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INTRODUCTION

In [19] the authors established several continuation theorems and studied the
approximation-solvability of operator equations involving multivalued A-proper
mappings. In this paper we continue our study of the solvability of equations
involving the uniform limits of multivalued A-proper mappings and their
perturbations.

In Section 1 we state the basic definitions and some of the preliminaries to
be used in subsequent sections. For more details the reader should consult [20].

In Section 2 we establish two continuation theorems and some surjectivity
results for uniform limits of A-proper mappings under various growth condi-
tions. The proofs of some theorems in this section are based on our results in
[19]. All the results of this section except Theorem 2.4 and a version of Theo-
rem 2.6 are new also in the single-valued case.

Section 3 deals with some special classes of uniform limits of A-proper
mappings. In the first part of this section we introduce various classes of multi-
valued A-proper mappings involving quasi-K-monotone, generalized pseudo-
K-monotone, and K-semibounded mappings. In the second part of this section
we use the theorems of Section 2 to deduce various surjectivity results for the
above mentioned mappings and their perturbations. As special cases we deduce
from our results (for separable spaces) certain surjectivity results of Browder,
Browder and Hess, Hess, Fitzpatrick, Petryshyn, Petryshyn and Fitzpatrick,
Rockafellar, Wille, and others.

In Section 4 we apply some of our results (Theorems 2.4, 2.6, and 3.5) to the
variational solvability of elliptic boundary value problems involving completely
continuous perturbations of operators with semibounded variation. Our surject~
ivity results extend some of those obtained earlier by Browder, Dubinsky and
others (see Sects. 3 and 4 for detailed historical comments). As our second
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application we treat a boundary value problem involving nonlinear ordinary
differential operators of order m > 1 satisfying general homogeneous boundary
conditions. The interesting feature of this example is that it involves mappings
acting between two different spaces and thus surjectivity results of the other
authors are not directly applicable in this case. Furthermore our growth condi-
tions are weaker than those used by other authors for operators acting from a
Banach space to its dual space.

1. Basic DEFINITIONS AND PRELIMINARIES

Let {E,} and {F,} be two sequences of oriented finite-dimensional spaces and
let {V,} and {W,} be two sequences of continuous linear mappings with 17,
mapping E, into X and W, mapping Y onto F,, where X and Y are real
normed linear spaces.

Remark 1.1. For the sake of notational simplicity we use the same symbol
Il| to denote the norm in the respective space X, Y, E,,, and F,,, and from the
context it will be clear which norm is meant. We also use the symbols “—"
and‘“—"" to denote strong and weak convergence, respectively.

DerFiNiTION 1.1. A quadruple of sequences I' == {E,, , I',; F, , W,} is said
to be an admissible scheme for (X, Y) if dim E,, = dimF,, for each n, V', is
injective, dist(x, V,E,)— 0 as n — oo for each x in X, and {W,} is uniformly
bounded.

Note that in Definition 1.1 we do not require that E, and F, be subspaces of
X and Y, respectively, nor that V,, and W, be linear projections. The following
examples of admissible shcemes (for others see [21]), which we subscript for
further references, will be used in this paper. For the present we shall assume
that {X,} is a sequence of oriented finite-dimensional subspaces of X such that
dist(x, X,) — 0 as n — oo for each x in X, and let V,, be an inclusion map of X,
into X.

(a) Let {Y,} be a sequence of finite-dimensional oriented subspaces of
such that dim Y,, = dim X, and let Q,, be a continuous linear map of ¥ onto Y,
such that || Q,, || < M for all # and some M > 0. Then I'y = {X,,, V,;; Y, , Qn}
is admissible for (X, Y).

(b) U Y=X,Y,=X,and W, = P,, where P, is a projection of X
onto X, such that P,(x) — x for each x in X and || P, || << M for all , then
Ty ={X,, Vp; X., Pa} is an admissible projection scheme for (X, X). Note
that when X is complete, then the assumption that || P, || << M is superfluous.

() UY=X*Y,=X* and W, =V*,, then I, ={X,,, V,; X*,,
77*,} is an admissible injective shceme for (X, X*).
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We add that I, always exists when X is separable. Let D be a given set in X,
D,=V;XD), T:D—2¥ and T, = W, TV, | o, Dp— 2Fs, For what follows
we shall need the following basic definition.

DeriNiTION 1.2. A multivalued mapping 7: DC X —2Y is said to be
A-proper wrt. I' ={E, , V3 F,,, W,}if T,,: D, — 2Fs is upper semicontinuous
for each 7 and if for any sequence {u,, | u, €D, }such that {an(un,)} is bounded
in X and || W,,j( Ya) — W,,,j( y)|— 0 as j—> oo for some Yn, € TV,,I(u,,j) and
y €Y, there exist a subsequence {,  } and xy€ D such that V,, (u, )-> %
and y € T(x,).

75k

Remark 1.2. The class of single-valued A-proper mappings, whose study
was initiated by Petryshyn, has been investigated by many authors (see [20]
for the survey). The theory of A-proper mappings proved to be useful in the
constructive solvability for abstract and differential equations. It provided the
unification and the extension of various results from the theory of operators of
monotone, condensing, and P-compact type. Multivalued A-proper mappings
have been first studied extensively by Milojevi¢ [17, 18] and subsequently by
Milojevi¢ and Petryshyn [19]. For various examples of A-proper single-valued
and multivalued A-proper mappings see [20, 17, 19].

The purpose of this paper is to continue the study initiated by the authors
in [19]. Our particular interest is the study of the solvability of equations
involving operators which are uniform limits of A-proper mappings. The theory
presented here unifies and extends a number of results obtained by other
authors for various special classes of mappings such as mappings of monotone
type, condensing, P-compact and others.

In what follows K(X), BK(X), and CK(X) will denote the families of non-~
empty closed and convex, nonempty bounded closed and convex, and nonempty
compact and convex subsets of X, respectively.

2. CONTINUATION AND SURJECTIVITY RESULTS

In this section we shall consider the solvability of a larger class of operator
equations than that considered in the paper [19]. Namely, for a given T;: X —27,
t €[0, 1], we shall consider the solvability of equations of type f e Ty(x), where
T, is not A-proper for ¢ € [0, 1], but is the uniform limit of multivalued A-proper
mappings, i.e., Ty is such that T, , = T; -+ uG is A-proper for each p > 0 and
t €[0, 1] and some given multivalued mapping G. We then apply these results
to the solvability of equations of the form fe T'(x) with T being a uniform limit
of A-proper mappings. Examples of such mappings will be given in Section 3.
The solvability of the perturbed equations, ie., of fe T(x) + A(x) is also
considered. Unlike the results of [19], those obtained here will be only of the
existence type.
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In what follows we shall say that a mapping 7: Y — 27 satisfies condition ()
if {x,.} is any sequence and #,, — g in Y for some u,, € T(x,,), then {x,} is bounded.
T is said to satisfy condition (+ ) if {x,} C X is any bounded sequence such that
whenever #, —g in Y for some u, € T(x,) then there exists x € X such that
ge T(x).

TreorREM 2.1. Let X and Y be normed spaces with an admissible scheme I
and let Ty() = T(¢, -) map [0, 1] x X — 2V with W,Ty(x) € CK(F,). Suppose
there exists a bounded mapping G: X — 2¥ with W,G(x) € CK(F,,) for each xc X
and that T, + pG is A-proper w.r.t. I for each t € [0, 1], p > 0. Suppose that
for each fe'Y there exists r; > O such that the following hypotheses hold:

(H1) There exists y >0 such that ||f —v || >y for all ve T(x) with
x e 0B(0, r;) and t [0, 1].

(H2) isf —y| >y for all ye To(x) with x c 0B(0, r;) and s [0, 1].

(H3) If for some p >0, t, € [0, 1] and u, € 0B,(0, ;) = oV, (B(0, r;)) we
have W, (f) e W,,Tth,,(u,,) + puW,GV (u,), then there exists a subsequence {tﬂk}
converging to t such that || Wo(f) — Wa(yn) — pWo (2, ) | —0 as k— o0
for some Y, € TtVnk_(unk) and z, € GVnk(u,,,k).

(H4) There exists ny > 1 such that for each n > ny,, p > 0,
deg(L W, T\V, + pL,W,GV, , B,(0,74),0} 5£ 0, where L, is some linear
isomorphism between F,, and E,, .

Then, if Ty satisfies condition (++), the equation f ¢ T\(x) is solvable for each
fe¥.

Proof. Let fe Y be fixed. Since G is bounded, there exists u, > 0 such that
for each u € (0, ny) we have

Wf— v —p2ll >9y2 forally e Ty(x), =zeG(x)
with 2.
xe0B(0,r7), te[0,1],
and
Nsf —y —p2ll >9/2 forally e Ty(x), =ze€ G(x)
with (2.2)
x € 8B(0, r,) and se {0, 1].

Let u (0, p,) be fixed. Then we claim now that there exists n; such that

W.(f) ¢ W, T,V (w) + uW,GV . (4) foralln = n,,

te[0, 1] and u € 0B,(0, r;). (2:3)

If not, then there exist ¢, [0, 1] and u, € 6B4(0, r;) such that W, (f)e
WoT, Va(un) + pW,oGVo(u,) for infinitely many n. By hypothesis (H3), there

409/62[2-10
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exists {t,} converging to t with || W, (f) — W, (V) — uW, (2,) | —0 as
k— oo for some Yu, € T}V, (un,) and 2, € GV, (un ). By the A-properness of
Ty 4+ pG wrt. I, “there exists {tn,, } such that ¥, g\ ny,) > ¥ € X and
fe Tyx) + puG(x) with [x] =7,, in contradlctlon to (2.1). Thus, there exists
n, such that (2.3) holds for each # > #, .

Next, there exists an n, > 1 such that for each n > n,

sWu(f) ¢ W, TV (u) + uW,GV (u) forallse€[0,1] and wuedB,(0,7,).

(24)
If not, there exist s,€[0,1] and wu, € 8B,(0,r;) such that s, W, (f)e
W, TV (u,) 4 uW,GV,(u,) for infinitely many n. Let y, € TV, (u,) and
3, € GV, (u,) be such that s, W,(f) = W,(y,) + pW,.(z,). We may assume that
s, — s. Then

W ¥n) + f"Wn(zn) — Wasf)l
= || Walsnf) — WaN <I Wl I fIl - |50 —s[—0

as #— o0 by the uniform boundedness of {I#/,}. Consequently, by the A-pro-
perness of T, + uG, there exists {un,,} such that Vnk(z’)(uﬂk ,) > ¥ € X with
sfe To(x) -+ pG(x), with || x || = 7, , in contradiction to (2.2). Thus, (2.4) holds.
Let N; = max{n,, n, , n,}. Then, for each n >> N; relations (2.3), (2.4), and
hypothesis (H4) hold. Hence, by Theorem 1.2 in [19], for each u € (0, p,) there
exists x, € B(0, 7;) such that fe T'(x) 4 uG(x). Let p, € (0, po) be such that
Hn—> 0 as n— o0 and let x, = x, € X be such that fe Ty(x,) + ©,G(x,), or
f Y + Hn2, for some y, € Tl(x.,,) and 2, € G(x,). By the boundedness of G,

= f — pu2, — f which by condition (+-}) implies the existence of x€ X
such that f e Ty(x). Q.E.D.

The following lemma gives some conditions which imply (HI)-(H3).

Lemma 2.1, Suppose that Ty(x) is bounded and closed for all te<{0, 1],
x€ X and that

(1) f¢ TA3B(0, 7)) for all t€[0, 1],
(2) sf¢ To(8B(0, r;)) for all s € [0, 1].

Then,if T, (x), Tdx)) = SUPyer, (2) d(y, Ty{x)) — O uniformly with respect to x
in bounded sets when t, — t, hypotheses (H1), (H2) hold. If, additionally, W, T (x)
s compact for all n, t € [0, 1] and x € X, then hypothesis (H3) also holds.

Proof. Let 1[0, 1] be fixed. Then there exists p(t,) >0 such that
If =31l > y(te) for all yeT,(x), x€B(0,r,). Let A(t,) be an interval
around ¢, such that for ¢ € 4(%,), o Ty(x), T (x)) < ¥(to)/3. For each x € 9B(0, r,)
and y € Ty(x), t € A(t,), let yy € T; (x) be such that ||y — v, | < 2(%,)/3. Then
Nf =y ZIf =%l —1y — ¥ = v(t)/3. Since [0, 1] can be covered by a
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finite number of such intervals, we have that there exists y; > 0 such that
1f—»! =9y for all ye Tyx) with || x| = r; and t [0, 1].

Now define 4 == {sf| s [0, 1]} and B = T(0B(0, r;)). Since A is compact,
B closedand 4 N B = ¢, it follows that there exists y, > 0 such that} sf — y| >
y, for all se{0, 1] and y € TW0B(0, r;)). Then y == min{y, , .} is such that
hypotheses (H1) and (H2) hold.

Suppose now that for some p > 0, ¢, €[0, 1] and u, € 6B,(0,r;), W, (f) e
W, T, Vi) + pWo.GV y(uy). Then for some subsequence we have ty, = 1.
By the compactness of W,T(x), for each =z, €T, V, (), there exists
v, € T,V nk(uﬂk) such that

W Zn) — Wovall = d(n/nk(znk)’ W, T, Vo (#0,))-
This implies that
: I'Vnk(znk) - Wnk(ynk)n
s O‘(Wnth,,k Vnk(unk)> WnthVﬂk(u'nk))
AW | alTy, Vaslitn), T ) >0 as k> .

Since W, ( = W, (%) + uW, (%,) for some z, € T,nkl"nk(unk) and %, €
G V"k(”"k)‘ it follows for { y‘";.-} above chosen with respect to {2, } that

I Wm(f) - Wnk(ynk) - /"Wnk(z—nk)“ =i Wn(znk) - Wnk(yn,‘.)” —0
as k— o0.

Thus hypothesis (H3) holds. QED.

Remark 2.1. It is easy to see that hypotheses (H1) and (H2) hold if T,
satisfies condition () uniformly with respect to ¢ € [0, 1].

Analyzing the proof of Theorem 2.1 we see that all we need for the solva-
bility of f € T\ (x) is that relations (2.3) and (2.4) and hypothesis (H4) hold. So

we have the following more general form of Theorem 2.1.

THeOREM 2.2. Let X, Y be normed spaces with an admissible scheme I,
T:[0,11 x X—2Y with T,:[0,1] x E, — CK(F,) us.c. and G: X2V a
bounded mapping with W, T(x), W,G(x) e CK(F,) and that for p. > 0, T} -+ uG
is A-proper w.r.t. I. Suppose that for each fe Y there exist v; >0 and n, = 1
such that for each n = ny and p € (0, pg) for some py > 0 we have

(HI) Wuf) ¢ WoT,Vo(t) + pW,.GVo(u) for t[0, 1], u<éB,(0, )
(H2) sWAf) ¢ WaT oV ot) + uW,GV(u) for s€[0, 1], u e EB,(0, ry).

and hypothesis (H4) holds.
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Then, if T, satisfies condition (), the equation f € T\(x) is solvable for each
fev.

For the solvability of the equation fe T(x) + A(x) we have the following:

THeoreM 2.3. Let X and Y be normed spaces with an admissible scheme I’
and T()=T({, ) map [0,1] x X =2V with W,Ty(x)e CK(F,) for all
(t, ®) €0, 1] X X. Suppose that Ty(x) is a-continuous in t uniformly with respect
to x in bounded subsets of X. Suppose that A, G: X — 2V with W, A(x), W,G(x) €
CK(F,), G 1s bounded, and that for each p >0, T}, + A + uG is A-proper w.r.t.
I for each t &[0, 1]. Suppose also that either for each fc Y there exists v, >0
such that:

(1) f¢(T,+ A) (B0, 7)) for all [0, 1]
() ¢ (T + A) (8B, 1y)) for s€ [0, 1]
or that T, satisfies condition (-+) uniformly w.r.t. t € [0, 1].

(3) There exists ny = 1 such that for eachn = ny, p >0, deg (L, W, T,V +
LW, AV, + puL,W,GV, , B,(0, ), 0) = 0, where L,, is some linear isomorphism
between F,, and E,, .

Then, if T, + A satisfies condition (), the equation fe T (x) + A(x) is
solvable for each feY.

Proof. Let fe Y be fixed. Since o Ty(x) -+ A(x), T (x) + A(x)) < «Ty(x),
T, (%)), it follows that T(x) 4 A(x) is a-continuous in ¢ uniformly with respect
to x in bounded subsets of X, i.e., whenever t,—1, then T} (x) + A(x),
Tyx) + A(x)) - 0 as n— oo uniformly for x in bounded subsets of X. By
Lemma 2.1, we see that hypotheses (H1), (H2), and (H3) of Theorem 2.1 hold
for T, + A4, Ty + A, and T, 4+ A <+ uG, respectively. In view of this and our
assumption (3), there exists p, > 0 such that for each u € (0, ), the equation,
fe Ty(x) + A(x) + pG(x) is solvable in B(0, r,). Since T - A satisfies condi-
tion (+-+) and G is bounded, we have that, as in Theorem 2.1, the equation
Je Ty(x) + A(x) is solvable for each fe Y. Q.E.D.

Let us now discuss conditions that imply hypothesis (H4). It is clear that if
T,and G and T, 4 and G in Theorems 2.1 and 2.3, respectively, are odd, then
hypothesis (H4) and condition (3) hold, respectively. Moreover, if K, K,,, and
M, satisfy conditions of Proposition 1.2 in [19], G and K, and T, and K satisfy
condition (C3) of that proposition, then one can show that hypothesis (H4)
holds. Similarly, one imposes conditions on T, 4 and G in Theorem 2.3 which
imply the validity of its condition (3).

Remark 2.2 We add in passing that condition (+) is implied by any one of
the following conditions which have been used by many authors (see [19]) in
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their study of the equation fe T(x) with T either single-valued or multivalued
mapping of monotone, ball-condensing and 4-proper type:

Condition (1+). (y,v)/llv]|— 0 as |a]— oo for all yeT(x) and
v e K(x) (1.e., T 1s K-coercive).

Condition (2+). For each unbounded sequence {x,}CX, 'y,| — o
as n— oo for all y, € T(x,) (1.e., T is norm-coercive).

Condition (3+). For each y, € T(x,) and ¢, € K(x,), v, | +
((¥n s V)i vg |l) = 00 as | 2, || = o0.

Condition (4-+). 0¢ T(@B(0, r)) and T(tx) = t>T(x) for all || x| == r, t 2> 1
and some o > 0.

The following result on the solvability of f € T'(x), where T is a uniform limit
of A-proper mappings, i.e., T is such that T' + pG is A-proper for each p > 0
and some mapping G, can be obtained either from Theorem 2.3 or Theorems
6.4 and 7.2 in [17]. We shall prove it by applying Theorems 6.4 and 7.2 in [17]
since the argument is shorter.

Tueorem 2.4. Let X, Y be normed spaces with an admissible scheme I'. Sup-
pose that T: X — 2V satisfies conditions (+) and (+-+) with W, TV . E, —
CK(F,) u.s.c. for each n and that G: X — 2¥ is bounded, W,G(x) € CK(F,) and
T, = T 4 uG is A-proper w.r.t. I for each p > 0.

Suppose further that either one of the following conditions holds:

(1) Thereis ry > 0 such that T and G are odd on X\B(0, r,).

(1) There exist K: X — 2V*, K, : E,, — 2F*, and a linear isomorphism M,
of E, onto F,, such that O € K(x) implies x = O and that

(Cl)y for each n and ue E,,, ve KV, (u) there exists w € K (u) such that
(g v) =(Wyg, w) for all ge ¥;

(C2) for each n, (Mu, w) > 0 for all we K, (u) and u 40 in E,;

(C3) there exists ry >0 such that (u,v) >0 and (w,v) =0 for all
ue T(x), we G(x) and ve K(x) with || x| = r,.

Then the equation fe T(x) is solvable for each feY.

Proof. Let fe Y be fixed. We have noted in Remark 2.1 that condition ()
implies the existence of » =7, and y > 0 such that |ju — ¢f|| = v for all
t€[0, 1] and u € T(x) with || x || = ». This and the boundedness of G imply that
there exists py > 0 such that ||v —tf]| = y/2 for t€[0, 1], ve T (x) with
2l = r and p € (0, po). In view of Theorems 6.4 and 7.2 in [17], the equation
fe T, (x) = T(x) + pG(x) is solvable in B(0,r) for each p € (0, po). Now, let
pr € (0, pg) be such that p, — 0 as k— oo and let x, € B(0, r) be the corres-
ponding solution of fe T, (x). Since {G(x,)} is bounded, we have that u; =
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[ — wvy ~—> f as k— oo for some u;, € T(x;) and v, € G(w;). This and condition
(++) imply that there exists an x € X such that fe T(x).. Q.E.D.

Remarks 2.3. 'Theorem 2.4 remains valid if condition (--) is replaced by
any one of the conditions of Remark 2.2. We also add that condition (4 +) holds
if T(B(0, r)) is closed in Y for each r > 0.

Remark 2.4. When all mappings involved are single-valued, Theorem 2.4
and Theorems 6.4 and 7.2 in [17] were proven by Petryshyn [21].

Remark 2.5. Instead of condition (-) in Theorem 2.4 it is enough to
require that for each fe Y there exists r; > r, such that {|u — tf|| = v for all
te[0,1] and u € T(x) with || x| = 7, and some y > 0.

Remark 2.6. 'The following are few choices of K, M, , G and K, in Theorem
2.4. If Y = X* with X separable and reflexive, we choose I' = I', = {X,, V;
X+, V*), K=1I K, =V,, G=] a duality mapping and define
M,: X, — X*, by M,(x) =X, (f;, %) f;, where {§y ,..., .} is a basis in X,
and {f; ,..., fu} is the corresponding biorthogonal basis in X*, . If ¥ = X and
I'=TI,={X,, V,; X,, P,} is a projectionally complete scheme for (X, X),
we choose K = |, K, = P*, ], M, =1, and G =1, where I, and I are the
identity mappings in X, and X, respectively.

When condition () is replaced by condition (C4) below, we have the follow-
ing useful result.

THEOREM 2.5. Let X, Y, K, K, and M,, be as in Theorem 2.4. Suppose that
T: X — 2Y satisfies condition (++) with W, TV : E, — CK(F,) u.s.c. for each
n. Suppose also that there exists a bounded mapping G: X — 2V such that
T, = T <4 uG is A-proper w.r.t. I for each p > 0 and W,G(x) € CK(F,) for all
x € V,(E,).

Moreover, suppose that for each f€ Y there exists an r, > O such that

(C4) (u—f,v) 20 and (w,v) =0 for all ueT(x), weG(x) and
ve K(x) with | x| =7, .
Then T is surjective, i.e., T(X) =Y.
Proof. Let fe Y be fixed. Then, for each p > 0 we have (¢ + pw — f, v) =
(u — f,v) + w(w, v) =0 for all ue T(x), we G(x), ve K(x) with [ x| =7,.
It follows from Theorem 6.4 in [17] that the equation fe T,(x) = T(x) +

wG(x) is solvable in B(0, r;) for each p > 0. Proceeding as in Theorem 2.4,
we obtain that the equation f € T(x) is solvable. Thus, T(X) = Y. Q.E.D.

Finally, the following new result will prove to be useful.

Turorem 2.6. Let X, Y, K, K,, , and M, be as in Theorem 2.4. Let T: X — 2¥
satisfy condition (+ +) with W, TV, E, — CK(F,) u.s.c. for each n and let
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G: X — 2Y be bounded with W,GV (x) € CK(F,) and T,, = T -+ pG be A-proper
w.r.t. I' for each p > Q. Suppose that the following condztzom hold

(1) (w,v) =fal|o| for all ue G(x), ve K(x) with xe X and some
a > 0.

(2) There exists ¢ >> 0 such that (u,v) = —c |v! for all ue T(x), v € K(x)
with x € X.

(3) Toeach fin Y there corresponds ¢; > O such that if f € T(x;) - u,.G(x;)
Jor some x, € X with p, — 0, then || x|, < ¢ for all k.

Then the equation fe T(x) is solvable for each f in Y.

Proof. Let p;, > 0 with u;, — 0. By (1) and (2) we get that for each % and
xin X

( + pw. ) 2 (gl — o) v for all we T(x), weG(x), veK(x).

This means that T, is K-coercive and A-proper and consequently, by Theorem
6.4 [17], the equatlon fe T(x) + pG(x) is solvable for each fin Y and each k.
Moreover, for each fin Y the set of solutions is bounded by (3) and thus, by
condition (---+), there exists x in X such that fe T(x). Q.E.D.

Remark 2.77. (a) Condition (3) in Theorem 2.6 is satisfied if 7" satisfies
condition (2-+) (i.e., if || x, || — o then || u, || — oo for each u, € T(x,)) provided
(1) and (2) hold and G is a-positively homogeneous (i.e., G(tx) = t*G(x) for
xeX and ¢ >0). Indeed, let fe T(x,) + pG(x;) with p,— 0. Then
f ==u, — paw, for some u, e T(x,) and w, e G(x,) and for v, e K(x,),
(fs ) = (uy, v3) -+ p(we, w0) = (el e P — o) ol For v, £ 0 we have
by the Schwartz—-Buniakovsky inequality that g, | x, |> = ¢ + (f, v;) [ v, I <
¢ 4+ I fii. Since G is bounded and p,G(x;) == G(p 1’“‘xh) we have that {u,} ==
{f — mwy} 1s bounded which, by (2+), implies that {x,} is bounded.

The second author used the conditions and the method described in (a) to
obtain a surjectivity theorem for the more general class of uniform limits of

pseudo-.A-proper maps (e.g. see Theorem 5.3A in [20]).
(b) Condition (3) of Theorem 2.6 holds if T satisfies condition (3+), i.e.,
(3-2) Lu,l + (u,, o)/l vyl — 0 as |l x,| — oo for each u, € T(x,),
v, € K(x,), 1 and (2, 'v) =lwil - l|v| for all we G(x), ve K(x) and x e X.
To show this, let fe T(x) + peG(x,) with p, — 0. Then f = u, + p,z;
for some u, € T(x;) and w, € G(x,;) and for v, € K(x,),

(uk ) 7)k)

‘\
h b Ly, 5

1f~ w4+ (wf~ Pk » .Uk) 20 f“

2011 for each k.
Hence, by (3-+), {x,} is bounded.

(wk » 'Z/k)
H ‘ka = S ‘UkV
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(c) Analyzing the proof of Theorem 2.6, we see that instead of (1) and (2)
it is enough to assume that for all u € (0, o) (o > 0) and some r, > 0,
(# + pw, v) = 0 for all u € T(x), w e G(x), ve K(x) and | x|| = rgand T + uG
satisfies condition (4) or that 7" and G are odd on X\B(0,7,) and T + uG
satisfies (t).

Remark 2.8. It is easy to see that condition (3-) implies condition (2-).
However, if condition (2) of Theorem 2.6 holds, then conditions (2-+) and (3+)
are equivalent.

3. SurjECTIVITY RESULTS FOR MULTIVALUED MAPPINGS OF MONOTONE
AND BALL-CONTRACTIVE TYPE AND THEIR PERTURBATIONS

In the first part of this section we introduce several new classes of multi-
valued A-proper mappings involving quasi-K-monotone, generalized pseudo-K-
monotone and K-semibounded type of mappings. In the second part of this
section we use the results of Section 2 in establishing various surjectivity type
results for these classes of mappings and their perturbations. Ceratin surjectivity
results for some perturbations of k-ball-contractive mappings are also proved.
As special cases of our results, we deduce some results of Browder, Browder and
Hess, Hess, Fitzpatrick, Petryshyn, Petryshyn and Fitzpatrick, Rockafellar,
Wille, and others.

We begin this section by introducing some classes of multivalued mappings
to be studied in the sequel.

DerinitioN 3.1, (1) Let K: X —2Y". Then a mapping T: X —2Y is
said to be quasi-K-monotone if

(a) The set T(x) is nonempty, bounded, closed and convex in Y for
each x e X

(b) T is upper semicontinuous from each finite dimensional subspace F
of X to the weak topology on Y;

(¢) «x,— xin X implies that for each u, € T(x,) and f, € K(x,, — x),
lim sup(#,, , f,) = 0.

(2) T is said to be of type (K.S) if (a) and (b) of (1) hold and if x, — x in
X and (u, , f,) — 0 for some u, € T(x,) and f, € K(»,, — x) imply that x, — x
in X,

(3) T is said to be of type (KS,) if (a) and (b) of (1) hold and if x, — x
in X and lim sup(u, , f,) <O for some #, € T(x,) and f, € K(x, — ») imply
that x,, — x in X.

(4) T is said to be pseudo-K-monotone if conditions (a) and (b) of (1) hold
and (d): if », — x in X and if #, € T(x,) and f, € K(x, — x) are such that
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lim sup(,, , f,) < 0, then to each element v e X there exist u(z) e T(x),
g€ K(x — v), and g, € K{x,, — ) such that

lim inf(u, , gn) = («(2), 8)-

(5) T is said to be generalized pseudo-K-monotone if (a) and (b) of (1) hold
and (e): if x, — x in X and u, € T(x,), f, € K(», — %) with #, — » in Y and
lim sup(u,, , f.) << 0 imply that u € T(x) and (u, , f,) = 0.

Let us add that the single-valued pseudomonotone mappings (K = I,
"= X*) were introduced (in a somewhat different way) by Brézis [2] and that
multivalued pseudomonotone and generalized pseudomonotone mappings were
introduced by Browder and Hess [9]. Single-valued mappings of type (S)
and (S,) from X into X* (K = I) were introduced and studied by Browder [5]
and I-quasimonotone by Hess [13] and Calvert and Webb [10]. The single-
valued mappings given by Definition 3.1 were studied by Petryshyn in a series
of papers (see [20]).
To introduce our first class of multivalued .4-proper mappings we need the
following:

LemMma 3.1. Let X, Y be normed spaces, T: X —>2Y a quasi-K-monotone
mapping and G: X — 2Y bounded and of type (KS.). Then T + «G is of type
(KS,) for each o. > 0, except that in general T(x) -+- aG(x) may not be closed for all
x € X. In particular, if either T is pseudo-K-monotone with K being single-valued,
and K(0) =0 or T is a bounded generalized pseudo-K-monovtone map with Y
reflexive, then T + oG is of type (KS.,) for each o > 0 except that in general
T(x) + aG(x) may not be closed for each x € X.

Proof. Let « >0 be fixed and suppose that x,—x, in X and let
lim sup(u,, + ov,,, f,) < 0 for some u,, € T(x,), v, € G(x,), and f,, € K(x,, — x,).
Since T is quasi-K-monotone and G is bounded, it follows that lim sup(,,, f,)
<{ 0. Hence, by the (KS,) property of G, x, — .

For the second part of the lemma we need only show that either a generalized
pseudo-K-monotone or a pseudo-K-monotone mapping T is quasi-K-monotone.
Suppose first that T is generalized pseudo-K-monotone. If T is not quasi-K-
monotone, then for some u, € T(x,), f, € K(x, — x,), where x, — x, in X, we
have that lim sup(x, , f,) < 0. Since Y is reflexive and T is bounded, we may
assume that u, — u, in Y. By the generalized pseudo-K-monotonicity of T, it
follows that lim(u, , f,) = 0, a contradiction. Thus T is quasi-K-monotone.

Assume now that T is pseudo-K-monotone. Again, supposing that it is not
quasi-K-monotone, we obtain that lim sup(u,, , K(x, — x5)) <0 for some
u, € T(x,), with x, — x, in X. By the pseudo-K-monotonicity we have that for
each v € X there exists u(x) € T(x,) with

lim inf(u,, , K(x,, — 2) = (u(), K(xy — v)).
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In particular, taking v = x, in the last inequality, we obtain
lim inf(u, , K(x, — %)) = 0 > lim sup(x,, , K(x, — x,)),

a contradiction. Thus, T is quasi-K-monotone. Q.E.D.

DerFiniTION 3.2, We say that a mapping 7: D C X — 27 is K-quasi-bounded
if, for any bounded sequence {x,} C D, (¥, , f,) < ¢l x,, || for each n and some
Yn € T(x,), fn € K(x,), ¢ > 0, implies that {y,} is bounded in Y.

T is said to be demiclosed if x, — x in X and y,, — y for some y,, € T(x,), then
ye T(x).

In view of Proposition 2.2 in [19] and Lemma 3.1 we have the following:

ProrosiTioN 3.1. Let X and Y be reflexive Banach spaces with an admissible
scheme 'y = {X,, Va; Y, ,On} and K: X — Y* a bounded mapping such that

(a) K(x) = 0 implies x = 0, K is a-positively homogeneous (i.e., K(tx) =
t*K(x) for each t > 0, x in X and some o. > 0), and the range of K is dense in Y*.
(a;) For each xe X, and ge'Y, we have that (Q,(g), K(x)) = (g, K(x));

(az) K is weakly continuous at O and is uniformly continuous on closed balls
in X.

Let T: X — 2Y be a K-quasi-bounded demiclosed and quasi-K-monotone mapping
and G: X — 2V a bounded, demiclosed and of type (KS,). Then T + oG is
A-proper w.r.t. I'y for each o > 0.

Remark 3.1. In the single-valued case Proposition 3.1 was established in
Petryshyn [21], while the first part of Lemma 3.1 was proved by Hess [13] and
Calvert and Webb [10] for ¥ = X* K = I and G = ] a single-valued duality
mapping and by Petryshyn [21] for general K and G. That a single-valued
pseudomonotone mapping T: X — X* is quasi-monotone (K = I) was proved
by Fitzpatrick [12].

The following result will be needed for the next proposition and for establish-
ing the surjectivity results of mappings involved. First we introduce the follow-
ing:

DeFINITION 3.3. We say that a multivalued mapping 7: X —2Y is
hemicontinuous at xe X, if xe X, t, >0, t,—0 and y, € T(x + ¢,v) imply
that some subsequences y, — ¥ € T(x). It is demicontinuous if ¥, > x5 in X
and y, € T(x,) imply that some subsequence y, — ¥o € T(xo).

DerFINITION 3.4. Let X and Y be Banach spaces and K: X — 2¥". Then a
mapping T from X into 2Y is said to be K-monotone, if for all x, y in X there
exists fe K(x — y) such that (u —,f) >0 for all ue T(x), ve T(y). T is
maximal K-monotone if it is K-monotone and maximal in the sense of inclusions
of graphs in the family of K-monotone mappings from X into 27.



UNIFORM LIMITS OF A-PROPER MAPPINGS 381

Monotone mappings (K =1, ¥ = X*) were introduced independently by
Vainberg, Kachuvorsky and Zarantonello and further studied by Minty,
Browder, Kachuvorsky, Rockafellar, and others (see [5, 14] for references). The
study of J-monotone mappings (J a duality mapping) was initiated by Browder,
while those of K-monotone type were initiated by Kato and Petryshyn.

ProrositionN 3.2. Let X and Y be Banach spaces with an admissible scheme
I, and X reflexive. Let K: X — Y* be weakly continuous, a-homogeneous with
o= 1 and R(K)=Y*. Let D be an open convex subset of X and T: D —2¥
ethter hemicontinuous and K-monotone or pseudo-K-monotone. Then, if G Is a
bounded closed and convex subset of D, T(G) is closed in Y.

Proof. Let u, € T(G) be such that #, —u in Y as & — o0 and let x, € G
be such that u, € T'(x;) for each k. By the reflexivity of X" we may assume that
X, x5 G

Then, if T is K-monotone, (4, — y, K(x, — %)) =0 for all ve D, y e T(v)
and all k. The passage to the limit in the latter inequality yields

(u, K(xy — 0)) = (3, K(xy — v)) forallye T(z) and zeD. (3.1

If T is pseudo-K-monotone, then

and consequently, for each v € D there exists y(v) € T(a,) such that
lim inf(u; , K(x, — 2)) = (¥(v), K(xy — ).
Passing to the limit, we obtain
(u, K(xy — v)) = (¥(v), K(xy — ©)) forallz e D. (3.2)

Now, each one of the inequalities (3.1), (3.2) implies that u € T(x,). Consider
(3.1) and suppose that u ¢ T(x,). Since T(x) is closed and convex and
R(K) = Y*, there exists 2z, € X such that

(, K(zo) < dnf (7, K(z0)). 3-3)

Since D is open and x,€ D, for sufficiently small ¢ >0, we have that
v, == &y — 12, € D. Choosing xy — t2, for v in (3.1), we obtain
(u, K(t20)) = (¥(1), K(120)),  ¥(2) € T(xo — tz)

or (u, K(z,)) == (¥(t), K(2p)). Since T is hemicontinuous, passing to the limit
when ¢ — 0, we get

(4, K(2)) = (3, K(=z))  forye T(x),

in contradiction to (3.3).
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Assuming now that the inequality (3.2) holds, we get in a similar fashion that
for ¢ > 0 small

(w, K(x0) > ((t), K(zg)  with  a(t)e T(x,)
which contradicts (3.3). Q.E.D.

Now we are in a position to prove the following.

ProrosiTiON 3.3. Let X, Y, I',, and K be as in Proposition 3.1 with K weakly
continuous on X and K(0) = 0. If T: X — 2Y is quasi-K-bounded, pseudo-K-
monotone and either demiclosed or K is onto, and if G: X — 2V is a bounded demi-
closed mapping of type (KS.), then T + oG is A-proper w.r.t. I, for each o > 0.

Proof. Let o > 0 be fixed. Then by Lemma 3.1, T + G is of type (KS,).
Since T + oG is K-quasi-bounded, by Proposition 2.2 in [19], it is sufficient
to show that T +4 oG is demiclosed. So, let x,—>=x in X and let
Yn = Uy, + ov, € T(x,) 4 «G(x,) be such that y, —y in Y. Since G is demi-
closed and bounded, we have for some subsequence that v, — v € G(x), and
consequently, ¥, — 3 — awv. Hence, if T'is demiclosed, we see thatsois T -+ aG.
Next, let K be onto. By the continuity of K, (4, , K(x, — x))— 0. Now,
continuing in the same fashion as in Proposition 3.2, we obtain that
y —ave T(x), or y € T(x) + oG(x). Q.E.D.

Remark 3.2. If K is linear, then it can be shown that a maximal K-monotone
mapping T is pseudo-K-monotone and that, if K is also onto, pseudo-K-mono-
tone mapping is generalized pseudo-K-monotone (see Browder and Hess [9] for
the case ¥ = X* and K =1I).

For K-quasi-bounded generalized pseudo-K-monotone mappings we have
the following:

ProrosttioN 3.4. Let X, Y, I', and K be as in Proposition 3.1. If T is a
K-quasibounded and generalized pseudo-K-monotone mapping of X into 2Y and if
G is a bounded demiclosed mapping of type (KS,) from X into 2Y, then
T, =T + uG is A-proper w.r.t. I, for each p > 0.

Proof. Let > 0 be fixed and let {x, |x, € X,} be a bounded sequence
such that for some ge Y, Uy, € T(x, ) and Ty, E G(x, ) Qn (u, ) + /.LQ,, (o) —
On(g) — 0 as j— oo. Then as in Proposmon 2.2 of [19], we obtain that
(#4n, + pog, , K(x, — %)) — 0 as j — oo and {u,, }is bounded, where x, — x,.

Now by ‘the reﬂex1v1ty of ¥, we may assume that u, — g and that 1) n,— Yo
in Y. Moreover, we claim that lim sup(uv, , K(x,, — %)) < 0. If not, then
lim sup(uw, , K(x,, — %)) > 0 and by passing to a subsequence, we may
assume that lim(,w,,,j , K(%,, — %,)) > 0. Thus, lim sup(u,,j , K(x,,f — X)) =
lim sup(un, + v, , K(x,,j — X)) — lim(,u.v,,]_ » K(x,, — %)) <O0. Since T is
generalized pseudo-K-monotone, it follows that wu,€ T(xo) and (4, ,
K(x,, — %)) >0 as j— o0, in contradiction to lim(u, , K(x, — xp)) <O0.
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Consequently, lim sup(z,, , K(x,, — %)) <0 which, by the (KS,) property
of G, implies that x, — aéo .

Now, let ye X beJarbitrary and let y, € X,, be such that y, — y. Then, by
(aQ)’ (#y + pvy — & Ky) = lim(un,« + MOn, — & K(yn,)) = hm(Qn,(unJ) +
pQn (V0 ) — On (&), K(yn) = (0, K(y)) = 0. Hence, since R(K) is dense in
Y* and (4, + pvy — g, w) = 0 for all we R(K), it follows that g = uy, + po, .
Moreover, that uy + pvg € T(xy) + pG(x,) follows from the demiclosedness of
G and the generalized pseudo-K-monotonicity of T since (u, , K(x, — %)) — 0
asj— oo. ’ Q.E.D.

In treating perturbation results, the following result will be useful.

LEMMA 3.2. Let X and Y be reflexive Banach spaces, K: X — Y* continuous
and linear and T and T, two generalized pseudo-K-monotone mappings from X
into 2Y. Suppose that T, is K-quasibounded and that there exists a continuous
SJunction : R~ — R such that for all (x, y) € G(T5,), (v, K(x)) = —(ll x ) || » ||
Then Ty, — T, is generalized pseudo-K-monotone. In particular, if T, is maximal
K-monotone with 0 € Ty(0), then T, + T, is generalized pseudo-K-monotone.

Proof. For K =1and Y = X* Lemma 3.2 was proved by Browder and
Hess [9]. Simple checking shows that the same arguments carry over to this
more general setting. Q.E.D.

Finally, let us introduce another important class of multivalued mappings
that contains K-monotone mappings as a proper subclass.

DeriNiTiON 3.5, Let K: X —» Y* and T: X —2¥. Then T is called an
operator with semibounded wvariation if T(x) is nonempty, closed and convex
for each x in X and for any x and y in X such that || x|l < R, | ¥ || <{ R we have
the inequality

(u —2, K(x —9)) = —c(R, || x — v forallu e T(x), ve T(y),

where '/ is a norm on X which is compact relative to the norm | -}
and ¢(R, p) 2= 0 is a continuous function in R and p such that ¢(R, tp)/t =0
as t — O for any fixed R and p.

Nonlinear operators T: X — X* with semibounded variation have been
studied by many authors (see, for example [11, 3, 25] and the literature cired
there).

Using Lemma 1.1 of Fitzpatrick [12], we first prove the following result.

Lemma 3.3, Let T: X — 2 be an operator with semibounded wvariation and
K: X — Y* linear continuous and onto. Then

(@) T is locally bounded (i.e., if x, — x in X and u, € T(x,), then {u,} is
bounded in Y);
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(b) if Y isreflexive and T is hemicontinuous, T is demicontinuous and strongly
demiclosed (i.e., if x, — %y in X and u,, € T(xy,) withu, — finY, then f € T(x,));

(¢} T is K-quasi-bounded provided K is one-to-one.

Proof. (a) Suppose that T is not locally bounded. Then there exists a
sequence {x,} C X such that x,, — x, and for some u,, € T(x,), {#,} is unbounded.
Since y, = K(x,) — K(x,) =y, and {#,}CY C Y** with ||u,]|— oo, by
Lemma 1.1 in [12] we may choose a subsequence (if necessary) and %, in Y*
such that lim,(u, , ¥, — v, — ;) = -——00. Moreover, since R(K) = Y*, there
exists x, in X such that K(&)) = %, and for each n and fixed v, € T(x, - %)
we have

(un ’ K(xn) - K(xo + &0))
> (9, K(x,) — K(xg + %)) — (R, | 2, — % — &, ),

(3.4)

where R > 0 is such that |jx, + & || < R and | x, ]| < R for all n. Set
t, =| x, — %y — & ||, t, = || —%, || and note that ¢(R, t,) — c(R, t,) as n — c0.
Hence, for a given € > 0, there exists n, > 1 such that | ¢(R, t,) — (R, ty)] < ¢
for n = n,. Consequently, —¢(R, #,) > —c(R, t;) — ¢ for n = n,, and there-
fore the right-hand side of (3.4) is bounded from below. This contradiction
leads to the validity of (a).

(b) Let x,— x, in X and #,, € T(x,). By (a), {#,} is bounded in ¥ and
consequently there exists a subsequence {u,} such thatw, —uin Y. Letr >0
be such that {x,} C B(x,,7)C X and x € B(x,, r). Then for each v € T(x) and
some R > 0 we have

(#n, — v K(%y, — %)) = —c(R, || 2, — x]/).

Taking the limit in the above inequality as n — o0, we get (¢ — v, K(xy — x))
= —¢(R, ]| %y — x|') for each v e T(x), or
(u, K(xyg — %)) = (v, K(xy — %)) — (R, || 2y — x]') for all v € T'(x),
x€B(xy, 1) (3.5)

This inequality implies that z € T(x,). If not, then since T'(x) is closed and
convex and R(K) = Y*, there exists 2, € X such that

(u, K(2,)) < inf )(y, K(zy)). (3.6)

veT(x,

Let £, > 0 be such that ¢, — 0 and x, — #,3, € B(x,, ). Choosing ¥, — #,3,
as x in (3.5), we obtain (u, K(t,2,)) = (o(t,,), K(t.2)) — ¢(R, t, |l 25 l'), 2(t,) €
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T(xg — 1,23,), or (u, K(zg)) = (v(t,), K(2,)) — (R, t, 1| 24 |)/t, . Since T is
hemicontinuous, passing to the limit as # — o0 we obtain

(u, K(2y)) = (v, K(2y)) for some v € T(xp),

which contradicts (3.6). Thus, u € T(x,).
The strong demiclosedness of T follows in the same fashion.

(¢) Let {x,} CX be bounded and (u,, K(»,)) <% ¢, |i x, || for some
u, € T(x,) and all #. Let R > 0 be such that {x,,} C B(0, R) and observe that for
each x € B(0, R) and u € T(x) we have

(u, —u, K(x, — x)) = —c(R, || x, — x|).

Since T is locally bounded, there exists € > 0 such that | u || <C ¢, forall u e T(x)
with | x|] <{e. We may assume that € << R and then for each u € T(x) with
x| << e from the above inequality we obtain

g, KD < Mo, K )) + [, K — %)) + o(R, [, — & ).

Now, since (X, 1 *|') is compactly embedded into (X, || - ), there exists ¢, > 0
such that || 2] << ¢, || x|l for all x € B(0, 2R) and consequently, || x, — x|’ <
&R -1~ €). By the continuity of ¢(R, p) we have that ¢(R, | x, — x|') < ¢4 for
all # and some ¢; > 0. Thus, for all ue T(x) with ||« |} <e, |(u,, K(x) <
€+ ¢ || K(x, — %), + ¢, <M for all n and some M > 0 and since K is
injective and Y reflexive, we have for 0 << ¢y < e with ¢, ||y < eforye 4 =

K-1(B(0, 1)) that
e sup |(u, , K(p)| = sup |(u, » K(eo))l << M,
ye ve.

1e, ! u, | << Mle, for all n. QE.D.

The relationship of mappings with semibounded variation to pseudo
K-monotone ones is given by the following:

ProrosiTiON 3.5. Let Y be reflexive, K: X — Y* linear, continuous and
surjective and T: X — K(Y') hemicontinuous with semibounded variation. Then T
is pseudo-K-monotone.

Proof. By Lemma 3.3(b), all we need show is part (d) of Definition 3.1.
Suppose that x, — x;, in X and u, € T(x,) with lim sup(u,, , K(x, — %)) < 0.
Then for a fixed uye T(x,) and some R >0 we have (i, K(x, — x¢)) <
(g , K(x, — %)) + (R, || %, — %)) and so lim inf(x, , K(x, — x,)) == 0.
Hence, (u, , K(x, — %)) >0 as n— co. This implies that for each x in X
lim inf(u,, , K(x, — »)) = lim(u, , K(x, — %)) + lim inf(u, , K(xg — x)) =
lim inf(u,, , K(x, — x)). Now for v e T(x),

(v, K(x,, — %)) < (u,, K(x, — x)) + (R, /| x,, — & })
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and passing to the limit we obtain
(v, K(xg — x)) < lim inf(u,, , K(x, — x)) forallve T'(x), xelX. 3.7

Let 94 in X be fixed and define x, = x, + (v, — ) for # > 0 with ¢t — 0. Then
for any v, € T'(x,) we get from (3.7) that

(v, K(xg — 74)) < lim mf(u,, » K(xy — 2y)).

Since T is locally bounded and hemicontinuous, we may assume that
v, — v € T(x,) as t — 0. Consequently, passing to the limit as £ — 0 in the last
inequality, we get

(v, K(x%y — 7)) < lim 1nf(un , K(xg — 75)) == lim mf(un , K(x, — v4)).

Q.E.D.

Let us now discuss some special cases of our results and their relationship to
some results of other authors. Our first result in that direction is the following:

Tuaeorem 3.1. Let X, Y, I, and K be as in Proposition 3.1 with K linear and
let, T:[0,1] x X — 2%, A: X — BK(Y) and G: X -> K(Y') be bounded, demi-
closed and of type (KS.). Suppose that

(1) T, = T2, ) is a~continuous in t uniformly for x in bounded subsets of X.

(2) For each f in Y there exists r, > 0 such that f¢& (T + A)9B(0, r;))
for all [0, 1].

(3) sf¢(T, + A)Y3B(0, ry)) for all s € [0, 1];

(4) There exists n; 2> 1 such that for each n 2= n; and p > 0, deg(L, 0, T, +

L,0,A + uL,0,G, B,(0,7;),0) + 0, where L, is some linear isomorphism from
Y, onto X,,.

Moreover, suppose that either T, is quasi-K-monotone and K-quasi-bounded for
each te€[0, 1] and A is maximal K-monotone, or T, is generalized pseudo-K-
monotone and K-quasi-bounded for each t € [0, 1] and A is generalized pseudo-K-
monotone and K-quasi-bounded such that (u, K(x)) = —(|| x||) || x || whenever
(%, u) € G(A), where y: R+ — R is a continuous function. Then the equation
fe Ty(x) + A(x) is solvable for each f in Y provided T, satisfies condition (+ +).

Proof. We first observe that for each t € [0, 1], T, 4+ A is quasi-K-monotone
in the first case, and generalized pseudo-K-monotone in the second case (Lemma
3.2, with possibly not closed images). Moreover, T; -+ A is K-quasi-bounded if
A is maximal K-monotone. Next, suppose that 4 is generalized pseudo-K-
monotone and that for some bounded {x,} C X we have that (¢ [0, 1] fixed)
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(u, + v, , K(x,)) < cl x,1 for some u, € Ty(x,), v, € A(x,) and some ¢ > 0.
Then
(un, K(xg)) < cllanll + 3l 2 D] 2§l < eqll 2]

for some ¢; > 0. By the K-quasi-boundedness of T, {u,} is bounded. Since
(v, , Klw,)) << cll 2 || + (g, K(2,))] < €51l 2,11, we have that {v,} is also
bounded. Hence, {#, + v,} is bounded, proving the K-quasi-boundedness of
T, + A. It remains to observe that since T, + A + uG is A-proper w.r.t. I,
for each t€[0, 1] and p > 0, the conclusion of our theorem follows from
Theorem 2.3. Q.E.D.

Remark 3.3. If in Theorem 3.1 we assume that (#, K(x)) == —c(t, || x]}) | 2]
for all ue Tyx), te[0, 1], instead of K-quasi-boundedness of T,, where
¢: [0, 1] x R* — R s continuous, then one can easily see that the conclusion of
Theorem 3.1 is still valid since T, -+ A4 is also K-quasi-bounded in this case.

Remark 3.4. When Y = X* K =TIand Tjand 4 are odd on the boundary
of a symmetric about 0 set D in X with 4 maximal monotone, T, pseudomono-
tone, T, single-valued quasi-monotone for ¢€ [0, 1], and 0¢ (T, + A)(oD)
instead of (2) and (3), the conclusion of Theorem 3.1 for f = 0 was proved by
Hess [13].

As a consequence of our results of Section 2, we have the following surjectivity
result for perturbations of quasi-K-monotone or generalized pseudo-K-
monotone mappings.

THEOREM 3.2. Let X, Y, I',, and K be as in Proposition 3.1, T: X — 2¥
K-quasi-bounded and either demiclosed and quasi-K-monotone or generalized
pseudo-K-monotone, and G: X — K(Y) bounded, demiclosed and of type (KS.).
Suppose that C: X — 2 is such that T + C + uG is A-proper w.r.t. I', for
n >0 and O,C: X, — CK(Y,) u.s.c. Moreover, suppose that either one of the
Sollowing three conditions holds:

(1) T -+ C satisfies condition (+) and T, G, and C are odd on X\B(0,r)
for some r > 0;

(ii) T -+ C satisfies condition (), the mappings K, K,, = Q*,K and M,
satisfy conditions (a,)-(a;) of Proposition 3.1, condition (C2), and (u, K(x)) = 0,
(v, Kx) =0, (w, K(x)) = 0 for alluc T(x), ve G(x), and we C(x) with || x || == r;

(1)) K, K, , and M, are as tn (ii) and for each f in Y there exists r, > O such
that (u — f, K(x)) 20, (v, K(x)) 20, and (w, K(x)) =20 for all uc T(x),
ve G(x), and we C(x) with | x || = r,.

Then, if T 4 C satisfies condition (), the equation fe T(x) + C(x) is
solvable for each f in Y.

Remark 3.4. For C =0 and T quasi-K-monotone, Theorem 3.2, parts (i)
and (ii), was proved by Petryshyn [21] in the single-valued case and it extends

409/62/2-11
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some results of Browder [4], Calvert and Webb [10], Fitzpatrick [12], Rocka-
fellar [24], and others (see [21] for more details) when ¥ = X*, K = I and T is
quasi-monotone or maximal monotone. In the case when T is a maximal mono-
tone mapping from X into 2%* and C is a single-valued completely continuous
mapping, the conclusion of our theorem was proved by Fitzpatrick [12] under
either (i) or (ii).

Remark 3.5. As C in our Theorem one can choose a completely continuous
(multivalued) mapping or a K-quasi-bounded generalized pseudo-K-monotone
mapping with K linear such that (z, K(x)) = —(|| x|} || x || for all # € C(x) with
Y1 Rt > R a continuous function or a sum of two such mappings.

We say that T: X — 2V is completely continuous if x, — x,in X and y,, € T(x,)
imply that some subsequence y, — y, € T(x).

As an application of Theorem 2.6 and Remark 2.7(c) we have the following
result:

TueoREM 3.3. Let X be a reflexive separable Banach space, T: X — 2** a
quasi-bounded generalized pseudomonotone mapping and C: X — CK(X*) com-
pletely continuous and such that

(u + v, %)
o

for all u € T(x) and v € C(x) and condition (*) below holds for some i (which is so
if, e.g., for some R > 0, either T is bounded on X\B(0, R) or (u, x) = —cl| x|l
for ue T(x), || x|| = R and some c).

Then the equation f € (T + C) (x) is solvable for each f in X*.

Proof. Since for each fin X* T — f and C satisfy the same conditions that
T and C do, it is sufficient to show that 0 € (T + C) (x) is solvable. Moreover,
by the results of Asplund [1], we may assume that X and X* are locally uni-
formly convex since the “monotonicity’’ and continuity properties of a mapping
are not affected by renorming its domain and range space. Moreover, (3%) holds
in these renormed spaces.

Now by condition (3%), if for some r > 0, fju + o + ((u + v, )/ x|) <7
for u € T{x) and v € C(x), then || x| << R for some R > 0. Let y: Rt - Rt be a
continuous increasing function such that #(t) =0 for t <R and for
ue T(x), ve C(x)

fluteo|+

S>® e x> (3)

tim, (41 1) — LRI — o, ()

llall->o0
Let J, be a duality mapping corresponding to this . Then the mapping
T 4 C + J, is coercise since for u € T(x), v € C(x) and w € Jy(x) we have that

_ e+, %)

e B I I I

el
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Let | be the normalized duality mapping. Then, since T + J, is generalized
pseudomonotone (see Lemma 3.2) and quasi-bounded and [ is of type (S.),
the mapping T + J, + pJ is A-proper for each p > 0 w.r.t. the injective
scheme I') = {X,,, V,; X*,, V*}. Consequently, T — [, 4 C 4 pnJis A-pro-
per wrt. I, p > 0.

Now, from the above discussion we see that the mappings T' + C 4~ J, and
J satisfy all the assumptions of Theorem 2.6 (see Remark 2.7(b, ¢)). Hence,
there exists xy€ X such that 0e(T + C + Jo) (%). If x5 ==0, then clearly
0 e (T -+ C)(x). Suppose that x, = 0. Then # + v + w == 0 for some u € T(x,),
v € C(xg) and we Jy(x,). This implies that (|| xgl) == e ! = {ju ~ ¢! and
Ja,!' < R since

(v + v + w, xg) , (u + v, x)
0= *_Tﬂ‘—o = (] %o ) + ““Tx“j—}-o‘
L0 0

By the definition of i, we have lu + v| = (| %y 1)) = 0, i.e., 0 e (T — C) (xy)-
Q.E.D.

Remark 3.6. 1If T is of semibounded variation in Theorem 3.3, then its
conclusion is valid if T is bounded, since it is bounded and generalized pseudo-
monotone mapping (see Lemma 3.3 and Proposition 3.5). Moreover, if T is
maximal monotone defined on all of X, then our condition (3*) is equivalent to

(v, %)

Ii“*’rvi|+wi——>w as  {jxl|—> oo forallue T(x), ve C(x).

Thus, our Theorem 3.3 includes a result of Wille [27] with 7' maximal monotone.
For C = 0 and T single-valued bounded and generalized-pseudomonotone with
(Tx, x) 22 —k|| x|, see Browder [8].

In the next two theorems we extend the corresponding results of [19] to the
case of noninjective and nonlinear perturbations of condensing like mappings as
defined below.

For a bounded subset 4 of a Banach space X’ we define the ball-measure of
noncompactness as x(4) = inf{r > 0] 4 can be covered by a finite number of
balls of radius less than r with centers in X}. A mapping T: D C X — CK(Y)is
said to be k-ball-contractive if for each bounded subset Q C D, y(T(Q)) =:
kx(0); it is ball-condensing if for each Q C D with x(Q) # 0, x(T(0)) < x(0O).

THeOREM 3.4. Let X and Y be Banach spaces, I, = {X, , V,; X, P, a
projectionally complete scheme for (X, X) with || P, || =1 and M a continuous
linear mapping of X onto Y which satisfies the following condition:

(1) there exists a constant ¢ > 0 such that x(M(Q)) = cx(Q) for any bounded
set QC X.
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Suppose that T: X — CK(Y) is bounded u.s.c. and such that
(2) x(T(Q)) < ex(Q) for each bounded Q C X.

Moreover, suppose that there exists r > O such that T is odd on X\B(0,r) and that
(T — MY maps relatively compact sets of Y into bounded sets of X.
Then, if T — M satisfies condition (++-4), T — M maps X onto Y.

Proof. Let fye Y be fixed and define

F(t,y) = M™(T(y) — tf,)
={xe X | M@x)eT(y) —tf,} forall(t,y)e[0,1] x X.

It is clear that the equation f,e T(y) — M(y) is equivalent to the equation
yeF(l, ).

We shall prove now that F(¢, y) satisfies all the assumptions of Theorem 2.1.
First we prove that F(t, y) is u.s.c. on [0, 1] X X. If F were not u.s.c. at some
point (¢, , ¥,), then there would exist a neighborhood U of F(%, , y,) and sequences
Yn—>Yo, tn—> 1ty and x, e F(¢, , y,\U for all n. Then we would have M(x,) =
#, — t,fy for some u, e T(y,). By the us.c. of T we may assume that
u, — g € T(y,), which implies that x{({M(x,)}) = 0. By (1), x({x,}) =0 and
consequently, x, — x, for some subsequence {x, } with x,¢ U. Since M is
continuous, we have that M(x,) € T(yy) — tofo, i€, xeF(,,y,)CU, a
contradiction. Using similar arguments, we obtain that }~ is also u.s.c. on Y.
Since M is continuous and linear with R(M) = Y, the Open Mapping Theorem
implies that M maps open sets of X into open sets of ¥ and consequently,
M- is Jower semicontinuous.

Next we prove that for each t¢][0, 1], F; =F(t, *} is 1-ball-contractive.
Indeed, for each bounded subset QO C X we have

M(F([0, 1] x Q) C{T(y) — tfy |y €Q, 1[0, 1]}

and consequently, for each t € [0, 1], x(M(FL(Q))) < x(T(Q)) < cx(Q).

Assumption (1) implies that F,(Q) is bounded and ¢x(Fy(Q)) < x(M(F(Q))) <
ex(0), i.e., x(F(O)) < x(0O) for each t € [0, 1]. Then, as shown in {17], we have
that uI + I — F, is A-proper with respect to I', for each ¢ &[0, 1] and p > 0.

Now we claim that I — F, satisfies condition () uniformly for ¢ € [0, 1]. Let
Ln = X, — u, — g for some u, € F(t,, x,). Then M(u,) = v, — t,f, for some
v, € T(x,) and M(x,) — v, = M(gn) + M(u,) — v, = M(g,) — tufo, or
x, € (M — T) 1 (M(g,) ~— t.fo). By the relative compactness of {M(g,) — t,f,}
we obtain that {x,} is bounded. This implies that there exist ry > 7 and y > 0
such that |y —u|| >y for all u€F,(y) with ||y}l = rg and € [0, 1]. If not,
then there would exist {t,} C[0, 1] and {y,} C X with ¢, —¢ and ||y, || > ©
and for some u, eFtﬂ( Yo || ¥ — #, ]l = 0, in contradiction to condition (-+)
forI — F,. Thus such r, > 0 and y > 0 exist.
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Set H, =1 — F, for each t€[0, 1]. Since T and M are odd on X'\B(0, r,),
we have that Hy(—y) = —H(y) for all y ¢ B(0, 7,). From this and our discus-
sion above it follows that H, satisfies all the hypotheses of Theorem 2.1 with
G = I and f = 0 except (H3) and condition (- -). The rest of the proof will be
devoted to establishing the validity of (H3) for H, . Thus, let for some p > 0,
t, € [0, 1}, and x, € 0B,(0, r,), we have 0 € P, H(t, , x,) + px, = (0 + V) x, —
P.M Y T(xy) — tofo) or (w + 1) 3, = Pu(y,) for some y, € M—{(T(x,) — 1, fy)-
Then M(y,)€ T(x,) — tofy and consequently, cx({,}) < x(M(3,)}) =
X({T()}) < exlfx,)). Hence,

x4 1) xa}) = x({Pu(¥a))) < x({3a}) < x{x)),

a contradiction unless {x,} is precompact. It follows that we can choose sub-
sequences {#,, } and {x, } such that ¢, — ¢, and x, — x,. Let u, € T(x, ) —
1, fo be such that Y, € M'l(un ). By the ws.c. of T, 4, — ug € T(xy) — tof, for
some subsequence {um} C {unk}. By the us.c. of M, y,, —>yo€ M Y(u,) for
some subsequence {y, }C{yn}. Then, P, (y,)-—>y==(1 + p)x,. Since
M- is lower semicontinuous and u,, = v,, — t,,f, for some v,, & T(x,) with
Uy, > Uy € T(x,), we have that for y, € M~Y(u,) there exists z,, € M(T(x,, ) —
tofo) such that By, —> Vo - Whence, (1 + w) Xy, = P, (z,,,)—>0 as 1-> o0,
which shows that (H3) holds. Now, as in Theorem 2. 1, we obtain an y, > 0
such that for each pe (0, yy) there exists y, € X with 0 € pv, + H(y,) =

(v + Dy — MHT(3.) — fods or fo (p + 1) M(3,) — T(p.). Let i € (0, Mo)
with p;, — 0. Then, by condition (4 +) for M — T, there exists y € X such that
Joe M(y) — T(y). Since f,e€ Y was arbitrary, we have that M — T maps X
onto Y. Q.E.D.

Remark 3.7. It is easy to check that if K: X — }Y* with | Kv| — oo as
fall— oo and if

Tx, Kx) = ¢, | Kx 12, Mx, Kx) < ¢, Kal2 4+ ¢( Kxi
1

with ¢, — ¢, > 0 and ¢(r)/r — 0 as r —> oo, then T — M is K-coercive and, in
particular, satisfies condition ().

Next we shall consider the case of nonlinear M. For such M we have the
following:

THEOREM 3.5. Let X and Y be Banach spaces, I', ={Y,,V,; Y, ,0.} a
projectionally complete scheme for (Y, Y)Y with || Q, || = 1, M a mapping of D C X
onto Y with M~ u.s.c. and bounded, and T: D — CK(Y) u.s.c. and bounded.
Suppose that M — T satisfies conditions (+) and (+-) and that TM':
Y — CK(Y) is 1-ball contractive.

Moreover, suppose that either one of the following conditions holds:

(1) M and T are odd on the symmetric w.r.t. O set D.
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(ii) There exists R > O such that whenever 0 € tT(x) — M(x) holds for any
xeDand te(0,1], then || x|| < R.

Then T — M maps D onto Y.

Proof. Let fyeY be fixed and consider the equation fye M(x) — T(x).
Set ¥ = M(x). Then it is easy to see that the last equation is equivalent to the
equation foey — TM(y).

Let us now prove that I — T'M~! satisfies conditions (+) and (++). Let
{y.} C Y be such that y, — u, — g for some u, € TM-(y,). Then u, € T(x,)
with «x, e M~Yy,) and consequently, M(x,) —u, =y, —u, — g Since
M — T satisfies condition (+), {x,} is bounded and by the boundedness of T,
el =1 M(x)l <|| M(x,) — #n1i + || #,!| < K for all # and some K > 0.
Next, let {v,} be bounded and such that y, — u, — g for some u, € TM~1(y,).
Then for some x,e M-\y,), 4,€ T(x,) and M(x,) —u, =y, — 4, —§g.
Since M — T satisfies condition (- +), there exists # € X such that g € M(x) —
T(x)or gey — TM-Y(y) with y = M(x). Hence I — TM1 satisfies conditions
(+) and (++).

Now we claim that there exist y > 0 and 7, > ¢ (c > 0 given) such that for
all te[—1, 1] and y € 6B(0, 7 )

ly —u—1tfhll =y for allu € TM(y). (3.8)

If not, then there exist {t,} C[—1, 1] and {y,} C Y with ¢, — tyand || y,| — o©
and || ¥, — u, — t,fo || — O for some u, e TM~Yy,). Thus, y,, — u, — t,f, with
{¥.} unbounded, in contradiction to condition (+) for I — TM-1.

Case (1). Assume that T and M are odd. We claim that H, =1 —
TM1 — tf, satisfies hypothesis (H3) of Theorem 2.1 for f =0 with G =1
i.e., if for some p >0, t, [0, 1], and y, € 6B,(0, 7, ) we have that

0l +p)y, — QnTﬂl_l(yn) — thn(f0)7 (3.9

then there exists {#, } such that #, — £, and 2,0, (fo) — (1 + ) yn, + O (vn,)
— 0 for some v, € TM~Y(y, ). Indeed, from (3.9) we get that for some

0y, € TM™ (), 0 =(1 + p) 3, — 0, (vy,) — 1, On, (fo), which implies that
10Qu(fo) — (1 + 1) Y, + O (0n) = (to — 1) Onf) >0 as k— 0.

Now since T and M are odd, we have that Hy + pl = (1 + p)I — TM-1
is odd and hence hypothesis (H4) of Theorem 2.1 holds. Consequently, by
Theorem 2.1 there exists y € Y such that 0 e H(y) =y — TMY(y) — f, .

Case (2). Suppose that condition (ii) holds. We claim that there exists a
constant C such that Ay ¢ TM~Y(y) for || ¥| > C and A > 1. Indeed, if such a
C did not exist, then we could find sequences {y,} C Y and {a, | A, = 1} with
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I ¥nll— o0 and Ay, € TMYy,). Then A,y, = v, for some v, € T(x,) and
u, € M-Y(y,). Consequently, y, — (1/A,) v, == M(u,) — (1/A;) v, = 0, which
by (ii) implies that {u,} is bounded. Since T is bounded and {i/A,} C (0, 1], we
have that the sequence {y,} = {(1/A,) v,,} is bounded, in contradiction to our
assumption on {y,}. It is clear now that for each p = 0, M1 + p)y ¢ TM(y)
foralllly!l = Cand XA > 1. It follows from (3.8) that there exists yu, € (0, 1) such
that (1 +p)y —u —#fyll = y/2 for te[—1, 1], p (0, py), € TM~Y(y) with
[yl =r,, . In view of this, a slight modification of Proposition 1.4 in [19]
applied to TM~1and (1 + u) I, p € (0, ), implies the existence of y € B(0, 7, )
such that fye (1 + p)y, — TMY(y,) with p€(0, ng). Let u; €(0, p,) be such
that p, —0 and y,eB(0,7;) with foe(l + p)ye — TMY(ys). Let
u, € TM-Y(y,) be such that fy = (1 + ) v, — uz . Then y;, —u, = —p, v -+
fo—fo 2s k — o0 and consequently, since I — TM ! satisfies condition (++),
there exists vy € Y such that f,ey — TM(y), or f,&€ M(x) — T(x) for some
x & M~Yy). Since f, was arbitraty, M — T maps D onto Y. Q.E.D.

When M is bijective and T single-valued, Theorem 3.5 was obtained by
Petryshyn and Fitzpatrick [22]. We note that conditions (1) and (2) of
Theorem 3.4 imply that M-' is us.c. and bounded and TM-! is us.c.
and 1-ball-contractive. If T is a convex mapping (i.e., X is partially ordered by
“” and T(ax + (1 —a)y) < aT(x) + (1 — o) Ty for all x,ve X and
«€(0, 1)) and M is either linear or K-monotone with K linear, then TM-!(y)
is convex for each y in Y. For M and T single-valued with M—1(v) convex for
each y in ¥ and M-1T ball-condensing, the ontoness of M/ — T was established
by Webb [26] under either (i) or (ii).

4. ELLipTIC BOUNDARY VALUE PROBLEMS INVOLVING SEMIBOUNDED (OPERATORS
wrtH CoMPLETELY CONTINUOUS PERTURBATIONS

In the first part of this section we use Theorems 2.4 and 3.3 to establish the
existence of weak solutions for boundary value problems for quasilinear eiliptic
operators in divergence form which involve completely continuous perturbations
of operators with semibounded variation acting in W ,™(Q). The latter class of
elliptic operator equations was first studied by Browder [3] and Dubinsky [11]
and later by Pohodjayev [23], Skrypnik [25], and others (see [5, 25]). For the
above-mentioned class of elliptic operator equations our existence results extend
those of {3, 11].

In the second part of this section we apply Theorems 2.4 and 2.6 to establish
the existence of strong solutions (i.e., functions lying in a closed subspace V" of
W,™) for nonlinear ordinary differential equations of order m involving com-
pletely continuous perturbations B: V' —L, of operators A4: 1V — L, with
semibounded variation. Rather than obtaining the most general results, our
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aim is to show how one can choose the operators K, K,,, G, M,, and a suitable
admissible scheme so that Theorems 2.4 and 2.6 are applicable.

Let O be a bounded domain in R" with a sufficiently smooth boundary 0Q
so that the Sobolev Imbedding Theorem holds on Q (see [7, 16]). For fixed
pe(l, o), let L, = L,(Q) denote the real Banach space of functions u(x) on Q
with norm || u# ||, . If & = (o ,..., a,,) is @ multiindex of nonnegative integers, we
denote by D* = 9*1/dxj1 -+ &*/dx5» a differential operator of order |o| =
oy + *** + o, . If m is a nonnegative integer, W, = W ,®(Q) denotes the real
Sobolev space of all u € L, whose generalized derivatives D, | « | < m, also lie
inL,. W™ is a separable uniformly convex Banach space with respect to the
norm || #lly,, = (Xjai<m || D% |[5)*/?. In case p = 2, we get the Hilbert space
W,™ with the corresponding inner product (-, -),, . Let C,®(Q) be the family of
infinitely differentiable functions with compact support in Q considered as a
subset of W, and let W,™ be the completion in W,™ of C,*(Q). Let {u, v) =
Jo uv dx denote the natural pairing between u €L, and velL, with
g=p(p — 1) and let RS» be the vector space whose elements are
f={&| ol <m.

Let ¥V be a closed subspace of W,™ such that W, C V' C W™ For a given
feL,,the BV problem corresponding to V is the problem of finding a generalized
solution u € V' of the equation

Z (——1)]0‘] DaAcx(x) Uyeres Dmu) + Z (—‘l)lﬂl DBBB(x, Uu,..., Dm—lu) :f(x)
Jajgm 18l<m—~1
(4.1)

such that for all  in V the following identity holds:

Y (A uye, D), Dovy + Y By, #,..., D" ), DPv) = {f, v).
lajgm |Bl<m—1
(4.2)

The choices ¥ = W, and ¥V = W, lead to the generalized Dirichlet and
Neumann BV problems for (4.1), respectively.

To formulate the BVP with respect to V" as an equivalent operator equation
involving mappings from V' to I’* to which Theorems 2.4 and 3.3 are applicable,
we impose the following conditions on the nonlinear functions A,(x, £):
O X RSm — R' and By(x, 5): Q X RS»1— R,

(Al) For each || << m, Afx, &) satisfies the Carathéodory conditions,
t.e., it is measurable in x € Q for fixed £ € RS» and continuous in £ € RS for almost
all x €Q, and there exists a constant ¢, > 0 such that

IAa(xy f)l < [ 1 -+ z l fu lpvu
lrlgm

with p,, < 1 for | a| = |y | == m, while in the lower order cases the exponents may
have larger upper bounds (see [8]).
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(A2) For any given ball B(0, R) C V and u, v € B(0, R) we have

Y, (A, u,..., D) — Ayx, v,..., D"0), DX — v)> = — (R, # — ¥ ey, )y
fajgm
where co(R,p) == 0 is continuous in R and p and such that ¢(R, tp)/t — 0 as t — 0
for any fixed R and p.

(Bl) Foreach|B| <m — | and each uwin W' the mapping u — C (u) =
Bg(x, u, Du,..., D" 'u) yields a continuous and bounded mapping of Wit into

Ly, q=pp—1"

Let us add in passing that it is not hard to show that condition (B1) holds if,
for example, B,: RS»-1-> R! satisfies the Carathéodory conditions and there
exist constants b, > 0 and a function b(x) € L, such that for each | 8| <tm — 1

I Bs(w,m)l << Y, ba|ma " b(x)  (ne R, xe0(ae)). 4.3)
|| gm~1
Now it follows from assumptions (A1) and (B1) and the standard results on
Nemytsky operators (e.g., [16]) that the generalized forms

a(u,v) = Y {Afx, ..., D™u), D*v) (u, v € W), (4.4

la] g

b(u, v) = 2 {Bg(x, u,..., D™ ), D*v> (v, ve W) (4.5)
iBlgm—1
are well defined on W™ and that for a given closed subspace V' of W, with
W,m C V one can associate with a(u, v) and b(x, 9) in a unique way bounded
continuous mappings 4 and B of ¥ into V* such that

a(u, vy = (4u, v), b(u, v) = (Bu, v) (u,ve V), (4.6)

where (Au, v) and (Bu, v) denote the values of the functionals Ax and Bu in
V™ at v in V. Similarly, for each fin L, there exists a unique @, in '* such that
{fy vy = (wy, v) for all v in V. Consequently, in view of (4.6), Eq. (4.2) is
equivalent to the operator equation

Tu == Au + Bu = w, (uel) (4.7)

for a given w; € V* and the mapping T = A4 + B: V - V%,

In order to apply Theorems 2.4 and 3.3 to Eq. (4.7) or Eq. (4.2) we must
first select our admissible approximation shceme I for the pair (¥, V*). Since
V is a separable uniformly convex Banach space, we may find a sequence of
finite-dimensional subspaces {X,} C V such that dist(x, X,) = inf,, x lu—x]
— 0 for each # in V as n-> 00 and so the scheme I' = {X,,, V,,; X*,, V*,}is
admissible for (7, I*), where V,: X, — V is the 1nclusion map and V*.:
V* > X* .
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We are now in a position to apply our theorems to obtain the existence of
solutions of elliptic boundary value problems of form (4.1) involving operators
with semibounded variation.

TueoReM 4.1.  Suppose Q C R is a bounded domain for which the Sobolev
Imbedding Theorem is valid, V is a closed subspace of W,m with W,»C V for
which the hypothesis (A2) holds, and assumptions (A1) and (B1) are satisfied. Then
Eq. (4.7) is solvable for each w, in V* provided that any one of the following condi-
tions holds:

(D) A and C are odd on V\B(0,r) for some r >0 and T=A + B
satisfies condition (+) on V;

(D2) a(u, u) + b(u, u) =0 on V\B(0,7) for somer >0 and T =A + B
satisfies condition (+) on V;

(D3) || Tull + {a(u, u) + blu, w)}|| t¢{ln,, — 00 as || [, , — 00 foruin V.

Proof. First, it follows from (Al) and (A2) that 4: V — V* is a bounded
continuous mapping with semibounded variation. Hence, by Propositions 3.4
and 3.5 and Lemma 3.3 with K =17 and G = ], A is strongly demiclosed and
A 4+ uJ is A-proper with respect to I'; for each p > 0. Now it follows from
assumption (B1) that B: V' — V* is completely continuous. Indeed, if {u,}
is a sequence in V (C W) such that u, — u in V| then by the Sobolev Imbed-
ding Theorem, u, —u in W7 and thus, by (Bl), Cy(u,) — Cys(x) in L, for
each | 8] << m — 1. Since

(Bu, — Bu,v) = Y <{By(*, ty ..., D™ u,) — By(x, u,..., D" 'u), Do}

18lgm—1

for each v in V, it follows by Hoélder’s inequality that

| Bu, — Bu || = sup{|(Bu, — Bu, v)| | || v [l m = 1}

< Yy (f | Co(tn) — Co(m)]e dx)m—>0 as  nm— oo.

[Blgm—1

Consequently, B is completely continuous. Now, since 4 is strongly demiclosed
and B is completely continuous, 4 + B satisfies condition (++-). Indeed, let
{u,;} be any bounded sequence such that Au,, + Bu, — fin V* for some fin V'*.
Since V is reflexive, there exists a subsequence {u, } of {«,} such that u, — %,
for some u, in V as j— co. Then Bu,;— Bu, and Au,; —f — Buy in V* as
j— oo. This and the strong demiclosedness of A4 imply that Au, + Buy = f,
i.e., A + B satisfies condition (4 ). Finally, since V is reflexive and B is
completely continuous, B is compact. Thus, 4 + B + uJ: V — V*is 4-proper
w.r.t. I'; for each p > 0.

Consequently, if condition (D1) or (D2) holds, then the assertion of Theorem
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4.1 follows from Theorem 2.4, while if condition (D3) holds, then the assertion
of Theorem 4.1 follows from Theorem 3.3 in view of Proposition 3.5.
QE.D.

Remark 4.1. In case B=0 and T = 4 is coercive (in which case (D3)
obviously holds), Theorem 4.1 was first proved by Browder [3] and Dubinsky
[11]. Coercive elliptic operators of pseudomonotone type were first studied by
Leray and Lions [15]. The study of elliptic equations involving odd operators
was initiated by Pohodjayev [23] and continued by Browder {7, 8], Hess [13],
and others (see [8, 16]). In [8] Browder studied the solvability of elliptic equations
involving operators of pseudomonotone type satisfying the growth condition
(D3) under the additional condition that (Tu, u) > —k! ul| for all w € X and
some constant k.

As our second application we consider the following BI'P for the nonlinear
ordinary differential equation of order m >> 1 of the form

Ay wy uV,, w™) 4 B(x, w, u®,.., wm0) = (helLy), (4.8)
m—1

Wiu) = 3, [aua) + Bau(B)] =0  (0=<i<<m), (4.9)
i=0

where a;; , B;; are constants and the functions A(x, £): [a, b] x R"*! — Rl and
B(x,1): [a, b] X R™ — R satisfy the Caratheodory conditions and are such

that

(al) For each ue Wy" == Wy"([a, b)), the map u— A(u) == A(x, u(x),...,
u™(x)) yields a bounded continuous mapping of W,™ into Ly[a, b].

(a2) For each wue W' = W Y[a, b]) the map u— B(u) == B(x, u,...,
utn=1y yields a bounded continuous mapping of Wi into L, .

Let V be a closed subspace of W, given by
V ={uec Wy | Wiu) =0fori =0, 1,..., m}.
Suppose further that A(x, £) satisfies the following condition:
(a3) For any given ball B(0, R) C V and u, v in B(0, R) the function A(x, £)
satisfies the condition:
b g -~
[ LA, ..., D) — A%, v,..., D™0)] D1 — v) dx = —c(R, 1t — T ),
where c(R, p) == 0 is continuous in R and p and such that ¢(R, tp)jt — 0 as t — 0~
Jor fixed R and p.

Suppose that the homogeneous equation #" == ( has only the trivial solution
u(x) = O satisfying (4.9). Then, as is well known, the linear mapping K defined
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on V by Ku = u'™(x) is 2 homeomorphism of V onto L, . Thus, if {X,}CV
is a sequence of finite-dimensional subspaces such that dist(v, X,,) =
infxex" o — “Wzm — 0 for each veV, the sequence {Y,} ={KX,}CL,
has also the property that dist(f, Y,,) = infyey l|f — yli,, >0 as #— oo for
each fin L, . Let P,: V — X,, and Q,: L, — Y,, be the orthogonal projections.
Then I'y = {X,,, Pn; O., Y,} is projectionally complete for (V, L,).

Now, it follows from conditions (al), (a2), and (a3), that 4: V' —L, and
B: VL, are well-defined, continuous and bounded; moreover, 4 has a
semibounded variation as a map of I into L, since (a3) implies that

(A(w) — A(2), K(x — 0)), = —c(R, | 4 — v lm-), (4.10)

whenever #, e B(O, R)C V.
In view of the above discussion and Theorems 2.4 and 2.6 we have the
following existence theorem for Eq. (4.8).

THroReM 4.2. Suppose that the functions A(x, §) and B(x,n) satisfy condi-
tions (al), (a2), and (a3). Then for each h €L, , the BV problem (4.8)-(4.9) has a
solution w € V provided that any one of the following conditions holds:

(dl) A(x, —§) = —A(x, &) for ¢ R™! and B(x, —) = —B(x, 1) for
neR™ and T = A + B: V — L, satisfies condition (+), i.e., if {u,}CVisa
sequence that A(u,) + B(u,) — f for some f in L, , then {u,} is bounded in V.

(d2) (Tu, Ku) =0 for all uin V and T = A + B: V — L, satisfies condi-
tion ().

(d3) [ Tully, + (Tu, K()/l| Kul)) > oo as || #|wnm— 00 for ueV, and
(Tu, Ku) = —c|| Ku)| for all ue V' and some c.

Proof. It follows from (4.10) that for each p > 0 and », v € B(0, R) we have
the inequality

(4 +pK)u — (A + pK) v, K(u — v))
> | K — o), — oR, |4 — © llypor).

Since the imbedding of W, into W' is compact and the norm in W,™ is
equivalent to the norm given by || u [l = || Ku | L, for ue V, it follows from the
above inequality that 4 + uK: V'~ L, is A-proper with respect to I';. More-
over, since B: V'— L, is completely continuous and thus compact because ¥
and L, are reflexive, the operator 4 + B + uK: V' —L, is A-proper with
respect to I .

It is obvious that if in Theorem 2.4 we take X =V, Y =L,, G = K, and
K,=M,=Kl|y:X,—Y,, then all the assumptions of Theorem 2.4 are
satisfied. Thus, if either (d1) or (d2) holds, the conclusion of Theorem 4.2



UNIFORM LIMITS OF A-PROPER MAPPINGS 399

follows from Theorem 2.4. If, on the other hand, condition (d3) holds, then,

in
an

14.

15.

18.

19.

view of Lemma 3.3, the conclusion of Theorem 4.2 follows from Theorem 2.6
d Remark 2.7(b). Q.E.D.
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