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Abstract

The first step in thgeneralization of the classical theory of homogeneous equations to the case
of arbitrary support is to considalgebraic systems with multihasgeneous struate. We propose
constructive methods for resultant matrices in the entire spectrum of resultant formulae, ranging from
pure Sylvester to puredXout types, and including matrices of hybrid type of these two. Our approach
makes heavy use of the combinatorics of multihomogeneous systems, inspired by and generalizing
certain joint results by Zelevinsky, and Sturmfels or Weyman (J. Algebra, 163 (1994) 115; J.
Algebraic Geom., 3 (1994%69). One contribution is to provideonditions and gorithmic tools
S0 as to classify and construct the smallest possible determinantal formulae for multihomogeneous
resultants. Whenever such formulae exist, we specify the underlying complexes so as to make the
resultant matrix explicit. We also examine the smallest Sylvester-type matrices, generically of full
rank, which yield a multiple of the resultant. The last contribution is to characterize the systems that
admit a purely Bzout-type matrix and show a bijectioh such matices with the permutations of
the variable groups. Intestingly, it is the same class of systeaimitting an optimal Sylvester-type
formula. We conclude with examples showing the kinds of matrices that may be encountered, and
illustrations of our MaPLE implementation. © 2003 Elsevier Ltd. All rights reserved.

Keywods: Sparse resultant; Multihomogeneous systemefeliminantal formula; Sylvester and Reit type
matiix; Degree vector

1. Introduction
Resutants provide efficient ways for studying and solving polynomial systems by
means of their matrices. This paper considers the sparse (or toric) resultant, which exploits
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a priori knowledge on the support of the equations. We concentrate on unmixed (i.e. with
identical supports) systems where the &hblés can be partitioned into groups so that
ewvery polynomial is homogeneous in each group. Such polynomials, and the resulting
systems, are calleshultihonogen®us Multihomogeneous structure is a first step away
from the classical theory of homogeneous systems towards fully exploiting arbitrary
sparse structure. Multihomogeneous systems are encountered in several areas including
geometric modeling (e.gchionh et al, 1998 Saxenal997 Zhang 2000, game theory

and computational economidgl¢Kelvey and McLennajil997).

Known sparse resultant matrices are ofafiént types. An the one end of the spectrum
are thepure Sylvester-typmatrices, where the polynomial coefficients fill in the nonzero
entries of the matrix; such is the coefficient matrix of linear systems, Sylvester’s matrix for
univariate polynomials, and Macaulay’s matfor homogeneous systems. An the other
end are th@ure Bezout-typenatrices, i.e. matrices where the coefficients ofBleeoutian
associated to the input polynomials fill in the nonzero entries of the matrix, whereas hybrid
matrices, such as Dixon'’s, contain blocks of both pure types. The exam@esiion 7.2
show the intrtacy of such matrices. Hence the interest to describe them in advance in
terms of corbinatorial data, which allows for a structured matrix representation, based on
guasi-Toeplitz or quasi-Hankel structurErfiris and Pan2002 Mourrain and Pay2000.

Our work huilds on Weymanand Zelevinsky(1994) and thei study of multihomo-
geneous systems through the determinant of a resultant complex. First, we give precise
degree vectorstogether with algorithmic methods for identifying and constructing
determinantal formulador the sparse resultant, i.e. matrices whose determinant equals
the garse resultant. The underlying resultant complex is made explicit and computational
tools are derived in order to produce the smallest such formula. Second, we describe and
construct the smallest possible pure Syleeshatrices, thus generalizing the results of
Sturmfebk and Zelginsky (1994 andGelfand et al(1994 Section 13.2, Proposition 2.2),
already present in the interesting paper MgCoy (1933 pointed out by one of the
referees. The corresponding systems include all systems for which exact Sylvester-type
matrices are known. We consider more general Sylvester-type matrices, and show that
in the search of small formulae, these moenegral matrices are not crucial. The third
contribution of this paper is to offer sufficient and necessary conditions for systems to
admit purely Bfzout determinantal formulae, thus generalizing a result f@htcherba
and Kapur(2000. It turns out that these are precisely the same systems admitting optimal
Sylvester-type formulae, dnthis is nothing but a special case of complexes with only
two nonvanishing cohomologies. We also show a bijection of such matrices with the
permutations o1, ..., r}, wherer stands for the number of the variable groups. While
constructing explicit Bzout-type formulae, we derive a precise description of the support
of the Bezoutian polynomial.

The complex with term&,, (m) described in the next section is known as eyman
complex For any choice of dimensions, of degrees of the input equations and of an
integer vectom, the mutihomogeneous resultant equals the determinant of the Weyman
complex (for the corresponding monomial basis at each of the terms), which can be
expressed as a quotient of products of subdeterminants extracted from the differentials in
the conplex. This way of defining the resultant was introduced by Caygsifand et al.

1994 Appendix A;Weyman 1994 Weymanand Zelevinsky1994). In the particular case
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in which the complex has just two terms, its determinant is nothing but the determinant of
the only nonzero differential, which is thereéoequal to the resultant. In this case, we say
that there is aeterminantaformula for the resultant and the corresponding degree vector
m is called determinantal In Weymanand Zelevinsky(1994), the multihomogeneous
systems for which a determinantal formula exists were classified; se&alénd et al.
(1994 Section 13.2). Their work, though, does not identify completely the corresponding
morphisms nor the determinantal vectorsa question we partially undertake. We follow

the results iD’Andrea and DickensteifR001), which concerned the homogeneous case,
inspired also bylouanolou1997).

The main result oSturmfek and Zelginsky (1994 was to pove that a dterminantal
formula of Sylvester type exists exactly when all defects are zeroStirmfels
and Zelevinsky(1994 Theorem 2) (recalled inGelfand et al. 1994 Sedion 13.2,
Proposition 2.2; see alddcCoy, 1933 Theorem 4) all such formulae are characterized
by showing abijection with the permutations dfL, . . ., r} and defined the corresponding
degree vectom as in Definition 5.2 below. Ths includes all known Sylvester-type
formulae, in particular, linear systems, systems of two univariate polynomials and
bihomogeneous systems of three polynomials whose resultant is, respectively, the
coefficient determinant, the Sylvester resultant and the Dixon resultant. In fact, Sturmfels
and Zelevinsky characterized all determitel Cayley—Koszul complexes, which are
instances of the Weyman complexes when all the higher cohomologies vanish.

The incremental algorithm for sparse resultant matridesifis and Canny1995
relies on the determination of a degree vector Whens = 0, it produces optimal
Sylvester matrices byturmfek and Zelginsky (1994. For other multihomogeneous
systems,Emiris and Canny(1995 heuristcally produces small matrices, yet with no
guarantee. For instance, on the systerxdmple 5.5it finds a 1120« 1200 matrix. The
present paper explains the behavior of the algorithm, since the latter uses degree vectors
following Definition 5.2defined by random permutations. Our results provide immediately
the smallest possible matrix. More importanthgtsame software constructs all Sylvester-
type formulae described here.

Pure BSzout-type formulae were studied @htcherla andKapur (2000 for unmixed
systems whose support is the direct sum of what they call basis simplices, i.e. the convex
hull of the origin and anothdg points, each lying on a coorditeaxis. This includes the
case of multihomogeneous systems. They showed that in this case a sparse resultant matrix
can be constructed from the Bezoutian polynomial, to be definegketion 6 though
the aorresponding matrix formula is not always determinantal. Their Corollary 4.2.1
staks that for multihomogeneous systems with null defect vector, #mo& formula
becomes determinantal; Saxeradtproved the special case of kll= 1 (Saxenal997).

In Chtcherla andKapur (200Q Setion 4.2) the indicate there are! such fomulae and
in Section 5they stidy bivariate systemé = 2) showing thathen, these are the only
determinantal formulae.

Section Gproves these results in a different manaed claracterizes the determinantal
cases for multihomogeneous systems, showing that a null defect vector is a sufficient but
alsonecessarycondition for a determinantal formula of pureBiut type for any. Thus,
there is an optimal Sylvester-type formula for the resultant if and only if there is an optimal
pure Bszout-type formula (cDefinition 6.1). This had been proven for arbitrary systems
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only in the bivariate caseéChionh et al, 1998. In particular, we explicitly exhibit a choice
of the dfferential in the Weyman complex in this case (€heorem 6.18 thus patially
answering the “challenge to make these maps explicitWVeymanand Zelevinsky1994
Section 5.1).

Studies exist Chionh et al, 1998 D’Andrea and Dickensteijr2001 Zhang 2000 for
dealing with hybrid formulae including &/out-type blocks or pureeBout matrices, and
concentrate on the computatiof such maices. In particulazhang (2000 elaborates
on the relation of Sylvester andeBout-type matrices (called Cayley-type there) and the
transformations that link them. The theoretical setting together with Pfaffian formulae for
resultants is addressed Eisenbud and Schrey¢2003. This is made explicit for any
toric surface inKhetan(20032. In the recent preprintAvane et al. 2002, not also the
multihomogeneous resultant but the whole ideal of inertia forms is studied, extending
resuts of Jouanolou1980 in thehomogeneous case.

This paper is organized as follows. The next section provides some technical facts useful
later.Section 3offers bounds in searching for the smallest possible determinantal (hybrid)
formulae. Section 4makes explicit one degree vector attached to any determinantal
data of dimensions of projeee gaces, and discusses fugthtechniquesdr obtaining
deterninantal formulae.Sectons 5and 6 characterize matrices of pure Sylvester and
pure B3zout type respectively. IBection 7we fully describe the formulae of a system
of three bilinear polynomials. Then, we proeidn explicit example of a hybrid resultant
matrix for a multidegree for which neither pure Sylvester nor pusz®&it determinantal
formulae exist; this example illustratdset possible morphisms that may be encountered
with multihomogeneous systems. OurA¥LE implementation is described Bection 8

A preliminary version of certain results in this paper has appear&idhkenstein and
Emiris (2002.

2. Preliminary observations

We oonsiderther -fold productX := P!t x ... x Pr of projective spaces of respective
dimensiondy, ..., |, over an algebraally closed field of characteristic zero, for some
natural number. We denote byn = 3", _, Ik the dimension oK, i.e. thenumber of affine
variables.

Definition 2.1. Considerd = (dy,...,dy) € N;O and multihomogeneous polynomials
fo,..., fn of degreed. The multihomogeneous resultant is an irreducible polynomial
R(fo, ..., fn) = Ray,..1n.d(fo, ..., fn) in the coefficients offo, ..., fn which vanishes

iff the polynomials have a common rootXn

This is an instance of the sparse resultaielfand et al. 1994). It may be chosen
with integer coefficients, and it is uniquetiefined up to sign by the requirement that
it has relatively prime coefficients. The resultant polynomial is itself homogeneous in
the coefficients of eacHj, with degree given by the multihomogeneousZut bound
(O Ir)d'l1 ..-df" (Gelfand et al.1994 Proposition 13.2.1). This number is also called the

.....

m-homogeneous bountMampler 1992).
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LetV be the space aih + 1) tuplesf = (fo, ..., fn) of multihomogeneous forms of
degreal overX. Given adegree vector ne Z' there exists a finite complég. = K.(m) of
free modules over the ring of polynomial functions\ér{WWeymanand Zelevinsky1994),
whose terms depend only @, . . ., I;), d andm and whose differentials are polynomials
onV satisfying:

(i) For every givenf we can specialize the differentials i by evaluating atf to get
a complex of finite-dimensional vector spaces.
(i) This complexis exactiffR( fo, ..., fn) # 0.

In order to describe the terms in these complexes some facts from cohomology theory are
necessary; sedartshorne(1977 for detals. Given adegree vector me Z', define for
ve{-n,...,n+1}

n+1
Km= D Heroxm— pd)(5), (1)
pe{0,....,n+1}
where for an integer-tuple m’, H9(X, m’) denotes thegth cohomology of X with
coefficients in the shea?(m') such that its gibal sectiond (X, m') are identified with
multihomogeneous polynomials of (multi)degree By the Kiinneth formula, we have

Jkel0y _
HiXm—pd)= P QHKE m— pdo.
Jittjr=q k=1

whereq = p — v and the second sum runs over all integer syms --- + jr = @, jk €
{0, I}. In paticular, HO(P', ) is the pace of all homogeneous polynomialsljn+ 1
variables with total degreexk. By Serre’s duality, for any € Z", we alsoknow that

Hq(Xva):Hn_q(Xv (_ll_l,...,_lr —1)—(:()*, (2)
where* denotes dual. We recall Bott's formulae for these cohomologies.

Proposition 2.2. For any m € Z", Hx@P% my — pdk) = 0 & mg — pck > —li,
HOPx, mg — pok) =0 < mk — pdk < 0, fork € {1, ...,r}. Moreover,

HI(P*, mq — pd) =0,  Vj %0,

dim H'* (@', m — pdk) = (_mk +I P — 1),
k
dim HO(P* my — pdo) = <mk— rdk+|k>'
k
Consequently,
jkefO} r

dimHIX.m—pd)= > ]dimHk@"% m— pdo).
ja+e =0 k=1

and

1
dimK,(m) = Z <n + )dim HP="(X, m— pd).
pel[0,n+1]
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Definition 2.3. Givenr and (I1,...,1;),(d1,...,d) e N', define thedefectvector
8 € Z' (just as inSturmfeb and Zelginsky, 1994 Weymanand Zelevinsky 1994 by
Sk = lx — {é—‘ﬂ. Clearly, this is a nonnegative vector. We also definedtitical degree
vectorp € NT by ok :=(n+ Ddk — Ik — 1, forallk =1, ...,r.

Lemma 2.4 (Weymanand Zelevinsky1994. For any i € [r] := {1,...,r}, dili <
d+1i &8 =0« min{lj,d} =1

Let us establish a general technical lemma.
Lemma25. Foranyke {1,...,r},0 < (Ilx — 8k)dk — Ix < dx — 1.

Proof. By defirition, dx = Ix — [lk/dk] < [lk/dk] = Ik — 8k = (I + tk)/dk for some
integerty suchtlat0O<ty <d¢—1. O

We detdl now the main results inWeyman and Zelevinsky(1994. They show
(Lemma 3.3(a)) that a vectan € Z' is determinantal iffK_1(m) = Ky(m) = 0.
They also prove in Theorem 3.1 that a determinantal vett@xigs iff 5y < 2 for all
k € [r]. To desribe a differential in the complex fror,, (m) to K, 11(m), one needs
to describe all the morphisms,, y from the summand corresponding to an integeo
the simmand corresponding to another integér whereboth p, p’ € {0,...,n + 1}.
Weymanand Zelevinsky(1994 Propositions 2.5, 2.6) proves this map is 0 wher< p’
and that, roughly speaking, it corresponds ®ydvestemap(go, ..., gn) — Zin=0 gi i
when p = p’ + 1, thus having all nonzero entries in the corresponding matrix given
by coefficients off, ..., fn. For p > p’ + 1, the mapss, y are called higher-order
differentials. By degree reasons, they cannot be given by Sylvester matrices. Theorem 2.10
also gives an explicit theoretical construction of the higher-order differentials in the pure
Bézout case (cDefinition 6.1).

3. Boundsfor determinantal degreevectors

This section addresses the computational problem of enumerating all determinantal
degree vectorsn € Z'. The “pracedure” ofWeymanand Zelevinsky(1994 Setion 3)
“is quite explicit but it seems that there is nice way to parametrize these vectors”, as
stated in that paper. Instead, we bound the range tf implement a computer search for
them. InSection 4ve will give an explicitchoice of degree vecton for each determinantal
data(l1, ..., lr;dq, ..., dp).

Givenk € {1,...,r}and avectom € Z' define as inMeymanand Zelevinsky1994):
I
Pmy = {pez: ™ < p< kL
dk dk

Let Bc(m) be the realnterval (g, m‘gkr'k], so Pc(m) = Px(m) N Z. Using Lemma 3.3 in
Weymanand Zelevinsky(1994), it is easy to give bounds for all determinantal vectors
for which all Px(m) # @.

Lemma 3.1. For a determinantal me Z" and fordl k € {1,...,r}, P«(m) # @ implies,
maxX —dx, —lk} < mg < dk(n + 1) — 1+ min{dk — Ik, O}.
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Proof. By Weymanand Zelevinsky(1994 Lemma 3.3(b)),Pk(m) c [O,n + 1] =
my/dx > —1 and(mg + lx)/dk > 0, which imply the lower bound. Alsgmk + lx)/dk <
N+2& Mg < (nN+2)d —lk—1andmg/dk < n+1& mg < (n+ 1)dk — 1 yield
the upper bound. Notice that the possible valuesiigiform a nonempty set, since the two
bounds are negative and positive respectively.

Now, p € Pc(m) iff H'k(P', mx — pdk) = HO(P'x, mg — pdk) = 0. Thus, a first guess
could be that all determinantal vectors gi(m) # (. But this is not the case, as the
following example shows:

Example3.2. Setl = (1,2),d = (2,3). We foaus on degree vectors of the form

m = (2u1, 3u2), for w1, w2 € Z. Then, for all suchm, the setsPx(m), fork = 1,2,

are empty. Nevertheless, there exist four determinantal vectors of this form, namely
m = (4, 3), (0, 6), (2, 6) or (6, 3). Moreoverthe vectorm = (6, 3) gives a detaminartal
formula with a matrix of size 88, which is closer to the smallest possible one which has
size 72. The largest determinantal formul@igen by the determinant of a square matrix

of size 180. Note that the degree of the multihomogeneous resultant is 216. More details
on this example are provided iBection 8 [

We wishnow to get a bound for those determinantal vectors for which sBpe) is
empty. Let[-]x € {0, 1, ..., dx — 1} denote the remainder after division ty.

Definition 3.3. Givenm € Z" andk € {1, ..., r}, definenew vectorsn', m” € Z" whose
jth coordinates equal those offor all j # k and sub thatm, = my +dx — [Mklk — 1 >
mg > my = my — [k + Ik

Lemma 3.4. The vectors iy m” differ from m at their kth coordinate if gm) = @.

Proof. Let us writemy = jdx + [mklk for j € Z. Then, my/dx = | + %.
If Pk(m) = @, (mk +l/dk < j+1 = jd + [k + 1k < (j + Ddk, so
mlk < dk — Ik —1 = Ik < —[mglk + dk — 1 and hus 1 < dx — [mk]k — 1. Also,
[mk + Ik]k > 1 becausgmy + Ixlk = 0= (M + lx)/dk € Pc(m). O

Lemma3.5. Ifm € Z" with R¢(m) = ¥ and HO(P'k, mx— pdk) = 0 (resp H'k(P'x, my—
pdo) = 0), then R(m') # ¥ and HO(P'k, mj, — pdy) = 0 (resp H'x (', m — pdy) = 0),
where nj = mg + dg — [mk]x — 1 as inDefinition3.3.

Proof. Write mx = jdk + [mk]k for some integelj € Z. To prove Px(m') # ¢ we show
j+1eP(m)iem/dk <j+1<m+Ilk/dk &m < (j+Ddk <m +1Ix <
jdk +dk — 1 < (j + Ddk < jdk + dx — 1 + Ik, which isclearly true since Xk I.

Now, H'k(P', me — pd) = 0 & mk + Ik > pdc hencem; + Iy > pdk because
mj, > mg. HOP', me — pdo) = 0 & m < paksoj < p— 1. Hencemy — [Mylk =
jdk < (p—1Ddk & mg — [mglk + dk < pdk which is thedesired conclusion. BWeyman
and Zelevinsky{1994), Pc(m') c [0, n + 1] from whichj € {-1,0,...,1}. O

Lemma3.6. Ifm € Z" with Rc(m) = ¢ and HO(P'k, mx— pdk) = O (resp H'k(P'x, m—
pdk) = 0), then R(M") 5 @ and HO(P'x, m— pd) = 0 (resp H'« (P, m— pd) = 0),
where nf = mg — [mk + I]k as inDefinition3.3,
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Proof. Write mg + Ik = jdk + [mk + Ik]k for some integej > 0. To proveP(my) # ¢
we show itcontainsj, i.e. T=Mctlde . j < %ﬁ'””"‘ o me — [me + Ik <
jdk < mg — [Mk + Iklk + 1k © jdk — Ik < jdk < jdk,which is clearly true since
0 < lx. HOP'x, my — pdk) = 0 & mx < pdk = m, < pdk becausen, < m, herce
HOP'k, m — pdk) = 0. H'k (P, m — pdk) = 0 & m + I > pdk, thenj > p. Herce
Mg + Ik — [Mk + Ik]k = pdk which finisheghe pioof. By Weymanand Zelevinsky(1994),
P«(m”) Cc [0,n+ 1] hencej € {O,...,n+ 1}.

Lemmas 3.5and3.6imply

Theorem 3.7. For any determinantal me Z', define vectors mm’ € Z' as in
Definition3.3 which differ from m only aathe kh coordinates,1 < k < r, suchthat
Pc(m) = @. Then R(M') # @, Pc(m”) # @ and both M, m” are determinantal.

Corollary 3.8. For a determinantal me Z" with B,(m) = ¢ for some ke {1, ...,r}, we
haveO <mg < dk(n+1) —Ix — 1.

Proof. Since my, m; define Pc(m') # @, Pc(m”) # ¢, we can applyLemma 3.1
We use the lower bound witim; becausen;, < mg < mp. B(m) = ¥ = dk > I,
somy = mg — [mg + Iklk = —lk = mk > [mk + Iklk — Ik = 1 — I, because
[mg + Iklk > 1 by theproof of Lemma 3.41f mg < 0, for Px(m) to be empty we need
mk + 1k < 0 & Mk < —Ilx which contradicts the derived lower bound; s > O.

For the upper boundm, = mg + dk — [Mklk —1 < dk(n+ 1) —1 = mg <

dkn + [mglk < dk(n 4+ 1) — Ik — 1; the latter follows fronimg]k < dk — Ix (Lemma 3.3.

(mg +1x)/dk <n+1—(1/dk) < n+ 1implies the inclusion of th&alf-open interval in

(0, n + 1). Thepossible values famy, form a nonempty set, since the lower bound is zero
and the upper bound@k(n+1) —Ilx —1>d¢ — 1> Osincedk > Iy > 1. O

So, in fact, the real intervad® c (0, n + 1).

Corollary 3.9. For a determinantal me Z" and k € [r], max{—dk, —lx} < mg <
de(n+ 1) — 1 4+ min{dk — Ik, O}.

This implies there is a finite number of vectors to be tested in order to enumerate all
possible determinantah. This culd also be deduced from the fact that the dimension of
Ko(m) equals the degree of the resultaddrollary 3.9gives a precise bound for the box in
which to search algorithmically for all determinantal including those that are “pure” in
the termnology of Weymanand Zelevinsky(1994). Our MAPLE implement#éion, along
with examples, is presented 8ection 8

If we taker = 1 = I; andm = 2d; — 1 we obtain he classical Sylvester formula
and the upper bound given Iorollary 3.8is attained. At the lower bounch = —1, the
corresponding complek (P!, —1 — 2d) = HO(P!, 2d; — 1)* — HL(PL di — 1) =
(HOP!, d; — 1)*)? yields the same matrix transposed. In addition, the system of three
bilinear polynomials inSection 7.1admits a pure Sylvester formula with = (2, —1),
which atains both lower and upper bounds of the corollary. The bound€imma 3.1can
also be attained (s¢&xample 5.5ontinued inSection § herce Corollary 3.9is tight. Itis
possible that some combination of the coordinates oéstricts the search space.
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4. Explicit determinantal degree vectors

We focus onlie case ok < 2 for all k, which is a necessary and sufficient condition
for the existence of a derminantal complex\W/eymanand Zelevinsky1994. We shall
describe specific degree vectonghat yield determinantal complexes.

Theorem 4.1. Suppose thad < 6 < 2forallk = 1,...,r andx : [r] — [r]isany
permutation. Then, the degree vectof m Z" with

mﬁ=(1—8k+ Z |j)dk—|k, 3)

m(j)zmK)
fork =1,...,r defines a determinantal complex.

Proof. First, K1 # 0 andKg # 0 because they each contain at least one nonzero direct
summand, namelH%(X, m*™ — pd) for p = 1, 0 respctively. To see this, it suffices to
provemg —dk > 0,k =1,...,r, which fdlows from (1 — 6k + lx)dk — Ik —dk > 0 &
(—68k + lk)dk — Ik > 0. This holds byLemma 2.5

To denonstrate thatKk, = 0 we shall see that evergne of its direct summands
HY(X, m™ — (g + 2)d) vanishes forg = Zn(j)d lj, whereJ is any poper subset of
[r]. Recall that the cas@ = [r] is irrelevant by the definitions dection 21t is enough
to showH O(P'k, my — (q + 2)dk) = 0, for somek with (k) ¢ J. Letk be the naximum
of the indices verifyingr (k) ¢ J; such ak e [r] always exists becausk # [r]. Since
(1 — 8k + lx)dk — Ik < 2dx by Lemma 2.5it easily follows that

mﬁ< (2+ Z |j)dk. 4)

w(j)ed

It now sufficesto establishK_1(m) = 0. Since this module has no zero cohomology
summand, letq = 3 cylj, with J # . Letk € J suchthatz(j) > n(k) for all
j € J. Then, 6 < 2 implies (2 — ék)dk > O, from whichmg — (q — 1)dk > Ik, and so
HY(X, m" — (q — 1)d) = 0 for any diect summand oK_;(m). O

When the @fects are at most 1, we can give another explicit choice of determinantal
degree vector for each permutationof.

Theorem 4.2. Supposethad < 6y < 1forallk =1,...,r andx : [r] — [r]is any
permutation. Then, the degree vectof m Z" with

mﬁ:(—8k+ > |j)dk—|k, (5)

m())zm (k)
fork =1,...,r defines a determinantal complex.

Proof. Let us modify the previous proof. Firdg # 0 because it containsl OX, m™ —
pd) # O for p = 0. This fdlows from (—é&k + lk)dk — Ik > 0 & (—ék +lk)dk — Ik > O for
all k. Thisholds byLemma 2.5
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Next, K1 # 0 because fop = n + 1, H'k(P'k, m — pdy) # 0 for all k. This follows
from(=8k +nN)dk — lxk < (N+ 1dk — Ik & —8k < 1.

To denonstrate thaK, = 0 we repeat the corresponding argument in the proof of
Theorem 4.1Then, it sufficesto show that(—8k + lx)dk — Ik < 2dk, which isweaker
than the inequality beforel] above. Sinilarly, to establishK_1(m) = 0 the steps in the
previous proof lead us to showimgf — (q — 1)dx > —lx < (1 — dk)dk > 0 whichholds
forék <1. O

One can easily verify that the vectarg in both theorems above satisfy the bounds of
Corollary 3.9.

A natural question is how to give an explicit degree vector yielding a determinantal
formula of smallest size. When= 1, this is the content of Lemma 5.3 iID’Andrea and
Dickenstein(200]). Even forr = 2, this seems to be a difficult task in general.

Example4.3. Setl = (2,2),d = (3,2). Let w1 : [2] — [2] denote the identity and
o : [2] — [2] the permutation which interchanges Idgh The two deternmantal vectors
defined according to3] arem,, = (10, 2) andm,, = (4, 6), whichyield determinantal
matrices of respective sizes 396 and 420. Tedeterminantal vectors defined according
to (5) arem,, = (7, 0) andm,, = (1, 4), whichyield determinantal ntsices of respective
sizes 756 and 780. But as we will seeSection 6 these l&ter formulae give instead the
vectors providing the smallest determinantal formulae when all defects are 0. These vectors
can be computed by the functi@emp m of our implementation, discussed$ection 8

Also, whenr = 1 it is shown inD’Andrea and Dickenstei200]) that he sméest
formula is attained for “centrabeterminantal degree vectota.this example, all degree
vectorsm satisfy that either 1< m; < 5and4<mp < 7o0r7 < m < 11 and
0 < my < 4; these bounds are computed by the routines describ&dtion 8 The
smallest resultant matrix has size 34®40, and corresponds to the degree vect8rs)
or (9, 1), which are in a “central” position among determinantal degree vectors, in other
words, their coordinates lie in a “central” position between the respective coordinates of
other determinantal vemts. Havever, the vector&, 4) are determinantal fdcfrom 1 to 5,
but the size of a matrix corresponding to the veatar4) (both of whose coordinates lie
between the coordinates of the vect@ts4) and (5, 4)), equals 580. So, it is bigger than
the size of a resultant matrix associated to the va&ot), which is of dimension 540. [J

In the above example, the two degree vestgiving the smallest resultant matrices
satisfy (9,1) + (3,6) = (12, 7), which isthe critical vector fromDefinition 2.3 It is
clear that for any determinantai, the vector (12, 7)—m is also determinantal yielding
the same matrix dimension. This is a consequence of Serre’s duality recal®d Thé
general statement is summarized in the next proposition.

Proposition 4.4. Assume mm’ € Z' satisfy m+ m’ = p, the latter being the critical
degree vector oDefinition 2.3. Then, K,(m) is dual to K;_,(m’) for all v € Z.
In particular, m is determinantal if and only if 'nis determinantal, yielding matrices of
the same s namelydim(Ko(m)) = dim(Ky(nY)).

Proof. Based on the equalitp+m’ = p we deduce thatforalp =0, ..., n+1, it holds
that(m'—pd) = (—-I1—1, ..., =Iy —=1)—(m—(n+1—p)d). Therefore,foraly =0, ..., n,
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Serre’s duality 2) implies thatH9(X, m' — pd) andH"~%(X, m— (n+1— p)d) are dual.
Since(n+1—p)—(n—q) = 1—(p—q), we daluce thaK, (m) isdual toK1_,,(m’) for all
v € Z, as desied. Observe that in particulé&_1(m) >~ Ko(m')* andKo(m) >~ Ky(m')*,
the latter giving the matrix dimensidn thecase of determinantal formulaeld

We end this section making explicit onsequence of Proposition 3.7\ieymanand
Zelevinsky (1994 (and givirg an hdependent proof), which gives a generalization of
the characterization of detminantal complexes iBturmfek and Zelginsky (1994 and
Weymanand Zelevinsky(1994. This resultwill allow us to give in Section 6explicit
expressions for all degree vectors yielding dattminantal formula of smallest size when
all defects vanish.

Theorem 4.5. There exists a determinantal vector such that the Weyman complex is
reduced to only one nonzero cohomology group on eachy@fniX K1 (m) if and only if all
defects vanish, i.éx =O0forallk =1,...,r

Proof. Recall that for eactp € {0,...,n + 1} there exists at wst one integej such
thatH! (X, m — pd) # 0in K,(m) wherep = j — v (Weymanand Zelevinsky1994
Proposition 2.4). In fact, leA(p) := {k : m — pdk < —lx} andB(p) := {k : mx — pdk >
0}. Denote j(pP) = 3 yea(p k- ThenH! (X,m—pd) = 0 for all j/ # j(p) and
HI® (X, m— pd) # 0iff A(p) UB(P) ={L,....r}.

The assumption of the theorem means that there exist exactly two integars <
{0,...,n + 1} for which HI®P) (X, m— pid) # 0,i = 1,2; cf. alsoWeymanand
Zelevinsky (1994 Lemmma 3.3(a)). Then, for any € {0, ..., n + 1}\{p1, p2}, there
exids k suchthatk ¢ A(p) U B(p), i.e. p € Pc(m). The later set is defined at the
beginning ofSection 3Then, {0, ..., n + 1}\{p1, p2} € U}_, Pk(m) and so

B +|r_n<Z#Pk(m)<ZHﬂ,

k=1

where the first inequality uses the fact thaﬂ@l Pc(m) < Zrkzl#Pk(m) and the second

follows from the definition ofPc(m). Sincelyx > {(',—"k] for all k, we deluce thatk = {(',—"kL
and this can only happentiif =1ord¢=1. O

5. Pure Sylvester-type formulae

This section constructs rectangular matrices of pure Sylvester-type that have at least
one maximal minor which is a nontrivial multgof the sparse resultant, coming from a
complex of the form:

o= Ko(m) — K1(m) - Kog(m) - K_1(m) =0
whereK1(m) = HI(X,m — d)™?, andKo(m) = HOX, m) for a nonnegative vector
me Z%,.

We assume thatHo(X,m — pd) # O forv = 0,1 andp — v = 0. Thisim-
plies HOP!k, m — vdk) # 0forallk € {1,...,r}. Moreover,we must haveH P~
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(X, m—pd) =0forp—v = ZjeJ Ij whereJ is any subset satisfying# J C {1,...,r}.
Note that we dmot require in general thad,(m) # 0.

Lemma5.1. Ifm # m € Z'Z yield a Sylvester-type matrix and,m> my for all

k € {1,...,r} then, the Sylvester matrix associated t6 isstrictly larger than the
Sylvester matrix associated to m.

Proof. We must show dimKg(m’) > dimKg(m), i.e. dimHO(IP'k,m[( — pd) >

dimHO(Pk, mq — pdo for k € {1,....r}, ie. (m{(—rkd<+lk) > (MPkH). The

cohomology is nonzero, thus, — pdk > mx — pdk > 0 and ths implies the desired
inequality becausésf;'k) = (s+1Ix)---(s+ 1/Ik!. Theinequality is strict since there
exigs an indexX suchthatm, > my. O

Definition 5.2. For each choice of a permutation: {1,...,r} — {1,...,r}, consider
the degree vectan™ defined by

mﬁ::(l—i— Z |j)dk—|k, k=1 ...,r.

m(j)=m (k)

Whenall defects are zero, these are the vectors define&gtunmfes and Zelginsky
(1999 yielding determinantal Sylvester formulae and they also coincide with those defined
in (3) in Theorem 4.1

Lemmab3. If m € Z'Zo yields a Sylvester-type matrix, it is possible to define a
permutationz : [r] — [r] such hat for i = 7~1(1) it holds that m > m’.
Moreover H(P'i, mj — pd) # O where p< 1+ > x(jyeali, for any subset J such
thatd #J C {2,...,r}.

Proof. Forp = n+ 1,v = 1, a necessary condition is th#t"(X, m — (n + 1)d) = 0.
Hence, there existse [r]: H'' (P, mi —(n+1)d)) =0 < m;—(n+1)d; > —l; & m; >
m’ by choosingr (i) = 1. For anyp as in the statemenk] 0P, m; — pd) 0 mp >
pdi. Sincem; — (n+1)d; > —I; it suffices to provén+1)d; —l; > d (1+Zj¢i lj) >dp.
The latter inequality is obvious for apy, whereas the former reduces ka; > I; which
holds sincedi > 1. O

Theorem 5.4. A degee vector me Z. ; gives a Sylvester-type mnix iff there exists a
permutationz such hat m; > m’jf for j = 1,...,r. Moreover, the smallest Sylvester
matrix is attained among the vector§'m

Proof. We prove the forward direction by induction dén= 1, ...,r. Assumem gives a
Sylvester-type complex and consider the necessary conditiom) = H%(X, m—d). The
base cask = 1 was poven inLemma 5.3The inductive hypothesisfdre {1, ...,r —1}
specifies which cohomologies vanish and which not, whexe > m7, =(u) < k.
In particular, for all subsetd suchthatgd # J < {1,...,r]\{1,....,k},p = 1+
Zn(j)d lj, po = p+ 1, for somev suchthatz (v) < k, we sssume:

H' (@Y, my — pody) =0, HOP'"Y, my — pdy) # 0. (6)
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For the inductive step, we exploit the necessary condition ithe&t(X, m — pd) = 0
for p =1+, )-«lj- BY (6), there exists suchthatH'i (P, mi — pd) = 0. Then,
m; > pd —lj = m” where we definer(i) = k 4 1. To complée the step, we show
HO (Plv, my — pdy) # O wherer(u) < K+ 1, p =1+, eslj, and ay subsetJ
suchthat? # J c {k+ 2,...,r}. The nonvanishing of the cohomology is equivalent to
my > pdy. It suffices to proven > di(1+ Zn(j)>k+l|j). By defirition, this reduces to
—li +dili > 0 & d; > 1. The converse direction follows from analogous arguments as
above. The claim on minimality follows frolemma 5.1 O

This gives an algorithm for finding the minimal Sylvester formulae by testing at most
r! vectorsm”, which isimplemented in MAPLE (Section §. To actually obtain the square
submatrix whose determinant is divisible by the sparse resultant, it suffices to execute
a rank test. These matrices exhibit quasi-Toeplitz structure, implying that asymptotic
complexity is quasi-quadratic in the matrix dimensi&m(ris and Pan2002. Observe
that P (m™) # ¢ because there exisfs € Z suchthatp = 1+ ;)< !j suchthat
mg < dkp = my + I for all k.

Example5.5. Letl = (2,1,1),d = (2,2, 2); the degree of the resultant is 960. Let

o = 1 be the pemutaion inverse tor; then the corresponding degree vector can be
written asmg(k) =1+ ijklg(j))dg(k) — lg. Here b alist of the 6 = 3! degree
vectorsm”™, among which we find the smallest Sylvester matrix of row dimension 1080,
whereas the sparse resultant’s degree is 960. Also shown are the permutatiodghe
corresponding matrix dimensions. The symmetry between the last two polynomials makes
certain dimensions appear twice.

m* = (8,5,3) o= (1,2,3) 1080x 1120

(8,3,5) (1,3,2) 1080x 1120
(6,9,3) (2,1,3) 1120x 1200
(4,9,7) (2,3,1)  1200x 1440
(6,3,9) (3,1,2) 1120x 1200
4,7,9) (3,2,1) 1200x 144Q

Our MAPLE program, discussed fBection 8 enumerates 81 purely rectangular Sylvester
matrices (none of which is determinantal). All Sylvester matrices not shown here have
dimensions 126& 1400 or larger. O

The mapK1(m) — Ko(m) is surjective, i.e. the matrix has at least as many columns as
rows. In searching for a minimal formula, we should reduce idgtm), i.e. thenumber of
rows, since this defines the degree of the extraneous factor in the determinant. It is an open
guestion whether diro(m) reducesff dim K1(m) reduces. In certain system solving
applications, the extraneous factor simply leads to a superset of the common isolated roots,
so it poses no limitation. Even if it vanishes identically, perturbation techniques yield a
nontrivial projection operato’Andrea and Emiris2001).

It is possible to obtain a pure Sylvester-matrix whose determinant equals the
multihomogeneous resultant when the complex has as only nonzero krmy =
HI(X,m—=(j + 1)d)(ri]ﬁ), andKo(m) = HI(X,m — jd)(nJﬂ) foranyj = 0,...,n.

But in this case we deduce fromheorem 4.5%hat all defects vanish. So (c&turmfels
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and Zelevinsky1994) there exits apure Sylvester-type determinantal formula associated
to a nonnegative degree vector (i > 0,k = 1,...,r), or equivalently, forj = 0.
Thus, if a determinantal dath, ..., l;; d1, ..., dr) admits a degree vector yielding a two
term Sylvester complex for somie it admits such a formula fofj = 0 as wdl. Hence,
concentrating onj = 0 is not restrictive in the case of dgminantal complexes. The
Sylvester-type matrices for positivie correspond to degree vectors with some negative
entries, unlike the assumption 8turmfek and Zeleinsky (1994 p. 118). We show such
an example in the bilinear case $ection 7 Thus, the first part of conjectur&i{urmfels
and Zelevinsky1994 Conjecture 3) can be true only for nonnegative degree vectors.

6. Pure Bézout-typeformulae

In this section, we will study the following complexes:

Definition 6.1. A Weyman omplex is of pure Bzout type ifK_1(m) = 0, Ky(m) =
H'1H-+r (X, m — (n + 1)d) andKo(m) = HO(m).

Weymancomplexes of pure &out type correspond to generically surjective maps
R+ (X, m - (n+ 1)d) - H°(m) - 0 @)

swech that any maximal minor is a nontrivial rtiple of the multihomogeneous resultant. In
fact, we shall show that the only possible such formulae are determinant&{ire) =

0). We shall exhibit the corresponding differential in terms of the Bezoutian and character-
ize thepossible degree vectors. We show that there exists a ppreu-type formula iff
there exists pure Sylvester formula. We remark that the dimension of the matrix with pure
Bézout coefficients equals the dimension of the Sylvester matrix dividedHdy. Now we

can generalize results Bhtcherla andKapur (2000 andSaxeng1997) (cf. Section ).

Theorem 6.2. There exists a determinantal formula of puréz®ut type iff for all k either
Ik = 1lordg =1, i.e. all dekcts vanish.

Proof. This is just a special instance ofheorem 4.5 where theonly nonzero
cohomologies in the complex correspondo=0, pp =n+1. O

Let us study degree vectors yielding purezBut formulae, which will then provide the
smallest determinantal formulae in case all defects vanish.

Definition 6.3. For each choice of a permutatian: {1, ...,r} — {1,...,r}, letusdefine
a degre vector
my = —ly + dk Z i, k=1,...,r.
7 (j)=m(K)

Whenall 8y = 0 these are prcisely the vectors defined iB)(in Theorem 4.2Note hat
our assumptions iri7 imply H'i (P'i, mj — (n + 1)d;) # 0, HO®'i, mj) # 0.

Lemma 6.4. The existece of any pure Bzout formula implie® < m; < (n+ 1)dj —1j,
forall j.

In fact, them™ of Definition 6.3satisfy these constraints for all permutatians
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Proof. The nonnegativity of alim; is deduced from the fact th&t%(X, m) # 0. On the
other side, the nonvanishing &f"(X, m — (n + 1)d) implies the other inequality. O

Lemma6.5. If m € Z' yields a pure Bzout-type complex, then there exists a permutation
7 :[r] — [r]suchhati = 7 ~1(1) verifies m > m™ and

Hi@Y m — @+l +v)d)=0, v=0-1,
HO®' m —qd)#0, q=)Ij,

jed
forany Jc {1,...,ri\{i}, J #0.
Proof. Since H(X, m — nd) = 0, there exists an indek € {1,...,r} suchthat
m; — nd; > —l;. Itis enough to definer(i) = 1. O

Theorem 6.6. If m € Z' yields a pure Bzout-type complex, it is possible to find a
permutationr suwchthat the degree vector m verifies ma m foralli =1,...,r.

Proof. We use induction; the base case follows frobemma 6.5 The inductive
hypothesis, fok € {1,...,r — 1}, is: there exgts a subset! < {1,...,r}, U] = Kk,
suchthatz (u) <k, my > m forallu € U and

Hu@, my — (@+lu+v)dy) =0, v=0,-1,
HO®Y, my —qd) #0,  q=)_1j, ®)

jed

forall J c {1,...,r}\U, J # @. Now the inductive step: The hypothesis &® implies
HP(X,m— pd) = 0forp = ij lj. Conddering the inequality in&) for g = p,
there exists e [r]\U suchthatH" (P, m; — pd) = 0 & m; +1; > pd i.e.mj > m"
for m(i) = k4 1 becausej ¢ U < n(j) > k + 1. It suffices now to extendj for
q = ZJEJ,IJ whered £ J' c [r]\(U U {i}). First,m; +1; > pd > (q’ + I;)d; implies
the equations below. Seconth; > —Ii + pd = (p —I;)di + i (di — 1) > g'd; yields the
inequality, so

HY @, mi — (@ +1i +v)d) =0, v=0,-1.
HOP, mi — q'di) # 0. 9)
Then, m sdisfies the hypothesi&_1(m) = 0 for v = —1 because every summand
in K_1(m) contains some cohomology as i8)(Sincep > 0=>q=p—-v > 1

no summand has only zero cohomologies. Bymma 6.4and Q) for v = 0, m gives
Ko(m) = HO(X, m) becauseH'i (P, mj — pd) = Oforanyp,i. O
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Theorem 6.7. A pure Bezout and generically surjective formula exists for some vector m
iff it equals nT of Definition6.3, for somepermutationr, and all defects are zero.

Proof. It suffices to considelK1(m) = H"(X, m— (n+1)d); itis nonzero byremma 6.4
We prove by induction thatn = m™ by using the fact that all other summands in
(1) for K1(m) vanish For HO(X, m — d) to vanish there must exist € [r] suchthat
HOP!  m; —di) = 0 & m; < d. Herce we need to define(i) = r becauser(i) <r =
m’ > —lj +di(lj +1) = d; +1i(di — 1) > di. Moreoverm” = —Ij +dilj < di & § =0
by Lemma 2.4

There is a unique integer ifm?, dj) becausem® + 1 > di & —lj +dili +1 >
d < (; — (i —1) > 0.Hencem; = d — 1 < di(q+ 1) foranyq > 0, therefore
HO®', m; — (g + 1)di) = 0. Furthermore, fog > Ij, H' (P, mj — (1 + q)dj) # 0 <
m +1i < (q+ 1di < |i —1 < qd which holds. This proves the inductive basis. The
inductive hypothesis is: forall € U c [r], where|lU| = k, w(u) > r —k, thens, = 0,
my = m;; and

HO(P'“,mu—(1+ > |j)du)
m(j)<m(u)
=0 HW (P'U,mu—(1+ZIj)du), (10)
jed

for all J suchthatU < J c [r]. For the inductive step, consider th&t9(X, m —

(1 + g)d) must vansh forqg = ZjeU [i. None of its summand cohomologies
Hlu (Plv, my — (14 g)dy) vanish due to the last inequality. So there existsuchthat
HO®  m — A+ q)d) =0< m < (1+q)d;.

Hencer(i) = r —kso thatmj = m" = —I; +d Zn(j)zpklj < 1+qd &
—li +dili < di & § = 0 bylLemma 2.4 No largerm; works becausen” is the
maximum integer steily smaller than(1 + g)di. And #(i) < r — k would makem
too large. Now extend the inequality @ to J" where(U U {i}) < J’ and observe
m’ < dj Zn(j)zr—klj < di(1+ZjEJ/|j).

The hypothesis is proven for &l C [r], including the cas@J| = r. For the onverse,
assume there exists a permutatiersuchthatm = m”™ and all defects vanish. Then
Ko(m), K1(m) satisfy all conditbns for a pure Bzout formula. Furthermor&_1(m) = 0,
hence the formula is generically surjective.]

The conditionK2(m) = 0, which yields a square matrix, is obtained by the hypothesis
of a pure Bfzout and generically surjective formula; i.e. there is no rectangular surjective
pure BSzout formula.

Corollary 6.8. If a generically surjetive formula is of pure Bzout type, then it is
determinantal. Furthermore, for any permutatienthe matix is of the same dimension,
i.e.dimKg(m) = degR/(n + 1).
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6.1. Explicit Bezout-type formulae
We start ly defining a dual permutation’ to any permutatiorr.

Definition 6.9. For any permtaion s : [r] — [r], define a new penutdion’ : [r] —
[rlbyn’(i)=r +1—m().

Lemma 6.10. Assuming all defects are zero,”"mr m™ = p for any permutation
7 :[r] — [r], wherep € N' is the critical vector oDefinition2.3.

Proof. mT + mf’ =di(n+1j) — 2l for all i because the sum in thapentheses includes
{lj :w(j) = x@}U{lj : 7'(j) = 7'(i)}, and the lier set is{lj : 7 (j) < n(i)}. So
M 4+m7 =dili —li+pi —di +1= pi +dili — D) — (i —1) = pi + (i —D(di = 1) = p;
because of the zero defectd.]

Denote byx; (resp.xij) theith variable group (respectively thgh variable in the
group),i € [r],j = O,...,lj. Introducer new groups of variableg; with the same
cardinalities and denote by; their variables.

Given a perratdion =, let the &socated Bezoutianbe the polynomialB™ (X, y)
obtained as follows: first dehomogenize the polynomials by seding- 1,i = 1,...,r;
the obtained polynomials are denoted by . . ., fn. Second, constructth@+1) x (n+1)
matix with jth column corresponding to polynomid}, j = O, ..., n, and wiosexj;
variables are gradually substituted, in successive rows, by each respggtivariable.
This construction is named aftereBout or Dixon and is well-known in the literature,
e.g.Cardiral and Mourrain(1996 and Emiris and Mourrain(1999. A general entry is
of the form

fi (Yo, s Yok=1)s Yo(O1s - - - » Yot
Xo (K)(t+1)s - - - » Xo Koo > Xo(kt1)s - - - » Xo(r)) (11)
wheres = 771 k = 0,...,r,t = 1,...,Ix. There is a gle first row fork = 0,

containing all the polynomials in thej variables, wireas the last row has the same
polynomials with all variables substituted by tlg. All intermediate rows contain the
polynomials in a subset of the; variables, the rest having been substituted by each
correspondingyij. The number of rows is H# > ;;;Ij = 1+ n. Ladly, in order to
obtainB” (X, y), we divide the maik determinant by

ro |

TTT T = vin- (12)

i:lj:l
Example6.11. Let| = (1,2,d = 2,1). If # = (12,7’ = (21, thenm™ =
(5,0, m* = (1, 1). Forboth degree vectors, the matrix dimension is 6. To olifx, y)
we aonstruct a 4< 4 matrix whosejth column containdj (X1, X21, X22), fj(y1, X21, X22),
fi(y1, Y21, X22), fj(y1, Y21, ¥22), for j = O,..., 3. Herex; (andyi) is a sorthand for
x11 (@ndy11). ThenB7™ (X, y) contains the following monomials in the andy; variables
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respectively, 6 in each set of variablesxi, X1, X22, X1X21, X1%22, 1, Y1, Y2, y3, V1, V3.
So the final matrix is indeedgsiare of dimension 6. More details on this example are
provided inSection 8 O

Lemma6.12. Let B*(X,y) = Y busx®y? wherea = (aij),8 = (Bij) € Z", i =
1,....,r,j=1,...,lj. Sety; = Zj:l | ijs Bi = Zj:l I Bij, for all o, B. Then,

..........

O<oi <M, 0<p<mrand0<ai+fi <pi,i=1...r.

Proof. By Lemma 6.10t sufices to boundy;, §i. But «; is the degree of the; in the
determinant decreased hyin order to account for the division by 2). The former equals
the product ofd; with the number brows where arxj; variableappears for any e [1, I;].
These are the first row, the rows whefjeare introduced fof € {o (1), ..., o(k—1)} such
thato (k) =i, and aother; — 1 rows whero (k) = i. Theconditiononj : 7(j) < 7 (i)
is equivalentto +1—z(j) >r +1— (), hercea; < —li + 0 Y (jy=mry |j = M7
Similarly, we prove the upper bound ¢h. The rows ontainingyij for somej € [1,1]
are thosewherg € {oc(k+1),...,0(r)}:o(k) =i, anothed; — 1 rows whenr (k) =1,
and the lastow. Now, 7 (j) > k+ 1>k =7n(i),s08i < —li +di > lj =m".
Clearlyei, i = 0. O

()= (i)

For generic polynomials, the upper bounds®f g; are attained. The lemma thus gives
tight bounds on the support of the Bezoutian.

Theorem 6.13. Assume all defects are zero and ®&, y) is ddined as above. For any,
(bg) is a yuare matrix of dimension

. _ I Iy , _ degR
dimKgo(m) = <I1,...,Ir>d1 ced = D

Furthermore,detb,g) = R(fo, ..., fn).

Proof. First, we show thatb,g) is square of the desired size. The dimensions are given
by the number of exponent vectoss 8 bounded byLemma 6.12which are exactly
dim Ko(m™), dim Ko(m™) respectively. Bothm™, m* are determinantal, hence both of
thesenumbers are equal to d&y (n+1), by Theorem 6. &ndCorollary 6.8. R(fo, ..., fn)
divides every nonzero maximal minor of the matiiys); cf. Cardiral and Mourrain
(1996 andEmiris and Mourrain1999 Theorem 3.13). Since any nonzero proper minor
has degree< degR, the deterninant of the matrix(b,g) is nonzero and equals the
resutant. O

Note that there is nat unigue choice of higher differentials in the Weyman complexes.
We oould chase the arrows in a resultant spectral sequence @sliand et al. (1994
Chapter 2, Proposition 5.4) to show that the matrix we propose comes from the
explicitization of one possible choice. We have followed instead the more direct route
based on the above property of the Bezoutia@andirel and Mourrain(1996), which uses
more elementary tools.
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7. Two examples
7.1. The bilinear system

The generic system of three bilinear polynomials is

fo = ag + a1x1 + agxx2 + agx1X2,
f1 = bo + bix1 + boxo + baxix2,
fo = Cp + C1X1 + CoX2 + C3X1X2,

and has typdl, 1; 1, 1). The degree of the resultanh the coefficients is gzl) = 6.
We shall emumerate all 14 possible determinantatmulae in the order of decreasing
matrix dimension, from 6 to 2, and shall make the corresponding maps explicit. This study
goes back tehe pioneering work oDixon (1908.

Form = (1, 2), Definition 5.2yieldsm = (2,1) and the complex is 0> K; =
HO1,00® — Ko = H%2,1) — 0. The corresponding determinantal pure Sylvester
matrix is, when transposed, equal to

a a ap a3 0 O
bp by b, b3 0 O
Co ¢ ¢ ¢c3 0 O
0 ag 0 a a a3
O bg O by by bz
0O co 0 ¢ c¢1 c3

with rows corresponding to the input polynomials and the same set multiplie by
whereas the coluns are indexed by ,Xi, X2, X1X2, X2, X2Xp. By symmetry, another
formula is possible by interchanging the roles<f x2. Further famulae are obtained by
taking the transpose of these two matrices, namely mita (—1, 0), where tle conplex
is H2(—4, —3) = H%2, 1)* — (H?%(=3, —-2))% = (H%1, 0)*)3, andwith m = (0, —1).
Recall the definition of duality from equatioB)( Sylvester maps, as well as other types of
maps, are further illustrated inSection 7.2

There are additional determinantal Sylvester formulae correspondimg=o(2, —1)
andm = (-1, 2). Their marices contain thef; and thef; muitiplied by x;* or by x; .
In the former case, the complexlis'(0, —3)3 = (H%(0) ® HO(1)*)3 — H1(1, —2)% =
(H%(1) @ H90)*)3, the trarsposed matrix is

a ai a a3 0 O
bp b1 b bs 0 O
Cg ¢4 ¢ ¢c3 0 O
a 0 a3 0 a a
b1 0 b3 O by by
ct 0 c3 0 ¢ ©

and the columns are indexed byxi, X2, X1X2, X %, X “X2. This @nstruction can be
verified by handcalculations.
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Form = (1, 1) the conplex becomes 6> K; = H(0, 0@ @ H2(—2, —2) - Ko =
HO(1, 1) — 0. The matrix is square, of dimension equal to 4, and hybrid. We compute the
two maps by hand; for a larger example Saxtion 7 The foundations for constructing
suwch matrices can be found MWeymanand Zelevinsky(1994. The transposed % 4
determinantal formula is written as follows, by using brackets:

ap ap ap ag

8 a; &
bo 21 22 23 . wherefijk]=det| b bj by |.
Co 1 2 3 C Cj Ck

(012 [013 [032 —[123

The matrix rows contain th§ and a rational multiple of the affine toric Jacobian, whereas
the colmns are indexed by, X1, X2, X1X2. This formula is obtained iCattaniet al.(1998
in a more general toric setting. An analogous 4 matrix corresponds ten = (0, 0).

There are four “partial Bzout” determinantal formulae of dimensionk33 form =
(-1,1), (1, —1) and form = (2, 0), (0, 2). We omit thedetails of the computation. In the
first case, the complex d2(—4, —2) = H%(2, 0)* - H1(—2,0)% = (H%0)*®H°(0))3,
and a choice of the matrix is, in terms of brackets,

[-02]  [-03]+[-12] [-13] .
[0-2] [0-3]+[1-2] [1-3]|.  where[ij—]= det[@ le } :
[02—-] [12—-14[03—] [13-] to

and analogously for the 2 2 bracketdi — k], [— jk]. The columns bthis resiltant matrix
are indexed by JIx1, xf, which is the support of the three Bezoutian polynomials filling in
the rows. In particular, these polynomials are definedffiorj, k} = {0, 1, 2} in the standard

way:
fi(xg, x2)  fi(X1, y2)

Bk = .

k det[ fi(xe, x2)  fj(xa, yz)} / (X2 = Y2)

Form = (1, 0) the conplex becomes 0> K; = H?%(-2, —3)(3) = H90, 1)* —
Ko = H9%1,00 — 0. The corresponding determinantal purezBut-type formula is
obtained from the Bezoutian polynomial

fo(xa, x2)  fo(y1,X2)  fo(y1, ¥2)

B=det| fi(xi,x2) fi(y,x2) fi(ys y2) / (X1 — yn(x2 — y2),
fa(xa, x2)  fa(yr, x2)  fa(y1, y2)

supported by{1, x2}, {1, y1}. The resltant matrix is given in terms of brackets as follows:

(123 [023
—[103 [012] |

7.2. A hybrid determinantal formula

Assumd = (3,2),d = (2, 3). We presentxplicit formulae which can be extrapolated
in general, giving an answer to the problem statedNeymanand Zelevinsky(1994
p. 578). We plan to carry this extensively in a future work, but we include here the example
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without proofs as a hint for the interested reader. OwPME program enumerates 30
deterninantal vectorsn, among which we findn®1 = (3, 13) according torheorem 4.1

The minimal matrix dimension is 1320 and is achievedmt= (6, 3) and (2, 12).

In both casesP>(m) = @, wheaeasP1(6,3) = {4} and P1(2, 120 = {2}. This shows
that the minimum matrix dimension may occur for some enfptycontrary to what one
may think.

Moreover, the degree of the sparse resultant(jé,’%)@:%2 = 4320. Since 1320 does
not divide 4320, the minimal matrix is not of pureeBdut type; it is not of pure Sylvester
type either. To specify the cohomologies and the linear maps that make the matrix formula
explicit we compute, for the degree vector = (6,3) andp = 1,..., 6 thedifferent
values ofm— pd: (4, 0), (2, —3), (0, —6), (-2, —9), (—4, —12), (—6, —15). The complex
becomeKy,; =0 — K; — Ko — K_1 = 0, with nonzero part

Ho4, 0D & H2(0,—6)® & H5(—6, ~15)©
— HY%6,3)© @ H22, -3)® @ H5(—4, —12®,

where we omitted the reference to the spate= P2 x P? in the notation of the
cohomologies. Then di; = 210+ 200+ 910= 1320= 840+ 150+ 330= dimKo.
By a slight abuse of notation, lei, g stand for the restriction of the above map to
H® — H#. Thensoz = o5 = 825 = 0 byWeymanand Zelevinsky1994 Proposition 2.5)
and it suffices to study the maps below, of alinithe first three are of pure Sylvester type
by Weymanand Zelevinsky(1994 Propostion 2.6) and the last three are of puez&it
type as those dbection 6 These maps can be simplified using the dual cohomologies:

HI (P, my — pdk) = HY T P, (o — m) — (N + 1 - pyd*,
wherep is the critical vector oDefinition 2.3 So, wehave maps

s00: HO(4,0° — HO@®,3)

s22: (HO0) ® HO3)® — (HO2) ® HO0))®

8s5: HO(2,12* — (H%0,9)%)®

520 (HO0) ® HO3)® — HO(6,3)

850 HO(2,12* — HO6, 3)

8s2: HO2,12)* — (HO(2) @ HO0)")®).
The resultant matrix (of the previous map in the natural monomial bases) has the following
aspect, indicated by the row and column dimensions:

840 150 330
210 [0 O O S 0 O
220 [ 60 82 O |=|B@ 622 O
910 [ 850 852 655 Bso B Sis

where §j, Bjj, Bi’;k stand forpure Sylvester and &out blocks, the latter coming from
a Bezotian with respect to variableg for k = 1,2, and SJTS represents a transposed
Sylvester matrix, corresponding to the dual of the Sylvester M&®, 9)¢ — H%(2, 12).
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Table 1

The main functionalities of our software
Routine Function
comp_m Compute the degree vectorby somespecified formula
allDetVecs Enumerate all determinantal formulae
allsums Compute all possible sums of thés adding toq € {0, ..., Zi':l li}
coHzero Test whetheH 9(X, m — pd) vanishes
coHdim Compute the dimension ¢49(X, m — pd)
dimKv Compute the dimension &€, i.e. of the corresponding matrix
findBez Find all m-vectors yielding a pure &out-type formula
findSyl Find allm-vectors yielding a pure Sylvester-type formula
minSyl Find allm™ -vectors yielding a pure Sylvester-type formula
hasdeterm Test whethea deternmantal formula exists

Let us take a closer look @b, which denotes both the map and the corresponding
matix. Let« € N1, 8 € N2, be thedegree vectors of the elements8f(2), HO(3)*
respectively, thuse| < 2, 8| < 3. Letl,J c {0,...,5}, || = 3,|J| = 2 express the
chosen polynomials according to the cohomolegyonents. Then the entries are given by

3 0, ifJ¢ 1,
822(Xf ®T3,1Q® Sﬂ) = {coef(fk) ofxfxg, it 1\0 = (K.

whereT; € HO0)*, 3‘5 are elements of the respective dual bases of monomials. We expect
such a onstruction to be generalizable, but such a proof would be part of future work.
Now take the BZzout maps: the matrix entries are givenifd)(for o = (2, 1): the entry
(i, ), i,j €1{0,...,5) containsfj(x®, ..., xG&D y®&=D  y®) where eacx? is
a leading subsequencefy, X12, X13, X21, X22; similarly with the new variabley(). The
degree of the determinant, i.e. the Bezoutian,,i8, &, 12 in X1, X2, Y1, Y2 respectively
and these coefficients fill in the matrBsg. For the BEzout bIockBg%, consider “mrtial”
Bezoutians defined from the six polynomials with the exception of those indexéd in
whereJ, | are as above. Only the variables are substituted by new ones, thus yielding
a 4 x 4 matrix. ForBé‘é, take all polynomials indexed ih and develop the Bezoutian
with new variableg, from a 3x 3 matrix. Hece the entries of thedout blocks have,
respectively, degree @, 3 in the coeffitents d the f;.

8. Implementation

We have inplemented on MPLE V routines for the aboveperations, including those
in Table 1 They are illustrated below and are available in fitthomo.mpl through:
http://www.di.uoa.grfemiris/index-eng.html

Example 3.2 (Continued). Recall that= (1, 2),d = (2, 3) and letm = (6, 3):
> Ns:=vector([1,2]): Ds:=vector([2,3]):
> summs :=allsums(Ns):
> hasdeterm(Ns,Ds,vector([6,3]),summs) ;
true


http://www.di.uoa.gr/~emiris/index-eng.html
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> dimKv(Ns,Ds,vector([6,3]),summs,1);
88

> dimKv(Ns,Ds,vector([6,3]),summs,0);
88 O

Example5.5 (Continued). Recall that= (2, 1,1),d = (2, 2, 2), thens = (1, 0, 0). The
MAPLE session first computes all §ure Sylvester formulae by searching the appropriate
range of 246 vectors. The smallest formulae are shown.

> Ns:=vector([2,1,1]) :Ds:=vector([2,2,2]):
> minSyl(Ns,Ds):

list of minimal S-matrices: m-vector and K1, KO-dims

[[8,5,3,1120 1080, [8, 3, 5,1120 1080, [6, 9, 3, 1200 1120,
[6,3,9,1200 1120, [4, 9, 7, 1440 1200, [4, 7, 9, 1440 1200Q]

> allSyl:=findSyl(Ns,Ds):

Search of degree vecs from [4,3,3] to [8,9,9].
First array [4,7,9]: dimK1=1440, dimK0=1200,
dimK (-1)=0(should be 0).

#pure-Sylvester degree vectors8#

tried 246, got 81 pure-Sylv formulae [m,dimK1,dimKO]:
> sort(convert(%,list),sort_fnc);

[[8, 5, 3,112Q0 1080, [8, 3,5, 112Q 1080,
[6,9,3,120Q0 1120, [6, 3,9, 1200 1120,
[4,9,7,144Q 1200, [4, 7, 9, 144Q 1200,
[8, 6, 3,140Q 1260, [8, 3, 6, 140Q 12640, .. ]

)

> allDetVecs(Ns,Ds):
> allmsrtd := sort(convert(%,list),sort_fnc);

From, [—4, —3, —3],to, [9, 10, 10], startat [—-4, —3, —3]

Tested 1452 m-vectors: assuming Pk’s nonempty.
Found 488 det’l m-vecs, listed with matrix dim:

allmsrtd := [[6, 3, 1, 224], [6, 1, 3, 224], [1, 7, 5, 224,
[1,5,7,224], (3,7, 1, 240], [4, 7, 1, 24Q], [3, 1, 7, 240,
[4,1,7,240,[6, 3,0, 262,[6,0, 3,262, [1, 8, 5, 262,
[1,5,8,262,...]

> for i from 1 to nops( allmsrtd ) do print (
allmsrtd[i] ,Pksets(Ns,Ds,vector([allmsrtd[i] [1],
allmsrtd[i] [2] ,allmsrtd[i][3]]))): od:
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[6,3,1,224],[[4,4],[2, 2], [1, 1]]
[6, 1, 3,224], [[4, 4], , 12, 2]]
[1,7,5,224], [[1, 1],
[1,5,7,224], [[1, 1],
[3,7,1, 240, [[2, 2],
[4,7,1, 240, [[3, 3],
[3,1,7, 240, [[2, 2],
[4,1,7, 240, [[3, 3],

]

1
4
3
4,
4
1
1
[6,3,0,262,[[4,4],[2

[
[
[
[
[
[
[
[

A" Ml

The last two commands find all 488 determinantal vectors. The smallest formulae
are indicated (the minimum dimension is 224) and for some we reportPse
No determinantal formulae is pure Sylvester. Notice that the assumption of empty sets
Py is used only in order to bound the search, but within the appropriate range &qipty
are considered, so no valid degree vector is missed. This is illustrated by th® lasy
markedNO_ INT.

The vectors predicted bheorem 4. are found among those produced above, including
m129 = (6,5,3), m?d = (4,9,3), m®2 = (0,9,7). The corresponding matrix
dimensions are 672, 600, and 800

Example 6.11 (Continued). Recall thdt = (1,2),d = (2,1). Theonly pure Bézout
formulae are the two detminantal formulae oExample 6.11for which we haven™ =
(5,0, " = (1, 1).

> Ns:=vector([1,2]) :Ds:=vector([2,1]):

> summs:=allsums(Ns):

> findBez (Ns,Ds,true); #not only determinantal

low — upper bounds 1st candidate, [0, O], [6, 1], [0, O]

Searched degree m-vecs for ANY pure Bezout formula.
Tested 15, found 2 pure-Bezout [m,dimKO0,dimK1]:

{[5,0,6,6],[1,1,6, 6]}

The search examined 15 degree vectors between the shown bounds. It is clear that both
vectors are determinantal because thatrix dimensions are for both%s 6. [

9. Further work

Our results can be generalized to polynomials with scaled supports or with a different
degreed per polynomial. One question is whether the vectofsm” of Definition 3.3
lead to smaller or larger matrices them Notice that certain cohomologies, which were
nonzero form, may vanish fom’ or m”. We pan to complete the description of hybrid
determinantal formulae. We would also like to answer in general the question stated in
Section 4of determiring a priori the degree vectors yielding the smallest determinantal
formulae in all possible cases. A problem related to the Sylvester formulae calls for
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identifying in advane thenonzero maximal minor in the matrix, which leads to finding
a determinant with exact degree in some polynomial.
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