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Abstract

The first step in thegeneralization of the classical theory of homogeneous equations to the case
of arbitrary support is to consideralgebraic systems with multihomogeneous structure. We propose
constructive methods for resultant matrices in the entire spectrum of resultant formulae, ranging from
pure Sylvester to pure B´ezout types, and including matrices of hybrid type of these two. Our approach
makes heavy use of the combinatorics of multihomogeneous systems, inspired by and generalizing
certain joint results by Zelevinsky, and Sturmfels or Weyman (J. Algebra, 163 (1994) 115; J.
Algebraic Geom., 3 (1994)569). One contribution is to provideconditions and algorithmic tools
so as to classify and construct the smallest possible determinantal formulae for multihomogeneous
resultants. Whenever such formulae exist, we specify the underlying complexes so as to make the
resultant matrix explicit. We also examine the smallest Sylvester-type matrices, generically of full
rank, which yield a multiple of the resultant. The last contribution is to characterize the systems that
admit a purely B´ezout-type matrix and show a bijection of such matrices with the permutations of
the variable groups. Interestingly, it is the same class of systems admitting an optimal Sylvester-type
formula. We conclude with examples showing the kinds of matrices that may be encountered, and
illustrations of our MAPLE implementation. © 2003 Elsevier Ltd. All rights reserved.

Keywords: Sparse resultant; Multihomogeneous system; Determinantal formula; Sylvester and Be´zout type
matrix; Degree vector

1. Introduction

Resultants provide efficient ways for studying and solving polynomial systems by
means of their matrices. This paper considers the sparse (or toric) resultant, which exploits
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a priori knowledge on the support of the equations. We concentrate on unmixed (i.e. with
identical supports) systems where the variables can be partitioned into groups so that
every polynomial is homogeneous in each group. Such polynomials, and the resulting
systems, are calledmultihomogeneous. Multihomogeneous structure is a first step away
from the classical theory of homogeneous systems towards fully exploiting arbitrary
sparse structure. Multihomogeneous systems are encountered in several areas including
geometric modeling (e.g.Chionh et al., 1998; Saxena, 1997; Zhang, 2000), game theory
and computational economics (McKelvey and McLennan, 1997).

Known sparse resultant matrices are of different types. An the one end of the spectrum
are thepure Sylvester-typematrices, where the polynomial coefficients fill in the nonzero
entries of the matrix; such is the coefficient matrix of linear systems, Sylvester’s matrix for
univariate polynomials, and Macaulay’s matrix for homogeneous systems. An the other
end are thepure B́ezout-typematrices, i.e. matrices where the coefficients of theBezoutian
associated to the input polynomials fill in the nonzero entries of the matrix, whereas hybrid
matrices, such as Dixon’s, contain blocks of both pure types. The examples inSection 7.2
show the intricacy of such matrices. Hence the interest to describe them in advance in
terms of combinatorial data, which allows for a structured matrix representation, based on
quasi-Toeplitz or quasi-Hankel structure (Emiris and Pan, 2002; Mourrain and Pan, 2000).

Our work builds on Weymanand Zelevinsky(1994) and their study of multihomo-
geneous systems through the determinant of a resultant complex. First, we give precise
degree vectorstogether with algorithmic methods for identifying and constructing
determinantal formulaefor the sparse resultant, i.e. matrices whose determinant equals
the sparse resultant. The underlying resultant complex is made explicit and computational
tools are derived in order to produce the smallest such formula. Second, we describe and
construct the smallest possible pure Sylvester matrices, thus generalizing the results of
Sturmfels and Zelevinsky(1994) andGelfand et al.(1994, Section 13.2, Proposition 2.2),
already present in the interesting paper byMcCoy (1933) pointed out by one of the
referees. The corresponding systems include all systems for which exact Sylvester-type
matrices are known. We consider more general Sylvester-type matrices, and show that
in the search of small formulae, these more general matrices are not crucial. The third
contribution of this paper is to offer sufficient and necessary conditions for systems to
admit purely Bézout determinantal formulae, thus generalizing a result fromChtcherba
and Kapur(2000). It turns out that these are precisely the same systems admitting optimal
Sylvester-type formulae, and this is nothing but a special case of complexes with only
two nonvanishing cohomologies. We also show a bijection of such matrices with the
permutations on{1, . . . , r }, wherer stands for the number of the variable groups. While
constructing explicit B´ezout-type formulae, we derive a precise description of the support
of the Bezoutian polynomial.

The complex with termsKν(m) described in the next section is known as theWeyman
complex. For any choice of dimensions, of degrees of the input equations and of an
integer vectorm, the multihomogeneous resultant equals the determinant of the Weyman
complex (for the corresponding monomial basis at each of the terms), which can be
expressed as a quotient of products of subdeterminants extracted from the differentials in
the complex. This way of defining the resultant was introduced by Cayley (Gelfand et al.,
1994, Appendix A;Weyman, 1994; Weymanand Zelevinsky, 1994). In the particular case
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in which the complex has just two terms, its determinant is nothing but the determinant of
the only nonzero differential, which is therefore equal to the resultant. In this case, we say
that there is adeterminantalformula for the resultant and the corresponding degree vector
m is called determinantal. In Weymanand Zelevinsky(1994), the multihomogeneous
systems for which a determinantal formula exists were classified; see alsoGelfand et al.
(1994, Section 13.2). Their work, though, does not identify completely the corresponding
morphisms nor the determinantal vectorsm, aquestion we partially undertake. We follow
the results inD’Andrea and Dickenstein(2001), which concerned the homogeneous case,
inspired also byJouanolou(1997).

The main result ofSturmfels and Zelevinsky (1994) was to prove that a determinantal
formula of Sylvester type exists exactly when all defects are zero. InSturmfels
and Zelevinsky(1994, Theorem 2) (recalled inGelfand et al., 1994, Section 13.2,
Proposition 2.2; see alsoMcCoy, 1933, Theorem 4) all such formulae are characterized
by showing abijection with the permutations of{1, . . . , r } and defined the corresponding
degree vectorm as in Definition 5.2 below. This includes all known Sylvester-type
formulae, in particular, linear systems, systems of two univariate polynomials and
bihomogeneous systems of three polynomials whose resultant is, respectively, the
coefficient determinant, the Sylvester resultant and the Dixon resultant. In fact, Sturmfels
and Zelevinsky characterized all determinantal Cayley–Koszul complexes, which are
instances of the Weyman complexes when all the higher cohomologies vanish.

The incremental algorithm for sparse resultant matrices (Emiris and Canny, 1995)
relies on the determination of a degree vectorm. When δ = 0, it produces optimal
Sylvester matrices bySturmfels and Zelevinsky (1994). For other multihomogeneous
systems,Emiris and Canny(1995) heuristically produces small matrices, yet with no
guarantee. For instance, on the system ofExample 5.5, it finds a 1120× 1200 matrix. The
present paper explains the behavior of the algorithm, since the latter uses degree vectors
following Definition 5.2defined by random permutations. Our results provide immediately
the smallest possible matrix. More importantly, the same software constructs all Sylvester-
type formulae described here.

Pure Bézout-type formulae were studied inChtcherba andKapur (2000) for unmixed
systems whose support is the direct sum of what they call basis simplices, i.e. the convex
hull of the origin and anotherlk points, each lying on a coordinate axis. This includes the
case of multihomogeneous systems. They showed that in this case a sparse resultant matrix
can be constructed from the Bezoutian polynomial, to be defined inSection 6, though
the corresponding matrix formula is not always determinantal. Their Corollary 4.2.1
states that for multihomogeneous systems with null defect vector, the B´ezout formula
becomes determinantal; Saxena had proved the special case of alllk = 1 (Saxena, 1997).
In Chtcherba andKapur (2000, Section 4.2) they indicate there arer ! such formulae and
in Section 5they study bivariate systems(n = 2) showing that then, these are the only
determinantal formulae.

Section 6proves these results in a different manner and characterizes the determinantal
cases for multihomogeneous systems, showing that a null defect vector is a sufficient but
alsonecessarycondition for a determinantal formula of pure B´ezout type for anyn. Thus,
there is an optimal Sylvester-type formula for the resultant if and only if there is an optimal
pure Bézout-type formula (cf.Definition 6.1). This had been proven for arbitrary systems
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only in the bivariate case (Chionh et al., 1998). In particular, we explicitly exhibit a choice
of the differential in the Weyman complex in this case (cf.Theorem 6.13), thus partially
answering the “challenge to make these maps explicit” ofWeymanand Zelevinsky(1994,
Section 5.1).

Studies exist (Chionh et al., 1998; D’Andrea and Dickenstein, 2001; Zhang, 2000) for
dealing with hybrid formulae including B´ezout-type blocks or pure B´ezout matrices, and
concentrate on the computation of such matrices. In particularZhang(2000) elaborates
on the relation of Sylvester and B´ezout-type matrices (called Cayley-type there) and the
transformations that link them. The theoretical setting together with Pfaffian formulae for
resultants is addressed inEisenbud and Schreyer(2003). This is made explicit for any
toric surface inKhetan(2002). In the recent preprint (Awane et al., 2002), not also the
multihomogeneous resultant but the whole ideal of inertia forms is studied, extending
results of Jouanolou(1980) in thehomogeneous case.

This paper is organized as follows. The next section provides some technical facts useful
later.Section 3offers bounds in searching for the smallest possible determinantal (hybrid)
formulae. Section 4makes explicit one degree vector attached to any determinantal
data of dimensions of projective spaces, and discusses further techniques for obtaining
determinantal formulae.Sections 5 and 6 characterize matrices of pure Sylvester and
pure Bézout type respectively. InSection 7we fully describe the formulae of a system
of three bilinear polynomials. Then, we provide an explicit example of a hybrid resultant
matrix for a multidegree for which neither pure Sylvester nor pure B´ezout determinantal
formulae exist; this example illustrates the possible morphisms that may be encountered
with multihomogeneous systems. Our MAPLE implementation is described inSection 8.

A preliminary version of certain results in this paper has appeared inDickenstein and
Emiris (2002).

2. Preliminary observations

We considerther -fold productX := P
l1 × · · · × P

lr of projective spaces of respective
dimensionsl1, . . . , lr over an algebraically closed field of characteristic zero, for some
natural numberr . We denote byn = ∑r

k=1 lk the dimension ofX, i.e. thenumber of affine
variables.

Definition 2.1. Considerd = (d1, . . . , dr ) ∈ N
r
>0 and multihomogeneous polynomials

f0, . . . , fn of degreed. The multihomogeneous resultant is an irreducible polynomial
R( f0, . . . , fn) = R(l1,...,lr ),d( f0, . . . , fn) in the coefficients off0, . . . , fn which vanishes
if f the polynomials have a common root inX.

This is an instance of the sparse resultant (Gelfand et al., 1994). It may be chosen
with integer coefficients, and it is uniquelydefined up to sign by the requirement that
it has relatively prime coefficients. The resultant polynomial is itself homogeneous in
the coefficients of eachfi , with degree given by the multihomogeneous B´ezout bound( n
l1,...,lr

)
dl1

1 · · · dlr
r (Gelfand et al., 1994, Proposition 13.2.1). This number is also called the

m-homogeneous bound (Wampler, 1992).
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Let V be the space of(n + 1) tuples f = ( f0, . . . , fn) of multihomogeneous forms of
degreed overX. Given adegree vector m∈ Z

r there exists a finite complexK· = K·(m) of
free modules over the ring of polynomial functions onV (Weymanand Zelevinsky, 1994),
whose terms depend only on(l1, . . . , lr ), d andm and whose differentials are polynomials
on V satisfying:

(i) For every givenf we can specialize the differentials inK· by evaluating atf to get
a complex of finite-dimensional vector spaces.

(ii) This complex is exact iffR( f0, . . . , fn) �= 0.

In order to describe the terms in these complexes some facts from cohomology theory are
necessary; seeHartshorne(1977) for details. Given adegree vector m∈ Z

r , define, for
ν ∈ {−n, . . . , n + 1},

Kν(m) =
p∈{0,...,n+1} H p−ν(X, m − pd)(

n+1
p ), (1)

where for an integerr -tuple m′, H q(X, m′) denotes theqth cohomology of X with
coefficients in the sheafO(m′) such that its global sectionsH 0(X, m′) are identified with
multihomogeneous polynomials of (multi)degreem′. By the Künneth formula, we have

H q(X, m − pd) = H jk(Plk , mk − pdk),

whereq = p − ν and the second sum runs over all integer sumsj1 + · · · + jr = q, jk ∈
{0, lk}. In particular, H 0(Plk , αk) is the space of all homogeneous polynomials inlk + 1
variables with total degreeαk. By Serre’s duality, for anyα ∈ Z

r , we alsoknow that

H q(X, α) � H n−q(X, (−l1 − 1, . . . ,−lr − 1) − α)∗, (2)

where∗ denotes dual. We recall Bott’s formulae for these cohomologies.

Proposition 2.2. For any m ∈ Z
r , Hlk(Plk , mk − pdk) = 0 ⇔ mk − pdk ≥ −lk,

H 0(Plk , mk − pdk) = 0 ⇔ mk − pdk < 0, for k ∈ {1, . . . , r }. Moreover,

H j (Plk , mk − pdk) = 0, ∀ j �= 0, lk,

dim Hlk(Plk, mk − pdk) =
(−mk + pdk − 1

lk

)
,

dim H 0(Plk , mk − pdk) =
(

mk − pdk + lk
lk

)
.

Consequently,

dim H q(X, m − pd) =
jk∈{0,lk}∑

j1+···+ jr =q

r∏
k=1

dim H jk(Plk, mk − pdk),

and

dim Kν(m) =
∑

p∈[0,n+1]

(
n + 1

p

)
dim H p−ν(X, m − pd).
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Definition 2.3. Given r and (l1, . . . , lr ), (d1, . . . , dr ) ∈ N
r , define thedefect vector

δ ∈ Z
r (just as inSturmfels and Zelevinsky, 1994; Weymanand Zelevinsky, 1994) by

δk := lk − 	 lk
dk


. Clearly, this is a nonnegative vector. We also define thecritical degree
vectorρ ∈ N

r by ρk := (n + 1)dk − lk − 1, for all k = 1, . . . , r.

Lemma 2.4 (Weymanand Zelevinsky, 1994). For any i ∈ [r ] := {1, . . . , r }, di l i <

di + l i ⇔ δi = 0 ⇔ min{l i , di } = 1.

Let us establish a general technical lemma.

Lemma 2.5. For any k∈ {1, . . . , r }, 0 ≤ (lk − δk)dk − lk ≤ dk − 1.

Proof. By definition, δk = lk − 	lk/dk
 ⇔ 	lk/dk
 = lk − δk = (lk + tk)/dk for some
integertk such that 0≤ tk ≤ dk − 1. �

We detail now the main results inWeyman and Zelevinsky(1994). They show
(Lemma 3.3(a)) that a vectorm ∈ Z

r is determinantal iffK−1(m) = K2(m) = 0.
They also prove in Theorem 3.1 that a determinantal vectorm exists iff δk ≤ 2 for all
k ∈ [r ]. To describe a differential in the complex fromKν(m) to Kν+1(m), one needs
to describe all the morphismsδp,p′ from the summand corresponding to an integerp to
the summand corresponding to another integerp′, whereboth p, p′ ∈ {0, . . . , n + 1}.
Weymanand Zelevinsky(1994, Propositions 2.5, 2.6) proves this map is 0 whenp < p′
and that, roughly speaking, it corresponds to aSylvestermap(g0, . . . , gn) → ∑n

i=0 gi fi
when p = p′ + 1, thus having all nonzero entries in the corresponding matrix given
by coefficients of f0, . . . , fn. For p > p′ + 1, the mapsδp,p′ are called higher-order
differentials. By degree reasons, they cannot be given by Sylvester matrices. Theorem 2.10
also gives an explicit theoretical construction of the higher-order differentials in the pure
Bézout case (cf.Definition 6.1).

3. Bounds for determinantal degree vectors

This section addresses the computational problem of enumerating all determinantal
degree vectorsm ∈ Z

r . The “procedure” ofWeymanand Zelevinsky(1994, Section 3)
“is quite explicit but it seems that there is nonice way to parametrize these vectors”, as
stated in that paper. Instead, we bound the range ofm to implement a computer search for
them. InSection 4we will give an explicitchoice of degree vectorm for each determinantal
data(l1, . . . , lr ; d1, . . . , dr ).

Givenk ∈ {1, . . . , r } and a vectorm ∈ Z
r define as inWeymanand Zelevinsky(1994):

Pk(m) =
{

p ∈ Z : mk

dk
< p ≤ mk + lk

dk

}
.

Let P̃k(m) be the realinterval(mk
dk

,
mk+lk

dk
], so Pk(m) = P̃k(m) ∩ Z. Using Lemma 3.3 in

Weymanand Zelevinsky(1994), it is easy to give bounds for all determinantal vectorsm
for which all Pk(m) �= ∅.

Lemma 3.1. For a determinantal m∈ Z
r and for all k ∈ {1, . . . , r }, Pk(m) �= ∅ implies,

max{−dk,−lk} ≤ mk ≤ dk(n + 1) − 1 + min{dk − lk, 0}.
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Proof. By Weymanand Zelevinsky(1994, Lemma 3.3(b)),Pk(m) ⊂ [0, n + 1] ⇒
mk/dk ≥ −1 and(mk + lk)/dk ≥ 0, which imply the lower bound. Also,(mk + lk)/dk <

n + 2 ⇔ mk ≤ (n + 2)dk − lk − 1 andmk/dk < n + 1 ⇔ mk ≤ (n + 1)dk − 1 yield
theupper bound. Notice that the possible values formk form a nonempty set, since the two
bounds are negative and positive respectively.�

Now, p ∈ Pk(m) iff Hlk(Plk, mk − pdk) = H 0(Plk , mk − pdk) = 0. Thus, a first guess
could be that all determinantal vectors givePk(m) �= ∅. But this is not the case, as the
following example shows:

Example 3.2. Set l = (1, 2), d = (2, 3). We focus on degree vectors of the form
m = (2µ1, 3µ2), for µ1, µ2 ∈ Z. Then, for all suchm, the setsPk(m), for k = 1, 2,
are empty. Nevertheless, there exist four determinantal vectors of this form, namely
m = (4, 3), (0, 6), (2, 6) or (6, 3). Moreover,the vectorm = (6, 3) gives a determinantal
formula with a matrix of size 88, which is closer to the smallest possible one which has
size 72. The largest determinantal formula isgiven by the determinant of a square matrix
of size 180. Note that the degree of the multihomogeneous resultant is 216. More details
on this example are provided inSection 8. �

We wishnow to get a bound for those determinantal vectors for which somePk(m) is
empty. Let[·]k ∈ {0, 1, . . . , dk − 1} denote the remainder after division bydk.

Definition 3.3. Givenm ∈ Z
r andk ∈ {1, . . . , r }, definenew vectorsm′, m′′ ∈ Z

r whose
j th coordinates equal those ofm for all j �= k and such thatm′

k = mk + dk − [mk]k − 1 ≥
mk ≥ m′′

k = mk − [mk + lk]k.

Lemma 3.4. The vectors m′, m′′ differ from m at their kth coordinate if Pk(m) = ∅.

Proof. Let us write mk = jdk + [mk]k for j ∈ Z. Then, mk/dk = j + [mk]k
dk

.
If Pk(m) = ∅, (mk + lk)/dk < j + 1 ⇒ jdk + [mk]k + lk < ( j + 1)dk, so
[mk]k ≤ dk − lk − 1 ⇒ lk ≤ −[mk]k + dk − 1 and thus 1 ≤ dk − [mk]k − 1. Also,
[mk + lk]k ≥ 1 because[mk + lk]k = 0 ⇒ (mk + lk)/dk ∈ Pk(m). �

Lemma 3.5. If m ∈ Z
r with Pk(m) = ∅ and H0(Plk , mk− pdk) = 0 (resp. Hlk(Plk , mk−

pdk) = 0), then Pk(m′) �= ∅ and H0(Plk , m′
k − pdk) = 0 (resp. Hlk(Plk, m′

k − pdk) = 0),
where m′

k = mk + dk − [mk]k − 1 as inDefinition3.3.

Proof. Write mk = jdk + [mk]k for some integerj ∈ Z. To prove Pk(m′) �= ∅ we show
j + 1 ∈ Pk(m′), i.e. m′

k/dk < j + 1 ≤ m′
k + lk/dk ⇔ m′

k < ( j + 1)dk ≤ m′
k + lk ⇔

jdk + dk − 1 < ( j + 1)dk ≤ jdk + dk − 1 + lk, which isclearly true since 1≤ lk.
Now, Hlk(Plk , mk − pdk) = 0 ⇔ mk + lk ≥ pdk hencem′

k + lk ≥ pdk because
m′

k ≥ mk. H 0(Plk , mk − pdk) = 0 ⇔ mk < pdk so j ≤ p − 1. Hence,mk − [mk]k =
jdk ≤ (p− 1)dk ⇔ mk − [mk]k + dk ≤ pdk which is thedesired conclusion. ByWeyman
and Zelevinsky(1994), Pk(m′) ⊂ [0, n + 1] from which j ∈ {−1, 0, . . . , l }. �

Lemma 3.6. If m ∈ Z
r with Pk(m) = ∅ and H0(Plk , mk− pdk) = 0 (resp. Hlk(Plk , mk−

pdk) = 0), then Pk(m′′) �= ∅ and H0(Plk , m′′
k − pdk) = 0 (resp. Hlk(Plk , m′′

k − pdk) = 0),
where m′′

k = mk − [mk + lk]k as inDefinition3.3.
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Proof. Write mk + lk = jdk + [mk + lk]k for some integerj ≥ 0. To provePk(m′′
k) �= ∅

we show itcontains j , i.e. mk−[mk+lk]k
dk

< j ≤ mk−[mk+lk]k+lk
dk

⇔ mk − [mk + lk]k <

jdk ≤ mk − [mk + lk]k + lk ⇔ jdk − lk < jdk ≤ jdk,which is clearly true since
0 < lk. H 0(Plk , mk − pdk) = 0 ⇔ mk < pdk ⇒ m′′

k < pdk becausem′′
k ≤ mk, hence

H 0(Plk , m′′
k − pdk) = 0. Hlk(Plk , mk − pdk) = 0 ⇔ mk + lk ≥ pdk, then j ≥ p. Hence

mk + lk − [mk + lk]k ≥ pdk which finishesthe proof. By Weymanand Zelevinsky(1994),
Pk(m′′) ⊂ [0, n + 1] hencej ∈ {0, . . . , n + 1}.
Lemmas 3.5and3.6 imply

Theorem 3.7. For any determinantal m∈ Z
r , define vectors m′, m′′ ∈ Z

r as in
Definition3.3 which differ from m only at the kth coordinates,1 ≤ k ≤ r , such that
Pk(m) = ∅. Then Pk(m′) �= ∅, Pk(m′′) �= ∅ and both m′, m′′ are determinantal.

Corollary 3.8. For a determinantal m∈ Z
r with Pk(m) = ∅ for some k∈ {1, . . . , r }, we

have0 ≤ mk ≤ dk(n + 1) − lk − 1.

Proof. Since m′
k, m′′

k define Pk(m′) �= ∅, Pk(m′′) �= ∅, we can applyLemma 3.1.
We use the lower bound withm′′

k becausem′′
k < mk < m′

k. Pk(m) = ∅ ⇒ dk > lk,
so m′′

k = mk − [mk + lk]k ≥ −lk ⇒ mk ≥ [mk + lk]k − lk ≥ 1 − lk, because
[mk + lk]k ≥ 1 by theproof of Lemma 3.4. If mk < 0, for Pk(m) to be empty we need
mk + lk < 0 ⇔ mk < −lk which contradicts the derived lower bound; somk ≥ 0.
For the upper bound,m′

k = mk + dk − [mk]k − 1 ≤ dk(n + 1) − 1 ⇒ mk ≤
dkn + [mk]k ≤ dk(n + 1) − lk − 1; the latter follows from[mk]k < dk − lk (Lemma 3.4).
(mk + lk)/dk ≤ n + 1 − (1/dk) < n + 1 implies the inclusion of thehalf-open interval in
(0, n + 1). Thepossible values formk form a nonempty set, since the lower bound is zero
and the upper bound isdk(n + 1) − lk − 1 ≥ dk − 1 > 0 sincedk > lk ≥ 1. �

So, in fact, the real interval̃Pk ⊂ (0, n + 1).

Corollary 3.9. For a determinantal m∈ Z
r and k ∈ [r ], max{−dk,−lk} ≤ mk ≤

dk(n + 1) − 1 + min{dk − lk, 0}.
This implies there is a finite number of vectors to be tested in order to enumerate all

possible determinantalm. This could also be deduced from the fact that the dimension of
K0(m) equals the degree of the resultant.Corollary 3.9gives a precise bound for the box in
which to search algorithmically for all determinantalm, including those that are “pure” in
the terminology ofWeymanand Zelevinsky(1994). Our MAPLE implementation, along
with examples, is presented inSection 8.

If we taker = 1 = l1 andm = 2d1 − 1 we obtain the classical Sylvester formula
and the upper bound given byCorollary 3.8 is attained. At the lower boundm = −1, the
corresponding complexH 1(P1,−1 − 2d) = H 0(P1, 2d1 − 1)∗ → H 1(P1, d1 − 1)2 =
(H 0(P1, d1 − 1)∗)2 yields the same matrix transposed. In addition, the system of three
bilinear polynomials inSection 7.1admits a pure Sylvester formula withm = (2,−1),
which attainsboth lower and upper bounds of the corollary. The bounds inLemma 3.1can
also be attained (seeExample 5.5continued inSection 8) henceCorollary 3.9is tight. It is
possible that some combination of the coordinates ofm restricts the search space.
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4. Explicit determinantal degree vectors

We focus on the case ofδk ≤ 2 for all k, which is a necessary and sufficient condition
for the existence of a determinantal complex (Weymanand Zelevinsky, 1994). We shall
describe specific degree vectorsm that yield determinantal complexes.

Theorem 4.1. Suppose that0 ≤ δk ≤ 2 for all k = 1, . . . , r andπ : [r ] → [r ] is any
permutation. Then, the degree vector mπ ∈ Z

r with

mπ
k =


1 − δk +

∑
π( j )≥π(k)

l j


 dk − lk, (3)

for k = 1, . . . , r defines a determinantal complex.

Proof. First, K1 �= 0 andK0 �= 0 because they each contain at least one nonzero direct
summand, namelyH 0(X, mπ − pd) for p = 1, 0 respectively. To see this, it suffices to
provemπ

k − dk ≥ 0, k = 1, . . . , r , which follows from (1 − δk + lk)dk − lk − dk ≥ 0 ⇔
(−δk + lk)dk − lk ≥ 0. This holds byLemma 2.5.

To demonstrate thatK2 = 0 we shall see that everyone of its direct summands
H q(X, mπ − (q + 2)d) vanishes forq = ∑

π( j )∈J l j , whereJ is any proper subset of
[r ]. Recall that the caseJ = [r ] is irrelevant by the definitions ofSection 2. It is enough
to showH 0(Plk , mπ

k − (q + 2)dk) = 0, for somek with π(k) /∈ J. Let k be the maximum
of the indices verifyingπ(k) /∈ J; such ak ∈ [r ] always exists becauseJ �= [r ]. Since
(1 − δk + lk)dk − lk < 2dk by Lemma 2.5, it easily follows that

mπ
k <


2 +

∑
π( j )∈J

l j


 dk. (4)

It now sufficesto establishK−1(m) = 0. Since this module has no zero cohomology
summand, letq = ∑

π( j )∈J l j , with J �= ∅. Let k ∈ J suchthat π( j ) ≥ π(k) for all
j ∈ J. Then, δk ≤ 2 implies (2 − δk)dk ≥ 0, from whichmπ

k − (q − 1)dk ≥ −lk, and so
H q(X, mπ − (q − 1)d) = 0 for any direct summand ofK−1(m). �

When the defects are at most 1, we can give another explicit choice of determinantal
degree vector for each permutation of[r ].
Theorem 4.2. Suppose that0 ≤ δk ≤ 1 for all k = 1, . . . , r andπ : [r ] → [r ] is any
permutation. Then, the degree vector mπ ∈ Z

r with

mπ
k =


−δk +

∑
π( j )≥π(k)

l j


 dk − lk, (5)

for k = 1, . . . , r defines a determinantal complex.

Proof. Let us modify the previous proof. First,K0 �= 0 because it containsH 0(X, mπ −
pd) �= 0 for p = 0. This follows from(−δk + lk)dk − lk ≥ 0 ⇔ (−δk + lk)dk − lk ≥ 0 for
all k. Thisholds byLemma 2.5.
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Next, K1 �= 0 because forp = n + 1, Hlk(Plk, mπ
k − pdk) �= 0 for all k. This follows

from (−δk + n)dk − lk < (n + 1)dk − lk ⇔ −δk < 1.
To demonstrate thatK2 = 0 we repeat the corresponding argument in the proof of

Theorem 4.1. Then, it sufficesto show that(−δk + lk)dk − lk < 2dk, which is weaker
than the inequality before (4) above. Similarly, to establishK−1(m) = 0 the steps in the
previous proof lead us to showingmπ

k − (q − 1)dk ≥ −lk ⇐ (1 − δk)dk ≥ 0 whichholds
for δk ≤ 1. �

One can easily verify that the vectorsmπ in both theorems above satisfy the bounds of
Corollary 3.9.

A natural question is how to give an explicit degree vector yielding a determinantal
formula of smallest size. Whenr = 1, this is the content of Lemma 5.3 inD’Andrea and
Dickenstein(2001). Even forr = 2, this seems to be a difficult task in general.

Example 4.3. Set l = (2, 2), d = (3, 2). Let π1 : [2] → [2] denote the identity and
π2 : [2] → [2] the permutation which interchanges 1 and 2. The two determinantal vectors
defined according to (3) aremπ1 = (10, 2) andmπ2 = (4, 6), which yield determinantal
matrices of respective sizes 396 and 420. The two determinantal vectors defined according
to (5) aremπ1 = (7, 0) andmπ2 = (1, 4), whichyield determinantal matrices of respective
sizes 756 and 780. But as we will see inSection 6, these latter formulae give instead the
vectors providing the smallest determinantal formulae when all defects are 0. These vectors
can be computed by the functioncomp m of our implementation, discussed inSection 8.

Also, whenr = 1 it is shown inD’Andrea and Dickenstein(2001) that the smallest
formula is attained for “central” determinantal degree vectors.In this example, all degree
vectorsm satisfy that either 1≤ m1 ≤ 5 and 4 ≤ m2 ≤ 7 or 7 ≤ m1 ≤ 11 and
0 ≤ m2 ≤ 4; these bounds are computed by the routines described inSection 8. The
smallest resultant matrix has size 340× 340, and corresponds to the degree vectors(3, 6)

or (9, 1), which are in a “central” position among determinantal degree vectors, in other
words, their coordinates lie in a “central” position between the respective coordinates of
other determinantal vectors. However, the vectors(k, 4) are determinantal fork from 1 to 5,
but the size of a matrix corresponding to the vector(3, 4) (both of whose coordinates lie
between the coordinates of the vectors(1, 4) and(5, 4)), equals 580. So, it is bigger than
the size of a resultant matrix associated to the vector(5, 4), which is of dimension 540. �

In the above example, the two degree vectors giving the smallest resultant matrices
satisfy (9, 1) + (3, 6) = (12, 7), which is the critical vector fromDefinition 2.3. It is
clear that for any determinantalm, the vector(12, 7)—m is also determinantal yielding
the same matrix dimension. This is a consequence of Serre’s duality recalled in (2). The
general statement is summarized in the next proposition.

Proposition 4.4. Assume m, m′ ∈ Z
r satisfy m+ m′ = ρ, the latter being the critical

degree vector ofDefinition 2.3. Then, Kν(m) is dual to K1−ν(m′) for all ν ∈ Z.
In particular, m is determinantal if and only if m′ is determinantal, yielding matrices of
the same size,namelydim(K0(m)) = dim(K1(m′)).

Proof. Based on the equalitym+m′ = ρ we deduce that for allp = 0, . . . , n+1, it holds
that(m′−pd) = (−l1−1, . . . ,−lr −1)−(m−(n+1−p)d). Therefore, for allq = 0, . . . , n,
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Serre’s duality (2) implies thatH q(X, m′ − pd) andH n−q(X, m− (n+1− p)d) are dual.
Since(n+1− p)−(n−q) = 1−(p−q), we deduce thatKν(m) is dual toK1−ν(m′) for all
ν ∈ Z, as desired. Observe that in particularK−1(m) � K2(m′)∗ andK0(m) � K1(m′)∗,
the latter giving the matrix dimension in thecase of determinantal formulae.�

We end this section making explicita consequence of Proposition 3.7 inWeymanand
Zelevinsky(1994) (and giving an independent proof), which gives a generalization of
the characterization of determinantal complexes inSturmfels and Zelevinsky (1994) and
Weymanand Zelevinsky(1994). This resultwill allow us to give in Section 6explicit
expressions for all degree vectors yielding a determinantal formula of smallest size when
all defects vanish.

Theorem 4.5. There exists a determinantal vectorm such that the Weyman complex is
reduced to only one nonzero cohomology group on each of K0(m), K1(m) if and only if all
defects vanish, i.e.δk = 0 for all k = 1, . . . , r .

Proof. Recall that for eachp ∈ {0, . . . , n + 1} there exists at most one integerj such
that H j (X, m − pd) �= 0 in Kν(m) where p = j − ν (Weymanand Zelevinsky, 1994,
Proposition 2.4). In fact, letA(p) := {k : mk − pdk < −lk} andB(p) := {k : mk − pdk ≥
0}. Denote j (p) := ∑

k∈A(p) lk. Then H j ′ (X, m − pd) = 0 for all j ′ �= j (p) and

H j (p) (X, m − pd) �= 0 iff A(p) ∪ B(p) = {1, . . . , r }.
The assumption of the theorem means that there exist exactly two integersp1, p2 ∈

{0, . . . , n + 1} for which H j (pi ) (X, m − pi d) �= 0, i = 1, 2; cf. alsoWeymanand
Zelevinsky(1994, Lemmma 3.3(a)). Then, for anyp ∈ {0, . . . , n + 1}\{p1, p2}, there
exists k suchthat k /∈ A(p) ∪ B(p), i.e. p ∈ Pk(m). The latter set is defined at the
beginning ofSection 3. Then, {0, . . . , n + 1}\{p1, p2} ⊆ ∪r

k=1Pk(m) and so

l1 + · · · + lr = n ≤
r∑

k=1

#Pk(m) ≤
r∑

k=1

⌈
lk
dk

⌉
,

where the first inequality uses the fact that #∪r
k=1 Pk(m) ≤ ∑r

k=1 #Pk(m) and the second

follows from the definition ofPk(m). Sincelk ≥ 	 lk
dk


 for all k, we deduce thatlk = 	 lk
dk


,
and this can only happen ifflk = 1 ordk = 1. �

5. Pure Sylvester-type formulae

This section constructs rectangular matrices of pure Sylvester-type that have at least
one maximal minor which is a nontrivial multiple of the sparse resultant, coming from a
complex of the form:

· · · → K2(m) → K1(m) → K0(m) → K−1(m) = 0,

whereK1(m) = H j (X, m − d)n+1, and K0(m) = H 0(X, m) for a nonnegative vector
m ∈ Z

r≥0.

We assume thatH 0(X, m − pd) �= 0 for ν = 0, 1 and p − ν = 0. This im-
plies H 0(Plk , mk − νdk) �= 0 for all k ∈ {1, . . . , r }. Moreover,we must haveH p−ν
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(X, m−pd) = 0 for p−ν = ∑
j ∈J l j whereJ is any subset satisfying∅ �= J ⊂ {1, . . . , r }.

Note that we donot require in general thatK2(m) �= 0.

Lemma 5.1. If m �= m′ ∈ Z
r
≥0 yield a Sylvester-type matrix and m′

k ≥ mk for all
k ∈ {1, . . . , r } then, the Sylvester matrix associated to m′ is strictly larger than the
Sylvester matrix associated to m.

Proof. We must show dimK0(m′) ≥ dim K0(m), i.e. dimH 0(Plk , m′
k − pdk) ≥

dim H 0(Plk , mk − pdk) for k ∈ {1, . . . , r }, i.e.
(m′

k−pdk+lk
lk

) ≥ (mk−pdk+lk
lk

)
. The

cohomology is nonzero, thusm′
k − pdk ≥ mk − pdk ≥ 0 and this implies the desired

inequality because
(s+lk

lk

) = (s + lk) · · · (s + 1)/ lk!. The inequality is strict since there
exists an indexk suchthatm′

k > mk. �

Definition 5.2. For each choice of a permutationπ : {1, . . . , r } → {1, . . . , r }, consider
the degree vectormπ defined by

mπ
k :=


1 +

∑
π( j )≥π(k)

l j


 dk − lk, k = 1, . . . , r.

Whenall defects are zero, these are the vectors defined inSturmfels and Zelevinsky
(1994) yielding determinantal Sylvester formulae and they also coincide with those defined
in (3) in Theorem 4.1.

Lemma 5.3. If m ∈ Z
r≥0 yields a Sylvester-type matrix, it is possible to define a

permutationπ : [r ] → [r ] such that for i = π−1(1) it holds that mi ≥ mπ
i .

Moreover H0(Pl i , mi − pdi ) �= 0 where p ≤ 1 + ∑
π( j )∈J l j , for any subset J such

that∅ �= J ⊂ {2, . . . , r }.
Proof. For p = n + 1, ν = 1, a necessary condition is thatH n(X, m − (n + 1)d) = 0.
Hence, there existsi ∈ [r ] : Hli (Pl i , mi −(n+1)di ) = 0 ⇔ mi −(n+1)di ≥ −l i ⇔ mi ≥
mπ

i by choosingπ(i ) = 1. For anyp as in the statement,H 0(Pl i , mi − pdi ) �= 0 ⇔ mi ≥
pdi . Sincemi −(n+1)di ≥ −l i it suffices to prove(n+1)di −l i ≥ di (1+∑

j �=i l j ) ≥ di p.
The latter inequality is obvious for allp, whereas the former reduces tol i di ≥ l i which
holds sincedi ≥ 1. �

Theorem 5.4. A degree vector m ∈ Z
r
≥0 gives a Sylvester-type matrix iff there exists a

permutationπ such that mj ≥ mπ
j for j = 1, . . . , r . Moreover, the smallest Sylvester

matrix is attained among the vectors mπ .

Proof. We prove the forward direction by induction onk = 1, . . . , r . Assumem gives a
Sylvester-type complex and consider the necessary conditionK1(m) = H 0(X, m−d). The
base casek = 1 was proven inLemma 5.3. The inductive hypothesis fork ∈ {1, . . . , r −1}
specifies which cohomologies vanish and which not, wheremu ≥ mπ

u , π(u) ≤ k.
In particular, for all subsetsJ such that ∅ �= J ⊂ {1, . . . , r }\{1, . . . , k}, p = 1 +∑

π( j )∈J l j , p0 = p + lv, for somev suchthatπ(v) ≤ k, we assume:

Hlu(Plu , mu − p0du) = 0, H 0(Plu , mu − pdu) �= 0. (6)
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For the inductive step, we exploit the necessary condition thatH p−1(X, m − pd) = 0
for p = 1 + ∑

π( j )>k l j . By (6), there existsi suchthat Hli
(
P

l i , mi − pdi
) = 0. Then,

mi ≥ pdi − l i = mπ
i where we defineπ(i ) = k + 1. To complete the step, we show

H 0
(
P

lu , mu − pdu
) �= 0 whereπ(u) ≤ k + 1, p = 1 + ∑

π( j )∈J l j , and any subsetJ
suchthat∅ �= J ⊂ {k + 2, . . . , r }. The nonvanishing of the cohomology is equivalent to
mu ≥ pdu. It suffices to provemπ

i ≥ di (1 + ∑
π( j )>k+1 l j ). By definition, this reduces to

−l i + di l i ≥ 0 ⇔ di ≥ 1. The converse direction follows from analogous arguments as
above. The claim on minimality follows fromLemma 5.1. �

This gives an algorithm for finding the minimal Sylvester formulae by testing at most
r ! vectorsmπ , which isimplemented in MAPLE (Section 8). To actually obtain the square
submatrix whose determinant is divisible by the sparse resultant, it suffices to execute
a rank test. These matrices exhibit quasi-Toeplitz structure, implying that asymptotic
complexity is quasi-quadratic in the matrix dimension (Emiris and Pan, 2002). Observe
that Pk(mπ) �= ∅ because there existsp ∈ Z suchthat p = 1 + ∑

π( j )≤π(k) l j suchthat
mπ

k < dk p = mπ
k + lk for all k.

Example 5.5. Let l = (2, 1, 1), d = (2, 2, 2); the degree of the resultant is 960. Let
σ = π−1 be the permutation inverse toπ ; then the corresponding degree vector can be
written asmπ

σ(k)
:= (1 + ∑

j ≥k lσ( j ))dσ(k) − lσ(k). Here is a list of the 6 = 3! degree
vectorsmπ , among which we find the smallest Sylvester matrix of row dimension 1080,
whereas the sparse resultant’s degree is 960. Also shown are the permutationsσ and the
corresponding matrix dimensions. The symmetry between the last two polynomials makes
certain dimensions appear twice.

mπ = (8, 5, 3) σ = (1, 2, 3) 1080× 1120
(8, 3, 5) (1, 3, 2) 1080× 1120
(6, 9, 3) (2, 1, 3) 1120× 1200
(4, 9, 7) (2, 3, 1) 1200× 1440
(6, 3, 9) (3, 1, 2) 1120× 1200
(4, 7, 9) (3, 2, 1) 1200× 1440.

Our MAPLE program, discussed inSection 8, enumerates 81 purely rectangular Sylvester
matrices (none of which is determinantal). All Sylvester matrices not shown here have
dimensions 1260× 1400 or larger. �

The mapK1(m) → K0(m) is surjective, i.e. the matrix has at least as many columns as
rows. In searching for a minimal formula, we should reduce dimK0(m), i.e. thenumber of
rows, since this defines the degree of the extraneous factor in the determinant. It is an open
question whether dimK0(m) reducesiff dim K1(m) reduces. In certain system solving
applications, the extraneous factor simply leads to a superset of the common isolated roots,
so it poses no limitation. Even if it vanishes identically, perturbation techniques yield a
nontrivial projection operator (D’Andrea and Emiris, 2001).

It is possible to obtain a pure Sylvester-matrix whose determinant equals the
multihomogeneous resultant when the complex has as only nonzero termsK1(m) =
H j (X, m − ( j + 1)d)(

n+1
j +1), and K0(m) = H j (X, m − jd)(

n+1
j ) for any j = 0, . . . , n.

But in this case we deduce fromTheorem 4.5that all defects vanish. So (cf.Sturmfels
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and Zelevinsky, 1994) there exists apure Sylvester-type determinantal formula associated
to a nonnegative degree vector (i.e.mk ≥ 0, k = 1, . . . , r ), or equivalently, forj = 0.
Thus, if a determinantal data(l1, . . . , lr ; d1, . . . , dr ) admits a degree vector yielding a two
term Sylvester complex for somej , it admits such a formula forj = 0 as well. Hence,
concentrating onj = 0 is not restrictive in the case of determinantal complexes. The
Sylvester-type matrices for positivej correspond to degree vectors with some negative
entries, unlike the assumption inSturmfels and Zelevinsky (1994, p. 118). We show such
an example in the bilinear case inSection 7. Thus, the first part of conjecture (Sturmfels
and Zelevinsky, 1994, Conjecture 3) can be true only for nonnegative degree vectors.

6. Pure Bézout-type formulae

In this section, we will study the following complexes:

Definition 6.1. A Weyman complex is of pure B´ezout type ifK−1(m) = 0, K1(m) =
Hl1+···+lr (X, m − (n + 1)d) andK0(m) = H 0(m).

Weymancomplexes of pure B´ezout type correspond to generically surjective maps

Hl1+···+lr (X, m − (n + 1)d) → H 0(m) → 0 (7)

such that any maximal minor is a nontrivial multiple of the multihomogeneous resultant. In
fact, we shall show that the only possible such formulae are determinantal (i.e.K2(m) =
0). We shall exhibit the corresponding differential in terms of the Bezoutian and character-
ize thepossible degree vectors. We show that there exists a pure B´ezout-type formula iff
there exists apure Sylvester formula. We remark that the dimension of the matrix with pure
Bézout coefficients equals the dimension of the Sylvester matrix divided byn+1. Now we
can generalize results inChtcherba andKapur (2000) andSaxena(1997) (cf. Section 1).

Theorem 6.2. There exists a determinantal formula of pure Bézout type iff for all k either
lk = 1 or dk = 1, i.e. all defects vanish.

Proof. This is just a special instance ofTheorem 4.5, where the only nonzero
cohomologies in the complex correspond top1 = 0, p2 = n + 1. �

Let us study degree vectors yielding pure B´ezout formulae, which will then provide the
smallest determinantal formulae in case all defects vanish.

Definition 6.3. For each choice of a permutationπ : {1, . . . , r } → {1, . . . , r }, let usdefine
a degree vector

mπ
k := −lk + dk

∑
π( j )≥π(k)

l j , k = 1, . . . , r.

Whenall δk = 0 these are precisely the vectors defined in (5) in Theorem 4.2. Note that
our assumptions in (7) imply Hl j (Pl j , mj − (n + 1)dj ) �= 0, H 0(Pl j , mj ) �= 0.

Lemma 6.4. The existence of any pure B́ezout formula implies0 ≤ mj < (n + 1)dj − l j ,
for all j .

In fact, themπ of Definition 6.3satisfy these constraints for all permutationsπ .
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Proof. The nonnegativity of allmj is deduced from the fact thatH 0(X, m) �= 0. On the
other side, the nonvanishing ofH n(X, m − (n + 1)d) implies the other inequality. �

Lemma 6.5. If m ∈ Z
r yields a pure B́ezout-type complex, then there exists a permutation

π : [r ] → [r ] such that i = π−1(1) verifies mi ≥ mπ
i and

H li (Pl i , mi − (q + l i + ν)di ) = 0, ν = 0,−1,

H 0(Pl i , mi − qdi ) �= 0, q =
∑
j ∈J

l j ,

for any J ⊂ {1, . . . , r }\{i }, J �= ∅.

Proof. Since H n(X, m − nd) = 0, there exists an indexi ∈ {1, . . . , r } such that
mi − ndi ≥ −l i . It is enough to defineπ(i ) = 1. �

Theorem 6.6. If m ∈ Z
r yields a pure B́ezout-type complex, it is possible to find a

permutationπ such that the degree vector m verifies mi ≥ mπ
i for all i = 1, . . . , r .

Proof. We use induction; the base case follows fromLemma 6.5. The inductive
hypothesis, fork ∈ {1, . . . , r − 1}, is: there exists a subsetU ⊂ {1, . . . , r }, |U | = k,
suchthatπ(u) ≤ k, mu ≥ mπ

u for all u ∈ U and

Hlu(Plu , mu − (q + lu + ν)du) = 0, ν = 0,−1,

H 0(Plu , mu − qdu) �= 0, q =
∑
j ∈J

l j , (8)

for all J ⊂ {1, . . . , r }\U, J �= ∅. Now the inductive step: The hypothesis onK0 implies
H p(X, m − pd) = 0 for p = ∑

j /∈U l j . Considering the inequality in (8) for q = p,

there existsi ∈ [r ]\U suchthat Hli (Pl i , mi − pdi ) = 0 ⇔ mi + l i ≥ pdi i.e. mi ≥ mπ
i

for π(i ) = k + 1 becausej /∈ U ⇔ π( j ) ≥ k + 1. It suffices now to extend (8) for
q′ = ∑

j ∈J ′ l j where∅ �= J ′ ⊂ [r ]\(U ∪ {i }). First,mi + l i ≥ pdi ≥ (q′ + l i )di implies
the equations below. Second,mi ≥ −l i + pdi = (p − l i )di + l i (di − 1) ≥ q′di yields the
inequality, so

Hli (Pl i , mi − (q′ + l i + ν)di ) = 0, ν = 0,−1.

H 0(Pl i , mi − q′di ) �= 0. (9)

Then,m satisfies the hypothesisK−1(m) = 0 for ν = −1 because every summand
in K−1(m) contains some cohomology as in (9). Since p ≥ 0 ⇒ q = p − ν ≥ 1
no summand has only zero cohomologies. ByLemma 6.4and (9) for ν = 0, m gives
K0(m) = H 0(X, m) becauseHli (Pl i , mi − pdi ) = 0 for any p, i . �
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Theorem 6.7. A pure B́ezout and generically surjective formula exists for some vector m
iff it equals mπ of Definition6.3, for somepermutationπ , and all defects are zero.

Proof. It suffices to considerK1(m) = H n(X, m−(n+1)d); it is nonzero byLemma 6.4.
We prove by induction thatm = mπ by using the fact that all other summands in
(1) for K1(m) vanish. For H 0(X, m − d) to vanish, there must existi ∈ [r ] suchthat
H 0(Pl i , mi −di ) = 0 ⇔ mi < di . Hence we need to defineπ(i ) = r becauseπ(i ) < r ⇒
mπ

i ≥ −l i + di (l i + 1) = di + l i (di − 1) ≥ di . Moreover,mπ
i = −l i + di l i < di ⇔ δi = 0

by Lemma 2.4.
There is a unique integer in[mπ

i , di ) becausemπ
i + 1 ≥ di ⇔ −l i + di l i + 1 ≥

di ⇔ (l i − 1)(di − 1) ≥ 0. Hencemi = di − 1 < di (q + 1) for anyq ≥ 0, therefore
H 0(Pl i , mi − (q + 1)di ) = 0. Furthermore, forq ≥ l i , Hli (Pl i , mi − (1 + q)di ) �= 0 ⇔
mi + l i < (q + 1)di ⇔ l i − 1 < qdi which holds. This proves the inductive basis. The
inductive hypothesis is: for allu ∈ U ⊂ [r ], where|U | = k, π(u) > r − k, thenδu = 0,
mu = mπ

u and

H 0


P

lu , mu −

1 +

∑
π( j )<π(u)

l j


 du




= 0 �= Hlu


P

lu , mu −

1 +

∑
j ∈J

l j


 du


 , (10)

for all J such that U ⊂ J ⊂ [r ]. For the inductive step, consider thatH q(X, m −
(1 + q)d) must vanish for q = ∑

j ∈U l j . None of its summand cohomologies

Hlu
(
P

lu , mu − (1 + q)du
)

vanish due to the last inequality. So there existsi suchthat
H 0(Pl i , mi − (1 + q)di ) = 0 ⇔ mi < (1 + q)di .

Henceπ(i ) = r − k so thatmi = mπ
i = −l i + di

∑
π( j )≥r−k l j < (1 + q)di ⇔

−l i + di l i < di ⇔ δi = 0 by Lemma 2.4. No largermi works becausemπ
i is the

maximum integer strictly smaller than(1 + q)di . And π(i ) < r − k would makemi

too large. Now extend the inequality (10) to J ′ where (U ∪ {i }) ⊂ J ′ and observe
mπ

i < di
∑

π( j )≥r−k l j < di (1 + ∑
j ∈J ′ l j ).

The hypothesis is proven for allU ⊂ [r ], including the case|U | = r . For the converse,
assume there exists a permutationπ such that m = mπ and all defects vanish. Then
K0(m), K1(m) satisfy all conditions for a pure B´ezout formula. Furthermore,K−1(m) = 0,
hence the formula is generically surjective.�

The conditionK2(m) = 0, which yields a square matrix, is obtained by the hypothesis
of a pure Bézout and generically surjective formula; i.e. there is no rectangular surjective
pure Bézout formula.

Corollary 6.8. If a generically surjective formula is of pure B́ezout type, then it is
determinantal. Furthermore, for any permutationπ , the matrix is of the same dimension,
i.e.dim K0(m) = degR/(n + 1).
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6.1. Explicit B́ezout-type formulae

We start by defining a dual permutationπ ′ to any permutationπ .

Definition 6.9. For any permutation π : [r ] → [r ], define a new permutation π ′ : [r ] →
[r ] by π ′(i ) = r + 1 − π(i ).

Lemma 6.10. Assuming all defects are zero, mπ + mπ ′ = ρ for any permutation
π : [r ] → [r ], whereρ ∈ N

r is the critical vector ofDefinition2.3.

Proof. mπ
i + mπ ′

i = di (n + l i ) − 2l i for all i because the sum in the parentheses includes
{l j : π( j ) ≥ π(i )} ∪ {l j : π ′( j ) ≥ π ′(i )}, and the latter set is{l j : π( j ) ≤ π(i )}. So
mπ

i +mπ ′
i = di l i − l i +ρi −di +1 = ρi +di (l i −1)− (l i −1) = ρi + (l i −1)(di −1) = ρi

because of the zero defects.�

Denote byxi (resp.xi j ) the i th variable group (respectively thej th variable in the
group), i ∈ [r ], j = 0, . . . , l i . Introducer new groups of variablesyi with the same
cardinalities and denote byyi j their variables.

Given a permutation π , let the associated Bezoutianbe the polynomialBπ(x, y)

obtained as follows: first dehomogenize the polynomials by settingxi0 = 1, i = 1, . . . , r ;
theobtained polynomials are denoted byf0, . . . , fn. Second, construct the(n+1)×(n+1)

matrix with j th column corresponding to polynomialf j , j = 0, . . . , n, and whosexi j

variables are gradually substituted, in successive rows, by each respectiveyi j variable.
This construction is named after B´ezout or Dixon and is well-known in the literature,
e.g.Cardinal and Mourrain(1996) andEmiris and Mourrain(1999). A general entry is
of the form

f j (yσ(1), . . . , yσ(k−1), yσ(k)1, . . . , yσ(k)t ,

xσ(k)(t+1), . . . , xσ(k)lσ(k) , xσ(k+1), . . . , xσ(r )) (11)

whereσ := π−1, k = 0, . . . , r, t = 1, . . . , lk. There is a single first row fork = 0,
containing all the polynomials in thexi j variables, whereas the last row has the same
polynomials with all variables substituted by theyi j . All intermediate rows contain the
polynomials in a subset of thexi j variables, the rest having been substituted by each
correspondingyi j . The number of rows is 1+ ∑

j ∈[r ] l j = 1 + n. Lastly, in order to
obtainBπ(x, y), we divide the matrix determinant by

r∏
i=1

l i∏
j =1

(xi j − yi j ). (12)

Example 6.11. Let l = (1, 2), d = (2, 1). If π = (12), π ′ = (21), then mπ =
(5, 0), mπ ′ = (1, 1). Forboth degree vectors, the matrix dimension is 6. To obtainBπ(x, y)

we construct a 4× 4 matrix whose j th column containsf j (x1, x21, x22), f j (y1, x21, x22),
f j (y1, y21, x22), f j (y1, y21, y22), for j = 0, . . . , 3. Herex1 (and y1) is a shorthand for
x11 (andy11). ThenBπ(x, y) contains the following monomials in thexi andyi variables
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respectively, 6 in each set of variables: 1, x1, x21, x22, x1x21, x1x22, 1, y1, y2
1, y3

1, y4
1, y5

1.

So the final matrix is indeed square of dimension 6. More details on this example are
provided inSection 8. �

Lemma 6.12. Let Bπ(x, y) = ∑
bαβxαyβ whereα = (αi j ), β = (βi j ) ∈ Z

n, i =
1, . . . , r, j = 1, . . . , l i . Setαi = ∑

j =1,...,l i αi j , βi = ∑
j =1,...,l i βi j , for all α, β. Then,

0 ≤ αi ≤ mπ ′
i , 0 ≤ βi ≤ mπ

i and0 ≤ αi + βi ≤ ρi , i = 1, . . . , r .

Proof. By Lemma 6.10it suffices to boundαi , βi . But αi is the degree of thexi in the
determinant decreased byl i in order to account for the division by (12). The former equals
the product ofdi with the number of rows where anxi j variableappears for anyj ∈ [1, l i ].
These are the first row, the rows whereyj are introduced forj ∈ {σ(1), . . . , σ (k−1)} such
thatσ(k) = i , and anotherl i − 1 rows whenσ(k) = i . Thecondition on j : π( j ) < π(i )
is equivalent tor + 1− π( j ) > r + 1 − π(i ), henceαi ≤ −l i + di

∑
π ′( j )≥π ′(i ) l j = mπ ′

i .

Similarly, we prove the upper bound onβi . The rows containingyi j for some j ∈ [1, l i ]
are those wherej ∈ {σ(k + 1), . . . , σ (r )} : σ(k) = i , anotherl i − 1 rows whenσ(k) = i ,
and the lastrow. Now, π( j ) ≥ k + 1 > k = π(i ), soβi ≤ −l i + di

∑
π( j )≥π(i ) l j = mπ

i .

Clearlyαi , βi ≥ 0. �

For generic polynomials, the upper bounds ofαi , βi are attained. The lemma thus gives
tight bounds on the support of the Bezoutian.

Theorem 6.13. Assume all defects are zero and Bπ(x, y) is defined as above. For anyπ ,
(bαβ) is a square matrix of dimension

dim K0(m) =
(

l

l1, . . . , lr

)
dl1

1 · · · dlr
r = degR

(n + 1)
.

Furthermore,det(bαβ) = R( f0, . . . , fn).

Proof. First, we show that(bαβ) is square of the desired size. The dimensions are given
by the number of exponent vectorsα, β bounded byLemma 6.12which are exactly
dim K0(mπ ′

), dim K0(mπ) respectively. Bothmπ , mπ ′
are determinantal, hence both of

thesenumbers are equal to degR/(n+1), byTheorem 6.7andCorollary 6.8. R( f0, . . . , fn)

divides every nonzero maximal minor of the matrix(bαβ); cf. Cardinal and Mourrain
(1996) andEmiris and Mourrain(1999, Theorem 3.13). Since any nonzero proper minor
has degree< degR, the determinant of the matrix(bαβ) is nonzero and equals the
resultant. �

Note that there is notaunique choice of higher differentials in the Weyman complexes.
We could chase the arrows in a resultant spectral sequence as inGelfand et al.(1994,
Chapter 2, Proposition 5.4) to show that the matrix we propose comes from the
explicitization of one possible choice. We have followed instead the more direct route
based on the above property of the Bezoutian inCardinal and Mourrain(1996), which uses
more elementary tools.
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7. Two examples

7.1. The bilinear system

The generic system of three bilinear polynomials is

f0 = a0 + a1x1 + a2x2 + a3x1x2,

f1 = b0 + b1x1 + b2x2 + b3x1x2,

f2 = c0 + c1x1 + c2x2 + c3x1x2,

and has type(1, 1; 1, 1). The degree of the resultantin the coefficients is 3
( 2
1,1

) = 6.
We shall enumerate all 14 possible determinantalformulae in the order of decreasing
matrix dimension, from 6 to 2, and shall make the corresponding maps explicit. This study
goes back tothe pioneering work ofDixon (1908).

For π = (1, 2), Definition 5.2yields m = (2, 1) and the complex is 0→ K1 =
H 0(1, 0)(

3
1) → K0 = H 0(2, 1) → 0. The corresponding determinantal pure Sylvester

matrix is, when transposed, equal to


a0 a1 a2 a3 0 0
b0 b1 b2 b3 0 0
c0 c1 c2 c3 0 0
0 a0 0 a2 a1 a3

0 b0 0 b2 b1 b3

0 c0 0 c2 c1 c3




,

with rows corresponding to the input polynomials and the same set multiplied byx1,
whereas the columns are indexed by 1, x1, x2, x1x2, x2

1, x2
1x2. By symmetry, another

formula is possible by interchanging the roles ofx1, x2. Further formulae are obtained by
taking the transpose of these two matrices, namely withm = (−1, 0), where the complex
is H 2(−4,−3) = H 0(2, 1)∗ → (H 2(−3,−2))3 = (H 0(1, 0)∗)3, andwith m = (0,−1).
Recall the definition of duality from equation (2). Sylvester maps, as well as other types of
maps, are further illustrated inSection 7.2.

There are additional determinantal Sylvester formulae corresponding tom = (2,−1)

andm = (−1, 2). Their matrices contain thefi and the fi multiplied by x−1
1 or by x−1

2 .
In the former case, the complex isH 1(0,−3)3 = (H 0(0) ⊗ H 0(1)∗)3 → H 1(1,−2)3 =
(H 0(1) ⊗ H 0(0)∗)3, the transposed matrix is



a0 a1 a2 a3 0 0
b0 b1 b2 b3 0 0
c0 c1 c2 c3 0 0
a1 0 a3 0 a0 a2

b1 0 b3 0 b0 b2

c1 0 c3 0 c0 c2




,

and the columns are indexed by 1, x1, x2, x1x2, x−1
1 , x−1

1 x2. This construction can be
verified by handcalculations.
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Form = (1, 1) the complex becomes 0→ K1 = H 0(0, 0)(
3
1) ⊕ H 2(−2,−2) → K0 =

H 0(1, 1) → 0. The matrix is square, of dimension equal to 4, and hybrid. We compute the
two maps by hand; for a larger example seeSection 7. The foundations for constructing
such matrices can be found inWeymanand Zelevinsky(1994). The transposed 4× 4
determinantal formula is written as follows, by using brackets:


a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

[012] [013] [032] −[123]


 , where[i jk ] = det


 ai aj ak

bi bj bk

ci cj ck


 .

The matrix rows contain thefi and a rational multiple of the affine toric Jacobian, whereas
the columns are indexed by 1, x1, x2, x1x2. This formula is obtained inCattaniet al.(1998)
in a more general toric setting. An analogous 4× 4 matrix corresponds tom = (0, 0).

There are four “partial B´ezout” determinantal formulae of dimension 3× 3 for m =
(−1, 1), (1,−1) and form = (2, 0), (0, 2). We omit thedetails of the computation. In the
first case, the complex isH 2(−4,−2) = H 0(2, 0)∗ → H 1(−2, 0)3 = (H 0(0)∗⊗H 0(0))3,
and a choice of the matrix is, in terms of brackets,

 [−02] [−03] + [−12] [−13]
[0 − 2] [0 − 3] + [1 − 2] [1 − 3]
[02−] [12−] + [03−] [13−]


 , where[i j −] = det

[
ai aj

bi bj

]
,

and analogously for the 2× 2 brackets[i − k], [− jk]. The columns of this resultant matrix
are indexed by 1, x1, x2

1, which is the support of the three Bezoutian polynomials filling in
the rows.In particular, these polynomials are defined for{i , j , k} = {0, 1, 2} in the standard
way:

Bk = det

[
fi (x1, x2) fi (x1, y2)

f j (x1, x2) f j (x1, y2)

] /
(x2 − y2).

For m = (1, 0) the complex becomes 0→ K1 = H 2(−2,−3)(
3
3) = H 0(0, 1)∗ →

K0 = H 0(1, 0) → 0. The corresponding determinantal pure B´ezout-type formula is
obtained from the Bezoutian polynomial

B = det


 f0(x1, x2) f0(y1, x2) f0(y1, y2)

f1(x1, x2) f1(y1, x2) f1(y1, y2)

f2(x1, x2) f2(y1, x2) f2(y1, y2)


/

(x1 − y1)(x2 − y2),

supported by{1, x2}, {1, y1}. The resultant matrix is given in terms of brackets as follows:[ [123] [023]
−[103] [012]

]
.

7.2. A hybrid determinantal formula

Assumel = (3, 2), d = (2, 3). We present explicit formulae which can be extrapolated
in general, giving an answer to the problem stated inWeymanand Zelevinsky(1994,
p. 578). We plan to carry this extensively in a future work, but we include here the example



A. Dickenstein, I.Z. Emiris / Journal of Symbolic Computation 36 (2003) 317–342 337

without proofs as a hint for the interested reader. Our MAPLE program enumerates 30
determinantal vectorsm, among which we findm(2,1) = (3, 13) according toTheorem 4.1.

The minimal matrix dimension is 1320 and is achieved atm = (6, 3) and (2, 12).
In both cases,P2(m) = ∅, whereasP1(6, 3) = {4} and P1(2, 12) = {2}. This shows
that the minimum matrix dimension may occur for some emptyPk, contrary to what one
may think.

Moreover, the degree of the sparse resultant is 6
( 5
3,2

)
2332 = 4320. Since 1320 does

not divide 4320, the minimal matrix is not of pure B´ezout type; it is not of pure Sylvester
type either. To specify the cohomologies and the linear maps that make the matrix formula
explicit we compute, for the degree vectorm = (6, 3) and p = 1, . . . , 6 thedifferent
values ofm− pd: (4, 0), (2,−3), (0,−6), (−2,−9), (−4,−12), (−6,−15). The complex
becomesK2 = 0 → K1 → K0 → K−1 = 0, with nonzero part

H 0(4, 0)(
6
1) ⊕ H 2(0,−6)(

6
3) ⊕ H 5(−6,−15)(

6
6)

→ H 0(6, 3)(
6
0) ⊕ H 2(2,−3)(

6
2) ⊕ H 5(−4,−12)(

6
5),

where we omitted the reference to the spaceX = P
3 × P

2 in the notation of the
cohomologies. Then dimK1 = 210+ 200+ 910= 1320= 840+ 150+ 330= dim K0.
By a slight abuse of notation, letδα,β stand for the restriction of the above map to
H α → H β. Thenδ02 = δ05 = δ25 = 0 byWeymanand Zelevinsky(1994, Proposition 2.5)
and it suffices to study the maps below, of which the first three are of pure Sylvester type
by Weymanand Zelevinsky(1994, Propostion 2.6) and the last three are of pure B´ezout
type as those ofSection 6. These maps can be simplified using the dual cohomologies:

H j (Plk , mk − pdk) = Hlk− j (Plk , (ρk − mk) − (n + 1 − p)dk)
∗,

whereρ is the critical vector ofDefinition 2.3. So, wehave maps

δ00 : H 0(4, 0)6 → H 0(6, 3)

δ22 : (H 0(0) ⊗ H 0(3)∗)(
6
3) → (H 0(2) ⊗ H 0(0)∗)(

6
2)

δ55 : H 0(2, 12)∗ → (H 0(0, 9)∗)6

δ20 : (H 0(0) ⊗ H 0(3)∗)(
6
3) → H 0(6, 3)

δ50 : H 0(2, 12)∗ → H 0(6, 3)

δ52 : H 0(2, 12)∗ → (H 0(2) ⊗ H 0(0)∗)(
6
2).

The resultant matrix (of the previous map in the natural monomial bases) has the following
aspect, indicated by the row and column dimensions:

840 150 330
210
220
910


 δ00 0 0

δ20 δ22 0
δ50 δ52 δ55


 =


 S00 0 0

Bx2
20 δ22 0

B50 Bx1
52 ST

55




whereSi j , Bi j , Bxk
i j stand forpure Sylvester and B´ezout blocks, the latter coming from

a Bezoutian with respect to variablesxk for k = 1, 2, andST
55 represents a transposed

Sylvester matrix, corresponding to the dual of the Sylvester mapH 0(0, 9)6 → H 0(2, 12).
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Table 1
The main functionalities of our software

Routine Function

comp m Compute the degree vectorm by somespecified formula
allDetVecs Enumerate all determinantal formulae
allsums Compute all possible sums of theli ’s adding toq ∈ {0, . . . ,

∑r
i=1 li }

coHzero Test whetherH q(X, m − pd) vanishes
coHdim Compute the dimension ofH q(X, m − pd)

dimKv Compute the dimension ofKν i.e. of the corresponding matrix
findBez Find all m-vectors yielding a pure B´ezout-type formula
findSyl Find all m-vectors yielding a pure Sylvester-type formula
minSyl Find all mπ -vectors yielding a pure Sylvester-type formula
hasdeterm Test whether a determinantal formula exists

Let us take a closer look atδ22, which denotes both the map and the corresponding
matrix. Let α ∈ N

l1, β ∈ N
l2, be thedegree vectors of the elements ofH 0(2), H 0(3)∗

respectively, thus|α| ≤ 2, |β| ≤ 3. Let I , J ⊂ {0, . . . , 5}, |I | = 3, |J| = 2 express the
chosen polynomials according to the cohomologyexponents. Then the entries are given by

δ22(x
α
1 ⊗ TJ, 1 ⊗ Sβ

I ) =
{

0, if J �⊂ I ,

coef( fk) of xα
1 xβ

2 , if I \J = {k},
whereTJ ∈ H 0(0)∗, Sβ

I are elements of the respective dual bases of monomials. We expect
such a construction to be generalizable, but such a proof would be part of future work.

Now take the B´ezout maps: the matrix entries are given in (11) for σ = (2, 1): the entry
(i , j ), i , j ∈ {0, . . . , 5} contains f j (x(1), . . . , x(5−i ), y(6−i ), . . . , y(5)), where eachx(i ) is
a leading subsequence ofx11, x12, x13, x21, x22; similarly with the new variablesy(i ). The
degree of the determinant, i.e. the Bezoutian, is 6, 3, 2, 12 in x1, x2, y1, y2 respectively
and these coefficients fill in the matrixB50. For the Bézout blockBx1

52, consider “partial”
Bezoutians defined from the six polynomials with the exception of those indexed inJ,
whereJ, I are as above. Only thex1 variables are substituted by new ones, thus yielding
a 4× 4 matrix. ForBx2

20, take all polynomials indexed inI and develop the Bezoutian
with new variablesy2 from a 3× 3 matrix. Hence the entries of the B´ezout blocks have,
respectively, degree 6, 4, 3 in the coefficients of the fi .

8. Implementation

We have implemented on MAPLE V routines for the aboveoperations, including those
in Table 1. They are illustrated below and are available in filemhomo.mpl through:
http://www.di.uoa.gr/∼emiris/index-eng.html.

Example 3.2 (Continued). Recall thatl = (1, 2), d = (2, 3) and letm = (6, 3):
> Ns:=vector([1,2]): Ds:=vector([2,3]):
> summs:=allsums(Ns):
> hasdeterm(Ns,Ds,vector([6,3]),summs);

true

http://www.di.uoa.gr/~emiris/index-eng.html
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> dimKv(Ns,Ds,vector([6,3]),summs,1);
88

> dimKv(Ns,Ds,vector([6,3]),summs,0);
88 �

Example 5.5 (Continued). Recall thatl = (2, 1, 1), d = (2, 2, 2), thenδ = (1, 0, 0). The
MAPLE session first computes all 81pure Sylvester formulae by searching the appropriate
range of 246 vectors. The smallest formulae are shown.

> Ns:=vector([2,1,1]):Ds:=vector([2,2,2]):
> minSyl(Ns,Ds):

list of minimal S-matrices: m-vector and K1, K0-dims

[[8, 5, 3, 1120, 1080], [8, 3, 5, 1120, 1080], [6, 9, 3, 1200, 1120],
[6, 3, 9, 1200, 1120], [4, 9, 7, 1440, 1200], [4, 7, 9, 1440, 1200]]

> allSyl:=findSyl(Ns,Ds):
Search of degree vecs from [4,3,3] to [8,9,9].
First array [4,7,9]: dimK1=1440, dimK0=1200,
dimK(-1)=0(should be 0).

#pure-Sylvester degree vectors =81

tried 246, got 81 pure-Sylv formulae [m,dimK1,dimK0]:
> sort(convert(%,list),sort fnc);

[[8, 5, 3, 1120, 1080], [8, 3, 5, 1120, 1080],
[6, 9, 3, 1200, 1120], [6, 3, 9, 1200, 1120],
[4, 9, 7, 1440, 1200], [4, 7, 9, 1440, 1200],
[8, 6, 3, 1400, 1260], [8, 3, 6, 1400, 1260], . . .]

> allDetVecs(Ns,Ds):
> allmsrtd := sort(convert(%,list),sort fnc);

From, [−4,−3,−3], to, [9, 10, 10], start at, [−4,−3,−3]
Tested 1452 m-vectors: assuming Pk’s nonempty.
Found 488 det’l m-vecs, listed with matrix dim:

allmsrtd := [[6, 3, 1, 224], [6, 1, 3, 224], [1, 7, 5, 224],
[1, 5, 7, 224], [3, 7, 1, 240], [4, 7, 1, 240], [3, 1, 7, 240],
[4, 1, 7, 240], [6, 3, 0, 262], [6, 0, 3, 262], [1, 8, 5, 262],
[1, 5, 8, 262], . . .]

> for i from 1 to nops( allmsrtd ) do print (
allmsrtd[i],Pksets(Ns,Ds,vector([allmsrtd[i][1],
allmsrtd[i][2],allmsrtd[i][3]]))): od:
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[6, 3, 1, 224], [[4, 4], [2, 2], [1, 1]]
[6, 1, 3, 224], [[4, 4], [1, 1], [2, 2]]
[1, 7, 5, 224], [[1, 1], [4, 4], [3, 3]]
[1, 5, 7, 224], [[1, 1], [3, 3], [4, 4]]
[3, 7, 1, 240], [[2, 2], [4, 4], [1, 1]]
[4, 7, 1, 240], [[3, 3], [4, 4], [1, 1]]
[3, 1, 7, 240], [[2, 2], [1, 1], [4, 4]]
[4, 1, 7, 240], [[3, 3], [1, 1], [4, 4]]
[6, 3, 0, 262], [[4, 4], [2, 2], [0, NO INT, 0]]

. . .

The last two commands find all 488 determinantal vectors. The smallest formulae
are indicated (the minimum dimension is 224) and for some we report thePk’s.
No determinantal formulae is pure Sylvester. Notice that the assumption of empty sets
Pk is used only in order to bound the search, but within the appropriate range emptyPk’s
are considered, so no valid degree vector is missed. This is illustrated by the lastP3 = ∅
markedNO INT.

The vectors predicted byTheorem 4.1are found among those produced above, including
m(123) = (6, 5, 3), m(213) = (4, 9, 3), m(312) = (0, 9, 7). The corresponding matrix
dimensions are 672, 600, and 800.�

Example 6.11 (Continued). Recall thatl = (1, 2), d = (2, 1). The only pure Bézout
formulae are the two determinantal formulae ofExample 6.11, for which we havemπ =
(5, 0), mπ ′ = (1, 1).
> Ns:=vector([1,2]):Ds:=vector([2,1]):
> summs:=allsums(Ns):
> findBez(Ns,Ds,true); #not only determinantal

low − upper bounds, 1st candidate:, [0, 0], [6, 1], [0, 0]
Searched degree m-vecs for ANY pure Bezout formula.
Tested 15, found 2 pure-Bezout [m,dimK0,dimK1]:

{[5, 0, 6, 6], [1, 1, 6, 6]}
The search examined 15 degree vectors between the shown bounds. It is clear that both

vectors are determinantal because the matrix dimensions are for both 6× 6. �

9. Further work

Our results can be generalized to polynomials with scaled supports or with a different
degreed per polynomial. One question is whether the vectorsm′, m′′ of Definition 3.3
lead to smaller or larger matrices thanm. Notice that certain cohomologies, which were
nonzero form, may vanish form′ or m′′. We plan to complete the description of hybrid
determinantal formulae. We would also like to answer in general the question stated in
Section 4of determining a priori the degree vectors yielding the smallest determinantal
formulae in all possible cases. A problem related to the Sylvester formulae calls for
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identifying in advance thenonzero maximal minor in the matrix, which leads to finding
a determinant with exact degree in some polynomial.
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