and \(n = 4\) or \(k = 5\) and \(n = 16\). We use (1) to determine the value of \(t_0\). When \(k = 2\), (1) becomes \(t_0 + 2t_1 + t_2 = \sqrt{4} t_0^{-1}\), and this implies \(t_0^{-1} = 1\), so \(t_0 = \pm 1\). When \(k = 5\), Eq. (1) becomes \(t_0 + 5t_1 + 10t_2 = \sqrt{16} t_0^{-1}\), and this implies \(t_0^{-1} = -1\).

Remark 5.2. The values of \(t_0, t_1, t_2\) given in Proposition 5.1 actually define a spin model \(S\). When \(k = 2\), \(\Gamma\) is a 4-cycle and \(S\) is a special case of “square spin model” (see [6, 7, 10]). When \(k = 5\), \(\Gamma\) is the antipodal...
quotient of the five-dimensional hypercube $H(5, 2)$, or, equivalently, the complement of the Clebsch graph, and the spin model S appears in [6, 7].

Proposition 5.3. Assume $s_1^2 = s_2^2$, $s_1 \neq 1$, and $t_{r-2} \neq t_r$ (for $r = 2, \ldots, d$). Then Γ is a bipartite distance-regular graph of diameter $d \leq 4$ with intersection numbers $c_r = r$ (for $r = 1, \ldots, d$), and the weights are given by $t_r = i_{r-1}$ (for $r = 1, \ldots, d$), where $i^2 = -1$.

Proof. Corollary 3.2 with $s_1^2 = s_2^2$ implies $s_1 = 1$. From our assumption, we have also $s_1 \neq 1$, $s_2 \neq 1$, and $s_1 s_2 \neq 1$. These imply $s_1^2 = s_2^2 = -1$. Moreover, Lemma 4.1(i) with $s_1^2 = s_2^2$ implies $s_r^2 = s_{r-2}^2$ (for $r = 2, \ldots, d$). So $s_r^2 = -1$, and hence $t_r = i_{r-1}$ (for $r = 1, \ldots, d$). It follows that $t_r = -t_{r-2}$ (for $r = 2, \ldots, d$). If $d \geq 5$, then $t_5 = -t_3 = t_1$, contradicting our assumption $t_1 \neq t_r$ (for $r = 2, \ldots, d$), so we must have $d \leq 4$, and (up to the exchange of i and $-i$)

$$t_1 = i_{0}, \quad t_2 = -i_0, \quad t_3 = -i_{0}, \quad t_4 = i_0. \tag{5}$$

We claim that Γ is bipartite. If there is an edge inside $\Gamma_i(x)$ for some $x \in X$ and for some r, then Lemma 4.3(i) implies $s_1^2 = 1$, a contradiction. This easily implies that Γ is bipartite.

Now we use Lemma 3.3. Fix an edge $z_1 z_2$ and put $D_r = \Gamma_i(z_1) \cap \Gamma_i(z_2)$. Take $x \in D_{r+1}^r$ (for $0 < r < d$). Then $\Gamma_i(x)$ is partitioned as

$$\Gamma_i(x) = (\Gamma_i(x) \cap D_r^r) \cup (\Gamma_i(x) \cap D_r^{r+1}) \cup (\Gamma_i(x) \cap D_r^{r+2}).$$

Put $|\Gamma_i(x) \cap D_{r-1}^r| = c$ and $|\Gamma_i(x) \cap D_{r+1}^r| = c'$. Let y_1, \ldots, y_k be the neighbors of x, where we choose the labels such that

$$\Gamma_i(x) \cap D_r^r = \{y_1, \ldots, y_c\},$$
$$\Gamma_i(x) \cap D_r^{r+1} = \{y_{c+1}, \ldots, y_c\},$$
$$\Gamma_i(x) \cap D_r^{r+2} = \{y_{c+2}, \ldots, y_k\}.$$

Then we have

$$\theta = t_r, \quad \theta_1 = \cdots = \theta_r = t_{r-1}, \quad \theta_{r+1} = \cdots = \theta_k = t_{r+1},$$
$$\eta = t_{r+1}, \quad \eta_1 = \cdots = \eta_c = t_r, \quad \eta_{c+1} = \cdots = \eta_k = t_{r+2}.$$

So Lemma 3.3 implies

$$ct_{r-1}^r + (c' - c) t_{r+1}^r + (k - c') t_{r+2}^r = (s_1 s_2 + k - 1) s_1 s_2^2 t_r^r.$$

Assigning the values given in (5), this implies $c' = c + 1$. When $r = 1$, we have $c = 1$, so that $c' = 2$. Therefore we obtain $|\Gamma_i(x) \cap \Gamma_{r-1}(z)| = r$ for all
x, z at distance $d(x, z) = r$, by induction on r. So Γ is a distance-regular graph with $c_r = r$ $(r = 1, \ldots, d)$.

Remark 5.4. It is known that a bipartite distance-regular graph Γ with $c_r = r$ $(r = 1, \ldots, d)$ is isomorphic to the d-dimensional hypercube (see, for instance, 9.2.5 of [5]). As easily shown, for a suitably chosen value of t_0, the weights $t_r = t_{1,0}$ $(r = 0, 1, \ldots, d)$ actually give a spin model, which is a tensor product of d Potts models of size 2 (see [6] for definitions).

References