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Abstract

In recent years, a number of articles proposed mathematical models for emergent phenomena. This is the case, for instance for
the flocking of birds or the schooling of fish. In particular, in [F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. on
Autom. Control 52 (2007) 852–862], a model was proposed for flocking and it was proved that under certain conditions on the
initial positions and velocities of the birds, flocking occurs. In this paper we modify this model by adding random noise to it. We
prove that, under conditions similar to those just mentioned, (nearly) flocking occurs in finite time with a certain confidence.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Au cours de ces dernières années un certain nombre d’articles ont été consacrés à la modélisation mathématique des phénomènes
émergents, par exemple dans le cas des rassemblements d’oiseaux ou de poissons. En particulier dans [F. Cucker, S. Smale,
Emergent behavior in flocks, IEEE Trans. on Autom. Control 52 (2007) 852–862] un modèle a été proposé pour ces phénomènes,
dans lequel il a été prouvé que le rassemblement des oiseaux se produit sous certaines conditions de positions et de vitesses initiales.
Dans cet article nous modifions ce modèle par ajout d’un bruit aléatoire et nous montrons que, sous des conditions similaires, un
quasi-rassemblement s’opère en temps fini avec un niveau élevé de probabilité.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The problem of reaching a consensus in a group of autonomous agents has been the object of study in a number
of situations ranging from linguistics [11,18,20] to distributed computing [25,26] and from physics [27] to animal
behavior [6,13,23,24].

Research on the latter attempts to explain, by appropriately modeling it, the observed behavior of a group of
animals, say a flock of birds, whose velocities converge to a common one. An influential model for this behavior
has been postulated in [27] by Vicsek and collaborators and studied in [17] where convergence is shown under some
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conditions on the sequence of states of the flock. Also, the work of Buhl et al. [5] showed that Vicsek’s model
accurately describes the convergence to order in swarms of locusts. A different model for the same phenomenon was
proposed in [9] and extended in [10] (to situations other than flocking) and in [22] (to flocking situations where a
hierarchical leadership structure is present). A main feature of these papers is that, in contrast with the results in
[17,27], convergence results are established conditioned to the initial state of the flock only.

The model in [9] postulates the following behavior: every bird adjusts its velocity by adding to it a weighted average
of the differences of its velocity with those of the other birds. That is, at time t , and for bird i,

vi (t + h) = vi (t) + h

k∑
j=1

aij

(
vj (t) − vi (t)

)
, (1)

where the weights {aij } quantify the way the birds influence each other, and h > 0 is the time step. Vicsek’s model is
more general in the sense that allows the obtained vi (t + h) to be perturbed by some centered noise. More precisely,
it replaces (1) by:

vi (t + h) = vi (t) + h

k∑
j=1

aij

(
vj (t) − vi (t)

)+ hH i (t), (2)

where H i (t) ∈ E is some centered random variable modeling the noise. Here E denotes 3-dimensional Euclidean
space.

It is reasonable to assume that the influence weights aij are a function of the distance between birds. This is the
case in [9,27] and the major difference between these models is in the choice of the aij . In this paper we will follow
[9] but slightly depart from it and take the adjacency matrix Ax to have entries,

aij = K

(1 + ‖xi − xj‖)α , (3)

for some fixed K > 0 and α � 0.
We can write the set of equalities (1) in a more concise form. Let Dx be the k × k diagonal matrix whose ith

diagonal entry is di =∑j�k aij and Lx = Dx − Ax . Then (cf. [9]),

v(t + h) − v(t) = −hLxv(t) + hH (t),

where H = (H 1, . . . ,H k).
Note that the matrix notation Lxv(t) does not have the usual meaning of a k × k matrix acting on R

k . Instead, the
matrix Lx is acting on E

k by mapping (v1, . . . ,vk) to ((Lx)i1v1 + · · · + (Lx)ikvk)i�k .
Adding a natural equation for the change of positions we obtain the discrete dynamical system:

x(t + h) = x(t) + hv(t),

v(t + h) = (Id − hLx)v(t) + hH (t). (D)

We also consider evolution for continuous time. The corresponding model is obtained by taking limits for h → 0
and can be given by the system of differential equations:

x′ = v,

v′ = −Lxv + H . (C)

The main result in [9] shows, in the unperturbed case, for both discrete and continuous time, convergence to the
alignment of the velocities. More precisely, convergence to a common velocity when the initial positions and velocities
of the flock are not too dissimilar (for α � 1, otherwise, convergence holds unconditionally). For systems (D) and (C),
due to the presence of noise, we can not expect convergence to a common velocity. Once the velocities {v1, . . . ,vk}
are similar enough compared with the noise the latter will, with positive probability, outdo the contractive character
of the system. Perfect alignment as in [9] should therefore be replaced by “nearly-alignment”. A formal measure of
similarity (and with it a definition of nearly-alignment) will be given soon in Section 2. A description of the forms of
noise we consider in this paper will be given in Sections 3.1 and 4.2. We nevertheless state now an informal version
of our main results (see Theorems 1 and 3 for precise statements).
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Main result. Assume that at time 0 the positions and velocities of the flock are not both too dissimilar ( for α � 1,
otherwise, no assumption is needed) and that the time step h is small enough (in case of discrete time). Then nearly-
alignment is (quickly) reached with a certain probability and we exhibit a lower bound for this probability in terms of
the initial similarity of positions and velocities, the variance of H , and the parameters k,K and α.

The critical value α = 1 is sharp as shown in [9] (cf. Remark 6 below).
The proof of our main result closely follows the proofs in [9]. Some changes had to be made to make room for the

noise and in doing so we did a few simplifications as well.

2. Some preliminaries

2.1. Laplacians

Given a nonnegative, symmetric, k × k matrix A the Laplacian L of A is defined to be

L = D − A,

where D = diag(d1, . . . , dk) and d� =∑k
j=1 a�j . Some features of L are immediate. It is symmetric and it does not

depend on the diagonal entries of A.
The matrix Lx in (D) and (C) is thus the Laplacian of Ax . It satisfies that for all u ∈ E, Lx(u, . . . , u) = 0. In

addition, it is positive semidefinite.
The smallest eigenvalue of Lx is zero. Its second eigenvalue is called the Fiedler number of Ax . We will denote it

by φx .

Proposition 1. (See [10, Proposition 1].) Let A be a k × k nonnegative, symmetric matrix, L = D − A its Laplacian,
φ its Fiedler number, and μ = mini �=j aij . Then φ � kμ.

2.2. Similarity and nearly-alignment

The inner product on E naturally induces an inner product on E
k . Let Δ be the diagonal of E

k , i.e.,

Δ = {(u,u, . . . , u)
∣∣ u ∈ E

}
,

and Δ⊥ be the orthogonal complement of Δ in E
k . Then, every point v ∈ E

k decomposes in a unique way as
v = vΔ + v⊥ with vΔ ∈ Δ and v⊥ ∈ Δ⊥. This decomposition has a simple explicit form. Denote by,

m = 1

k

k∑
i=1

vi ,

the mean of the vi . Then vΔ = (m, . . . ,m) and v⊥ = (v1 − m, . . . ,vk − m). This follows immediately from the
equality,

〈vΔ,v⊥〉 =
k∑

i=1

〈
m, (vi − m)

〉= 〈m,

k∑
i=1

vi − m

〉

=
〈
m,

(
k∑

i=1

vi

)
− km

〉
= 〈m,0〉 = 0.

We can look at the evolution of the velocities vi (t) decomposing into the evolution of their mean m(t) and that of the
distances to that mean v⊥ = (v1 − m, . . . ,vk − m) and a key observation at this stage is the fact that convergence to
a common velocity (or nearly-alignment) is a feature of the second evolution only. More precisely, the condition “the
velocities vi (t) tend to alignment” is equivalent to the condition “v⊥(t) → 0”. We are thus interested on the projection
(x⊥(t),v⊥(t)) over Δ⊥ × Δ⊥ of the solutions (x(t),v(t)) of the system (D) (or (C)). It is easy to show (see [9]) that
these projections are the solutions of the restriction of (D) (respectively, (C)) to Δ⊥ × Δ⊥.
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More precisely, they are the solutions of:

x(t + h)⊥ = x(t)⊥ + hv(t)⊥,

v(t + h)⊥ = (Id − hLx⊥)v(t)⊥ + hH⊥.

Hence, in what follows, we will consider positions in,

X := E
k/Δ � Δ⊥,

and velocities in

V := E
k/Δ � Δ⊥.

For x,v ∈ E
k we will denote x = x⊥ and v = v⊥. Finally, we will denote H = H⊥. With these notations, our focus

is now on the system:

x(t + h) = x(t) + hv(t),

v(t + h) = (Id − hLx)v(t) + hH(t), (D)

and with continuous time,

x′ = v,

v′ = −Lxv + H. (C)

Note that we still refer to these systems as (D) and (C).
It is natural now to take the norm ‖x⊥‖ of the projection x⊥ as the dissimilarity of x and similarly for ‖v⊥‖. In

the case of x we may call this measure the dispersion of the flock. It relates with its “diameter”.

Lemma 1. For all x ∈ E
k , maxi �=j ‖xi − xj‖ �

√
2‖x⊥‖.

Proof. Write x = xΔ + x⊥ = (ũ, . . . , ũ) + ((x⊥)1, . . . , (x⊥)k). Then, for all i �= j , xi − xj = (x⊥)i − (x⊥)j and

‖xi − xj‖E = ∥∥(x⊥)i − (x⊥)j
∥∥

E
�
∥∥(x⊥)i

∥∥
E

+ ∥∥(x⊥)j
∥∥

E
�

√
2‖x⊥‖Ek . �

The notion of similarity leads to the following definition:

Definition 1. Let ν > 0. We say that the flock {1, . . . , k} is ν-nearly-aligned (or simply nearly-aligned) when
‖v⊥‖ � ν.

2.3. A few functions of the initial state

The initial state of the flock is characterized by the pair (x(0),v(0)). For convergence to alignment (or to nearly-
alignment) to hold one needs to require that the dissimilarities of these two vectors are not both large.

We close this section with a few quantities related to these initial dissimilarities which will occur when describing
the conditions ensuring convergence. These are:

a = 2
√

2

kK

∥∥v(0)
∥∥, b = 1 + √

2
∥∥x(0)

∥∥;
U0 =

⎧⎪⎨⎪⎩
max{(2a)1/(1−α),2b} if α < 1,

b
1−a if α = 1,
α

α−1b if α > 1;

B0 = U0 − 1√
2

, and H0 = 2−α−1kK

Uα
0

.
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3. Discrete time

Assume the initial state for (D) is at time 0. Then the sequence of states is {x(th), v(th)}t∈N. To simplify notation
we will denote x(th) simply by x[t] and similarly for v.

3.1. Statement of the result

Recall, the random noise in (D) has the form H = (H 1, . . . ,H k) and we have H = HΔ + H . Note that the
component HΔ of H corresponds to the perturbation of the common velocity vΔ within Δ and is therefore of no
consequence regarding convergence to alignment or nearly-alignment.

In what follows we assume that, for all i ∈ {1, . . . , k}, and for all t ∈ N,

H i (t) = (e(1)
i (t), e

(2)
i (t), e

(3)
i (t)

)
,

where the e
(�)
i (t) are one-dimensional random variables, the coordinates of the perturbation.

We consider two possible laws for the distribution of H :

Uniform: H � U3k(0, r),

where, for some r > 0, U3k(0, r) is the uniform distribution in B(0, r) ⊂ R
3k , and

Gaussian: H � N
(
0, σ 2 Id3k

)
,

a 3k-dimensional centered Gaussian distribution with covariance matrix σ 2 Id3k . As a consequence, in the Gaussian
case, the random variables e

(�)
i are independent.

Our main result for discrete time is the following.

Theorem 1. Consider the system (D) with adjacency matrix given by (3). Assume that h satisfies,

h < min

{
1

2(k − 1)
√

kK
,

1

2
√

2‖v(0)‖
(

kK

2H0

)1/α}
.

Assume also that one of the three following hypothesis holds:

(i) α < 1,
(ii) α = 1, and ‖v(0)‖ < kK

2
√

2
,

(iii) α > 1, and (
1

αa

)1/(α−1)
α − 1

α
> b + 2kKha.

Then ν-nearly-alignment for some ν < ‖v(0)‖ occurs in a number of iterations bounded by:

T0 := 2Uα
0

hkK
ln

(‖v(0)‖
ν

)
,

with probability at least (H0ν

r

)3kT0

,

in the uniform case (1 if r � H0ν), and with probability at least(√
H0ν/(2σ)∫

0

t
3k−5

2

�( 3k−3
2 )

e−t dt

)T0

,

in the Gaussian case.
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Remark 1. For each of the cases (i), (ii), and (iii) we can replace U0 and H0 by their respective values. In case (iii)
and with uniform noise, for instance, this yields:

T0 = 2

hkK
ln

(‖v(0)‖
ν

)((
1 + √

2
∥∥x(0)

∥∥) α

α − 1

)α

and

H0ν

r
= 2−α−1kK

r

(
α − 1

α(1 + √
2‖x(0)‖)

)α

.

Note that this means that for

T0 = 1

hkK
ln

(‖v(0)‖
ν

)
O
(∥∥x(0)

∥∥α)
,

we have:

Prob{nearly-align in at most T0 iterations} �
(

kK

rO(‖x(0)‖α)

)3kT0

.

From these expressions it is easy to read the role of the deterministic setting parameters h, k and K , the probabilistic r ,
the radius ν, and the initial dissimilarities ‖x(0)‖,‖v(0)‖ both in the time required to reach nearly-alignment and in
the confidence with which this occurs.

Remark 2. The integral in the bound for the probability in the Gaussian case satisfies, when k is odd and writing
n = 3k−3

2 , the equality:

x∫
0

tn−1

�(n)
e−t dt = 1 − e−x

(
xn−1

(n − 1)! + · · · + x

1! + 1

)
.

For x = √
H0ν/(2σ) and for small σ this probability bound is equivalent to,

1 − T0

�(n)
e−xxn−1.

By L’Hôpital’s rule, this equivalence holds as well when k is even.

3.2. Bounded noise

Fix a solution (x, v) of (D). At a time t ∈ N, x[t] and v[t] are elements in X and V , respectively. In particular, x[t]
determines an adjacency matrix Ax[t]. For notational simplicity we will denote its Laplacian and Fiedler number by
Lt and φt , respectively.

Lemma 2. For all x ∈ X,

‖Lx‖ � 2(k − 1)
√

kK.

In particular, if h < 1
2(k−1)

√
kK

then h‖Lx‖ ∈ (0,1].

Proof. For all i, j � k, aij � K . Therefore,

‖Lx‖max = max
i�k

k∑
j=1

∣∣(Lx)ij
∣∣� 2(k − 1)K.

Now use that ‖Lx‖ �
√

k‖Lx‖max [14, Table 6.2] to deduce the result. �
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Proposition 2. Assume that h < 1
2(k−1)

√
kK

. Assume also that, for all 0 � t < T , ‖H‖ � H0‖v[t]‖. Then,

for all t < T , ∥∥v[t + 1]∥∥� (1 − hφt + hH0)
∥∥v[t]∥∥.

In particular, ‖v‖ is decreasing as a function of t for t < T .

Proof. The linear map Id − hLt is self-adjoint and its eigenvalues are in the interval (0,1). Its largest eigenvalue is
1 − hφt . Therefore∥∥v[t + 1]∥∥= ∥∥(Id − hLt)v[t] + hH

∥∥� ‖Id − hLt‖
∥∥v[t]∥∥+ h‖H‖

� (1 − hφt )
∥∥v[t]∥∥+ hH0

∥∥v[t]∥∥= (1 − hφt + hH0)
∥∥v[t]∥∥. �

Corollary 1. In the hypothesis of Proposition 2, for all t ∈ {0, . . . , T − 1} we have:

∥∥v[t]∥∥�
∥∥v[0]∥∥ t−1∏

i=0

(1 − hφi + hH0).

A proof of the following lemma is in [8, Lemma 7].

Lemma 3. Let c1, c2 > 0 and s > q > 0. Then the equation,

F(z) = zs − c1z
q − c2 = 0

has a unique positive zero z∗. In addition,

z∗ � max
{
(2c1)

1/(s−q), (2c2)
1/s
}

and F(z) � 0 for 0 � z � z∗.

Theorem 2. Let T ∈ N ∪ {+∞}. Assume that, for all 0 � t < T , ‖H‖ � H0‖v[t]‖, and that h satisfies,

h < min

{
1

2(k − 1)
√

kK
,

1

2
√

2‖v[0]‖
(

kK

2H0

)1/α}
,

where H0 is as in Theorem 1. Assume also that one of the three following hypothesis holds:

(i) α < 1,
(ii) α = 1, and ‖v[0]‖ < kK

2
√

2
,

(iii) α > 1, and (
1

αa

)1/(α−1)
α − 1

α
> b + 2kKha.

Then 1 − h kK
2Uα

0
∈ (0,1), for all 0 � t < T , ‖x[t]‖ � B0 and

∥∥v[t]∥∥�
∥∥v[0]∥∥(1 − h

kK

2Uα
0

)t

.

In particular, when T = ∞, ‖v[t]‖ → 0 for t → ∞.

Proof. Let

Υ =
{
t ∈ {0, . . . , T − 1}

∣∣∣ (1 + √
2
∥∥x(t)

∥∥)α � kK

2H0

}
.

Note that in all three cases ((i), (ii), and (iii)) the definition of H0 implies that 0 ∈ Υ and hence, that Υ �= ∅. Assume
that Υ �= {0, . . . , T − 1} and let t̂ = min{{0, . . . , T − 1} \ Υ }.
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For t < T , let t∗ be the point maximizing ‖x‖ in {0,1, . . . , t}. Then, by Proposition 1 and Lemma 1,
for i ∈ {0,1, . . . , t},

φi � kK

(1 + √
2‖x[i]‖)α � kK

(1 + √
2‖x[t∗]‖)α .

Moreover, since t∗ � t < t̂ we have:

φi −H0 � kK

(1 + √
2‖x[t∗]‖)α −H0 � kK

2(1 + √
2‖x[t∗]‖)α =: R(t∗).

Using Corollary 1 we obtain, for all τ � t ,

∥∥x[τ ]∥∥�
∥∥x[0]∥∥+

τ−1∑
j=0

∥∥x[j + 1] − x[j ]∥∥�
∥∥x[0]∥∥+ h

τ−1∑
j=0

∥∥v[j ]∥∥
�
∥∥x[0]∥∥+ h

(∥∥v[0]∥∥+
τ−1∑
j=1

∥∥v[j ]∥∥)

�
∥∥x[0]∥∥+ h

(∥∥v[0]∥∥+
τ−1∑
j=1

∥∥v[0]∥∥ j∏
i=1

(1 − hφi + hH0)

)

�
∥∥x[0]∥∥+ h

∥∥v[0]∥∥ τ−1∑
j=0

(
1 − hR(t∗)

)j
�
∥∥x[0]∥∥+ h

1

hR(t∗)
∥∥v[0]∥∥

= ∥∥x[0]∥∥+ 2(1 + √
2‖x[t∗]‖)α
kK

∥∥v[0]∥∥.
Multiplying by

√
2 and taking τ = t∗, the inequality above takes the following equivalent form:

√
2
∥∥x[t∗]∥∥�

√
2
∥∥x[0]∥∥+ 2

√
2(1 + √

2‖x[t∗]‖)α
kK

∥∥v[0]∥∥,
or yet (

1 + √
2
∥∥x[t∗]∥∥)� (1 + √

2
∥∥x[0]∥∥)+ 2

√
2(1 + √

2‖x[t∗]‖)α
kK

∥∥v[0]∥∥. (4)

Let z = 1 + √
2‖x[t∗]‖. Then (4) can be rewritten as F(z) � 0, with

F(z) = z − azα − b.

(i) Assume α < 1. By Lemma 3, F(z) � 0 implies that (1 + √
2‖x[t∗]‖) � U0. Since U0 is independent of t we

deduce that, for all t < t̂ , ∥∥x[t]∥∥� U0 − 1√
2

= B0.

Therefore, for all t < t̂ , (
1 + √

2
∥∥x[t]∥∥)α �

(
1 + √

2
∥∥x[t∗]∥∥)α � Uα

0 � 2−α kK

2H0
,

the last by the definition of H0. It follows that∥∥x[t̂ ]∥∥= ∥∥x[t̂ − 1]∥∥+ h
∥∥v[t̂ − 1]∥∥�

∥∥x[t̂ − 1]∥∥+ h
∥∥v[0]∥∥,

and therefore



286 F. Cucker, E. Mordecki / J. Math. Pures Appl. 89 (2008) 278–296
(
1 + √

2
∥∥x[t̂ ]∥∥)� 1 + √

2
∥∥x[t̂ − 1]∥∥+ √

2h
∥∥v[0]∥∥

�
(

2−α kK

2H0

)1/α

+ √
2h
∥∥v[0]∥∥�

(
kK

2H0

)1/α

,

the last by our hypothesis on h. This is in contradiction with the definition of t̂ and shows that no such t̂ exists. That
is, for all t < T , ‖x[t]‖ � B0, and

φt −H0 � F0 := kK

2(1 + √
2B0)α

= kK

2Uα
0

.

By Corollary 1, for t < T ,

∥∥v[t]∥∥�
∥∥v[0]∥∥ t−1∏

i=0

(1 − hφi + hH0) � (1 − hF0)
t
∥∥v[0]∥∥.

The convergence results for the case T = ∞ now readily follow (cf. [9, Theorem 3]).
(ii) Assume now α = 1. Then (4) takes the form(

1 + √
2
∥∥x[t∗]∥∥)(1 − 2

√
2

kK

∥∥v[0]∥∥)− (1 + √
2
∥∥x[0]∥∥)� 0.

By hypothesis, ‖v[0]‖ < kK

2
√

2
. This implies that

∥∥x[t∗]∥∥� kK
1 + √

2‖x[0]‖√
2kK − 4‖v[0]‖ − 1 = B0.

We conclude that, for all t < t̂ ,(
1 + √

2
∥∥x[t]∥∥)α � 1 + √

2
∥∥x[t∗]∥∥� kK

1 + √
2‖x[0]‖

kK − 2
√

2‖v[0]‖ � kK

4H0
,

by the definition of H0. We now proceed as in case (i).
(iii) Assume finally α > 1. The derivative F ′(z) = 1 − αazα−1 has a unique zero at z∗ = ( 1

αa )1/(α−1), and

F(z∗) =
(

1

αa

)1/(α−1)

− a

(
1

αa

)α/(α−1)

− b

=
(

1

α

)1/(α−1)( 1

a

)1/(α−1)

−
(

1

α

)α/(α−1)( 1

a

)1/(α−1)

− b

=
(

1

a

)1/(α−1)( 1

α

)1/(α−1)
α − 1

α
− b

> 0

the last by our hypothesis. Since F(0) = −b < 0, F ′′(z) = α(α − 1)azα−2 > 0 for all z > 0, and F(z) → −∞ when
z → ∞, we deduce that the shape of F is as follows (see Fig. 1).

For t ∈ N let z(t) = 1 + √
2‖x[t∗]‖. When t = 0 we have t∗ = 0 as well and

z(0) � 1 + √
2
∥∥x[0]∥∥= b <

(
1

a

)1/(α−1)( 1

α

)1/(α−1)

= z∗.

This implies that z(0) < z�. Assume that there exists t < T such that z(t) � zu and let r be the first such t .
Then r = r∗ � 1 and, for all t < r ,

1 + √
2
∥∥x[t]∥∥� z(r − 1) � z�.

Let z0 be the intersection of the z axis with the line segment joining (0,−b) and (z∗,F (z∗)) (see Fig. 1). The line
where this segment lies has equation,

y + b = z
z∗ − azα∗ ,
z∗
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Fig. 1.

from which it follows that

z0 = b

1 − azα−1∗
= (1 + √

2
∥∥x(0)

∥∥) α

α − 1
.

It follows that, for all t < r , ∥∥x[t]∥∥� 1√
2
(z� − 1) � 1√

2
(z0 − 1) = B0.

In particular, ∥∥x[r − 1]∥∥� 1√
2
(z� − 1).

For r instead, we have ∥∥x[r]∥∥� 1√
2
(zu − 1).

This implies ∥∥x[r] − x[r − 1]∥∥�
∥∥x[r]∥∥− ∥∥x[r − 1]∥∥� 1√

2
(zu − z�) � 1√

2
(z∗ − z�). (5)

From the intermediate value theorem, there is ξ ∈ [z�, z∗] such that F(z∗) = F ′(ξ)(z∗ − z�). But F ′(ξ) � 0 and
F ′(ξ) = 1 − aαξα−1 � 1. Therefore,

z∗ − z� � F(z∗),

and it follows from (5) that ∥∥x[r] − x[r − 1]∥∥� 1√
2
F(z∗). (6)

But, ∥∥x[r] − x[r − 1]∥∥= h
∥∥v[r − 1]∥∥� h

∥∥v[0]∥∥,
the last since ‖v‖ is decreasing for t < T . Putting this inequality together with (6) shows that

F(z∗) �
√

2h
∥∥v[0]∥∥



288 F. Cucker, E. Mordecki / J. Math. Pures Appl. 89 (2008) 278–296
or equivalently, (
1

a

)1/(α−1)( 1

α

)1/(α−1)
α − 1

α
− b �

√
2h
∥∥v[0]∥∥,

which contradicts our hypothesis. This shows that, for all t < T , z(t) < z� and hence, for all t < t̂ ,(
1 + √

2
∥∥x[t]∥∥)α � zα

0 =
((

1 + √
2
∥∥x[0]∥∥) α

α − 1

)α

� 2−α kK

2H0
,

the last by the definition of H0. We now proceed as in case (i). �
3.3. Proof of Theorem 1

Proposition 3. For ε > 0, let p(ε) = Prob{‖H‖ � ε}. Then, in the uniform case, we have the bound,

p(ε) �
(

ε

r

)3k

(p(ε) = 1 if r � ε) while in the Gaussian case ‖H/σ‖2 has a Chi-square distribution with 3k − 3 degrees of freedom,
and in consequence

p(ε) =
√

ε/(2σ)∫
0

t (3k−5)/2

�( 3k−3
2 )

e−t dt.

Proof. In the uniform case, since ‖H‖ � ‖H‖, we have:

Prob
(‖H‖ � ε

)
� Prob

(‖H‖ � ε
)= (ε

r

)3k

.

In the Gaussian case, the decomposition H = HΔ + H⊥ takes the form HΔ = (m, . . . ,m), with m = 1
k

∑k
j=1 H j ,

and H⊥ = H − (m, . . . ,m). Consequently

‖H‖2 = ‖H⊥‖2 =
k∑

j=1

(H j − m)2 =
3∑

�=1

k∑
j=1

(
e
(�)
j − m(�)

)2
,

where m = (m(1),m(2),m(3)). A standard result in statistics (see [2, p. 219]) states that 1
σ 2

∑k
j=1(e

(�)
j − m(�))2 has

a Chi-square distribution with k − 1 degrees of freedom. Therefore, by independence, ‖H/σ‖2 has a Chi-square
distribution with 3k − 3 degrees of freedom. The expression for p(ε) follows from the form of the density of the
Chi-square random variable. �

We can now give the proof of Theorem 1.
Let T > 0 and assume that the hypothesis of Theorem 2 holds for T . Then,∥∥v[t]∥∥�

∥∥v[0]∥∥(1 − h
kK

2(1 + √
2B0)α

)t

,

where B0 is as in Theorem 2. Therefore∥∥v[T ]∥∥� ν ⇐� ∥∥v[0]∥∥(1 − h
kK

2(1 + √
2B0)α

)T

� ν

⇐⇒ T �
(

ln

(
1 − h

kK

2(1 + √
2B0)α

))−1

ln

(
ν

‖v[0]‖
)

⇐� T � 2(1 + √
2B0)

α

ln

(‖v[0]‖)= T0.

hkK ν
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At each iteration t , Theorem 2 requires that ‖H(t)‖ � H0‖v[t]‖ for a quantity H0 which depends on the initial
conditions and on the case ((i), (ii), or (iii)) at hand. If nearly-alignment has not occurred, then ‖v[t]‖ � ν and
therefore,

Prob
{∥∥H(t)

∥∥� H0
∥∥v[t]∥∥}� Prob

{∥∥H(t)
∥∥� H0ν

}
� p(H0ν).

It follows that

Prob
{∥∥H(t)

∥∥� H0
∥∥v[t]∥∥ for t = 0, . . . , T0 − 1

}
� p(H0ν)T0

and therefore the claimed bounds in the uniform and Gaussian cases.

4. Continuous time

The goal of this section is to show a continuous time version of Theorem 1. In contrast with the discrete time
setting, though, the description of the noise H is not straightforward. There is no obvious continuous time version
of a sequence of independent and identically distributed random variables. We thus begin by discussing our model of
noise.

4.1. Continuous time stochastic processes

A continuous time stochastic process {X(t) | t � 0}, or for short a stochastic process, is a family of random vari-
ables X(t) defined in a common probability space (Ω,F ,Prob). More precisely, the stochastic process depends on
two arguments, t and ω, and when necessary we denote it by X(t,ω). In order to describe our assumptions, we make
a brief comparison with the discrete time situation.

In the discrete time situation it is natural to assume that each perturbation X(t) is a centered random variable
(i.e., E(X(t)) = 0), that for all values of t the random variables X(t) are mutually independent, and that they have
a common distribution. Making some additional assumption on the distribution of each random variable, typically
assuming normality with a given standard deviation σ , completes the specification of the noise probabilistic structure.
Let us call this structure a Gaussian white noise sequence.

Unfortunately, in continuous time we do not have a reasonable tractable model that shares the properties of the
Gaussian white noise sequence. To understand why this is so we need to consider the properties of the trajectories of
the processes, i.e., the curves obtained when ω ∈ Ω is fixed and t ranges in the interval [0,∞). Assuming indepen-
dence of the random variables of the stochastic process for close values of t makes the trajectories of the process to
have an extremely irregular behaviour. Consequently, if we want the trajectories of the process to be continuous, or
differentiable, we cannot assume the independence of the random variables for pairs of close values of t .

To analyze this difficulty consider first, in the discrete time case, the accumulated perturbation produced by a
Gaussian white noise sequence {X(t) | t ∈ N}. That is, consider the sequence of sums:

S(0) = 0, S(t) = X(1) + · · · + X(t), t = 1,2, . . . .

This random sequence associated to the Gaussian white noise sequence, called Gaussian random walk, does have
a natural counterpart in the continuous time case, known as Wiener process or Brownian motion. A Wiener process
W = {W(t) | t � 0} is a continuous time stochastic process satisfying the following properties, that are natural exten-
sions to continuous time of the properties of the sequence {S(t) | t ∈ N}:

(a) W(0) = 0.
(b) The increments of the process are independent random variables. That is, for all 0 � t0 < t1 < · · · < tn the random

variables,

W(t1) − W(t0), . . . ,W(tn) − W(tn−1),

are independent.
(c) The increments are homogeneous and Gaussian. That is, for all t, h � 0, the random variable,

W(t + h) − W(t),

has a centered Gaussian distribution with variance h.
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(d) Finally, the trajectories of W are continuous. That is, the curves {W(·,ω)} obtained when ω ∈ Ω is fixed and
t � 0 are continuous functions of t for almost all ω ∈ Ω .

In the discrete time case the Gaussian white noise sequence can be recovered from the sums S(t) by taking differences
X(t) = S(t) − S(t − 1). In the continuous time case we would like to have a formula like X(t) = Ẇ (t), but it is not
immediate to give a sense to this last time derivative, as it is known that the trajectories of the Wiener process are
nowhere differentiable [4]. A possible way out is to first take a differentiable approximation of the Wiener process
and then take the time derivative of this approximation as a model of noise in the continuous time case. Another,
alternative, way out is described in Remark 5 below.

The approximation is obtained by convolution with a smooth kernel. Let ψ : R → R+ be a C 1 function, with
compact support, say supp(ψ) ⊂ [−1/2,1/2] and such that

∫
R

ψ(x)dx = 1. For δ > 0 consider,

ψδ(x) = 1

δ
ψ

(
x

δ

)
,

that has supp(ψδ) ⊂ [−δ/2, δ/2].
The approximation Wδ = {Wδ(t) | t � 0} of the Wiener process is obtained by convolution with ψδ in the following

way:

Wδ(t) = (ψδ ∗ W)(t) =
∫
R

ψδ(t − s)W(s)ds =
∫
R

ψδ(−w)W(t + w)dw, (7)

where, if s < 0, we replace W(s) in the integrand by Ŵ (−s), where Ŵ is another Wiener process independent of W .
Observe that the process Wδ inherits the regularity properties of ψ . In particular, it has C 1 trajectories. We now

define a noise process Xδ as the time derivative of Wδ ,

Xδ(t) = d

dt
Wδ(t) =

∫
R

∂

∂t

(
ψδ(t − s)

)
W(s)ds (8)

= 1

δ

∫
R

ψ̇(−w)
(
W(t + δw) − W(t − δ/2)

)
dw (9)

=
∫
R

ψδ(t − s)dW(s). (10)

Here the second equality in (8) is obtained by differentiation under the integral sign, (9) after a change of variables
s − t = δw and using that

∫
R

ψ̇(−w)dw = 0, and (10) by integration by parts departing from (8) (note, this involves
a stochastic integral [21]).

Using (10) and Itô’s isometry for the stochastic integral [21, Theorem 4.2] we obtain (we write X instead of Xδ),
for h � 0,

E
(
X(t + h)X(t)

)= E
(∫

R

ψδ(t + h − s)dW(s)

∫
R

ψδ(t − s)dW(s)

)

=
∫
R

ψδ(t + h − s)ψδ(t − s)ds. (11)

Taking h = 0, we obtain:

E
(
X(t)2)= ∫

R

ψδ(t − s)ψδ(t − s)ds = ‖ψδ‖2 = 1

δ
‖ψ‖2. (12)

Taking h � δ in (11) and using that supp(ψδ) ⊂ [−δ/2, δ/2] we obtain:

E
(
X(t + h)X(t)

)= 0. (13)

Furthermore, from the different expressions in (8)–(10) we obtain the following properties of the process
{X(t) | t � 0}:
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(a) It is a centered Gaussian process with variance ‖ψδ‖2 = (1/δ)‖ψ‖2. That is, X(t) ∼ N(0, (1/δ)‖ψ‖2)

for all t ∈ [0, T ].
(b) It is a stationary process. That is, for all times t1, . . . , tn, intervals I1, . . . , In, and time increment h, we have:

Prob
(
X(t1) ∈ I1, . . . ,X(tn) ∈ In

)= Prob
(
X(t1 + h) ∈ I1, . . . ,X(tn + h) ∈ In

)
.

(c) It is δ-dependent. That is, the two sets of random variables,{
X(s)

∣∣ s � t
}

and
{
X(s)

∣∣ s � t + δ
}
,

are independent for each t .

The first property can be obtained from (8) since the integral there is the limit of a linear combination of Gaussian
random variables. Indeed, such a linear combination remains Gaussian and the limit of the resulting random variables
preserves Gaussianity as well. This variable is centered since all the involved variables are centered, and the limit
defining the integral preserves the expectation. The value for the variance follows from (12).

The stationarity property of X(t) is inherited from the stationarity of the increments of the Wiener process. In
order to see it we use the representation (9). The probability distribution of the stochastic process
{W(t + w) − W(t − δ/2) | −δ/2 � w � δ/2} does not depend on the value of t , or more precisely, the probability
distribution of {W(ti + w) − W(ti − δ/2) | −δ/2 � w � δ/2, i = 1, . . . , n} coincides with the probability distribution
of {W(ti + h + w) − W(ti + h − δ/2) | −δ/2 � w � δ/2, i = 1, . . . , n}. This makes the process probabilities invariant
under a shift of h, i.e. the process satisfy the definition of stationarity in (b) above.

Finally, the δ-dependency is a consequence of (13). This equality give us non-correlation, when the lag h � δ.
The independence follows since a Gaussian vector without correlation has independent components. It should be
noticed that this property is not essential to our development below; it simply mimics the discrete time independence.
Furthermore, it is possible to derive similar results in this discrete time case for a weakly dependent noise.

Remark 3. The contents of this section is not new. It is exposed in certain detail for ease of the reader. Regarding the
equalities in (8)–(10), it can be seen that any centered Gaussian process admits such a representation with an adequate
kernel. General results on Gaussian processes and their diverse applications can be found for instance in [1,3,7].

4.2. Statement of the main result

We can now describe the noise H in (C) and state a continuous version of Theorem 1.
We assume that H i (t) is a three-dimensional Gaussian centered, stationary stochastic process, that satisfies a

δ-dependence condition for some δ > 0, has C 1 trajectories, and independent coordinates. More precisely, we assume
that H i (t) = (e

(1)
i (t), e

(2)
i (t), e

(3)
i (t)), where each coordinate is given by:

e
(�)
i (t) = σ

√
δ

∫
R

ψδ(t − s)dW
(�)
i (s), (14)

where ψδ is a kernel as in Section 4.1, σ > 0, and {W(�)
i (t) | t � 0} is a set of 3k independent Wiener processes. That

is, each coordinate of H i is of the form σ
√

δXδ with Xδ as in Section 4.1. Note that the variance Var(e(�)
i (t)) = σ 2

for all t � 0.

Theorem 3. Consider the system (C) with adjacency matrix given by (3) and noise given by (14). Let x0, v0 ∈ E. Then,
there exists a unique solution (x(t), v(t)) of (C), defined for all t ∈ R, with initial conditions x(0) = x0 and v(0) = v0.
Assume that one of the three following hypothesis holds:

(i) α < 1,
(ii) α = 1, and ‖v(0)‖ < kK

2
√

2
,

(iii) α > 1, and (
1

αa

)1/(α−1)
α − 1

α
> b.
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Then ν-nearly-alignment for some ν < ‖v(0)‖ occurs before time,

T0 := Uα
0

kK
ln

(‖v(0)‖
ν

)
,

with probability at least, {
2Φ

(
νH0

σ
√

3k

)
− 2T0σ‖ψ̇‖

δ
√

2π
ϕ

(
νH0

σ
√

3k

)
− 1

}3k

, (15)

where Φ(y) = 1√
2π

∫ y

−∞ e−u2/2 du is the standard normal distribution and ϕ = Φ ′ its density.

Remark 4. Using the identity,

1 − Φ(x) = ϕ(x)

x

(
1 +O

(
1

x2

))
,

and performing some elementary computations we obtain that the bound in (15) is equivalent, for small σ , to

1 − 6kσ

(√
3k

νH0
+ T0‖ψ̇‖

δ
√

2π

)
ϕ

(
νH0

σ
√

3k

)
.

Remark 5. An alternative way to model the noise in our system relies on the similarity of the Gaussian random walk
and the Wiener process. Integrating the second equation in (C) we obtain:

v(t) = v(0) −
t∫

0

Lxv(s)ds +
t∫

0

H (s)ds.

The last term in the right-hand side is the accumulated noise for which we noted in Section 4.1 that the natural
continuous time version is the Wiener process. Multiplying the latter by σ > 0 (as we did at the beginning of
Section 4.2 to obtain Var(H ) = σ 2 Id3k) we obtain:

v(t) = v(0) −
t∫

0

Lxv(s)ds + σW(t),

and integral equation often written in its “differential form”

dv(t) = −Lxv(t)dt + σ dW(t).

Hence, an alternative to (C) is the system of stochastic differential equations:

dx = v dt,

dv = −Lxv dt + σ dW. (SDE)

The construction of a solution for this system relies on the stochastic calculus developed by Itô [16].
We note that, while it is possible to prove that Wδ → W when δ → 0, it is not generally true (cf. [19]) that the

solution of a system of stochastic differential equations driven by a smoothed noise Wδ converges towards the solution
of the corresponding system driven by the original noise W . Investigating whether this is the case for (C) and (SDE)
would take us out of the scope of the present work.

To prove Theorem 3 we follow the steps in the proof of Theorem 1.

4.3. Bounded noise

For x ∈ X we denote �(x) = ‖x‖2 and for v ∈ V we denote Λ(v) = ‖v‖2.
In this section we fix T ∈ (0,∞) ∪ {+∞} and a solution (x, v) of (C) (which we assume exists and is, almost

surely, differentiable in [0, T )). The meaning of expressions like φt , Lt , Λ(t), or �(t) is as described in Section 3.2.
Denote Φt = minτ∈[0,t] φτ .
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Proposition 4. Assume that, for all 0 � t < T , ‖Ht‖ � ‖v(t)‖H0. Then, for all 0 � t < T ,∥∥v(t)
∥∥�

∥∥v(0)
∥∥e−t (Φt−H0).

Proof. Let τ ∈ [0, t]. Then

Λ′(τ ) = d

dτ

〈
v(τ), v(τ )

〉
= 2
〈
v′(τ ), v(τ )

〉
= −2

〈
Lτv(τ) + Hτ ,v(τ )

〉
= −2

〈
Lτv(τ), v(τ )

〉− 2
〈
Hτ ,v(τ )

〉
� −2φx(τ)Λ(τ) + 2‖Hτ‖

∥∥v(τ)
∥∥

� −2Λ(τ)
(
φx(τ) −H0

)
.

Here we used that Lτ is symmetric positive semidefinite on V . Using this inequality,

ln
(
Λ(τ)

)∣∣t
0 =

t∫
0

Λ′(τ )

Λ(τ)
dτ �

t∫
0

−2(φτ −H0)dτ � −2t (Φt −H0),

i.e.,

ln
(
Λ(t)

)− ln(Λ0) � −2t (Φt −H0),

from which the statement follows. �
Proposition 5. Assume that Φt > H0 for all 0 � t < T . Then, for all 0 � t < T ,∥∥x(t)

∥∥�
∥∥x(0)

∥∥+ ‖v(0)‖
Φt −H0

.

Proof. For τ � t we have |�′(τ )| = |2〈v(τ), x(τ )〉| � 2‖v(τ)‖‖x(τ)‖. But ‖x(τ)‖ = �(τ)1/2 and ‖v(τ)‖2 = Λ(τ) �
Λ0e−2τ(Φτ −H0), by Proposition 4. Therefore,

�′(τ ) �
∣∣�′(τ )

∣∣� 2
(
Λ0e−2τ(Φτ −H0)

)1/2
�(τ)1/2, (16)

and using that τ �→ Φτ is non-increasing and that Φτ −H0 > 0 for all τ � t ,

t∫
0

�′(τ )

�(τ)1/2
dτ � 2

t∫
0

(
Λ0e−2τ(Φτ −H0)

)1/2 dτ

� 2

t∫
0

Λ
1/2
0 e−τ(Φt−H0) dτ

= 2Λ
1/2
0

(
− 1

Φt −H0

)
e−τ(Φt−H0)

∣∣∣∣t
0
�

2Λ
1/2
0

Φt −H0
;

the last inequality because Φt > H0. This implies:

�(τ)1/2
∣∣t
0 = 1

2

t∫
0

�′(τ )

�(τ)1/2
dτ �

Λ
1/2
0

Φt −H0
,

from which it follows that

�(t)1/2 � �
1/2
0 + Λ

1/2
0 . �
Φt −H0
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The main result in this section is the following:

Theorem 4. Assume that, for all 0 � t < T , ‖H(t)‖ � ‖v(t)‖H0. Assume also that one of the three following
hypothesis hold:

(i) α < 1,
(ii) α = 1, and ‖v(0)‖ < kK

2
√

2
,

(iii) α > 1, and (
α

1

a

)1/(α−1)
α − 1

α
> b.

Then, for all 0 � t < T , ‖x(t)‖ � B0, and ∥∥v(t)
∥∥�

∥∥v(0)
∥∥e−kK/Uα

0 t .

In particular, when T = ∞, ‖v(t)‖ → 0 for t → ∞ and there exists x̂ ∈ X such that x(t) → x̂ when t → ∞.

Proof. Let

Υ =
{
t ∈ [0, T )

∣∣∣ (1 + √
2
∥∥x(t)

∥∥)α � kK

2H0

}
.

Note that in all three cases ((i), (ii), and (iii)) the definition of H0 implies that 0 ∈ Υ and hence, that Υ �= ∅. Assume
that Υ �= [0, T ) and let t̂ = inf{[0, T ) \ Υ }. Clearly, 1 + √

2‖x(t̂ )‖ = kK
2H0

.
By Proposition 1 and Lemma 1, for all x ∈ X,

φx � kK

(1 + maxi �=j ‖xi − xj‖)α � kK

(1 + √
2‖x‖)α .

Let t < t̂ and t∗ ∈ [0, t] be the point maximizing ‖x‖ in [0, t]. Then

Φt = min
τ∈[0,t]φτ � min

τ∈[0,t]
kK

(1 + √
2‖x(τ)‖)α � kK

(1 + √
2‖x(t∗)‖)α .

Moreover, since t∗ � t < t̂ , t∗ ∈ Υ and we have:

Φt −H0 � kK

(1 + √
2‖x(t∗)‖)α −H0 � kK

2(1 + √
2‖x(t∗)‖)α > 0. (17)

Hence, we may apply Proposition 5 to obtain:∥∥x(t)
∥∥�

∥∥x(0)
∥∥+ ∥∥v(0)

∥∥ 1

Φt −H0

�
∥∥x(0)

∥∥+ 2‖v(0)‖(1 + √
2‖x(t∗)‖)α

kK
. (18)

Since t∗ maximizes � in [0, t] it also does so in [0, t∗]. Thus, for t = t∗, (18) takes the form,(
1 + √

2
∥∥x(t∗)

∥∥)− 2
√

2
∥∥v(0)

∥∥ (1 + √
2‖x(t∗)‖)α
kK

− (1 + √
2
∥∥x(0)

∥∥)� 0. (19)

Let z = 1 + √
2‖x(t∗)‖. Then (19) can be rewritten as F(z) � 0 with F(z) = z − azα − b. One can now finish the

proof by dividing in cases as in Theorem 4 and following the steps in its proof. �
4.4. Proof of Theorem 3

We begin with a result on the behaviour of the maximum of the processes e
(�) described in Section 4.2.
i
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Proposition 6. Fix T > 0. Denote e(t) = e
(�)
i (t) and

p(x) = Prob
(

max
0�t�T

∣∣e(t)∣∣< x
)
.

Then

1 − p(x) = Prob
(

max
0�t�T

∣∣e(t)∣∣� x
)

� 2

[
T σ‖ψ̇‖
δ
√

2π
ϕ

(
x

σ

)
+ 1 − Φ

(
x

σ

)]
.

Proof. The proof is an application of Davies’s inequality [12] (see also Chapter 4 in [3]):

Prob
(

max
0�t�T

e(t) � x
)

� 1√
2π

ϕ

(
x

σ

) T∫
0

√
r11(t, t)dt + 1 − Φ

(
x

σ

)
,

where r11(t, t) = ∂2

∂t2 E(e(t)2) and therefore, using (11),

r11(t, t) = σ 2

δ2
‖ψ̇‖2.

The conclusion now follows from the trivial bound:

Prob
(

max
0�t�T

∣∣e(t)∣∣� x
)

� 2 Prob
(

max
0�t�T

e(t) � x
)
. �

We can now give the proof of Theorem 3. The existence of a unique solution follows, for each ω ∈ Ω , from
[15, Chapter 8].

Using that ‖H (t)‖ �
√

3k‖H (t)‖∞, and Proposition 6 for one coordinate we obtain:

Prob
(

max
0�t�T

∥∥H(t)
∥∥< ε

)
� Prob

(
max

0�t�T

∥∥H (t)
∥∥< ε

)
� Prob

(
max

0�t�T
max

1�j�k
max

1���3

∣∣e(�)
i (t)

∣∣< ε√
3k

)
= Prob

(
max

0�t�T

∣∣e(t)∣∣< ε√
3k

)3k

�
{

1 − 2

[
T σ‖ψ̇‖
δ
√

2π
ϕ

(
ε

σ
√

3k

)
+ 1 − Φ

(
ε

σ
√

3k

)]}3k

=
{

2Φ

(
ε

σ
√

3k

)
− 2T σ‖ψ̇‖

δ
√

2π
ϕ

(
ε

σ
√

3k

)
− 1

}3k

.

Similarly as in the proof of Theorem 1, but taking into account that now v(t) is a continuous function we define:

T (ω) = inf
{
t � 0

∣∣ ∥∥v(t)
∥∥� ν

}
, T0 = Uα

0

kK
ln

(‖v(0)‖
ν

)
.

Taking ε = νH0 we now see that T (ω) � T0 with probability at least,{
2Φ

(
νH0

σ
√

3k

)
− 2T0σ‖ψ̇‖

δ
√

2π
ϕ

(
νH0

σ
√

3k

)
− 1

}3k

. (20)

Let us then take ω in the set max0�t�T0‖H(t)‖ � νH0. By our previous computation, this set has a probability not
smaller than the bound (20). If T (ω) > T0, then ‖v(t)‖ > ν on the interval [0, T0], Theorem 4 holds for T = T0, and
we obtain ‖v(t)‖ � ν for some t � T0, obtaining a contradiction. This concludes the proof.

Remark 6. The value α = 1 at which the behavior of the system changes is sharp. Indeed, in [9, Section IV] the
situation with two birds flying on a line and with no noise, i.e., taking E = R (instead of R

3), k = 2, and H = 0 is
considered. In this case, the corresponding system (C) can be explicitly solved and it is shown that, for all α > 1 there
exist initial states leading to dispersion. That is, initial states for which there is no convergence to flocking.
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