

J. Symbolic Computation (1996) 21, 41–99

Inductive Theorem Proving for Design Specifications

PETER PADAWITZ†

Fachbereich Informatik, Universität Dortmund, Germany

(Received 13 July 1995)

We present a number of new results on inductive theorem proving for design specifi-
cations based on Horn logic with equality. Induction is explicit here because induction
orderings are supposed to be part of the specification. We show how the automatic
support for program verification is enhanced if the specification satisfies a bunch of
rewrite properties, summarized under the notion of canonicity. The enhancement is due
to inference rules and corresponding strategies whose soundness is implied by the speci-
fication’s canonicity. The second main result of the paper provides a method for proving
canonicity by using the same rules, which are applied in proofs of conjectures about the
specification and the functional-logic programs it contains.

c© 1996 Academic Press Limited

1. Introduction

This paper presents a summary as well as extensions of the main results of our monograph
Deduction and Declarative Programming Padawitz (1992), which deals with a number
of program and proof issues centering around the following paradigmatic equations of
functional-logic programming:

programs = axioms = Horn clauses
requirements = theorems = Gentzen clauses.

Not only functional-logic programs, but also imperative ones are amenable to logic-
oriented design methods, provided that the programming language has a kind of declar-
ative semantics. Of course, Horn clauses g ⇐ h are not sufficient as a formal setting for
all requirements to a program. Hence we admit Gentzen clauses, which generalize Horn
clauses in that a conclusion of a Gentzen clause has the form

∃X1g1 ∨ · · · ∨ ∃Xngn

with Xi, 1 ≤ i ≤ n, being a set of variables occurring in the goal (= set of atoms) gi‡.
The use of Horn clauses for programs and Gentzen clauses for requirements complies well
with the initial semantics that implicitly underlie any design specification.

It is well known that conjunctions of Horn clauses are the most general first-order

† E-mail: peter@1s5.informatik.uni-dortmund.de
‡ If the existentially quantified variables of a Gentzen clause are known from the context, we sometimes

denote ∃X1g1 ∨ · · · ∨Xngn by the goal set gs = {g1, . . . , gn} (cf. Section 2).

0747–7171/96/010041 + 99 $18.00/0 c© 1996 Academic Press Limited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82276404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

42 P. Padawitz

formulas for which an initial model always exists. This is not just a model, it is the
model, which the programmer, more or less consciously, has in mind when designing
a data type. Since the initial model is a single model (up to isomorphism) and not
a class of models, we need not restrict ourselves to Horn clauses when defining the
theory of a design specification. On the contrary, many non-Horn Gentzen clauses are
direct consequences of the closed world assumption of initial semantics (cf. Reiter 1978;
Padawitz 1992, Section 1.5). These clauses often provide crucial lemmas used in program
verification.

1.1. expander

Some of the results presented in this paper yield the theoretical foundation of several
inference rules implemented in Expander (cf. Padawitz 1994), which is mainly a proof
checker tailored to abstract data types and declarative programs. Using Expander, a proof
of a Gentzen clause, gs⇐ hs†, is carried out interactively. One starts with singleton lists,
front = [gs] and rear = [hs], and extends them stepwise into lists

front = [gs, gs1, . . . , gsk] and rear = [hs, hs1, . . . , hsn],

consisting of successively inferred goal sets. front is a backward proof of the clause gs⇐
gsk, while rear is a forward proof of hsn ⇐ hs. The proof of gs ⇐ hs is complete if
there are k, n ≥ 1 such that hsn subsumes gsk. This syntactical condition implies that
gsk ⇐ hsn is inductively valid (cf. Padawitz 1994, Section 3.5). From the validity of
gs⇐ gsk, gsk ⇐ hsn and hsn ⇐ hs one concludes that the original conjecture gs⇐ hs
holds true. Some of the inference rules used for building up front and rear are sound only
if the underlying specification is canonical (cf. Section 1.4).

1.2. proof by term rewriting

If we forget the non-equality predicates that a Horn clause specification SP may in-
clude, SP can be regarded as a conditional term rewriting system (a CTRS for short;
cf. e.g. Kaplan 1984, Zhang and Remy 1985, Dershowitz and Jouannaud 1990). In fact,
fundamental notions and results from CTRS theory have been integrated into our ap-
proach to inductive theorem proving. Since our application area is not classical algebra,
but the verification of declarative programs on constructor-based data types, we had to
generalize the notions and results used in the CTRS community. These generalizations
have been worked out in Padawitz (1992), Chapters 6 and 7. In particular, Sections 7.4
and 7.5 of Padawitz 1992) are devoted to a detailed comparison between inductive com-
pletion or proof by consistency (cf. Kapur and Musser 1987; Dershowitz and Jouannaud
1990, Section 8.5; Duffy 1991, Section 7.3) and our method of inductive expansion. Given
a CTRS R, inductive completion mixes the derivation of theorems from R with a proof
that R is ground confluent. Inductive expansion separates both proof obligations from
each other, which makes the proofs more transparent and allows us to drop certain se-
rious restrictions of inductive completion. We discuss this matter in more detail at the
end of Section 7.

For readers familiar with CTRS theory, we sketch the main generalizations introduced
in Padawitz (1992), Sections 6.1–6.3. First, a set of Horn clauses viewed as a CTRS

† gs⇐ hs is an abbreviation of the conjunction over all gs⇐ h with h ∈ hs.

Inductive Theorem Proving for Design Specifications 43

may introduce fresh or extra variables (cf. Hanus 1994, Section 2.4). Fresh variables
are indispensable when term rewriting systems shall represent non-trivial declarative
programs. Second, a set of Horn clauses may be strongly terminating in the sense of
Padawitz (1992) even if it is neither reductive (cf. Jouannaud and Waldmann 1986) nor
simplifying (cf. Kaplan 1987) nor decreasing (cf. Dershowitz, Okada and Sivakumar 1988)
nor quasi-reductive (cf. Bertling and Ganzinger 1989). For a Horn clause p ⇐ g to be
strongly terminating in the sense of Padawitz (1992) it is sufficient that only those ground
instances gσ of g are smaller than pσ, which are convergent or joinable (cf. Dershowitz,
Okada and Sivakumar 1988). Third, a CTRS may be ground confluent even if it generates
critical pairs, which are neither feasible (cf. Kaplan 1987) nor joinable. What we may
really assume about each ground instance g of the premise of a critical pair is that g is
not only convergent, but strongly convergent, i.e. that all reducts of g are convergent.

Examples taken from typical design specifications have motivated these generalizations.
At the end of Padawitz (1992), Section 6.2, we claimed that only a strongly terminating
CTRS can be proved ground confluent because only a reduction ordering allows us to
induce from the premise to the conclusion of a conditional rule. In contrast to this
conjecture, Dershowitz, Okada and Sivakumar (1987), Theorem 4, tells us that the well-
foundedness of the rewrite relation is sufficient for confluence provided that all feasible
critical pairs are convergent overlays. Fortunately, a feasible critical pair cp generated by
a design specification is almost always an overlay. However, the proof of cp’s convergence
often depends on the assumption that the ground instances of cp’s premise are strongly
convergent (cf. Padawitz 1992, Example 6.11).

1.3. proof by expansion

In Padawitz (1992), Sections 5.4 and 6.4, we have shown the soundness of two calculi,
inductive expansion for proving inductive theorems and subreductive expansion
for proving ground confluence. A second view on both calculi and their soundness proofs
reveals their strong similarity. Each calculus is hierarchical in the sense that its rules
apply Gentzen clauses, which are already known to be valid with respect to the same
theory for which the calculus is sound. The main difference between inductive expansion
and subreductive expansion is the set TH of ground goals, where the respective validity
notion is based upon: in the first case, TH is given by all valid ground goals, whereas
in the second case, TH consists of all strongly convergent ground goals (see above). But
the set Gen(TH,GS) of Gentzen clauses for which inductive (respectively subreductive)
expansion is sound, is defined the same in both cases: gs ⇐ h ∈ Gen(TH,GS) iff for
all ground substitutions σ, hσ ∈ TH implies gτ ∈ TH for some g ∈ gs and a ground
substitution τ , which agrees with σ on all universally quantified variables of gs ⇐ h.
Besides TH, we must also parametrize the set of ground substitutions from which σ is
taken. In the case of inductive expansion σ is arbitrary, but in the case of subreductive
expansion, σ is taken from a proper subset of the set of all ground substitutions.

To sum up, inductive and subreductive expansion are two instances of a generic
expansion calculus we introduce and prove sound with respect to Gen(TH,GS) in
Section 3. Section 4 presents inductive expansion as an instance of the generic calculus.
Section 6 does the same for subreductive expansion.

The generic calculus has a number of advantages. Firstly, one gains more insight into
the exact applicability conditions of expansion rules. Secondly, we mentioned that Ex-
pander (cf. Section 1.1) realizes inductive expansion. If the derived subgoals are bounded

44 P. Padawitz

(cf. Section 6), an inductive expansion is also a subreductive expansion. Hence Ex-
pander is also a tool for proving ground confluence. Thirdly, the subreductive instance
of the generic calculus is even more powerful than the corresponding calculus defined in
Padawitz (1992). Here it includes inductive rules and thus we may prove ground con-
fluence by induction. In CTRS terms, this means that we may use a critical pair as an
induction hypothesis when proving that this critical pair is convergent. This is not induc-
tive completion (cf. Section 1.2) where the subreductive expansion given by the process
of joining a critical pair cp may not employ cp as an induction hypothesis. Theorem 6.6
justifies the method for proving ground confluence by building subreductive expansions
of critical clauses.

1.4. canonical specifications

What do we gain from a design specification SP with ground confluent axioms? Life
becomes easier because of the following proof-theoretical implications of ground conflu-
ence.

1. Base consistency. If SP is built up in a hierarchical manner, we must ensure
consistency with respect to the base specifications of SP , i.e. each ground goal
over the base signature should follow from SP -axioms only if it already follows
from base axioms. An almost syntactical consistency criterion is obtained if SP
is ground confluent and strongly terminating (cf. Padawitz 1992, Corollary 6.19).
Base consistency is crucial for proving program equivalence (cf. Padawitz 1992,
Theorem 3.17) or the correctness of specification refinements (cf. Padawitz 1992,
Section 7.6).

2. Constructors. Certain inference rules rely on the distinction of the set of opera-
tions of SP into a set of constructors and a set of defined functions. Terms built
up of constructors are called normal forms. Ground normal forms yield the actual
representations of data specified by SP . SP has free constructors if these represen-
tations are unique (cf. Definition 5.2). The generalization of CTRS to include fresh
variables (cf. Section 1.2) leads to reduction and narrowing calculi where fresh vari-
ables are only replaced by normal forms (cf. Section 5). If SP has free constructors,
then the goals of a derivation can be simplified more efficiently, which results in
shorter and more understandable proofs (cf. Section 1.5).

3. Refutation. Testing a declarative program means solving a goal g with respect to
SP . Moreover, a negative answer to the question “Is g solvable?” is an affirmative
answer to the question “Is ¬g valid?”. The narrowing calculus (cf. Section 8) mostly
gives us an answer, provided that SP is ground confluent.

4. Proof by narrowing. For the topic of this paper the most important consequence
of ground confluence is the soundness of narrowing-strategy-controlled goal gener-
ation as an inference rule used in proofs of Gentzen clauses (cf. Section 8). We
mentioned that Expander proves a Gentzen clause gs⇐ hs by stepwise transform-
ing gs and hs until hs subsumes gs (cf. Section 1.1). Narrowing steps are always
sound in the backward transformation of gs, but SP must be ground confluent if
they are used in the forward transformation of hs. Indeed, this part of the proof is
often facilitated considerably by narrowing steps because they produce case analy-
ses automatically.

Inductive Theorem Proving for Design Specifications 45

Ground confluence is related to strong termination because the method of proving
ground confluence by subreductive expansion (cf. Section 1.3) is correct only if SP is
strongly terminating (cf. Section 6). Hence Section 7 recapitulates the path calculus for
proving strong termination, which was introduced in Padawitz (1992), Section 6.2. This
calculus generates a reduction ordering both from a syntactical signature ordering and
from well-founded semantic relations of SP .

A specification SP is called canonical if it is ground confluent, strongly terminating and
normal form complete, i.e. if all ground terms have normal forms. The precise definitions
are given in Section 5.

1.5. simplification

Sections 8 to 10 review and extend results of Padawitz (1988, 1991a), which deal with
narrowing, narrowing strategies and simplification. Simplification steps are automatically
performed equivalence transformations, which make expansion proofs more transparent
and more efficient. Moreover, they are combined with narrowing without losing the com-
pleteness properties of narrowing, provided that the underlying simplifier is reductive, i.e.
monotonic with respect to the reduction ordering that makes the specification strongly
terminating (cf. Section 1.4). Theorem 10.6 which generalizes all previous results on re-
duced or normalizing narrowing (cf. Fay 1979; Réty 1987; Padawitz 1988, Section 8.7;
Hölldobler 1989, Section 6.5.2; Geser 1991, Chapter 5; Hanus 1994) where simplifica-
tion is confined to rewriting terms into reduced ones. For instance, the simplifier of
Expander (cf. Section 1.1) realizes goal set normalization, the partial evaluation of stan-
dard functions and predicates, β-reduction of λ-expressions and continuation passing (cf.
Padawitz 1994, Section 4). The simplifier may carry out various program transformations
and thus control tests or proofs of a program in a similar way a compiler controls its
execution.

Although Expander simplifies the reduct of each derivation step, we do not attach
simplification to the inference rules themselves such as in, e.g., rewriting modulo a theory
(cf. Jouannaud and Kirchner 1986) or an algebra (cf. Avenhaus and Becker 1992). A
deduction step may properly weaken or strengthen a formula, while a simplifier always
transforms formulas into (inductively) equivalent ones. Hence, by simplifying the reduct
of an inference step, the soundness of the applied inference rule is not affected. For the
sake of flexibility and transparent theorem proving we clearly separate deduction rules,
which are fixed, but applied through user interaction, from the simplifier, which is applied
automatically, but amenable to modifications due to particular base theories. This differs
from theory resolution (cf. Stickel 1985) and rewriting modulo where theories or models
are “built into” inference rules. The theory that is built into our rules is always the
inductive theory, i.e. the theory of the initial model of the specification we actually deal
with. This means that we may apply lemmas as in “natural proofs”, but this has nothing
to do with built-in normalization or simplification.

Simplifiers and the (weak) conditions they must satisfy in order to comply with in-
ference rules, especially with strategy-controlled goal generation (cf. Section 1.4), are
treated in Section 10.

Figure 1 summarizes the rules of inductive and subreductive expansion and the num-
bers of the results showing their soundness.

46 P. Padawitz

Figure 1. Generic, inductive and subreductive expansion.

2. Preliminaries

We assume some familiarity with the basic notions of algebraic specification and Horn
logic (cf., e.g., Goguen, Thatcher and Wagner 1978, Ehrig and Mahr 1985, Padawitz
1988, Wirsing 1990, or Padawitz 1992) and briefly recapitulate basic notations used in
this paper.

We fix a set S of sorts, an infinite S-sorted set X of variables and an S-sorted sig-
nature SIG = (S,OP, PR) with a set OP of operation or function symbols and a set
PR of predicate symbols. For each sort s, an equality predicate, denoted by ≡, im-
plicitly belongs to SIG. All other predicates of SIG are called logical predicates.
TSIG(X)(TSIG) denotes the S-sorted set of (ground) SIG-terms over X. SIG is as-
sumed to be inhabited, i.e. for all sorts s there is a ground term of sort s. Atom(ic
formula)s over SIG and X are defined as usual. Equations t ≡ u between terms t and
u are particular atoms. A binary relation R on T ⊆ TSIG(X) is SIG-compatible if for
all t = F (t1, . . . , tn), u = F (u1, . . . , un) ∈ T , (t1, u1), . . . , (tn, un) ∈ R implies (t, u) ∈ R.
A SIG-congruence is a SIG-compatible equivalence relation.
Sub (GSub) denotes the set of (ground) substitutions over SIG, i.e. S-sorted functions

from X to TSIG(X)(TSIG). As usual, we write xσ for σ(x). For all σ ∈ Sub, dom(σ) =def

{x ∈ X | xσ 6= x}. [t/x] denotes the substitution σ defined by xσ = t and dom(σ) = {x}.
Let σ, τ ∈ Sub such that for all x ∈ dom(σ)∩dom(τ), xσ = xτ . Then x(σ+τ) =def xσ for
all x ∈ dom(σ) and x(σ + τ) =def xτ for all x ∈ X\dom(σ). id denotes the substitution
σ with dom(σ) = ∅.

Let V, Z ⊆ X and σ, τ ∈ Sub. Then V σ =def {xσ | x ∈ V } and

EQ(σ) =def {x ≡ xσ | x ∈ dom(σ)}.
σ is a renaming of V away from Z if V σ ⊆ X, |V σ| = |V | and V σ ∩ Z = ∅. σ =V τ
means σ(x) = τ(x) for all x ∈ V . The substitution σV is defined by dom(σV) ⊆ V and
σV =V σ. We also write σ for the unique SIG-homomorphic extension σ∗ of σ to TSIG.

Inductive Theorem Proving for Design Specifications 47

Hence for all x ∈ X, xστ = τ∗(xσ). A term t matches or subsumes a term u, written
t ≤ u, if tσ = u for some σ ∈ Sub. Then u is the instance of t by σ. σ subsumes τ ,
written as σ ≤ τ , if σρ = τ for some ρ ∈ Sub. σ unifies the terms t and u if tσ = uσ. σ
is a minimal or most general unifier of t and u if σ unifies t and u and subsumes all
unifiers of t and u.

A goal over SIG is a set of atoms over SIG, which stands for the conjunction of its
elements, or the contradictory goal FALSE. A goal without variables is ground. Given
V ⊆ X and a goal g, the expression ∃V g is called an existential goal. The elements of
V resp. X\V are called existential resp. universal variables of g. For a substitution
σ, the goal (∃V g)σ is defined as ∃V gσX\V .

Given V ⊆ X and a goal g, the expression ∀V g is called a universal goal, which is
just an abbreviation of the (infinite) goal ∪{gσ|σ is a ground substitution over SIG such
that dom(σ) = V }. Actually, the variables of V in ∀V g do not exist. Hence they are
regarded neither as existential nor as universal variables of g.

A goal set is a non-empty set of existential goals, which stands for the disjunction of
its elements. The goal set gs ∪ {FALSE} is identified with gs.

Given a goal set gs and a universal goal h, an expression gs⇐ h is called a Gentzen
clause over SIG. If h = ∅, we write gs instead of gs⇐ h. If gs consists of a single non-
empty universal goal g, then gs ⇐ h is a Horn clause and we write g ⇐ h instead of
gs⇐ h. g ⇐ h is a conditional equation if g = {t ≡ t′} for some terms t, t′. Otherwise
g ⇐ h is called a non-equational Horn clause. Given a further goal set hs, the clause
gs⇐ hs is an abbreviation of the set {gs⇐ h | h ∈ hs} of Gentzen clauses.

The set of variables occurring in a Gentzen clause c is denoted by var(c). If c is a
conditional equation, say c = t ≡ u⇐ h, x ∈ var(c) is called a fresh or extra variable
of c if x occurs in u or h, but not in t. If c is a non-equational Horn clause, say c = g ⇐ h,
x ∈ var(c) is a fresh variable of c if x occurs in h, but not in g. fresh(c) denotes the set
of fresh variables of c.

A specification is a pair (SIG,AX) consisting of a signature SIG and a set AX
of Horn clauses. A specification SP to be processed by Expander (cf. Section 1.1) may
also include a theorems section containing Gentzen clauses representing lemmas or con-
straints used in proofs of those Gentzen clauses, which are listed in a conjectures section
of SP (cf. Examples 4.2, 4.3 and 7.4).

3. Generic Expansion

In the sequel, we separate a finite set Xin of input variables from a finite set Xout of
output variables. Given a proof of a Gentzen clause c, input variables are the universally
quantified variables of c, output variables are the existentially quantified variables of c and
all variables, which stem from an axiom or lemma used in the proof of c. These imported
variables are automatically existentially quantified. For all σ ∈ Sub, let σin = σXin and
σout = σXout . For a clause c, in(c) denotes the set of input variables of c.

The generic expansion calculus depends on two parameters: a set TH of ground atoms
and a set GS of ground substitutions such that

• TH is symmetric, i.e. for all ground terms t and u, t ≡ u ∈ TH implies u ≡ t ∈ TH,
• for all σ ∈ GS and τ ∈ GSub, σin + τout ∈ GS.

Definition 3.1. A Gentzen clause c = gs ⇐ h follows from TH by induction on

48 P. Padawitz

GS is for all σ ∈ GS, hσ ⊆ TH implies gτ ⊆ TH for some g ∈ gs and τ ∈ GSub with
τ =in(c) σ. Gen(TH,GS) denotes the set of all Gentzen clauses that follow from TH by
induction on GS.

Note that TH is always a subset of Gen(TH,GS).

Definition 3.2. A goal g[t/x] is (TH,GS)-equivalence compatible if for all terms
u, the clause

g[u/x]⇐ g[t/x] ∪ {t ≡ u}
follows from TH by induction on GS.

Proposition 3.3. Let σ ∈ Sub and the goal g[t/x]σ be (TH,GS)-equivalence compati-
ble. Then

g[t/x]σout ⇐ g[u/x]σ ∪ {tσ ≡ uσ} ∪ EQ(σin)

follows from TH by induction on GS.

Given TH and GS as above, the two non-inductive rules of the generic calculus are
defined as follows. Both rules transform goal sets and thus perform steps in the backward
part of a proof of a Gentzen clause (cf. Section 1.1).

Backward deductive resolution. Let σ ∈ Sub and {∃X1h1σ, . . . , ∃Xnhnσ} ⇐ h ∈
Gen(TH,GS) such that for all 1 ≤ i ≤ n, hiσ is (TH,GS)-equivalence compatible and
Xi ∩ var(giσ ∪Xinσ ∪Xin) = ∅.

{g1 ∪ h1, . . . , gn ∪ hn}
{g1σ ∪ · · · ∪ gnσ ∪ h ∪ EQ(σin)}

.

Backward deductive paramodulation. Let σ ∈ Sub, {∃X1(t ≡ t1)σ, . . . , ∃Xn(t ≡
tn)σ} ⇐ h ∈ Gen(TH,GS) and x ∈ var(g1 ∩ · · · ∩ gn) such that for all 1 ≤ i ≤ n,
Xi ∩ var(gi[t/x]σ ∪Xinσ ∪Xin) = ∅.

{g1[t1/x], . . . , gn[tn/x]}
{g1[t/x]σ ∪ · · · ∪ gn[t/x]σ ∪ h ∪ EQ(σin)}

Theorem 3.4. (backward deductive rules are sound) Let the goal set hs be ob-
tained from the goal set gs = {g1, . . . , gm} by a single deductive resolution or paramodu-
lation step such that gs and hs consist of (TH,GS)-equivalence compatible goals. Then
the clause gs⇐ hs follows from TH by induction on GS.

Proof. W.l.o.g. suppose that hs is a singleton, say hs = {h}. Let τ ∈ GS such that
hτ ⊆ TH. We must infer

gi(τin + ξout) ⊆ TH for some 1 ≤ i ≤ m and ξ ∈ GSub. (1)

We consider both rules separately.
Case 1. h is obtained from gs by a resolution step. Then

gs = {(g′1 ∪ h1), . . . , (g′n ∪ hn)}
and

h = g′1σ ∪ · · · ∪ g′nσ ∪ f ∪ EQ(σin)

Inductive Theorem Proving for Design Specifications 49

such that σ ∈ Sub and {∃X1h1σ, . . . , ∃Xnhnσ} ⇐ f ∈ Gen(TH,GS) such that for all
1 ≤ i ≤ n, hiσ is (TH,GS)-equivalence compatible and Xi ∩ var(g′iσ ∪Xinσ ∪Xin) = ∅.
Since fτ ⊆ hτ ⊆ TH, there are 1 ≤ i ≤ k and ξ ∈ GSub such that hiσξ ⊆ TH and
ξ =X\Xi τ .
Xi ∩ var(g′iσ) = ∅ implies g′iσξ = g′iστ ⊆ hτ ⊆ TH, while Xi ∩ var(Xinσ ∪Xin) = ∅

implies ξin = τin and EQ(σin)ξ = EQ(σin)τ . Hence ξ ∈ GS. Since EQ(σin)τ ⊆ hτ ⊆
TH, we conclude

(g′i ∪ hi)(τin + (σξ)out) = (g′i ∪ hi)(ξin + (σξ)out) = (g′i ∪ hi)σoutξ ⊆ TH

from (g′i∪hi)σξ ⊆ TH and Proposition 3.3 because g′iσ and hiσ are (TH,GS)-equivalence
compatible. This implies (1).

Case 2. h is obtained from gs by a paramodulation step. Then

gs = {g′1[t1/x], . . . , g′n[tn/x]}

and

h = g′1[t/x]σ ∪ · · · ∪ g′n[t/x]σ ∪ f ∪ EQ(σin)

such that σ ∈ Sub, {∃X1(t ≡ t1)σ, . . . , ∃Xn(t ≡ tn)σ} ⇐ f ∈ Gen(TH,GS) and x ∈
var(g′1 ∩ · · · ∩ g′n) such that for all 1 ≤ i ≤ n, Xi ∩ var(g′i[t/x]σ ∪Xinσ ∪Xin) = ∅. Since
fτ ⊆ gτ ⊆ TH, there are 1 ≤ i ≤ k and ξ ∈ GSub such that (ti ≡ t)σξ ⊆ TH and
ξ =X\Xi τ .
Xi ∩ var(g′i[t/x]σ ∪Xin) = ∅ implies g′i[t/x]σξ = g′i[t/x]στ ⊆ hτ ⊆ TH and ξin = τin.

Hence ξ ∈ GS. Xi ∩ var(Xinσ ∪Xin) = ∅ implies EQ(σin)ξ = EQ(σin)τ ⊆ hτ ⊆ TH,
and we conclude

g′i[ti/x](τin + (σξ)out) = g′i[ti/x](ξin + (σξ)out) = g′i[ti/x]σoutξ ⊆ TH

from (g′i[t/x] ∪ {ti ≡ t})σξ ⊆ TH and Proposition 3.3 because g′i[t/x]σ is (TH,GS)-
equivalence compatible. Again, this implies (1). 2

Induction hypotheses are also applied by resolution or paramodulation. In this case
the resolvent or paramodulant is extended by a descent condition of the form tÀt′ (cf.
Padawitz 1992, Section 5.2). Given w ∈ S+ and a tuple xin ∈ Xw consisting of all actual
input variables, SIG is supposed to include a descent function À : w × w → bool,
which induces the following induction ordering ÀTH on TSIG,w:

tÀTHt
′ ⇐⇒def tÀt′ ≡ true ∈ TH.

ÀTH is assumed to be well-founded. If TH is the ground theory of a set AX of Horn
clauses (cf. Section 4), thenÀTH is well-founded iff the interpretation ofÀ in the initial
AX-model has this property. This is equivalent to the condition that some model of
AX interprets À as a well-founded relation. The well-foundedness of À is a semantical
assumption needed for the soundness of inductive resolution and paramodulation w.r.t.
the initial model. A proof of this condition is not part of the inductive proof. The latter,
however, includes a proof of the descent condition generated by an inductive step. For
this purpose, À must be defined by suitable axioms upon which the descent conditions
can be resolved or paramodulated (cf. Examples 4.3 to 4.5).À is a Boolean function and
not a predicate because forward resolution and paramodulation will produce negative
descent conditions (cf. Definition 3.10).

As there are infinitely many induction orderings, the set of inductive proofs w.r.t. AX

50 P. Padawitz

is not enumerable. Hence no restriction of inductive rules to specific induction orderings
or schemas can be expected to capture the whole inductive theory of AX. The range of
conjectures, which express the correctness of programs specified by AX and which are
provable with the same induction ordering, is just too limited.

Definition 3.5. Let TH and GS be as above, CS be a set of Gentzen clauses and
ρ : X → X be a renaming of Xin away from Xin. The generic expansion calculus
upon (TH,GS) with induction hypotheses from CS consists of deductive resolution
and paramodulation (see above) and the following two rules:

Backward inductive resolution. Let c = ({∃X1h1, . . . , ∃Xnhn} ⇐ h) ∈ CS and
σ ∈ Sub be a renaming of Z = X1∪· · ·∪Xn away from var(c) such that for all 1 ≤ i ≤ n,
fiσ = hiρσ is (TH,GS)-equivalence compatible and Zσ ∩ var(giσ ∪ Xinσ ∪ Xin) = ∅,
and for all τ ∈ GS, ρστ ∈ GS.

{g1 ∪ f1, . . . , gn ∪ fn}
{g1σ ∪ · · · ∪ gnσ ∪ hρσ ∪ {xinÀxinρσ ≡ true} ∪ EQ(σin)}

.

Backward inductive paramodulation. Let c = ({∃X1(u ≡ t1), . . . , ∃Xn(u ≡
tn)} ⇐ h) ∈ CS, x ∈ var(g1 ∩ · · · ∩ gn) and σ ∈ Sub be a renaming of Z = X1 ∪ · · · ∪Xn

away from var(c) such that for all 1 ≤ i ≤ n, uiσ = tiρσ and Zσ ∩ var(gi[uρ/x]σ ∪
Xinσ ∪Xin) = ∅, and for all τ ∈ GS, ρστ ∈ GS.

{g1[u1/x], . . . , gn[un/x]}
{g1[uρ/x]σ ∪ · · · ∪ gn[uρ/x]σ ∪ hρσ ∪ {xinÀxinρσ ≡ true} ∪ EQ(σin)}

.

A sequence gs1, . . . , gsn of goal sets is called an expansion of gs1 into gsn upon
(TH,GS) with induction hypotheses from CS if

• for all 1 ≤ i < n, gsi+1 is obtained from gsi by a single deductive or inductive
resolution or paramodulation step,
• for all 1 ≤ i ≤ n, gsi consists of (TH,GS)-equivalence compatible goals.

The corresponding inference relation is denoted by `CS.

Theorem 3.6. (generic expansions are sound) Let c = {g1, . . . , gm) ⇐ h be a
Gentzen clause and

CS = {gs1 ⇐ h1, . . . , gsn ⇐ hn}

be a set of Gentzen clauses such that for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, h ⇐ hj ∈
Gen(TH,GS) and

(1) gsj ⇐ gi ∈ Gen(TH,GS) or
(2) for all τ ∈ GSub, gsj ⇐ giτout ∪ hj ∈ Gen(TH,GS).

Then {g1, . . . , gm} `CS {h} implies {c} ∪ CS ⊆ Gen(TH,GS).

For an inductive proof of c one may use consequences of c as induction hypotheses CS.
(1) admits hypotheses of the form {g′1, . . . , g′m} ⇐ h′ with g′i ⊆ gi. (2) is a generalization
of (1) that is applicable if for all 1 ≤ i ≤ m, the “subcase” gs′ ⇐ giτout ∪ h′ of gs′ ⇐ h′

is already known to be valid.

Inductive Theorem Proving for Design Specifications 51

Proof. (Theorem 3.6.) Let {g1, . . . , gm} `CS {h}. Since (2) follows from (1), it is suf-
ficient to show {c} ∪ CS ⊆ Gen(TH,GS) under Assumption (2). There is an expansion
gs1, . . . , gsk such that gs1 = {g1, . . . , gm} and gsk = {h}. CS ⊆ Gen(TH,GS) holds
true if c ∈ Gen(TH,GS), and this agrees with the case j = k of the following condition:

(3) gs1 ⇐ gsj ∈ Gen(TH,GS).

By the definition of Gen(TH,GS), (3) is equivalent to (4):

(4) For all τ ∈ GS, 1 < j ≤ k and g ∈ gsj , gτ ⊆ TH implies gi(τin + ξout) ⊆ TH for
some 1 ≤ i ≤ m and ξ ∈ GSub.

Hence it remains to show (4), which will be done by induction on (τin, j) along (ÀTH ,
>).

Let τ ∈ GS, 1 < j ≤ k and g ∈ gsj such that gτ ⊆ TH. If the expansion gs1, . . . , gsj
does not include inductive steps, then, by Theorem 3.4, gi(τin + ξout) ⊆ TH for some
1 ≤ i ≤ m and ξ ∈ GSub. Otherwise there are 1 < l ≤ j and a goal set gs such that
gsl−1 = {g′1, . . . , g′n} ∪ gs and gsl = {g′} ∪ gs, {g′1, . . . , g′n} is transformed into {g′} by
an inductive step and there is an inductionless expansion of gsl into gsj such that, by
Theorem 3.4, g′(τin + ξout) ⊆ TH for some ξ ∈ GSub. Assume that

(5) g′i(τin + δout) ⊆ TH holds true for some 1 ≤ i ≤ n and δ ∈ GSub.

Since gs1, . . . , gsl−1 is a proper subexpansion of gs1, . . . , gsj , the induction hypothesis
and τin + δout ∈ GS imply gi(τin + ηout) ∈ TH for some 1 ≤ i ≤ m and η ∈ GSub, and
the proof is complete. Hence it remains to show (5).

Let τ ′ = τin + ξout. Then τ ′ ∈ GS and g′τ ′ ∈ TH.
Case 1. {g′} is obtained from {g′1, . . . , g′n} by an inductive resolution step. Then for

all 1 ≤ i ≤ n, g′i = g′′i ∪ fi and

g′ = g′′1σ ∪ · · · ∪ g′′nσ ∪ h′ρσ ∪ {xinÀxinρσ ≡ true} ∪ EQ(σin)

such that c′ = ({∃X1h1, . . . , ∃Xnhn} ⇐ h′) ∈ CS, σ is a renaming of Z = X1∪· · ·∪Xn =
var(c′) ∩ Xout away from var(c′) such that for all 1 ≤ i ≤ n, fiσ = hiρσ is (TH,GS)-
equivalence compatible and Zσ ∩ var(g′′i σ ∪ Xinσ ∪ Xin) = ∅, and for all θ ∈ GS,
ρσθ ∈ GS. From

({xinÀxinρσ ≡ true} ∪ EQ(σin))τ ′ ⊆ g′′τ ′ ⊆ TH
we conclude

(6) xinτ ′Àxinρστ ′ ≡ true ∈ TH.

Since τ ′ ∈ GS, ρστ ′ ∈ GS. Since h′ρστ ′ ⊆ g′τ ′ ⊆ TH and since by (2), h ⇐ h′ ∈
Gen(TH,GS), we have hρστ ′ ∈ TH. Since {h} = gsk, the induction hypothesis implies

gi((ρστ ′)in + λout) ⊆ TH
for some 1 ≤ i ≤ m and λ ∈ GSub. Since h′ρστ ′ ⊆ TH and since by (2), the clause
{∃X1h1, . . . , ∃Xnhn} ⇐ giλout ∪ h′ follows from TH by induction on GS, we obtain

(7) hi((ρστ ′)in + δout) ⊆ TH

52 P. Padawitz

for some 1 ≤ i ≤ n and δ ∈ GSub. Since σ is a renaming of Z = var(c′) ∩ Xout away
from var(c′), σ−1 is defined on Zσ. Hence Zσ ∩ var(Xinσ) = ∅ = dom(ρ) ∩ Xout and
hiρσ = fiσ imply

(8)

hi((ρστ ′)in + δout) = hiρ((στ ′)in + δout)
= hiρ((στ ′)in + δZ)
= hiρ((στ ′)in + (σσ−1δ)Z)
= hiρσ(τ ′var(Xinσ) + (σ−1δ)Zσ

= hiρσ(τ ′var(Xinσ) + (σ−1δ)Zσ + τ ′Q)

= fiσ(τ ′var(Xinσ) + (σ−1δ)Zσ + τ ′Q)
= fiση

where Q = var(Xoutσ)\Zσ and η = τ ′var(Xinσ) + (σ−1δ)Zσ + τ ′Q. By (7) and (8), fiση ⊆
TH. Zσ ∩ var(g′′i σ) = ∅ implies g′′i ση = g′′i στ

′ ⊆ g′τ ′ ⊆ TH. Hence g′iση ⊆ TH.
Zσ ∩ var(Xinσ ∪ Xin) = ∅ implies ηin = τ ′in and EQ(σin)η = EQ(σin)τ ′. Hence

η ∈ GS. Since EQ(σin)τ ′ ⊆ g′τ ′ ⊆ TH and g′′i σ and fiσ are (TH,GS)-equivalence
compatible, Proposition 3.3 implies g′iσoutη = (g′′i ∪ fi)σoutη ⊆ TH. Hence

g′i(τin + (ση)out) = g′i(τ
′
in + (ση)out) = g′i(ηin + (ση)out) = g′iσoutη ⊆ TH,

and the proof of (5) is complete.
Case 2. {g′} is obtained from {g′1, . . . , g′n} by an inductive paramodulation step. Then

for all 1 ≤ i ≤ n, g′i = g′′i [ui/x] and

g′ = g′′1 [uρ/x]σ ∪ · · · ∪ g′′n[uρ/x]σ ∪ h′ρσ ∪ {xinÀxinρσ ≡ true} ∪ EQ(σin)

such that c′ = ({∃X1(u ≡ t1), . . . , ∃Xn(u ≡ tn)} ⇐ h′) ∈ CS, σ is a renaming of
Z = X1 ∪ · · · ∪Xn = var(c′)∩Xout away from var(c′), for all 1 ≤ i ≤ n, uiσ = tiρσ and
Zσ ∩ var(g′′i [uρ/x]σXinσXin) = ∅, and for all θ ∈ GS, ρσθ ∈ GS. As in Case 1 (cf. (6))
we conclude

(9) xinτ ′Àxinρστ ′ ≡ true ∈ TH

and thus

gi((ρστ ′)in + λout) ⊆ TH

for some 1 ≤ i ≤ m and λ ∈ GSub by induction hypothesis. Since h′ρστ ′ ⊆ g′τ ′ ⊆ TH
and since by (2), the clause {∃X1(t1 ≡ u), . . . ,∃Xn(tn ≡ u)} ⇐ giλout ∪ h′ follows from
TH by induction on GS, we obtain

(10) (ti ≡ u)((ρστ ′)in + δout) ∈ TH

for some 1 ≤ i ≤ n and δ ∈ GSub. Since σ is a renaming of Z = var(c′) ∩ Xout away
from var(c′), σ−1 is defined on Zσ. Hence, analogously to (8), tiρσ = uiσ implies

(11) (ti ≡ u)((ρστ ′)in + δout) = (ui ≡ uρ)ση

Inductive Theorem Proving for Design Specifications 53

where Q = var(Xoutσ)\Zσ and η = τ ′var(Xinσ) + (σ−1δ)Zσ + τ ′Q. By (10) and (11),
(ui ≡ uρ)ση ∈ TH. Zσ ∩ var(g′′i [uρ/x]σ ∪Xin) = ∅ implies

g′′i [uρ/x]ση = g′′i [uρ/x]στ
′ ⊆ g′τ ′ ⊆ TH

and ηin = τ ′in. Hence η ∈ GS. Zσ∩var(Xinσ∪Xin) = ∅ implies EQ(σin)η = EQ(σin)τ ′ ⊆
g′τ ′ ⊆ TH. We conclude

g′i(τin + (ση)out) = g′i(τ
′
in + (ση)out)=g′′i [ui/x](τ

′
in + (ση)out)=g′′i [ui/x](ηin + (ση)out)

= g′′i [ui/x]σoutη ⊆ TH
from (g′′i [uρ/x]∪{ui ≡ uρ})ση ⊆ TH and Proposition 3.3 because g′′i [uρ/x]σ is (TH,GS)-
equivalence compatible. Hence the proof of (5) is complete. 2

Theorem 3.6(2) includes the case of n Horn clauses g1 ⇐ h1, . . . , gn ⇐ hn with a
common guard g and the rest of h1, . . . , hn being a g-minimal goal set (cf. Padawitz
1992, Chapter 2):

Definition 3.7. A Horn clause c = g ⇐ g′ ∪ h, written as g ⇐ g′ : h, is a guarded
clause if fresh(c) ⊆ var(h). g′ is the guard of c, h is the body of c. Given a goal
g, a goal set gs is g-minimal w.r.t. (TH,GS) if for all h, h′ ∈ gs and σ, τ ∈ GS with
σ =var(g) τ ,

gσ ∪ hσ ∪ h′τ ⊆ TH implies h = h′ and {xσ ≡ xτ | x ∈ var(h)} ⊆ TH.

A g-minimal goal set gs yields a minimal case analysis insofar as two ground instances
of two different goals h, h′ ∈ gs by the same substitution σ do not exist if gσ ⊆ TH. For
instance, with respect to a usual specification of integers, {{f(x) ≡ 0}, {f(x) ≡ succ(y)}}
is an {f(x) ≥ 0}-minimal goal set.

The notation g ⇐ g′ : h stems from concurrent logic programming (cf. Shapiro 1989)
where the guard g′ on the one hand and the body h on the other hand are evaluated in
different ways. Semantically, g ⇐ g′ : h agrees with the Horn clause g ⇐ g′ ∪ h. A set
HS of guarded clauses with the same guard g is equivalent to a single Gentzen clause,
provided that the bodies of HS constitute a g-minimal goal set:

Lemma 3.8. (guarded clauses and gentzen clauses) Let HS={g1 ⇐ g : h1, . . . ,
gn ⇐ g : hn} be a set of guarded clauses such that {h1, . . . , hn} is g-minimal w.r.t.
(TH,GS) and for all 1 ≤ i, j ≤ n, gi is (TH,GS)-equivalence compatible, Xi =def

fresh(gi ⇐ g : hi) and hi = hj implies gi = gj. Let

c = {∃X1(g1 ∪ h1), . . . , ∃Xn(gn ∪ hn)} ⇐ g and c′ = {∃X1h1, . . . , ∃Xnhn} ⇐ g.

(1) For all 1 ≤ i, j ≤ n and τ ∈ GSub, gj ⇐ (gi ∪ hi)τXi ∪ g ∪ hj follows from TH by
induction on GS.

(2) c ∈ Gen(TH,GS) implies HS ⊆ Gen(TH,GS).
(3) HS ∪ {c′} ⊆ Gen(TH,GS) implies c ∈ Gen(TH,GS).

Proof.

(1) Let 1 ≤ i, j ≤ n, τ ∈ GSub and σ ∈ GS such that (gi ∪ hi)(σX\Xi + τXi) ∪
gσ ∪ hjσ ⊆ TH. Since {h1, . . . , hn} is g-minimal w.r.t. (TH,GS), we conclude

54 P. Padawitz

hi = hj and xσ ≡ xτ ∈ TH for all x ∈ var(hi). Hence gi = gj , Xi = Xj and thus
gj(σX\Xi + τXi) ⊆ TH. This implies gjσ ⊆ TH because Xi ⊆ var(hi) and gj is
(TH,GS)-equivalence compatible.

(2) immediately follows from (1).
(3) Let HS ∪ {c′} ⊆ Gen(TH,GS) and σ ∈ GS such that gσ ⊆ TH. Since c′ ∈

Gen(TH,GS), there are 1 ≤ i ≤ n and τ ∈ GSub such that hi(σX\Xi +τXi) ⊆ TH.
var(g) ∩Xi = ∅ implies gσ = g(σX\Xi + τXi). Hence (g ∪ hi)(σX\Xi + τXi) ⊆ TH
and thus gi(σX\Xi + τXi) ⊆ TH because HS ⊆ Gen(TH,GS).2

Hence a proof of the above Gentzen clause c may use guarded clauses from HS as
induction hypotheses:

Corollary 3.9. (generic expansions with guarded clause hypotheses are

sound) Let HS = {g1 ⇐ g : h1, . . . , gn ⇐ g : hn} be a set of guarded clauses such
that {h1, . . . , hn} is g-minimal w.r.t. (TH,GS) and for all 1 ≤ i, j ≤ n, gi is (TH,GS)-
equivalence compatible, Xi =def fresh(gi ⇐ g : hi) and hi = hj implies gi = gj.

Let c be as in 3.8. {∃X1(g1 ∪ h1), . . . , ∃Xn(gn ∪ hn)} `HS {g} implies {c} ∪ HS ⊆
Gen(TH,GS).

Proof. Lemma 3.8(1) and Theorem 3.6(2). 2

For applications of this result, cf. Padawitz (1992), Chapter 2, Section 5.5 and Chap-
ter 8. The original motivation for the step from CS to c, is to simplify the premises of
CS. The smaller the premise is, the greater the chance is that the clause can be proved
backward by transforming the conclusion into the premise (cf. Section 1.1). The next sec-
tion deals with the case where TH is given by all ground atoms that are valid w.r.t. a set
of Horn clause axioms. Example 4.4 presents two proofs of a guarded Horn clause. One
of them consists of backward as well as forward steps. The other one uses Corollary 3.9
for a completely backward expansion.

The above inference rules can only be used in a backward proof. The redex of a
rule in the actual goal set is unified with the conclusion (or left-hand side) of a clause
c ∈ Gen(TH,GS), while the reduct obtained by applying the rule is an instance of the
premise (or right-hand side) of the applied clause. With slight modifications, resolution
and paramodulation can also be applied conversely and thus be used in a forward proof.
Then no substitution σ is to be generated by the rule application and EQ(σin) is empty.
Moreover, if an inductive rule is inverted, the descent condition b ≡ true becomes part
of the rule antecedent. Such a rule would be applicable only in a few cases. However, a
simple propositional law allows us to move the descent condition from the antecedent
to the succedent. Roughly said, each application of an inductive rule of Definition 3.5
establishes a theorem of the form

{g} ∪ gs⇐ {h ∪ {b ≡ true}} ∪ gs,
while the corresponding application of a forward inductive rule establishes the equivalent
theorem

{h} ∪ gs⇒ {g} ∪ {h ∪ {b ≡ false}} ∪ gs.
The following inference rules are added to the generic expansion calculus (cf. Defini-

tion 3.5):

Inductive Theorem Proving for Design Specifications 55

Definition 3.10. (generic forward rules) Let CS be a set of Gentzen clauses and
ρ : X → X be a renaming of Xin away from Xin.

Forward deductive resolution Let {∃X1h1, . . . , ∃Xnhn} ⇐ h ∈ Gen(TH,GS) such
that for all 1 ≤ i ≤ n, Xi ∩ var(g ∪Xin) = ∅.

{g ∪ h}
{g ∪ h1, . . . , g ∪ hn}

.

Forward deductive paramodulation Let {∃X1(t ≡ t1), . . . , ∃Xn(t ≡ tn)} ⇐ h ∈
Gen(TH,GS) and x ∈ var(g) such that for all 1 ≤ i ≤ n, Xi ∩ var(g[t/x] ∪Xin) = ∅.

{g[t/x] ∪ h}
{(g ∪ {t ≡ x})[t1/x], . . . , (g ∪ {t ≡ x})[tn/x]}

.

Forward inductive resolution Let c = ({∃X1h1, . . . , ∃Xnhn} ⇐ h) ∈ CS and
σ ∈ Sub be a renaming of Z = X1 ∪ · · · ∪ Xn away from var(c) such that f = hρσ,
Zσ ∩ var(g ∪Xin) = ∅ and for all τ ∈ GS, ρστ ∈ GS.

{g ∪ f}
{g ∪ h1ρσ, . . . , g ∪ hnρσ, g ∪ f ∪ {xinÀxinρσ ≡ false}}

.

Forward inductive paramodulation Let c = ({∃X1(u ≡ t1), . . . , ∃Xn(u ≡ tn)} ⇐
h) ∈ CS, x ∈ var(g)\var(f) and σ ∈ Sub be a renaming of Z = X1 ∪ · · · ∪ Xn away
from var(c) such that f = hρσ, t = uρσ, Zσ ∩ var(g[t/x]∪Xin) = ∅ and for all τ ∈ GS,
ρστ ∈ GS.

{g[t/x] ∪ f}
{(g ∪ {t ≡ x})[t1ρσ/x], . . . , (g ∪ {t ≡ x})[tnρσ/x], g[t/x] ∪ f ∪ {xinÀxinρσ ≡ false}}

The equation . . . ≡ false in the succedent of the above inductive rules is redundant for
their soundness. However, with . . . ≡ false the succedent is stronger than without this
equation. Succedents of rules applied in a forward proof should be as strong as possible,
otherwise the given conclusion might not be achieved.

Theorem 3.11. (forward rules are sound) Suppose that x ≡ x ∈ Gen(TH,GS)
and, for descent functions À, {{xÀy ≡ true}, {xÀy ≡ false}} ∈ Gen(TH,GS). Let
CS be a set of Gentzen clauses, ρ : X → X be a renaming of Xin away from Xin

and the goal set gs be obtained from the goal set hs by a single forward resolution or
paramodulation step such that gs and hs consist of (TH,GS)-equivalence compatible
goals. Then hs `CS gs and thus, by Theorem 3.6(1), hs ⇐ g ∈ Gen(TH,GS) for all
g ∈ gs.

Proof. Deductive forward resolution is the inverse of deductive resolution with σ = id
and g1 = · · · = gn = g. Deductive forward paramodulation is the inverse of deductive
paramodulation with σ = id and g1 = · · · = gn = g ∪ {t ≡ x}, followed by deductive
resolution upon x ≡ x. Hence hs `CS gs if the step from gs to hs is performed by
deductive forward resolution or paramodulation.

Let b = (xinÀxinρσ).
If the step from gs to hs is performed by inductive forward resolution, we have

hs = {g ∪ f1), . . . , g ∪ fn, g ∪ f ∪ {b ≡ false}},
gs = {g∪f}, f = hρσ and fi = hiρσ for all 1 ≤ i ≤ n and some c = ({∃X1h1, . . . , ∃Xnhn}

56 P. Padawitz

⇐ h) ∈ CS. Inductive resolution upon c with σ =X\Xinρ id and g1 = · · · = gn = g reads
as follows:

{g ∪ f1, . . . , g ∪ fn}
{g ∪ f ∪ {b ≡ true}} .

By applying this rule to hs we obtain

hs `CS gs′ =def {g ∪ f ∪ {b ≡ true}, g ∪ f ∪ {b ≡ false}}.
By assumption, {{b ≡ true}, {b ≡ false}} ∈ Gen(TH,GS)and thus gs′ `CS gs by
deductive resolution. Hence hs `CS gs.

If the step from gs to hs is performed by inductive forward paramodulation, we have

hs = {(g ∪ {t ≡ x})[u1/x], . . . , (g ∪ {t ≡ x})[un/x], g[t/x] ∪ f ∪ {b ≡ false}},
gs = {g[t/x] ∪ f}, f = hρσ, t = uρσ and ui = tiρσ for all 1 ≤ i ≤ n and some
c = ({∃X1(u ≡ t1), . . . , ∃Xn(u ≡ tn)} ⇐ h) ∈ CS. Inductive paramodulation with
σ =X\Xinρ id and g1 = · · · = gn = g ∪ f ∪ {t ≡ x} reads as follows:

{(g ∪ f ∪ {t ≡ x})[u1/x], . . . , (g ∪ f ∪ {t ≡ x})[un/x]}
{g[t/x] ∪ f ∪ {t ≡ t, b ≡ true}} .

By applying this rule to hs we obtain

hs `CS gs′ =def {g[t/x] ∪ f ∪ {t ≡ t, b ≡ true}, g[t/x] ∪ f ∪ {b ≡ false}}.
By deductive resolution upon x ≡ x,

gs′ `CS gs′′ =def {g[t/x] ∪ f ∪ {b ≡ true}, g[t/x] ∪ f ∪ {b ≡ false}}.
By assumption, {{b ≡ true}, {b ≡ false}} ∈ Gen(TH,GS) and thus gs′′ `CS gs by
deductive resolution. Hence hs `CS gs. 2

Implementations of forward paramodulation should admit the simultaneous replace-
ment of several occurrences of the same term because the sequential replacement per-
formed by several applications of the rule might result in a weaker succedent, which
cannot be transformed via further forward steps into the given conclusion.

4. Inductive Expansion

The inductive expansion calculus defined in Padawitz (1991), Padawitz (1992) is an
instance of the generic expansion calculus. The set GS of ground substitutions is defined
as GSub, the set of all ground substitutions, and, given a set AX of Horn clauses over
SIG, the set TH of ground atoms is the ground theory of AX,TH(AX), which
consists of all ground atoms that are derivable by the cut calculus for the specification
SP = (SIG,AX). This calculus consists of the following two inference rules for deriving
Horn clauses from AX and congruence axioms for equality predicates of SIG:

Cut
g ⇐ d ∪ g′, g′ ⇐ d′

g ⇐ d ∪ d′

Substitution Let σ ∈ Sub.
g ⇐ d

gσ ⇐ dσ

Inductive Theorem Proving for Design Specifications 57

We write SP `cut g ⇐ h if g ⇐ h is derivable from AX and congruence axioms by
applying the above rules.

Definition 4.1. (inductive theory) Given a specification SP = (SIG,AX), the set
of derivable equations induces a SIG-congruence relation ≡SP on TSIG(X), called SP -
equivalence:

t ≡SP t′ ⇐⇒ SP `cut t ≡ t′.

ITh(SP) = Gen(TH(AX), GSub) is called the inductive theory of SP . Induc-
tive validity coincides with validity in the initial SP -structure Ini(SP) (cf. Padawitz
(1992), Section 3.1). σ ∈ GSub is an SP -solution of a goal g if SP `cut gσ. Then g is
called SP -solvable. If SP contains the constants true and false and true ≡ false is not
an inductive theorem of SP , then we call SP Boole-consistent.

An expansion E = (gs1, . . . , gsn) upon (TH(AX), GSub) (cf. Definition 3.5) is called
an inductive expansion upon SP . If E uses induction hypotheses from a set, CS, of
Gentzen clauses, we write gs1 `SP,CS gsn.

Since SP `cut c for all congruence axioms c for equality predicates of SIG, all goals
over SIG are (TH,GS)-equivalence compatible (cf. Definition 3.2). Hence the goal sets
of an inductive expansion are automatically (TH,GS)-equivalence compatible (cf. Defi-
nition 3.5).

Descent functions À (cf. Section 3) are well-founded iff the interpretation of À in
some SP -model A is well-founded (cf. Padawitz 1992, Proposition 5.3). Practically, A is
the original—often informal—model of the data type to be specified by SP .

The soundness of inductive expansions, previously proved directly (cf. Padawitz 1992,
Theorem 5.5), is a special case of Theorem 3.6(1) and Corollary 3.9, respectively:

Theorem 4.2. (inductive expansions are sound) (1) Let c = {g1, . . . , gm} ⇐ h
be a Gentzen clause and CS = {gs1 ⇐ h1, . . . , gsn ⇐ hn} be a set of Gentzen
clauses such that for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, h ⇐ hj , gsj ⇐ gi ∈ ITh(SP).
Then {g1, . . . , gm} `SP,CS {h} implies {c} ∪ CS ⊆ ITh(SP).

(2) Let HS = {g1 ⇐ g : h1, . . . , gn ⇐ g : hn} be a set of guarded clauses such that
{h1, . . . , hn} is g-minimal w.r.t. (TH(AX), GSub) and for all 1 ≤ i, j ≤ n,Xi =def

fresh(gi ⇐ g ∪ hi) and hi = hj implies gi = gj. Let

c = {∃X1(g1 ∪ h1), . . . , ∃Xn(gn ∪ hn)} ⇐ g.

Then {∃X1(g1 ∪ h1), . . . , ∃Xn(gn ∪ hn)} `SP,HS {g} implies {c} ∪HS ⊆ ITh(SP).

Since for all goals g, h and atoms p, the clauses {g, h} ⇐ g and p ⇐ p are inductive
SP -theorems, the following backward rules are special cases of deductive resolution or
paramodulation:

Goal elimination.
{g, h}
{g} .

Atom factoring. Let σ ∈ Sub such that pσ = qσ

{g ∪ {p, q}}
{gσ ∪ {qσ}} .

58 P. Padawitz

Term unification. Let σ ∈ Sub such that tσ = uσ

{g ∪ {t ≡ u}}
{gσ} .

Term replacement. Let x ∈ var(g)
{g[t/x] ∪ {t ≡ u}}
{g[u/x] ∪ {t ≡ u}} .

Instantiation. Let σ ∈ Sub
{∃V g}

{gσ ∪ EQ(σvar(g)\V)} .

Σ-Simplification. Let Σ be an SP -compatible simplifier, i.e. a function on the set of
all goal sets such that gs⇔ Σ(gs) ∈ ITh(SP) (cf. Definition 10.1)

gs

Σ(gs)
.

Since for all goals g, h and unsolvable goals g′, the clauses g ⇐ g ∪ h and FALSE ⇐ g′

are inductive SP -theorems, the following rules are special cases of deductive forward
resolution:

Forward goal elimination.
{g ∪ h}
{g} .

Goal refutation. Let g be SP -unsolvable

{g}
{FALSE} .

Goal refutation can also be applied in a backward proof where it is a special case of goal
elimination (see above). By Theorem 3.11, inductive forward resolution and paramod-
ulation are sound w.r.t. `SP,CS if for descent functions À, {{xÀy ≡ true}, {xÀy ≡
false}} ∈ ITh(SP). This condition implies that the initial SP -structure interprets À
as a total function. The dual condition is Boole-consistency: (FALSE⇐ true ≡ false) ∈
ITh(SP) (cf. Definition 4.1). In fact, inductive backward resolution and paramodulation
are sound w.r.t. `SP,CS only if SP is Boole-consistent. Otherwise À were not well-
founded.

Example 4.3. (greater)Using Expander syntax (cf. Section 1.1) we specify the greater
relation on natural numbers and prove its transitivity.

GREATER

functs† true 0 s >> 3
preds > 1 2
infixes > >>
vars x x’ y y’ z z’ ex
axioms (1) {s(x)>0}

(2) {s(x)>s(y)} <== {x>y}

† Non-zero numbers following a function or predicate symbol F denote the axioms that specify F .

Inductive Theorem Proving for Design Specifications 59

(3) {(s(x),z) >> (x,z’) = true}
theorems (1) {x = 0} \/ {x = s(ex!)}†

(2) FALSE <== {0>x}
(3) {x>y} <== {s(x)>s(y)}

conjects (1) {x>z} <== {x>y,y>z}

Axiom 3 specifies the descent function À used in the inductive expansion of Conjec-
ture 1 given below. This proof consists of backward and forward deductive resolution
steps and a single backward inductive resolution step with Conjecture 1 as induction
hypothesis and the descent function as specified by Axiom 3 (cf. (*) below).

Backward steps always modify the actual conclusion, while forward steps are applied
to the actual premise. In terms of Section 1.1, the lists front and rear have been merged.
Each goal set of front (the backward part of the proof) is preceded by conclusion, each
goal set of rear (the forward part of the proof) is preceded by premise. The goals of
a goal set are numbered and listed sequentially. Remember that a goal set represents a
disjunction, while a goal represents a conjunction. Theorems 1 to 3 of GREATER are used
as lemmas.

initial conclusion:
(1) {x>z}
initial premise:
(1) {x>y,y>z}
atom 1 in conclusion goal 1 replaced with axiom GREATER1
atom 1 in conclusion goal 1 replaced with axiom GREATER2
conclusion:
(1) {x=s(x1),z=s(y1),x1>y1}
(2) {x=s(x1),z=0}
atom 3 in conclusion goal 1 replaced with conjecture 1 (*)
conclusion:
(1) {(x,z)>>(x1,y1)=true,x1>y2,y2>y1,x=s(x1),z=s(y1)}
(2) {x=s(x1),z=0}
term at position 1 1 in conclusion goal 1 replaced with axiom GREATER3
conclusion:
(1) {x=s(x1),x1>y2,y2>y1,z=s(y1)}
(2) {x=s(x1),z=0}
premise:
(1) {x>y,y>z}
term at position 1 1 in premise goal 1 replaced with theorem 1
premise:
(1) {x=0,0>y,x>z}
(2) {x=s(ex),s(ex)>y,y>z}
atom 2 in premise goal 1 replaced with theorem 2
premise:
(1) {x=s(ex),s(ex)>y,y>z}
terms at positions 2 2, 3 1 in premise goal 1 replaced with theorem 1

† A goal set {g1, . . . , gn} is denoted by g1 ∨ · · · ∨ gn. The exclamation mark identifies ex as an
existentially quantified variable.

60 P. Padawitz

premise:
(1) {y=0,s(ex)>0,0>z,x=s(ex)}
(2) {y=s(ex1),s(ex)>s(ex1),s(ex1)>z,x=s(ex)}
atom 3 in premise goal 1 replaced with theorem 2
premise:
(1) {y=s(ex1),s(ex)>s(ex1),s(ex1)>z,x=s(ex)}
atom 2 in premise goal 1 replaced with theorem 3
premise:
(1) {ex>ex1,y=s(ex1),s(ex1)>z,x=s(ex)}
term at position 3 2 in premise goal 1 replaced with theorem 1
premise:
(1) {z=0,s(ex1)>0,ex>ex1,y=s(ex1),x=s(ex)}
(2) {z=s(ex2),s(ex1)>s(ex2),ex>ex1,y=s(ex1),x=s(ex)}
atom 2 in premise goal 2 replaced with theorem 3
premise:
(1) {z=0,s(ex1)>0,ex>ex1,y=s(ex1),x=s(ex)}
(2) {ex1>ex2,z=s(ex2),ex>ex1,y=s(ex1),x=s(ex)}
conjecture 1 has been proved.

The message conjecture 1 has been proved responds to the syntactic check whether
or not the actual premise hs subsumes the actual conclusion gs. Subsumption extends
matching from terms to goal sets such that, if hs subsumes gs, then gs ⇐ hs is valid.
For the details, cf. Padawitz (1994), Section 3.5.

We conclude from Theorem 4.2(1) that Conjecture 1 is an inductive GREATER-theorem.
A more straightforward proof relying on the fact that GREATER is ground confluent (cf.
Definition 5.5) is given by Example 10.12.

Example 4.4. (division) Using Expander syntax we specify the division-and-remainder
function on natural numbers and prove its correctness:

DIVISION
functs true 0 s no_pair + - * 1 2 div 3 4 5 >> 6
preds < < => >=
infixes * div >>
vars x y z q r
axioms (1) {0* x=0}

(2) {s(x)*y=(x*y)+y}
(3) {x div y=(0,x)} <== {x<y}
(4) {x div y=(s(q),r)} <== {x>=y,y>0,(x-y) div y=(q,r)}
(5) {x div 0=no_pair}
(6) {(y,x,q,r) >> (y’,x-y,q’,r’)=true} <== {x>=y,y>0}

theorems (1) {(z+y)+r=x} <== {z+r=x-y,x>=y}
(2) {x<y} <== {y>x}
(3) {x=q,y=r} <== {(x,y)=(q,r)}
(4) FALSE <== {(x,y)=no_pair}
(5) {z=no_pair} \/ {z=(0,x),x<y} \/

{z=(s(q!),r!),x>=y,y>0,(x-y) div y=(q!,r!)}
<== {x div y=z}

Inductive Theorem Proving for Design Specifications 61

conjects (1) {x=(q*y)+r,r<y} <== {y>0, x div y=(q,r)}.

An inductive expansion of Conjecture 1 upon DIVISION is given below. It consists
of deductive backward and forward resolution and paramodulation steps as well as an
inductive backward resolution step with Conjecture 1 as induction hypothesis and the
descent function specified by Axiom 6 (cf. (*) below).

initial conclusion:
(1) {x=(q*y)+r,r<y}
initial premise:
(1) {0<y,x div y=(q,r)}
term at position 1 2 1 in conclusion goal 1 replaced with axiom

DIVISION1
term at position 1 2 1 in conclusion goal 1 replaced with axiom

DIVISION2
conclusion:
(1) {q=s(x1),((x1*y)+y)+r=x,r<y}
(2) {q=0,r=x,r<y}
atom 2 in conclusion goal 1 replaced with theorem 1
conclusion:
(1) {(x1*y)+r=x-y,x>=y,q=s(x1),r<y}
(2) {q=0,r=x,r<y}
atoms 1 4 in conclusion goal 1 replaced with conjecture 1 (*)
conclusion:
(1) {(y,x,q,r)>>(y,x-y,x1,r)=true,0<y,(x-y) div y=(x1,r),y<=x,q=s(x1)}
(2) {q=0,r=x,r<y}
term at position 1 1 in conclusion goal 1 replaced with axiom

DIVISION6
conclusion:
(1) {y<=x,0<y,(x-y) div y=(x1,r),q=s(x1)}
(2) {q=0,r=x,r<y}
premise:
(1) {0<y,x div y=(q,r)}
atom 2 in premise goal 1 replaced with theorem 5
premise:
(1) {(q,r)=no_pair,0<y}
(2) {(q,r)=(0,x),x<y,0<y}
(3) {(q,r)=(s(q1),r1),x>=y,y>0,(x-y) div y=(q1,r1),0<y}
atom 1 in premise goal 1 replaced with theorem 4
premise:
(1) {(q,r)=(0,x),x<y,0<y}
(2) {(q,r)=(s(q1),r1),x>=y,y>0,(x-y) div y=(q1,r1),0<y}
atom 3 in premise goal 2 replaced with theorem 2
premise:
(1) {(q,r)=(0,x),x<y,0<y}
(2) {(q,r)=(s(q1),r1),x>=y,(x-y) div y=(q1,r1),0<y}
atom 1 in premise goal 1 replaced with theorem 3
atom 1 in premise goal 2 replaced with theorem 3

62 P. Padawitz

premise:
(1) {q=0,r=x,x<y,0<y}
(2) {q=s(q1),x>=y,(x-y) div y=(q1,r),0<y}
conclusion:
(1) {y<=x,0<y,(x-y) div y=(x1,r),q=s(x1)}
(2) {q=0,r=x,r<y}
term at position 3 1 replaced with equation 2 in conclusion goal 2
conclusion:
(1) {y<=x,0<y,(x-y) div y=(x1,r),q=s(x1)}
(2) {q=0,r=x,x<y}
conjecture 1 has been proved.

We conclude from Theorem 4.2(1) that Conjecture 1 is an inductive DIVISION-theorem.
The proof uses Theorems 1 to 5 as lemmas. Parts 1 to 4 are obvious. Part 5 is the
only-if-completion of div, i.e. the inverse of Axioms 3, 4 and 5, which specify div (cf.
Definition 5.6). Only-if-completions are inductive theorems if the specification is normal
form complete (cf. Definition 5.5). A more straightforward proof relying on the fact that
DIVISION is ground confluent will be given by Example 10.13.

Example 4.5. (division) A further proof of Conjecture 1 is obtained with the help of
Theorem 4.2(2) if the premise of Conjecture 1 is split into the guard g = {y > 0, x ≡ x}
and the g-minimal goal set {{x div y = (q, r)}}†. Instead of expanding Conjecture 1, we
expand the Gentzen clause

c = ∃{q, r}{x ≡ (q ∗ y) + r, r < y, x div y ≡ (q, r)} ⇐ {y > 0}
and use Conjecture 1 as induction hypothesis. By Theorem 4.2(2), this expansion implies
that both c and Conjecture 1 are DIVISION-theorems. Actually, DIVISION is modified as
follows.

DIVISION’
functs true 0 s no_pair + - * 1 2 div 3 4 5 >> 6
preds < <=> >=
infixes + - * div >>
vars x y z q r
axioms (1) {0*x=0}

(2) {s(x)*y=(x*y)+y}
(3) {x div y=(0,x)} <== {x<y}
(4) {x div y=(s(q),r)} <== {x>=y,y>0,(x-y) div y=(q,r)}
(5) {x div 0=no pair}
(6) {(x,y) >> (x,y-z)=true} <== {y>=z,z>0}

theorems (1) {(z+y)+r=x} <== {z+r=x-y,x>=y}
(2) {x>=y} <== {y<=x}
(3) {x div y=(q!,r!)} <== {y>0}
(4) {x>y} <== {y<x}
(5) {x<y} \/ {y<=x}

conjects (1) {x=(q*y)+r,r<y} <== {y>0,x div y=(q,r)}

† The tautology x ≡ x is used only for fixing y and x as input variables.

Inductive Theorem Proving for Design Specifications 63

(2) {x=(q*y)+r,r<y, x div y=(q,r)} <== {y>0}.

Conjecture 2 agrees with c. Theorems 1 to 5 are used as lemmas in the—completely
backward—proof of c given below. Since c has only two input variables, we also obtain a
new descent function when applying Conjecture 1 as induction hypothesis (cf. (*) below).

initial conclusion:
(1) {x=(q*y)+r,r<y,x div y=(q,r)}
initial premise:
(1) {0<y}
term at position 3 1 in conclusion goal 1 replaced with axiom

DIVISION’3
term at position 3 1 in conclusion goal 1 replaced with axiom

DIVISION’4
conclusion:
(1) {y<=x,0<y,(x-y) div y=(q1,r),x=(s(q1)*y)+r,r<y}
(2) {x<y,x=(0*y)+x}
term at position 4 2 1 in conclusion goal 1 replaced with axiom

DIVISION’2
conclusion:
(1) {((q1*y)+y)+r=x,y<=x,0<y,(x-y) div y=(q1,r),r<y}
(2) {x<y,x=(0*y)+x}
term at position 2 2 1 in conclusion goal 2 replaced with axiom

DIVISION’1
conclusion:
(1) {((q1*y)+y)+r=x,y<=x,0<y,(x-y) div y=(q1,r),r<y}
(2) {x<y}
atom 1 in conclusion goal 1 replaced with theorem 1
conclusion:
(1) {(q1*y)+r=x-y,x>=y,y<=x,0<y,(x-y) div y=(q1,r),r<y}
(2) {x<y}
atom 2 in conclusion goal 1 replaced with theorem 2
conclusion:
(1) {(q1*y)+r=x-y,y<=x,0<y,(x-y) div y=(q1,r),r<y}
(2) {x<y}
atoms 1 5 in conclusion goal 1 replaced with conjecture 1 (*)
conclusion:
(1) {(y,x)>>(y,x-y)=true,0<y,(x-y) div y=(q1,r),y<=x}
(2) {x<y}
term at position 1 1 in conclusion goal 1 replaced with axiom

DIVISION’6
conclusion:
(1) {y<=x;0<y,(x-y) div y=(q1,r)}
(2) {x<y}
atom 3 in conclusion goal 1 replaced with theorem 3
conclusion:
(1) {y>0,y<=x,0<y}
(2) {x<y}

64 P. Padawitz

atom 1 in conclusion goal 1 replaced with theorem 4
conclusion:
(1) {0<y,y<=x}
(2) {x<y}
atoms 1 2 in conclusion goals 2 1 replaced with theorem 5
conclusion:
(1) {0<y}
conjecture 1 has been proved.

On the one hand, this proof does not use the only-if-completion ONLY(div) of div as
the proof of Example 4.4 does. On the other hand, here we use the fact that {{x div y =
(q, r)}} is g-minimal, i.e., that the clause

{q ≡ q′, r ≡ r′} ⇐ {x div y ≡ (q, r), x div y ≡ (q′, r′)}

is an inductive theorem. Intuitively, this clause says that div has been specified consis-
tently, i.e., as a function with unique values, while both the normal form completeness
of DIVISION (cf. Example 4.4) and Theorem 3 of DIVISION’—together with Axiom 5—
express that div has been specified completely, i.e., as a total function.

5. Canonical Specifications

Canonicity summarizes three requirements to a Horn clause specification SP : normal
form completeness, strong termination and, most crucial, ground confluence. Ground
confluence and normal form completeness are discussed in this and the following chapter.
Strong termination is the topic of Section 7. Some of the material presented in Sections 5
to 7 was introduced and thoroughly motivated in Padawitz (1988), Padawitz (1991a)
and Padawitz (1992), especially certain deviations from CTRS theory (cf. Sections 1.2
and 1.4).

One important deviation from other rewriting approaches is that we parametrize the
reduction calculus by a set NF of normal forms, which depends on the underlying specifi-
cation SP . NF is not a priori the set of non-rewritable terms. This would entail a circular
definition because the reduction calculus is defined with respect to NF: normal forms are
the (only) terms to be substituted for fresh variables in a rewriting step (cf. Section 2).
Normal forms are built up of variables and constructors and lead us to constructor-based
specifications and then to canonical specifications.

Assumption 5.1. For notational convenience, we regard in the sequel each logical pred-
icate P as a Boolean function and each logical atom P (t) as the equation P (t) ≡ true.
Thus logical predicates become partial Boolean functions, and each Horn clause axiom
becomes a conditional equation. Conversely, a Boolean function that stems from a pred-
icate only occurs at the outermost term position of an equation t ≡ true. Normal form
completeness takes this restriction into account: Boolean terms P (t) where P stems from
a predicate need not have a normal form. We call a term t an atomic term if t = P (u)
for some predicate P .

Definition 5.2. (constructor-based specification) A Horn clause specification
SP = (SIG,AX) is constructor-based if each operation of SIG is either a construc-
tor or a defined function. In accordance with Assumption 5.1 we regard all logical

Inductive Theorem Proving for Design Specifications 65

predicates of SIG as defined functions. A SIG-term over X consisting of constructors
and variables is called a SIG-normal form over X. The S-sorted sets of all SIG-normal
forms over X and ground SIG-normal forms, are denoted by NFSIG(X) and NFSIG,
respectively.
SP is free-constructor-based if for each c = (l ≡ r ⇐ h) ∈ AX, l contains a defined

function.

Definition 5.3. (reduction calculus) Let SP = (SIG,AX) be a constructor-based
specification. The reduction calculus for SP consists of the following inference rules
each of which transforms a goal into a goal:

rewriting g[lσ/z]
g[rσ/z]∪hσ if z ∈ var(g), c = (l ≡ r ⇐ h) ∈ AX and fresh(c)σ ⊆

NFSIG(X),

reflection g∪{t≡t}
g .

A sequence g1, . . . , gn of goals is called a goal reduction of g1 into gn upon SP if
for all 1 ≤ i ≤ n, gi+1 is obtained from gi by a single rewriting or reflection step. The
corresponding inference relation is denoted by `SP . g is SP -convergent if g `SP ∅.

Note that g `SP ∅ implies gσ `SP ∅ for all σ ∈ Sub. However, for a non-empty goal h,
g `SP h implies gσ `SP hσ only if σ assigns normal forms to all goals of a goal reduction
of g into h.

Definition 5.4. (reduction relation) Let SP = (SIG,AX) be a constructor-based
specification. The SP -reduction relation →SP is a binary relation both on TSIG(X)
and on the set of goals over SIG defined as follows:

• g →SP g
′ ⇔def g = t[lσ/x] and g′ = t[rσ/x] for some term (goal) t, x ∈ var(t), c =

(l ≡ r ⇐ h) ∈ AX and σ ∈ Sub such that hσ is SP -convergent and fresh(c)σ ⊆
NFSIG(X).

g′ is an SP -reduct of a term or goal g if g →∗SP g′. A substitution τ is an SP -
reduct of a substitution σ if xσ →∗SP xτ for all x ∈ X. In this case we write σ →∗SP τ .
g and g′ are SP -joinable, written: g ↓SP g′, if g and g′ have a common SP -reduct.
g is SP -reducible into each SP -reduct of g. If g is the only SP -reduct of g, then g
is SP -reduced. A goal g is strongly SP -convergent if all SP -reducts of g are SP -
convergent.

Note that two terms t and t′ are SP -joinable if and only if the equation t ≡ t′ is
SP -convergent:

t ↓SP t′ ⇐⇒ t ≡ t′ `SP ∅.

Definition 5.5. (normal form completeness, ground confluence) Let SP =
(SIG,AX) be a constructor-based specification. SP is normal form complete if each
non-atomic ground SIG-term is SP -reducible into a SIG-normal form (cf. Assump-
tion 5.1). SP is ground confluent if SP -convergence is closed under →SP , i.e., if all
SP -convergent ground goals are strongly SP -convergent.

66 P. Padawitz

SP is normal form complete if and only if for all terms F (t) where F is a defined
function and t is a ground normal form there is an axiom c = (F (u) ≡ v ⇐ h) such
that t matches u, say t = uσ, and hστ is SP -convergent for some ground normal form
substitution τ (which instantiates the fresh variables of c). On the one hand, this complies
with constructor-basedness, on the other, partially specified functions must be totalized
by adding to the signature of SP constructor constants for expressing undefinedness such
as no_pair of DIVISION (cf. Example 4.4) and axioms that define operations on these
constants. Consistency problems arising from the addition of undefinedness constants
vanish if SP is ground confluent because two different ground normal forms are joinable
only if they are joinable by applying only constructor axioms. Since, by Theorem 5.8
below, ground confluence implies that two ground terms are SP -equivalent only if they
are joinable, it is quite easy to avoid inconsistencies such as succ(t) ≡SP⊥ or true ≡SP
false.

An important consequence of normal form completeness is the validity of the only-if-
completions of defined functions:

Definition 5.6. (only-if-completion of a defined function) Let SP be a con-
structor-based specification, F : w → s be a defined function of SP and

{c1, . . . , cn} = {F (t1) ≡ u1 ⇐ g1, . . . , F (tn) ≡ un ⇐ gn}

be the set of all axioms of SP with leading function symbol F . For all 1 ≤ i ≤ n, let
Xi = var(ci), x ∈ Xw and y ∈ Xs such that Xi does neither contain y nor components
of x. The Gentzen clause

{∃X1({x ≡ t1, u1 ≡ y} ∪ g1), . . . , ∃Xn({x ≡ tn, un ≡ y} ∪ gn)} ⇐ F (x) ≡ y

is called the only-if-completion ONLY(F) of F .

Lemma 5.7. The inductive theory of a normal form complete specification SP includes
the only-if-completion ONLY(F) of each defined function F of SP .

Proof. Let SP = (SIG,AX), F : w → s be a defined function of SP and

{c1, . . . , cn} = {F (t1) ≡ u1 ⇐ g1, . . . , F (tn) ≡ un ⇐ gn}

be the set of all axioms of SP with leading function symbol F . For all 1 ≤ i ≤ n, let Xi,
x and y be as in Definition 5.6.

Let σ ∈ GSub such that SP `cut F (xσ) ≡ yσ. Since SP is normal form complete, there
are ground normal forms t, u with xσ →∗SP t and F (t) →SP u. Hence t = tiτ , u = uiτ ,
giτ `SP ∅ and fresh(ci)τ ⊆ NFSIG for some 1 ≤ i ≤ n and τ ∈ GSub. giτ `SP ∅ implies
SP `cut giτ . W.l.o.g. τ ={x,y} σ because Xi does not contain neither y nor components
of x. Hence SP `cut xτ = xσ ≡ t = tiτ , SP `cut yτ = yσ ≡ F (xσ) ≡ F (t) ≡ u = uiτ
and thus σ solves the conclusion of ONLY(F). 2

`SP is sound w.r.t. the cut calculus for SP (cf. Section 4), i.e. for all goals g over SIG,
g `SP ∅ implies SP `cut g (cf. Padawitz 1992, Proposition 6.1). The converse coincides
with ground confluence:

Theorem 5.8. (church–rosser theorem I) A normal form complete specification

Inductive Theorem Proving for Design Specifications 67

SP = (SIG,AX) is ground confluent iff for all ground (!) goals g, SP `cut g implies
g `SP ∅.

Proof. Padawitz (1992), Theorem 6.5 (2). 2

In Section 1.4 we have listed four proof-theoretical consequences of ground confluence.
The first two, Base consistency and Constructors, reflect the uniqueness of function
values that is guaranteed if the specification is ground confluent. The proofs of Exam-
ples 4.3, 4.4 and 4.5 already indicate this relationship. If SP is not ground confluent,
proofs often depend on particular lemmas that express the uniqueness of function values.
If, however, SP is ground confluent, narrowing-strategy-controlled goal generation (cf.
Section 8) becomes applicable and those lemmas need no longer be used. Section 6 will
tell us how ground confluence is proved. In Sections 8 to 10 we discuss the benefits of
ground confluence for expansion proofs.

Most design specifications are ground confluent because, in the course of their devel-
opment, one has certain “canonical” models in mind, with normal forms as the data and
with all operations defined uniquely on normal forms. The uniqueness of function values
is the informal meaning of ground confluence. Formally, suppose that a ground term Ft
has two normal forms, say Ft ≡SP u and Ft ≡SP v. Then u ≡SP v, ground confluence
implies that u and v are SP -joinable and thus, if SP is free-constructor-based, u and v
are the same normal forms.

The method for proving ground confluence, which we propagate in the sequel, is dif-
ferent from completing SP into a confluent specification (cf. Section 1.2). We claim that
most design specifications are either already confluent or the conditions imposed on them
by completion methods are too restrictive. Here the goal is to prove and maintain ground
confluence and not to enforce this property.

For this purpose, the subreductive expansion calculus was introduced in Padawitz
(1992), Section 6.4. Let us reformulate this calculus as a further instance of the generic
expansion calculus defined in Section 3.

The first question is: which Gentzen clauses must be subreductively valid in order to
ensure ground confluence?

Definition 5.9. (critical clause) Let SP = (SIG,AX) be a specification,

l ≡ r ⇐ g, l′ ≡ r′ ⇐ h ∈ AX,

t ∈ TSIG(X), x ∈ var(t) and σ, τ be minimal substitutions w.r.t. ≥ (cf. Section 2) such
that lσ = t[l′τ/x] and a function symbol occurs in l at the position of x in t. Then lσ is
an SP -redex overlay and the clause

cc = lσ ≡ rσ ≡ t[r′τ/x]⇐ gσ ∪ hτ

is an SP -critical clause induced at lσ.

The redex overlay lσ is made part of cc only for technical reasons. In this way the redex
overlay can be derived from the critical clause. Moreover, the variables of lσ become input
variables of cc, which is crucial for defining the parameter GS when, in the next section,
generic expansions are specialized to subreductive expansions. Adding lσ to cc does not
affect the theory of SP : cc ∈ ITh(SP) iff rσ ≡ t[r′τ/x]⇐ gσ ∪ hτ ∈ ITh(SP).

68 P. Padawitz

In terms of CTRS theory (cf. Section 1.2), ground confluence follows from the conver-
gence of all feasible critical pairs, which are the critical clauses with convergent premises,
provided that SP is strongly terminating:

Definition 5.10. (strong termination) A constructor-based specification SP =
(SIG,AX) is strongly terminating if there is a transitive and well-founded relation
>SP on TSIG such that the constant true is minimal w.r.t. >SP (cf. Assumption 5.1)
and the following two conditions hold true:

rewrite compatibility For all c = (l ≡ r ⇐ h) ∈ AX, t ∈ TSIG({x}) and σ ∈ GSub
such that fresh(c)σ ⊆ NFSIG, hσ `SP ∅ implies t[lσ/x] >SP t[rσ/x] and lσ >SP hσ†.

subterm compatibility For all t ∈ TSIG and all proper subterms u of t, t >SP u.

Then >SP is a reduction ordering for SP .

Definition 5.11. (canonical specification) A specification SP is canonical if SP
is ground confluent, strongly terminating and normal form complete.

Besides that fresh variables are admitted, rewriting compatibility is weaker here than
in other CTRS approaches insofar as only convergent premise instances hσ are considered
here. This is sufficient for→+

SP (but not `SP) to be a subrelation of >SP . The reduction
ordering is a means for deriving ground confluence from convergence of critical clauses.
The proof of this result is carried out by induction along >SP .

The weakest notion of validity required for critical clauses is defined as follows.

Definition 5.12. (subreductive and reductive validity) Given a specification
SP = (SIG,AX), a reduction ordering >SP for SP and a SIG-term t, a Gentzen
clause c = gs ⇐ h is sub-t-reductively valid w.r.t. SP if for all σ ∈ GSub such
that hσ is SP -convergent and all SP -convergent ground goals g <SP tσ are strongly
SP -convergent, g′τ is SP -convergent‡ for some g′ ∈ gs and τ ∈ GSub with τ +in(c) σ.
c is reductively valid w.r.t. SP if for all σ : X → NFSIG such that hσ is strongly

SP -convergent, gτ is strongly SP -convergent for some g ∈ gs and τ ∈ GSub with τ =in(c)

σ.

Theorem 5.13. (church–rosser theorem II) (cf. Theorem 5.8) A normal form
complete specification SP is ground confluent iff all inductive theorems of SP (cf.
Definition 4.1) are reductively valid w.r.t. SP .

Proof. Padawitz (1992), Theorem 6.5(3). 2

Theorem 5.14. (superposition theorem) Let SP be a strongly terminating and
normal form complete specification. SP is ground confluent iff for all SP -critical clauses
t ≡ u ≡ v ⇐ h, u ≡ v ⇐ h is sub-t-reductively valid w.r.t. SP .

† By Assumption 5.1, h is a set of equations, say h = {t1 ≡ u1, . . . , tn ≡ un}. Hence tσ >SP hσ
means tσ >SP ti and tσ >SP ui for all 1 ≤ i ≤ n.
‡ Padawitz (1992) requires strong convergence, but a short glance at the proof of Padawitz (1992),

Theorem 6.10, reveals that convergence is sufficient.

Inductive Theorem Proving for Design Specifications 69

Proof. Padawitz (1992), Theorem 6.10 and Lemma 6.13. 2

Theorem 5.14 generalizes the Buchberger–Newman Lemma and the Knuth–Bendix
Lemma for the ground case (cf. Küchlin 1989, Lemmas 7 and 8) from unconditional
rewrite systems to Horn clauses. These central results of rewrite theory comprise the
three-step reduction of each proof of (ground) confluence that uses a reduction ordering
>SP : (1) from confluence to local confluence, (2) from local confluence to the convergence
of critical pairs, (3) from the convergence of a critical pair cp to an equational proof EP
of (u, v) such that EP is smaller than the rewriting ambiguity u ← t → v that induces
(u, v). Actually, this means that all terms of EP are smaller w.r.t. >SP than the redex
overlay t (cf. Definition 5.9), i.e. EP consists of t-bounded terms. In the general case
treated here we have critical clauses instead of critical pairs and expansions consisting of
t-bounded goals instead of equational proofs consisting of t-bounded terms.

6. Subreductive Expansion

Let SP = (SIG,AX) be a specification. The parameters TH = GTh(AX) and GS =
GSub provided the first instance of the generic expansion calculus defined in Section 3.
It led to inductive expansions, which were treated in Section 4. The previous section
motivates a second instance of the generic expansion calculus. Here the parameters TH
and GS depend on a given input term, i.e. a SIG-term t with var(t) ⊆ Xin.

Let >SP be a reduction ordering for SP and t be an input term. RTh(SP) denotes
the set of all SP -convergent ground goals and GSub(>SP , t) stands for the set of all
ground substitutions σ such that all SP -convergent ground goals g <SP tσ are strongly
SP -convergent.

Let TH = RTh(SP) and GS = GSub(>SP , t). Then the conditions on TH and GS
given in Section 3 hold true because t is an input term. Moreover, a Gentzen clause
c is sub-t-reductively valid w.r.t. SP iff c follows from TH by induction on GS (cf.
Definition 3.1).

Definition 6.1. A goal g is t-bounded if for all σ ∈ GSub, gσ `SP ∅ implies tσ >SP
gσ.

Proposition 6.2. t-bounded goals are (TH,GS)-equivalence compatible (cf. Defini-
tion 3.2).

Proof. Let g[u/x] be a t-bounded goal and v be a SIG-term. The clause

c = g[v/x]⇐ g[u/x] ∪ {u ≡ v}

must follow from TH by induction on GS. Hence suppose that (g[u/x] ∪ {u ≡ v})σ ∈
TH for some σ ∈ GS, i.e. g[u/x]σ is SP -convergent, u and v are SP -joinable and
all SP -convergent ground goals h <SP tσ are strongly SP -convergent. This implies
g[v/x]σ `SP ∅ because g[u/x] is t-bounded. We conclude that c follows from TH by
induction on GS.2

Axioms with t-bounded premises are sub-t-reductively valid if SP is strongly termi-
nating and normal form complete:

70 P. Padawitz

Proposition 6.3. Suppose that SP = (SIG,AX) is strongly terminating and normal
form complete. c = (l ≡ r ⇐ h) ∈ AX is sub-t-reductively valid w.r.t. SP if h is
t-bounded.

Proof. Let σ ∈ GS such that hσ is SP -convergent. Since h is t-bounded, tσ >SP
hσ. Hence hσ is strongly SP -convergent because σ ∈ GS. Since SP be normal form
complete, there is τ : X → NFSIG such that xσ →∗SP xτ for all x ∈ var(c). Hence
hτ is SP -convergent because hσ is strongly SP -convergent. This implies lτ →SP rτ by
the definition of →SP . Hence lσ ≡ rσ is SP -convergent. We conclude that c is sub-t-
reductively valid w.r.t. SP . 2

In particular, all unconditional axioms are sub-t-reductively valid.

Since GS is a proper subset of GSub, the condition

τ ∈ GS implies ρστ ∈ GS

of inductive resolution and paramodulation (cf. Definition 3.5) does not hold trivially
as in the case of inductive expansions (cf. Section 4). But it is easy to see that this
implication holds true whenever tτ >SP tρστ . This condition complies well with the
descent condition

xinÀxinρσ ≡ true

generated by inductive resolution and paramodulation. Also taking into account Propo-
sition 6.2, the rules of sub-t-reductive expansion are thus simplified as follows (cf. Sec-
tion 3): Let CS be a set of Gentzen clauses and ρ : X → X be a renaming of Xin away
from Xin.

Backward deductive resolution. Let σ ∈ Sub and {∃X1h1σ, . . . , ∃Xnhnσ} ⇐ h ∈
Gen(TH,GS) such that for all 1 ≤ i ≤ n, hiσ is t-bounded and Xi ∩ var(giσ ∪Xinσ ∪
Xin) = ∅

{g1 ∪ h1, . . . , gn ∪ hn}
{g1σ ∪ · · · ∪ gnσ ∪ h ∪ EQ(σin)}

.

Backward deductive paramodulation. Let σ ∈ Sub, {∃X1(u ≡ t1)σ, . . . , ∃Xn(u ≡
tn)σ} ⇐ h ∈ Gen(TH,GS) and x ∈ var(g1 ∩ · · · ∩ gn) such that for all 1 ≤ i ≤ n,
Xi ∩ var(gi[u/x]σ ∪Xinσ ∪Xin) = ∅

{g1[t1/x], . . . , gn[tn/x]}
{g1[u/x]σ ∪ · · · ∪ gn[u/x]σ ∪ h ∪ EQ(σin)}

.

Backward inductive resolution. Let c = ({∃X1h1, . . . ,∃Xnhn} ⇐ h) ∈ CS and
σ ∈ Sub be a renaming of Z = X1 ∪ · · · ∪ Xn away from var(c) such that for all
1 ≤ i ≤ n, fiσ = hiρσ is t-bounded and Zσ ∩ var(giσ ∪ Xinσ ∪ Xin) = ∅, and for all
τ ∈ GSub, tτ >SP tρστ

{g1 ∪ f1, . . . , gn ∪ fn}
{g1σ ∪ · · · ∪ gnσ ∪ hρσ ∪ {xinÀxinρσ ≡ true} ∪ EQ(σin)}

.

Backward inductive paramodulation. Let c = ({∃X1(u ≡ t1), . . . , ∃Xn(u ≡
tn)} ⇐ h) ∈ CS, x ∈ var(g1 ∩ · · · ∩ gn) and σ ∈ Sub be a renaming of Z = X1 ∪ · · · ∪Xn

away from var(c) such that for all 1 ≤ i ≤ n, uiσ = tiρσ and Zσ ∩ var(gi[uρ/x]σ ∪

Inductive Theorem Proving for Design Specifications 71

Xinσ ∪Xin) = ∅, and for all τ ∈ GSub, tτ >SP tρστ
{g1[u1/x], . . . , gn[un/x]}

{g1[uρ/x]σ ∪ · · · ∪ gn[uρ/x]σ ∪ hρσ ∪ {xinÀxinρσ ≡ true} ∪ EQ(σin)}
.

t-boundedness also replaces equivalence compatibility in the definition of sub-t-reductive
expansion:

Definition 6.4. A sequence E = (gs1, . . . , gsn) of goal sets is called a sub-t-reductive
expansion upon SP if

• for all 1 ≤ i < n, gsi+1 is obtained from gsi by a single deductive or inductive
resolution or paramodulation step as defined above,
• for all 1 ≤ i ≤ n, gsi consists of t-bounded goals.

If E uses induction hypotheses from a set, CS, of Gentzen clauses, we write gs1 `tSP,CS
gsn.

Analogously to Theorem 4.2, we obtain a special case of Theorem 3.6(1) and Corol-
lary 3.9, respectively:

Theorem 6.5. (subreductive expansions are sound)

(1) Let c = {g1, . . . , gm} ⇐ h be a Gentzen clause and CS = {gs1 ⇐ h1, . . . , gsn ⇐ hn}
be a set of Gentzen clauses such that for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, h ⇐ hj,
gsj ⇐ gi ∈ Gen(TH,GS). Then {g1, . . . , gm} `tSP,CS {h} implies {c} ∪ CS ⊆
Gen(TH,GS).

(2) Let HS = {g1 ⇐ g : h1, . . . , gn ⇐ g : hn} be a set of guarded clauses such that
{h1, . . . , hn} is g-minimal w.r.t. (TH,GS) and for all 1 ≤ i, j ≤ n, Xi =def

fresh(gi ⇐ g ∪ hi) and hi = hj implies gi = gj. Let

c = {∃X1(g1 ∪ h1), . . . , ∃Xn(gn ∪ hn)} ⇐ g.

Then {∃X1(g1 ∪ h1), . . . , ∃Xn(gn ∪ hn)} `tSP,HS {g} implies {c} ∪HS ⊆ Gen(TH,GS).

Theorems 5.14 and 6.5 justify the method for proving ground confluence by subreduc-
tive expansion:

Theorem 6.6. (criterion for ground confluence) Suppose that SP is strongly
terminating and normal form complete. If for all SP -critical clauses t ≡ u ≡ v ⇐ h,

{u ≡ v} `tSP,{u≡v⇐h} h,
then SP is ground confluent.

Theorem 6.6 allows us to apply the critical clause c as an induction hypothesis when
proving that c is subreductively valid. Moreover, Σ-simplification (cf. Section 4) can be
applied to a goal set gs of a sub-t-reductive expansion without violating its soundness if
gs⇔ Σ(gs) is sub-t-reductively valid.

In closing this section, we stress the point that, for proving ground confluence, the
subreductive validity of a critical clause c or of a lemma used in an expansion of c cannot

72 P. Padawitz

be concluded from its inductive validity with the help of Theorem 5.13. This theorem
assumes that SP is ground confluent, while a subreductive expansion is a part of the
proof that SP is ground confluent.

7. Strong Termination and t-boundedness

Theorem 6.6 provides a method for showing ground confluence: construct subreductive
expansions of critical clauses. Yet it lacks criteria for the strong termination of SP and the
t-boundedness of the goals of a sub-t-reductive expansion (cf. Definition 6.4). Sufficient
conditions for both properties are obtained on the basis of a systematic construction of
reduction orderings. To this end we have introduced the path calculus for deriving valid
pairs t >SP u where t and u are terms, equations or multisets of terms and equations (cf.
Padawitz (1992), Section 6.2). A reduction ordering >SP extends to multisets of terms
and equations as follows:

• M >SP N ⇐⇒ M 6= N and for all u ∈ N\M there is t ∈M\N such that t >SP u,
• M >SP (t ≡ t′) ⇐⇒ M >SP {t, t′},
• (t ≡ t′) >SP M ⇐⇒ {t, t′} >SP M .

We remind the reader of Assumption 5.1, that all logical predicates of SIG are regarded
as operations and, consequently, the logical atom P (t) is actually an abbreviation of the
equation P (t) ≡ true.

Definition 7.1. (path calculus) Suppose that

• ≥SIG is a reflexive and transitive relation on the set of operations and logical pred-
icates of SIG,

• Â is a set of predicates of SIG with transitive and well-founded interpretations in
Ini(SP) (cf. Definition 4.1).

The (≥SIG,Â)-path calculus for SP consists of the following inference rules for de-
riving goal sets where the atoms are SIG-atoms and expressions of the form tÀu such
that t and u are terms, equations or multisets of terms and equations.

Multiset rules. Let true 6= t 6= ∅, t′ 6= ∅ 6= u ∪ u′ and t ∪ u 6= t′ ∪ u′ .

{(t ∪ u)À(t′ ∪ u′)}†
{tÀt′, (t ∪ u)Àu′}

{(t ∪ u)Àu}
TRUE

{tÀu ≡ u′}
{tÀ{u, u′}}

{u ≡ u′Àt′}
{{u, u′}Àt′}

{tÀtrue}
TRUE

.

Subterm rules. Let F (t1, . . . , tk) be a term and 1 ≤ i ≤ k.
{F (t1, . . . , tk)Àt}

{tiÀt}
{F (t1, . . . , tk)Àti}

TRUE
.

SIG-rules. Let t and F (t1, . . . , tk) be terms such that F ≥SIG G, but not G ≥SIG F .

{tÀF (t1, . . . , tk)}
{tÀ{t1, . . . , tk}}

.

† Where ∪ denotes multiset union.

Inductive Theorem Proving for Design Specifications 73

Let F (t1, . . . , tk) and G(u1, . . . , un) be terms such that F ≥SIG G and G ≥SIG F .

{F (t1, . . . , tk)ÀG(u1, . . . , un)}
{(t1, . . . , tk) Â (u1, . . . , un), F (t1, . . . , tk)À{u1, . . . , un}}
∨{(t1, . . . , tk) ≡ (u1, . . . , un), {t1, . . . , tk}À{u1, . . . , un}}

if k = n

{F (t1, . . . , tk)À G(u1, . . . , un)}
{(t1, . . . , tk) Â (u1, . . . , un), F (t1, . . . , tk)À {u1, . . . , un}}

if k 6= n.

The corresponding inference relation is denoted by `path.
Given a set Sol of ground substitutions, we add a further rule to the (≥SIG,Â)-path

calculus:

Sol-rule
tÀx

{tÀxσ | σ ∈ Sol} if x ∈ X\var(t).

The inference relation of the path calculus for (≥SIG,Â) extended by the Sol-rule is
denoted by `pathSol .

A path calculus for SP does not only depend on the syntax of SP via the signature
ordering ≥SIG and binary predicates Â, but also takes into account the semantics of SP
by the requirement that Â is interpreted in Ini(SP) as a set of well-founded relations.
This is the same condition a descent function has to satisfy (cf. Section 3). IfÂ stems from
descent functions, we might say that the reduction ordering >SP defined below is based
on induction orderings. Indeed, for applying inductive rules in subreductive expansions,
the descent function must be included into Â (see below).

Theorem 7.2. (reduction ordering defined by a path calculus) Given a path
calculus for SP , define a binary relation >SP on TSIG as follows: For all ground terms
t, u,

t >SP u ⇐⇒ {tÀu} `path gs for a goal set gs such that SP `cut g for some g ∈ gs

(cf. Section 4). >SP is a reduction ordering for SP (cf. Definition 5.10) if for all c =
(l ≡ r ⇐ h) ∈ AX the following condition holds true:

(1) lσ >SP {rσ}∪hσ for all σ ∈ GSub such that hσ is SP -convergent and fresh(c)σ ⊆
NFSIG(X)†

Proof. Padawitz (1992), Theorem 6.7. 2

Condition 7.2(1) can also be proved with the given path calculus for SP , extended by
the Sol-rule where Sol is the set of ground solutions of h:

Corollary 7.3. (criterion for strong termination) Let >SP be defined as in
Theorem 7.2 and

Sol =def {σ ∈ GSub | SP `cut hσ, fresh(c)σ ⊆ NFSIG(X)}.

† The extension of >SP to multisets is defined as above.

74 P. Padawitz

>SP is a reduction ordering for SP if all (l ≡ r ⇐ h) ∈ AX are SP -decreasing, i.e.
there is a goal set gs such that

{lÀ{r} ∪ h} `pathSol gs

and gs⇐ h is an inductive SP -theorem (cf. Definition 4.1).

Proof. Let (l ≡ r ⇐ h) ∈ AX and σ ∈ GSub such that hσ is SP -convergent and
fresh(c)σ ⊆ NFSIG(X). Hence SP `cut hσ and thus σ ∈ Sol. Let {lÀ{r} ∪ h} `pathSol gs
such that gs ⇐ h ∈ ITh(SP). Then {lσÀ{rσ} ∪ hσ} `path gsσ and SP `cut gsσ. The
definition of >SP implies lσ >SP {rσ} ∪ hσ. Hence 7.2(1) holds true and we conclude
that >SP is a reduction ordering for SP . 2

With regard to the axiom l ≡ r ⇐ h, Corollary 7.3 yields a criterion for the l-
boundedness of h. The general t-boundedness criterion reads as follows:

Lemma 7.4. (criterion for t-boundedness) Let >SP be defined as in Theorem 7.2,
t be an input term (cf. Section 6), g be a goal and

Sol =def {σ ∈ GSub | SP `cut gσ}.
g is t-bounded (cf. Definition 6.1) if there is a goal set gs such that

{tÀg} `pathSol gs

and gs⇐ g is an inductive SP -theorem.

Proof. Let σ ∈ GSub such that gσ is SP -convergent. Hence SP `cut gσ and thus
σ ∈ Sol. Let {tÀg} `pathSol gs such that gs ⇐ g ∈ ITh(SP). Then {tσÀgσ} `path gsσ
and SP `cut gsσ. The definition of >SP implies tσ >SP gσ. 2

The path calculus defining >SP can also be used to show the condition

(1) tτ >SP tρστ

on inductive steps of subreductive expansions (cf. Definition 6.4). Since (1) comes together
with the descent condition xinÀxinρσ ≡ true, (1) can be guaranteed if À is included
in the parameter Â of the path calculus defining >SP . Both À and Â are required to
have well-founded interpretations in Ini(SP). If, in addition, F >SIG G for the leftmost
symbol F of t and all operations G of xinρσ, then, indeed, (1) can be derived by applying
SIG-rules (cf. Definition 7.1). F >SIG G holds true if F is a defined function, G is a
constructor (cf. Definition 5.2) and, as usual, defined functions dominate constructors
with respect to the symbol ordering ≥SIG of the path calculus.

Example 7.5. (stack as map) Using Expander syntax (cf. Section 1.1) we specify fi-
nite stacks, finite maps (arrays, RAMs) and an implementation of stacks by pairs of
a map and a top index. This example is a popular “benchmark” for formal refinement
approaches (cf. e.g. Guttag, Horowitz and Musser 1976, Section 4.4; Padawitz 1992,
Example 7.20; Malcolm and Goguen 1994, Section 4.1). As constructor-based specifica-
tions, STACK and MAP have separate lists for constructors (consts) and defined functions
(defs) (cf. Definition 5.2).

Inductive Theorem Proving for Design Specifications 75

STACK
consts 0 empty push
defs pop 1 2 top 3 4
vars x st
axioms (1) {pop(empty)=empty}

(2) {pop(push(x,st))=st}
(3) {top(empty)=0}
(4) {top(push(x,st))=x}

MAP
consts 0 new put >
defs <> get 3 4 5
vars i j x y f
axioms (1) {put(i,x,put(i,y,f))=put(i,x,f)}

(2) {put(i,x,put(j,y,f))=put(j,y,put(i,x,f))} <== {j>i}
(3) {get(new,i)=0}
(4) {get(put(i,x,f),i)=x}
(5) {get(put(i,x,f),j)=get(f,j)} <== {i<>j}

The implementation is given by an extension of MAP:

STACK_AS_MAP
base MAP
consts s mkStack
defs empty 1 push 2 pop 3 4 top 5
vars st
axioms (1) {empty=mkStack(new,0)}

(2) {push(x,mkStack(f,i))=mkStack(put(s(i),x,f),s(i))}
(3) {pop(mkStack(f,0))=mkStack(f,0)}
(4) {pop(mkStack(f,s(i)))=mkStack(f,i)}
(5) {top(mkStack(f,i))=get(f,i)}
(6) {mkStack(put(i,x,f),j)=mkStack(f,j)} <== {i>j}.

Axioms 1 to 5 realize the operations of STACK in terms of MAP. mkStack is the abstraction
function from pairs of a map and an index to stacks. Axiom 6 defines the equivalence
relation on stacks induced by mkStack. It says that all updates of f at indices i greater
than the stacktop index j do not change the stack implemented by f . Without going
into the discussion of what makes an implementation correct in general we claim that
the following three conditions are reasonable requirements for calling STACK_AS_MAP a
correct implementation of STACK by MAP.

(1) The union SP of STACK and STACK_AS_MAP is ground confluent.
(2) The axioms of STACK are inductive STACK_AS_MAP-theorems.
(3) Axiom 6 of STACK_AS_MAP is an inductive SP ′-theorem where SP ′=SP\{Axiom 6}.

Proof of (1). In order to apply Theorem 6.6 we first note that SP is constructor-based
(cf. Definition 5.2). It might look strange to regard the predicate> as a constructor of the
subspecification MAP of SP . But we are forced to do so because > occurs in a constructor

76 P. Padawitz

axiom of MAP. SP is also normal form complete and strongly terminating. For proving the
latter we refer to Corollary 7.3. The signature ordering ≥SIG of a suitable path calculus
for SP can be defined as the transitive closure of

{pop, top} ≥SIG {empty, push} ≥SIG {mkStack} ≥SIG {get} ≥SIG {new, put}
≥SIG {0, s, >,<>}.

For ensuring that Axiom 2 of MAP is SP -decreasing (cf. Corollary 7.3), SP must be
extended by predicates >3 and >map such that

(i,x,f)>3(j,y,f) <== i>j
(i,x,f)>3 (j,y,g) <== f>map g
put(i,x,f)>map put(j,y,g) <== (i,x,f)>3 (j,y,g)
{put(i,x,f)>map f} \/ {put(i,x,f)=f}

are inductive SP -theorems. The predicate > of MAP, >3 and >map are included in the
path calculus parameter Â (cf. Definition 7.1). Under these assumptions we obtain the
following proof that Axiom 2 of MAP is SP -decreasing. It involves applications of both
the (≥SIG,Â)-path calculus and the inductive expansion calculus (cf. Definition 4.1).

{put(i, x, put(j, y, f))À{put(j, y, put(i, x, f)), j > i}}
`path {put(i, x, put(j, y, f))Àput(j, y, put(i, x, f))}
`path {{(i, x, put(j, y, f)) >3 (j, y, put(i, x, f)), put(i, x, put(j, y, f))À{j, y, put(i, x,

f)}},
{(i, x, put(j, y, f)) ≡ (j, y, put(i, x, f)), {i, x, put(j, y, f)}À{j, y, put(i, x, f)}}}

`SP,∅ {(i, x, put(j, y, f)) >3 (j, y, put(i, x, f)), put(i, x, put(j, y, f))À{j, y, put(i, x,
f)}}

`SP,∅ {put(j, y, f) >map put(i, x, f), put(i, x, put(j, y, f))Àput(i, x, f)}
`SP,∅ {j > i, put(i, x, put(j, y, f))Àput(i, x, f)}
`path {{j > i, (i, x, put(j, y, f)) >3 (i, x, f), put(i, x, put(j, y, f)) >> {i, x, f}},

{j > i, (i, x, put(j, y, f)) ≡ (i, x, f), {i, x, put(j, y, f)}À{i, x, f}}}
`path {{j > i, (i, x, put(j, y, f)) >3 (i, x, f)},

{j > i, (i, x, put(j, y, f)) ≡ (i, x, f)}}
`SP,∅ {{j > i, put(j, y, f) >map f},

{j > i, put(j, y, f) ≡ f}}
`SP,∅ {j > i}.

Next we must find out the set CC of SP -critical clauses (cf. Definition 5.9, Theorem 6.6).
We leave it to the reader to construct (the 8 elements of) the set CC(MAP) of MAP-critical
clauses. The rest of CC is given by the following clauses:

(1) pop(empty)=empty=pop(mkStack(new,0))
(2) pop(push(x,mkStack(f,i)))=mkStack(f,i)=pop(mkStack(put(s(i),x,f),

s(i)))
(3) top(empty)=0=top(mkStack(new,0))
(4) top(push(x,mkStack(f,i)))=x=top(mkStack(put(s(i),x,f),s(i)))
(5) push(x,mkStack(put(i,y,f),j))=mkStack(put(s(j),x,put(i,y,f),n,x),

s(j))=push(x,mkStack(f,j)) <== i>j
(6) pop(mkStack(put(i,x,f),0))=mkStack(put(i,x,f),0)=pop(mkStack(f,0))

<== i>0

Inductive Theorem Proving for Design Specifications 77

(7) pop(mkStack(put(i,x,f),s(j)))=mkStack(put(i,x,f),j)
=pop(mkStack(f,s(j))) <== i>s(j)

(8) top(mkStack(put(i,x,f),j))=get(put(i,x,f),j)=top(mkStack(f,j))
<== i>j

(9) mkStack(put(i,x,put(i,y,f)),k)=mkStack(put(i,y,f),k)
=mkStack(put(i,x,f),k) <== i>k

(10) mkStack(put(i,x,put(j,y,f)),k)=mkStack(put(j,y,f),k)
=mkStack(put(j,y,put(i,x,f)),k) <== j>i>k.

By Theorem 6.6, it remains to show {u ≡ v} `tSP,{u≡v⇐h} h, for all {t ≡ u ≡ v} ⇐ h ∈
CC. We present subreductive expansions for the above 10 clauses, corresponding ones
for CC(MAP) are left to the reader. That each goal of these expansions is t-bounded can
be shown easily with the help of Lemma 7.4 based on the above-sketched path calculus.

initial conclusion:
(1) {empty=pop(mkStack(new,0))}
term at position 1 2 in conclusion goal 1 replaced with axiom

STACK_AS_MAP3
conclusion:
(1) {empty=mkStack(new,0)}
atom 1 in conclusion goal 1 replaced with axiom STACK_AS_MAP1
conclusion:
(1) TRUE

initial conclusion:
(1) {mkStack(f,i)=pop(mkStack(put(s(i),x,f),s(i)))}
term at position 1 2 in conclusion goal 1 replaced with axiom

STACK_AS_MAP3
conclusion:
(1) {mkStack(f,i)=mkStack(put(s(i),x,f),i)}
term at position 1 2 in conclusion goal 1 replaced with axiom

STACK_AS_MAP6
conclusion:
(1) {s(i)>i}
atom 1 in conclusion goal 1 replaced with theorem s(i)>i
conclusion:
(1) TRUE

initial conclusion:
(1) {0=top(mkStack(new,0))}
term at position 1 2 in conclusion goal 1 replaced with axiom

STACK_AS_MAP5
conclusion:
(1) {0=get(new,0)}
term at position 1 2 in conclusion goal 1 replaced with axiom MAP3
conclusion:
(1) TRUE

initial conclusion:

78 P. Padawitz

(1) {x=top(mkStack(put(s(i),x,f),s(i)))}
term at position 1 2 in conclusion goal 1 replaced with axiom

STACK_AS_MAP5
conclusion:
(1) {x=get(put(s(i),x,f),s(i))}
term at position 1 2 in conclusion goal 1 with axiom MAP4
conclusion:
(1) TRUE

initial conclusion:
(1) {mkStack(put(s(j),x,put(i,y,f)),s(j))=push(x,mkStack(f,j))}
initial premise:
(1) {i>j}
term at position 2 1 in conclusion goal 1 replaced with axiom

STACK_AS_MAP2
conclusion:
(1) {mkStack(put(s(j),x,put(i,y,f)),s(j))=mkStack(put(s(j),x,f),

s(j))}
term at position 1 1 1 in conclusion goal 1 replaced with axiom MAP1
conclusion:
(1) {mkStack(put(s(j),x,f),s(j))=mkStack(put(s(j),x,f),s(j)),i=s(j)}
(2) {mkStack(put(s(j),x,put(i,y,f)),s(j))=mkStack(put(s(j),x,f),

s(j))}
term at position 1 1 1 in conclusion goal 2 replaced with axiom MAP2
conclusion:
(1) {i=s(j)}
(2) {mkStack(put(i,y,put(s(j),x,f)),s(j))=mkStack(put(s(j),x,f),
s(j)),i>s(j)}
atom 1 in conclusion goal 2 replaced with axiom STACK_AS_MAP6
conclusion:
(1) {i=s(j)}
(2) {i>s(j)}
atoms 1 1 in conclusion goals 1 2 replaced with theorem i=s(j) \/

i>s(j) <== i>j
conclusion:
(1) {i>j}

initial conclusion:
(1) {mkStack(put(i,x,f),0)=pop(mkStack(f,0))}
initial premise:
(1) {i>0}
term at position 2 1 in conclusion goal 1 replaced with axiom

STACK_AS_MAP3
conclusion:
(1) {mkStack(put(i,x,f),0)=mkStack(f,0)}
atom 1 in conclusion goal 1 replaced with axiom STACK_AS_MAP6
conclusion:
(1) {i>0}

Inductive Theorem Proving for Design Specifications 79

initial conclusion:
(1) {mkStack(put(i,x,f),j)=pop(mkStack(f,s(j)))}
initial premise:
(1) {i>s(j)}
term at position 2 1 in conclusion goal 1 replaced with axiom

ARRAY2STACK4
conclusion:
(1) {mkStack(put(i,x,f),j)=mkStack(f,j)}
atom 1 in conclusion goal 1 replaced with axiom STACK_AS_MAP6
conclusion:
(1) {i>j}
atom 1 in conclusion goal 1 replaced with theorem i>j <== i>s(j)
conclusion:
(1) {i>s(j)}

initial conclusion:
(1) {get(put(i,x,f),j)=top(mkStack(f,j))}
initial premise:
(1) {i>j}
term 1 1 in conclusion goal 1 replaced with axiom MAP5
conculsion:
(1) {get(f,j)=top(mkStack(f,j)),i<>j}
term 1 2 in conclusion goal 1 replaced with axiom STACK_AS_MAP5
conculsion:
(1) {i<>j}

atom 1 in conclusion goal 1 replaced with theorem i<> <== i>j
conclusion:
(1) {i>j}

initial conclusion:
(1) {mkStack(put(i,y,f),k)=mkStack(put(i,x,f),k)}
initial premise:
(1) {i>k}
term 1 1 in conclusion goal 1 replaced with axiom STACK_AS_MAP6
conclusion:
(1) {mkStack(f,k)=mkStack(put(i,x,f),k),i>k}
term 2 1 in conclusion goal 1 replaced with axiom STACK_AS_MAP6
conclusion:
(1) {i>k}

initial conclusion:
(1) {mkStack(put(j,y,f),k)=mkStack(put(j,y,put(i,x,f)),k)}
initial premise:
(1) {j>i,i>k}
term at position 1 1 in conclusion goal 1 replaced with axiom

STACK_AS_MAP6
conclusion:
(1) {mkStack(f,k)=mkStack(put(j,y,put(i,x,f)),k),j>k}
term at position 1 2 in conclusion goal 1 replaced with axiom

80 P. Padawitz

STACK_AS_MAP6
conclusion:
(1) {mkStack(f,k)=mkStack(put(i,x,f),k),j>k}
term at position 1 2 in conclusion goal 1 replaced with axiom

STACK_AS_MAP6
conclusion:
(1) {j>k,i>k}
atom 1 in conclusion goal 1 replaced with theorem j>k <== j>i>k
conclusion:
(1) {j>i,i>k}.

Proof of (2). All axioms of STACK are ground reducible w.r.t. STACK_AS_MAP.

Definition. (ground reducibility) Let SP = (SIG,AX) be a Horn clause specifi-
cation, C be a set of Horn clauses over SIG and SP ′ = (SIG,AX ∪ C). C is ground
reducible w.r.t. SP if for all t ≡ u ⇐ h ∈ C and σ ∈ GSub such that hσ is SP ′-
convergent, tσ is not SP -reduced.

Since by (1), the union of STACK and STACK_AS_MAP is ground confluent, the follow-
ing result implies immediately that all axioms of STACK are inductive STACK_AS_MAP-
theorems.

Lemma. (ground reproducibility lemma) (Padawitz 1992, Lemma 7.11(1))†. Let
SP = (SIG,AX) be a Horn clause specification, C be a set of Horn clauses over SIG
and SP ′ = (SIG,AX ∪ C). If SP ′ is ground confluent and strongly terminating and C
is ground reducible w.r.t. SP , then C ⊆ ITh(SP).

Proof of (3). We extend SP\{Axiom 6} with a descent functionÀ used in the inductive
expansion of Axiom 6 given below.

SP’
base STACK STACK_AS_MAP-{Axiom 6}
defs >> 1
infixes >>
vars i j x f
axioms (1) {(i,x,f,j) >> (i,x,f,s(j))=true} <== {i>s(j)}
conjects (1) {mkStack(put(i,x,f),j)=mkStack(f,j)} <== {i>j}

initial conclusion:
(1) {mkStack(put(i,x,f),j)=mkStack(f,j)}
initial premise:
(1) {i>j}
term at position 1 1 in conclusion goal 1 replaced with axiom

STACK_AS_MAP4
conclusion:
(1) {pop(mkStack(put(i,x,f),s(j)))=mkStack(f,j)}
term at position 1 2 in conclusion goal 1 replaced with axiom

† This result generalizes Jouannaud and Kounalis (1986), Theorem 1, from unconditional equational
specifications to Horn clause specifications.

Inductive Theorem Proving for Design Specifications 81

STACK_AS_MAP4
conclusion:
(1) {pop(mkStack(put(i,x,f),s(j)))=pop(mkStack(f,s(j)))}
term at position 1 1 1 in conclusion goal 1 replaced with axiom

STACK_AS_MAP2
conclusion:
(1) {i=s(j),pop(push(x,mkStack(f,j)))=pop(mkStack(f,s(j)))}
(2) {pop(mkStack(put(i,x,f),s(j)))=pop(mkStack(f,s(j)))}
term at position 2 1 in conclusion goal 1 replaced with axiom STACK1
conclusion:
(1) {i=s(j),mkStack(f,j)=pop(mkStack(f,s(j)))}
(2) {pop(mkStack(put(i,x,f),s(j)))=pop(mkStack(f,s(j)))}
term at position 2 1 in conclusion goal 1 replaced with axiom

STACK_AS_MAP4
conclusion:
(1) {i=s(j)}
(2) {pop(mkStack(put(i,x,f),s(j)))=pop(mkStack(f,s(j)))}
term at position 1 1 1 in conclusion goal 2 replaced with

conjecture 1
conclusion:
(1) {i=s(j)}
(2) {(i,x,f,j) >> (i,x,f,s(j))=true,i>s(j)}
term at position 1 1 in conclusion goal 2 replaced with axiom SP’1
conclusion:
(1) {i=s(j)}
(2) {i>s(j)}
atoms 1 1 in conclusion goals 1 2 replaced with theorem i=s(j) \/

i>s(j) <== i>j
conclusion:
(1) {i>j}.

One important benefit from proving ground confluence by subreductive expansion in-
stead of inductive completion (cf. Section 1.2) is the fact that the lemmas applied in a
subreductive expansion are not added to the axioms of the specification, and thus need
neither be decreasing nor checked for redex overlays among themselves or with the orig-
inal axioms. By the definition of a sub-t-reductive expansion (6.4), we must only check
that all proof goals are t-bounded.

In Padawitz (1992), Section 7.4, we have generalized inductive completion from uncon-
ditional equations to Horn clauses. Actually, a proof of C by inductive completion is a
set of subreductive expansions upon SP ∪C of proper reducts of C. In Padawitz (1992),
such a proof of C is called a reductive expansion of C. In the case of unconditional ax-
ioms reductive expansion essentially agrees with term rewriting induction for orientable
equations (cf. Reddy 1990, Proposition 13). Here the conjectures of C are not used as
induction hypotheses, but as additional axioms. This sounds more liberal, but is in fact
more restrictive, because the method requires SP ∪C to be strongly terminating so that
in fact only SP -decreasing conjectures can be proved (cf. Corollary 7.3).

The confinement to t-bounded proof goals and decreasing conjectures remains even if

82 P. Padawitz

we exploit the Ground Reducibility Lemma (cf. Example 7.5) to its full extent. Firstly,
this lemma has an inverse: if

(1) SP is canonical (cf. Definition 5.11),
(2) SP ′ = SP ∪ C is strongly terminating

and C ⊆ ITh(SP), then C is ground reducible w.r.t. C. Secondly, if (1) and (2) hold
true and C is ground reducible, then, for proving that SP ′ is ground confluent, one need
not check all SP ′-critical clauses, but only those induced by C on SP , and even the con-
dition of subreductive validity these clauses must satisfy can be weakened considerably.
Without going into the details of this approach† we call the pair (SP,C) inductively
convergent if these conditions, which are weaker than critical clause convergence of SP ′,
are fulfilled. The underlying weaker notion of subreductive validity reads as follows (cf.
Definition 5.12):

Definition 7.6. (subreductive validity w.r.t. (SP,C)) Given a specification
SP = (SIG,AX), a set C of Horn clauses over SIG, a reduction ordering >SP for
SP and a SIG-equation (!) e, a Gentzen clause c = gs ⇐ h is sub-e-reductively
valid w.r.t. (SP,C) if for all σ ∈ GSub such that hσ is SP ′-convergent and all SP ′-
convergent ground goals g <SP eσ are strongly SP ′-convergent and SP-convergent, g′τ
is SP ′-convergent for some g′ ∈ gs and τ ∈ GSub with τ =in(c) σ.

This definition gives rise to a further instance of generic expansion: let TH = RTh(SP ′)
as in Section 6 and define GS as the set of all ground substitutions σ such that all SP ′-
convergent ground goals g < tσ are strongly SP ′-convergent and SP-convergent. Section 6
then provides a method for proving inductive convergence, which is even more general
than the two criteria for the (SP,C)-subreductive validity of critical clauses given in
Padawitz (1995).

Inductive convergence generalizes term rewriting induction somewhat further than
reductive expansion, although the basic assumption that there is a reduction ordering
for SP ′ and C is SP -decreasing w.r.t. that ordering is the same. The attractiveness
of rewriting induction comes from the above-mentioned invertibility of the underlying
results. For instance, if (1) holds true, then C consists of inductive theorems of SP only
if (SP,C) is inductively convergent (cf. Padawitz 1995). Hence inductive convergence
characterizes inductive validity under Assumptions (1) and (2). Since a proof of C by
inductive convergence reduces C to SP ′-critical clauses, it often goes through without
explicit induction steps. These two properties of inductive convergence and other variants
of rewrite induction or inductive completion cause some people to call them “automatic”
or even “inductionless”.

Since, roughly said, the reduction ordering for SP ′ takes over the role of induction
orderings, it has also been claimed that rewriting induction avoids hierarchical proofs
where lemmas need other induction orderings than the actual conjectures and thus cannot
be proved “in the same run” (cf. Reddy 1990, Example 15). We claim that this depends
on the range of induction orderings the proof system allows us to use. If the lemmas are
specializations of the conjectures, then there is, of course, an induction ordering which
both can be based upon so that they can be proved simultaneously. If, however, some

† Which are given in Padawitz (1995).

Inductive Theorem Proving for Design Specifications 83

Figure 2. The impact of canonicity.

lemma properly generalizes some conjecture, rewriting induction will need a separate
proof of this lemma as well, as explicit induction will do. For instance, in Reddy’s example
(Reddy 1990, Example 15), in the proof of x+ y ≡ y+ x, the lemmas are specializations
and thus need not be proved separately if one uses the following induction ordering (cf.
Section 3):

(x, y)À(x′, y′) ⇐⇒ x+ y > x′ + y′.

x + y ≡ y + x is not decreasing and thus cannot be proved by rewriting induction.
For such cases Reddy proposed SP -rewriting modulo C instead of SP ′-rewriting (cf.
Reddy 1990, Remark 14). We mentioned rewriting modulo a theory in Section 1.5 as a
kind of “built-in” simplification. Rewriting modulo works well only for theories that are
represented by very simple unconditional axioms such as commutativity, associativity
or idempotency of a binary function. The equation x + y ≡ y + x falls into this class,
but program correctness conditions rarely have such a simple structure. Hence rewriting
modulo conjectures of this kind cannot lead to a fairly general proof method.

Another approach to circumvent the requirement that conjectures be decreasing is
taken by Kounalis and Rusinowitch (1990), and Bouhoula, Kounalis and Rusinowitch
(1992). Essentially, their method is a proof that C is reductively valid w.r.t. SP (cf.
Definition 5.12), carried out by explicit induction along a reduction ordering for SP .
They induce on test set instances of C. Roughly said, a test set TS(c) for c ∈ C, is
a set of substitutions that subsumes all ground solutions of the premise of c. TS(c)

84 P. Padawitz

corresponds to the set of critical clauses of c on axioms of SP if C were proved by inductive
convergence. Padawitz (1995) shows that if the minimal substitutions obtained from the
critical clauses of C on SP (cf. Definition 5.9) form test sets for C, then Assumption (2)
can indeed be dropped from the above-mentioned characterization of inductive validity
by inductive convergence. Only (1) is left, which is also the main assumption to ensure
that S-controlled goal generation and refutation are sound deduction rules (cf. Section 8).

Both results also yield methods to refute inductive theorems: if c = g ⇐ h is not
provable by inductive convergence, then c is invalid; if S(g) = ∅, then c is invalid either
(cf. Lemma 8.5(2)). The following lemma provides another criterion for invalidity un-
der Assumption (1) and thus confirms the thesis of Section 1.4 that ground confluence
is crucial for refutation procedures (cf. Bouhoula, Kounalis, and Rusinowitch (1992),
Theorem 18†).

Lemma 7.7. (reduced theorems are invalid) Let SP = (SIG,AX) be a canonical
specification and c = t ≡ u⇐ g be a Horn clause over SIG, with t 6= u. c 6∈ ITh(SP) if
there is σ ∈ GSub such that SP `cut gσ and

• both tσ and uσ are SP -reduced, or
• tσ is SP -reduced and tσ >SP uσ, or
• uσ is SP -reduced and uσ >SP tσ.

Proof. Assume that c ∈ ITh(SP). Then SP `cut gσ implies SP `cut tσ ≡ uσ. By
Theorem 5.8, tσ ↓SP uσ. Since t 6= u, tσ or uσ is SP -reducible. W.l.o.g. suppose that tσ is
SP -reducible. Then, by assumption, uσ is SP -reduced and uσ >SP tσ. By Theorem 5.8,
SP `cut gσ implies that gσ is SP -convergent. Hence tσ →SP uσ and thus tσ >SP uσ
because >SP is a reduction ordering for SP . Since uσ >SP tσ, the last conclusion
contradicts the well foundedness of >SP . 2

At least if the critical clauses of C on SP do not form a test set or if C includes
non-Horn clauses, an explicit proof by inductive expansion still seems to be the most
direct way to show C. Reasonable examples of C, which express correctness conditions
on functional-logic programs, are not hard to find.

Inductive convergence, rewrite induction and inductive completion are proof methods
that are tailored to Assumption (1). The proof-theoretical implications of ground con-
fluence listed in Section 1.4 do not include these methods because here we are mainly
interested in the method of inductive expansion and how we can improve it by taking
advantage of a ground confluent specification. To this end, Assumption (1) brings forth
additional inference rules, which significantly reduce the number of lemmas to be applied
in expansions, and thus enhance the “automation degree” of proofs in a way other than
by a tailor-made proof method. Such rules are developed in the following sections.

8. Narrowing

In contrast to the expansion rules, the rules of the reduction calculus (cf. Definition 5.3)
never instantiate the variables of the goal set to be expanded when applying a theorem.

† Bouhoula, Kounalis, and Rusinowitch (1992) show a variant of Lemma 7.7 based on a test set and
with a very complicated proof. The version given here gets to the point faster.

Inductive Theorem Proving for Design Specifications 85

If instantiation is admitted, rewriting becomes narrowing and reflection becomes uni-
fication. The original version of the narrowing rule stems from Slagle (1974). Further,
basic as well as surveying work on narrowing can be found in, e.g., Hullot (1980), Kaplan
(1987), Padawitz (1988) and Hanus (1994). Narrowing has also been called oriented or
directed paramodulation because—as in the case of rewriting—equations are always ap-
plied in the same direction. Padawitz (1988) and Padawitz (1992) deal with narrowing
and its completeness properties from this point of view.

Definition 8.1. (narrowing calculus) Let SP =(SIG,AX) be a constructor-based
specification (cf. Definition 5.2). A pair 〈g, τ〉 consisting of a goal g over SIG and a sub-
stitution τ : X → NFSIG(X) such that var(g)∩dom(τ) = ∅ is called an SP -narrowing
pair. The narrowing calculus for SP consists of the following inference rules each of
which transforms an SP -narrowing pair into an SP -narrowing pair. Let σ ∈ Sub:

narrowing rule
〈g[F (t)/z], τ〉

〈g[v/z]σ ∪ hσ, τσ′〉
if z ∈ var(g), tσ = uσ, c = (F (u) ≡ v ⇐ h) ∈ AX, fresh(c)σ ⊆ NFSIG(X),
σ′ = σvar(g[F (t)/z]) and 〈g[v/z]σ ∪ hσ, τσ′〉 is an SP -narrowing pair

unification rule
〈g ∪ {t ≡ u}, τ〉
〈gστσ〉 if tσ = uσ and 〈gσ, τσ〉 is an SP -narrowing pair.

A sequence np1, . . . , npn of SP -narrowing pairs is called a narrowing expansion of
np1 into npn upon SP if for all 1 ≤ i < n, npi+1 is obtained from npi by a single
narrowing or unification step. The corresponding inference relation is denoted by ` √SP .

Let np = 〈g, τ〉 be an SP -narrowing pair. g is SP -narrowable if g is empty or np `√
SPnp

′ for some np′. Otherwise g is SP -narrowed.

For ground goals, SP -narrowability coincides with SP -convergence. If the substitution
σ in the above rules were confined to the identity substitution id, then the narrowing
calculus would agree with the reduction calculus. Conversely, g `SP ∅ implies 〈g, id〉 `√
SP 〈∅, id〉. More generally:

Lemma 8.2. (lifting goal reductions to narrowing expansions) Let SP = (
SIG,AX) be a free-constructor-based specification (cf. 5.2) and τ : X → NFSIG(X).
Then

gτ `SP ∅ implies 〈g, id〉 ` √SP 〈∅, τ〉.

By induction on the length of the shortest narrowing expansion of a narrowing pair
np1 into a narrowing pair np2 one obtains:

Lemma 8.3. (flattening narrowing expansions to goal reductions)

〈g1, σ1〉 `
√
SP 〈g2, σ2〉 implies g1ξ `SP g2 for ξ with σ1ξ = σ2.

In particular,
〈g1, id〉 `

√
SP 〈g2, σ2〉 implies g1σ2 `SP g2

and
〈g1, id〉 `

√
SP 〈∅, σ2〉 implies g1σ2 `SP ∅.

86 P. Padawitz

The search space induced by all expansions of a narrowing pair is not tractable. We
must look for strategies, which cover all narrowing expansions into narrowed or empty
goals.

Definition 8.4. (narrowing strategy) Let S be a function from narrowing pairs
to sets of narrowing pairs. A sequence np1, . . . , npk of goals is an S-expansion of np1

into npk if for all 1 ≤ i < k, npi+1 ∈ S(npi). Then we write np1 `S npk.
S is a narrowing strategy if for all narrowing pairs np and np′ ∈ S(np) there is a

narrowing expansion of np into np′ upon SP . S is narrowing complete if for all goals
g and τ : X → NFSIG there is a substitution ρ ≤ τ (cf. Section 2) such that

〈g, id〉 ` √SP 〈∅, τ〉 implies 〈g, id〉 `S 〈∅, ρ〉.

Note that a narrowing complete function S need not be a narrowing strategy. In
Section 10 we introduce Σ-narrowing strategies, which may be narrowing complete, but
which usually are not narrowing strategies.

Lemma 8.5. (soundness and completeness of narrowing strategies) Let S be
a function from narrowing pairs to sets of narrowing pairs.

(1) Suppose that S is a narrowing strategy. If 〈g, id〉 `S 〈∅, σ〉 for some σ : X →
NFSIG(X), then SP `cut gσ. Hence, conversely, if g is not SP -solvable (cf. Defi-
nition 4.1), then for all n ≥ 0 and 〈h, σ〉 ∈ Sn({〈g, id)}), h 6= ∅.

(2) Suppose that SP is free-constructor-based, normal form complete and ground con-
fluent and S is narrowing complete. Then SP `cut gσ for some σ ∈ GSub implies
〈g, id〉 `S 〈∅, ρ〉 for some ρ : X → NFSIG(X). Hence, conversely, if for all n ≥ 0
and 〈h, σ〉 ∈ Sn({〈g, id〉}), h 6= ∅, then g is not SP -solvable.

Proof.

(1) 〈g, id〉 `S 〈∅, σ〉 implies 〈g, id〉 ` √SP 〈∅, σ〉. Hence by Lemma 8.3, gσ is SP -
convergent and thus SP `cut gσ.

(2) Let SP `cut gσ for some σ ∈ GSub. Since SP is normal form complete, gσ →∗SP gτ
for some τ : X → NFSIG. Since SP is ground confluent, gσ is strongly SP -
convergent and thus gτ is SP -convergent. Hence by Lemma 8.2, 〈g, id〉 ` √SP 〈∅, τ〉
and thus 〈g, id〉 `S 〈∅, ρ〉 for some ρ ≤ τ because S is narrowing complete. 2

The following lemma is the key result of this section. In the subsequent theorem we use
it for augmenting the inductive expansion calculus with a forward rule, which is sound
if the assumptions of Lemma 8.6 on S and SP hold true. It is also a generalization of
Lemma 5.7.

Lemma 8.6. (narrowing generates case analyses) Suppose that SP is free-con-
structor-based, normal form complete and ground confluent and S is a narrowing com-
plete narrowing strategy. Let g be a goal, S(〈g, id〉) = {〈g1, σ1〉, . . . , 〈gk, σk〉} and for all
1 ≤ i ≤ k, Xi =def var(dom(σi)σi) such that (var(g) ∪ dom(σi)) ∩Xi = ∅. Then

c = {∃X1(g1 ∪ EQ(σ1)), . . . , ∃Xk(gk ∪ EQ(σk))} ⇔ g

is an inductive SP -theorem.

Inductive Theorem Proving for Design Specifications 87

Proof. By Theorem 5.13, it is sufficient to show that c is reductively valid w.r.t. SP .
So let τ : X → NFSIG such that gτ is strongly SP -convergent. Hence by Lemma 8.2,
〈g, id〉 ` √SP 〈∅, τ〉 and thus 〈g, id〉 `S 〈gi, σi〉 `S 〈∅, ρ〉 for some 1 ≤ i ≤ k and ρ ≤ τ
because S is narrowing complete. Since S is a narrowing strategy, 〈gi, σi〉 `S 〈∅, ρ〉
implies 〈gi, σi〉 `

√
SP 〈∅, ρ〉 and thus 〈gi, σi〉 `

√
SP 〈∅, τ〉. Since 〈∅, τ〉 is a narrowing

pair, Lemma 8.3 implies giξ `SP ∅ for ξ such that σiξ = τ . Since 〈gi, σi〉 is a narrowing
pair, var(gi) ∩ dom(σi) = ∅. Hence xτ = xσiξ = xξ for all x ∈ var(gi), and thus
giξ `SP ∅ implies giτi `SP ∅ where τi = τX\Xi + ξXi . Since dom(σi) ∩ Xi = ∅, xτi =
xτ = xσiξ = xσiτi for all x ∈ dom(σi). Hence EQ(σi)τi consists of reflexive equations
so that, trivially EQ(σi)τi is SP -convergent. Since SP is ground confluent, we conclude
that (gi ∪ EQ(σi))τi is strongly SP -convergent and thus the ⇐-part of c is reductively
valid w.r.t. SP .

Let τ : X → NFΣ such that giτ and EQ(σi)τ are strongly SP -convergent for some
1 ≤ i ≤ k. By Lemma 8.2, 〈gi, id〉 `

√
SP 〈∅, τ〉 and thus 〈gi, id〉 `S 〈∅, σ〉 for some σ ≤ τ

because S is narrowing complete. Hence 〈g, id〉 `S 〈giσi〉 `S 〈∅, σiσ〉 and σiσ ≤ σiτ . By
Lemma 8.3, gσiσ and thus gσiτ are SP -convergent. Since EQ(σi)τ is SP -convergent, for
all x ∈ dom(σi), xτ and xσiτ are SP -joinable. Moreover, gσiτ is strongly SP -convergent
because SP is ground confluent. Hence gτ is SP -convergent and thus strongly SP -
convergent as well, and we conclude that the ⇒-part of c is reductively valid w.r.t. SP .
2

Intuitively, Lemma 8.6 says that the set S(〈g, id〉) = {〈g1, σ1〉, . . . , 〈gk, σk〉} of narrow-
ing pairs provides a complete case analysis of g. This gives rise to a general forward rule,
which splits a goal into subgoals and thus divides a proof into subproofs. In contrast to
the forward rules of Definition 3.10, this rule, called S-controlled goal generation, does
not apply “user defined” lemmas at “user defined” goal positions, but derives the respec-
tive case analysis automatically. If S selects a single redex position (cf. Section 9), then
performing an S-controlled goal generation step means applying the only-if-completion
of a defined function (cf. Definition 5.6).

Definition 8.7. (S-controlled rules) Let S be a function from narrowing pairs to
sets of narrowing pairs.

Backward S-controlled goal generation.Let S be a narrowing strategy, S(〈g, id〉)=
{〈g1, σ1〉, . . . , 〈gk, σk〉} and for all 1 ≤ i ≤ k, Xi = var(dom(σi)σi) such that (var(g) ∪
dom(σi)) ∩Xi = ∅

{g}
{∃X1(g1 ∪ EQ(σ1)), . . . , ∃Xk(gk ∪ EQ(σk))}

.

Suppose that SP is free-constructor-based, normal form complete and ground confluent
and S is narrowing complete.

Forward S-controlled goal generation. Let S be a narrowing strategy, S(〈g, id〉)=
{〈g1, σ1〉, . . . , 〈gk, σk〉} and for all 1 ≤ i ≤ k, Xi = var(dom(σi)σi) such that (var(g) ∪
dom(σi)) ∩Xi = ∅

{g}
{∃X1(g1 ∪ EQ(σ1)), . . . , ∃Xk(gk ∪ EQ(σk))}

.

88 P. Padawitz

S-controlled goal refutation. Suppose that for all n ≥ 0 and 〈h, σ〉 ∈ Sn({〈g, id〉}),
h 6= ∅

{g}
{FALSE} .

Theorem 8.8. (S-controlled rules are sound) Let a goal set hs be obtained from
a goal set gs by a single S-controlled rule step such that the respective assumptions of
Definition 8.7 hold true. If a backward rule is applied, then gs ⇐ h ∈ ITh(SP) for all
h ∈ hs. If a forward rule is applied, then hs⇐ g ∈ ITh(SP) for all g ∈ gs.

Proof. In the case of backward goal generation we have to show that for all 1 ≤ i ≤ k,
the clause g ⇐ gi ∪EQ(σi) is an inductive SP -theorem. Since S is a narrowing strategy,
〈g, id〉 ` √SP 〈gi, σi〉. By Lemma 8.3, gσi `SP gi. Let τ ∈ GSub such that SP `cut
giτ ∪ EQ(σi)τ . Hence gσi `SP gi implies SP `cut gσiτ and thus SP `cut gτ because
SP `cut EQ(σi)τ .

The correctness of forward goal generation follows directly from Lemma 8.6. For (back-
ward as well as forward) goal refutation we have to show that FALSE⇐ g is an inductive
SP -theorem. Since for all n ≥ 0 and 〈h, σ〉 ∈ Sn({〈g, id〉}), h 6= ∅, Lemma 8.5(2) implies
that g is not SP -solvable. Hence FALSE⇐ g ∈ ITh(SP). 2

9. Redex Selection

Which narrowing strategies are ground complete (cf. Definition 8.4)? General condi-
tions for ensuring this property are given in Padawitz (1987), Echahed (1988), Padawitz
(1988), Padawitz (1991a) and Echahed (1992). In particular, Padawitz (1987) introduced
the criterion of uniformity, which roughly says that, given a goal g and a normal form
substitution σ, the selected redex of gσ agrees with the σ-instance of the selected redex
of g.

Definition 9.1. Given a term or equation t and a goal g with a unique occurrence of
the variable z†, the expression g • t is called a term position of the goal g[t/z]. If t ∈ X,
then g • t is a variable position of g. For substitutions σ, (g • t)σ =def gσX\{z} • tσ.

Let SP = (SIG,AX) be a constructor-based specification, g • t be a non-variable term
position and σ : X → NFSIG(X).

• If there are u ≡ v ⇐ h ∈ AX and u′ ≤ u such that tσ = u′σ, hσ is SP -narrowable
and var(g(v)σ∪hσ)∩dom(σvar(g[t/z])) = ∅, then g• t is a partial redex of g with
unifier σ and σ-reduct g(v)σ ∪ hσ. If u′ = u, then g • t is called a total redex.
• If t = (u ≡ u′) such that uσ = u′σ and var(gσ)∩ dom(σ) = ∅, then g • t is a total

redex of g with unifier σ and σ-reduct gσ.

Definition 9.2. A redex selector R is a function from goals to sets of term positions
such that for all SP -narrowable non-empty goals g, R(g) is a non-empty set of total
redices. R is uniform if for all σ : X → NFSIG, gσ `SP ∅ implies R(gσ) ⊆ R(g)σ.

† z stands for a term or an atom.

Inductive Theorem Proving for Design Specifications 89

We investigate three redex selectors. Let g be a narrowable goal. IN(g) is the leftmost–
innermost‡ total redex of g, OUT(g) is the leftmost–outermost total redex of g, and

NEED(g) =def {h • t | (h • t)σ = OUT(gσ) for some ground unifier σ of POUT(g)}

where POUT(g) is the leftmost–outermost partial redex of g§.
IN is not always uniform. For instance, let SP be a specification of natural numbers

with constructors 0 and succ, a unary operation f and axioms x∗0 ≡ 0 and f(succ(x)) ≡
f(x). Let e = (f(x) ∗ y ≡ 0). Then

IN(e) = (z ∗ y ≡ 0) • f(x),

but
IN(e[0/x]) = IN(f(0) ∗ y ≡ 0) = (z ≡ 0) • (f(0) ∗ y).

The reason for non-uniformity is the fact that f(0) is not reducible and thus SP is not
normal form complete.

Lemma 9.3. If SP is free-constructor-based and normal form complete, then IN is a
uniform redex selector.

Proof. Let g be an SP -narrowable goal and σ : X → NFSIG such that gσ is SP -
convergent. Let h • t = IN(gσ), i.e. h • t is the leftmost–innermost total redex of gσ.
Since SP is free-constructor-based, σ assigns only SP -reduced terms to the variables of
g. Hence h[t/z] = gσ implies h• t = (h′ • t′)σ for some term position h′ • t′ of g, and h′ • t′
is a total redex of g. But is it a leftmost–innermost one? Let h′′ • t′′ be the leftmost–
innermost total redex of g, i.e. IN(g) = h′′ • t′′. Then there are u ≡ v ⇐ h ∈ AX and
τ ∈ Sub such that uτ = t′′τ . Since SP is constructor-based, u contains a defined function
F . Since SP is normal form complete and h′′ • t′′ is a leftmost–innermost redex, F is the
root of u and thus of t′′ because t′′ 6∈ X. Hence t′′σ →SP u′ for some u′ because SP is
normal form complete. Hence (h′′ • t′′)σ is a total redex of gσ, which must agree with
h • t because h • t is the leftmost–innermost total redex of gσ. This implies uniformity:
IN(gσ) = h • t = (h′′ • t′′)σ = IN(g)σ. 2

OUT is not always uniform either, even if—in contrast to the previous example—SP
is normal form complete. For instance, let SP be a specification of natural numbers with
constructors 0 and succ, a binary operation g and axioms g(0, 0) ≡ 0, g(succ(x), 0) ≡ 1
and g(x, s(y)) ≡ 2¶. Let e = (g(g(x, x′), y) ≡ 0). Then

OUT(e) = (z ≡ 0) • g(g(x, x′), y),
but

OUT(e[0/y]) = OUT(g(g(x, x′), 0) ≡ 0) = (g(z, 0) ≡ 0) • f(x, x′).

In fact, the solution [0/x, 0/x′, 0/y] of the equation e cannot be achieved by OUT because
yσ 6= 0 for all unifiers σ of OUT(e). However, OUT(e) agrees with POUT(e) and thus

NEED(g) = {(z ≡ 0) • g(g(x, x′), y), (g(z, y) ≡ 0) • g(x, x′)}.

‡ With respect to the root position of t within g (cf. Definition 9.1)
§ NEED generalizes the redex selector that underlies the needed narrowing strategy of Echahed (1988)

and Padawitz (1994).
¶ Echahed (1988), Example 1.

90 P. Padawitz

Lemma 9.4. If SP is free-constructor-based, then NEED is a uniform redex selector.

Proof. Let g be an SP -narrowable goal and σ : X → NFSIG such that gσ is SP -
convergent. Let h • t ∈ NEED(gσ). Since σ is ground, h • t = OUT(gσ). Since SP is
free-constructor-based, σ assigns only SP -reduced terms to the variables of g. Hence
h[t/z] = gσ implies h • t = (h′ • t′)σ for some term position h′ • t′ of g, and h′ • t′
is a total redex of g. Since SP is constructor-based, σ is a unifier of POUT(g). Hence
h′ • t′ ∈ NEED(g) and thus h • t = (h′ • t′)σ ∈ NEED(g)σ. 2

For implementing NEED(g) one may replace the set Uni(g) of all ground unifiers of
POUT(g) by a finite set Φ of unifiers of POUT(g) such that each σ ∈ Uni(g) is subsumed
by some τ ∈ Φ, say τρ = σ, and OUT(gτ)ρ = OUT(gσ). Then

NEED(g) = {h • t | (h • t)τ = OUT(gτ) for some τ ∈ Φ}.
Expander (cf. Section 1.1) constructs the reducts of NEED(g) in several steps. In

general, Φ includes unifiers of total as well as only partial redices of g. For the first
ones reducts according to Definition 9.1 can be derived directly. For a unifier τ of a
properly partial redex h • t, however, only the instance gτ is returned at first, while the
reduct of OUT(gτ) will be obtained automatically by a subsequent outermost narrowing
step. In effect, properly partial redices induce applications of the instantiation rule (cf.
Section 4), total redices induce applications of the narrowing rule, and in both cases the
leftmost–outermost redex is selected

In general, the narrowing strategy (cf. Section 8) induced by a redex selector is defined
as follows.

Definition 9.5. Let R be a redex selector. Then the narrowing strategy SR in-
duced by R is defined as follows. Let 〈g, τ〉 be an SP -narrowing pair such that g is
SP -narrowable.

SR(〈g, τ〉) =def {〈h, τσvar(g)〉 | σ is a minimal unifier of a total redex in R(g)
with σ-reduct h}.

Of course, SR is a narrowing strategy. Hence for all ground goals g, 〈g, id〉 `SR 〈∅, id〉
and thus by Lemma 8.3, g `SP ∅. Conversely, we have:

Lemma 9.6. (completeness of SR-expansions w.r.t. goal reductions) Suppose
that SP is ground confluent and strongly terminating and R is a redex selector. Then
for all ground goals g,

g `SP ∅ implies 〈g, id〉 `SR 〈∅, id〉.

Proof. Let g be SP -convergent. We show 〈g, id〉 `SR 〈∅, id〉 by Noetherian induction
on g along the reduction ordering >SP , which exists by assumption. If g is SP -reduced,
then g = ∅ because g `SP ∅. So let g be non-empty. Since g is SP -convergent, g is
SP -narrowable. Hence R(g) is defined, i.e. there is a total redex h • t ∈ R(g). Since g is
ground, t is ground and thus there are (u ≡ v ⇐ d) ∈ AX and σ : X → NFSIG such that
t = uσ, dσ is SP -narrowable and 〈h[vσ/z] ∪ dσ, id〉 ∈ SR(〈g, id〉). Hence dσ is ground
and thus SP -convergent so that g →SP h[vσ/x]. Since SP is ground confluent and g
is SP -convergent, h[vσ/x] is also SP -convergent. Since >SP is a reduction ordering for

Inductive Theorem Proving for Design Specifications 91

SP , we have g >SP h[vσ/x] and g ≥SP t = uσ >SP dσ. g′ =def h[vσ/z] ∪ dσ is an SP -
convergent ground goal with g >SP g′. Hence by induction hypothesis, 〈g′, id〉 `SR 〈∅, id〉.
Since 〈g′, id〉 ∈ SR(〈g, id〉) implies 〈g, id〉 `SR 〈g′, id〉, we conclude 〈g, id〉 `SR 〈∅, id〉. 2

Lemma 9.7. (lifting SR-expansions) Let R be a uniform redex selector. Then for all
goals g and τ : X → NFSIG,

〈gτ, id〉 `SR 〈∅, id〉 implies 〈g, id〉 `SR 〈∅, ρ〉

for some ρ ≤ τ .

Proof. By induction on the length n of a shortest SR-expansion of 〈gτ, id〉 into 〈∅, id〉.
If n = 1, then gτ and thus g are empty. Hence we obtain the result for ρ = id. So let g
be non-empty. 〈gτ, id〉 `SR 〈∅, id〉 implies gτ `SP ∅. Hence gτ is SP -narrowable and thus
R(gτ) is non-empty. Let h′ • t′ ∈ R(gτ). Since R is uniform, h′ • t′ = (h • t)τ for some
h• t ∈ R(g). Hence there are (u ≡ v ⇐ d) ∈ AX and σ : X → NFSIG such that tτ = uσ,
dσ is SP -narrowable, 〈h[vσ/z]∪dσ, σvar(g)〉 ∈ SR(g) and there is a shorter SR-expansion
from 〈h[vσ/z] ∪ dσ, id〉 into 〈∅, id〉 than from 〈gτ, id〉 into 〈∅, id〉.

W.l.o.g. var(c)∩ var(g) = ∅ and var(g) = dom(τ). Hence t and u have a most general
unifier ρ ≤ σ + τ such that ρ is a minimal unifier of h • t and 〈h[vρ/z] ∪ dρ, ρvar(g)〉 ∈
SR(〈g, id〉). Let ξ be the ground substitution with ρdom(τ)ξ = τ . Let g′ = h[vρ/z] ∪ dρ.
Since g′ξ = h[vσ/z]∪dσ, the induction hypothesis implies 〈g′, id〉 `SR 〈∅, φ〉 for some ∅ ≤
ξ. 〈g′, ρvar(g)〉 ∈ SR(〈g, id〉) implies 〈g, id〉 `SR 〈g′, ρvar(g)〉, and we conclude 〈g, id〉 `SR
〈∅, ρvar(g)φ〉. The proof is complete because ρvar(g)φ ≤ ρvar(g)ξ = ρdom(τ)ξ = τ . 2

10. Simplification

The narrowing strategy induced by a redex selector combines redex selection with
most general unification. Yet each expansion step is a single application of a rule of the
narrowing calculus. Narrowing expansions can be “sped up” significantly if each reduct
is simplified by equivalence transformations before it is subjected to further narrowing
steps.

Definition 10.1. An SP -compatible simplifier Σ is a function on goals such that
for each goal g, g ⇔ Σ(g) is an inductive SP -theorem†. Σ is extended to goal sets gs as
follows

Σ(gs) =def {Σ(g) | g ∈ gs}.

SP -compatible simplifiers often occur implicitly as refinements of the narrowing rule,
such as reduced or normalizing and optimized narrowing (cf. Padawitz 1988, Sections 8.7–
8.10; Hanus 1994, Sections 2.2 and 2.3). Normalizing narrowing combines the narrowing
rule with a particular simplifier that assigns to each goal g a reduced reduct of g. Op-
timized narrowing simplifies equations by applying particular lemmas, which hold true
whenever SP is canonical and free-constructor-based (cf. Definition 5.2). Further rule-
based simplifications are given by theory resolution (cf. Stickel 1985), rewriting modulo
equational theories (cf. Jouannaud and Kirchner 1986) and rewriting modulo algebras

† This includes the case that g is not SP -solvable (cf. Definition 4.1) and Σ(g) = FALSE.

92 P. Padawitz

(cf. Avenhaus and Becker 1992). In contrast to these approaches we distinguish between
the rule of Σ-simplification (cf. Section 4) and more “sensitive” inferences such as
induction steps, which produce descent conditions (cf. Section 3), or S-controlled goal
generation, which produces a case analysis (cf. Section 8). Σ-simplification is an equiva-
lence transformation and can thus be used in a forward as well as in a backward proof,
while inductive rules and S-controlled goal generation only establish an implication, ei-
ther from the antecedent to the succedent or from the succedent to the anticedent of the
rule. Hence they can only be used either in a forward proof or in a backward proof (cf.
Section 3).

Σ-simplification. Let Σ be an SP -compatible simpifier

gs

Σ(gs)
.

Goal refutations (cf. Section 4 and 8.7) are equivalence transformations and thus good
candidates for a simplifier. But simplifications are supposed to be performed automat-
ically on all goals of a proof. Hence goal refutation should be made into a simplifica-
tion step only if certain unsolvability criteria hold true, which can be checked fast. For
instance, checking the applicability condition of S-controlled goal refutation (cf. Defini-
tion 8.7) involves the detection of circular S-expansions, which is a rather time-consuming
procedure. However, confined to the test of S({〈g, id〉}) for emptiness, which obviously
implies the applicability condition of S-controlled goal refutation, this rule does not slow
down, but speed up expansions if it becomes part of Σ.

This instance of S-controlled goal refutation reduces solvability to narrowability. Re-
member that its soundness depends on properties of SP among which free-constructor-
basedness is the most restrictive one (cf. Definition 8.7). If SP is free-constructor-based,
then all normal forms are SP -reduced, and this condition is essential for lifting goal
reductions to narrowing expansions (cf. Lemma 8.2). It is also crucial for the soundness
of the following two equivalence rules, which provide almost indispensible simplifications:

constructor decomposition {{F (t1,...,tk)≡F (u1,...,uk)}∪g}
{{t1≡u1,...,tk≡uk}∪g} if F is a constructor

constructor clash {{F (t)≡G(u)}∪g}
{FALSE} if F and G are two different constructors.

The rewriting modulo approach (cf. Section 1.5) was introduced for dealing with spec-
ifications that are not free-constructor-based, such as sets, bags and maps. Constructor
axioms define the equality predicate for all sorts s with non-free constructors. One may
avoid constructor axioms by including an interpreter for s-equations into the simplifier.
This is the way Expander (cf. Section 1.1) handles s-equations. A more general approach
to get rid of constructor axioms is to present sets, bags, maps, etc. as action types with
terminal semantics and transform these into their Horn clause completions, which are
free-constructor-based (cf. Padawitz 1995).

Let us now combine simplification with narrowing.

Definition 10.2. Given an SP -compatible simplifier Σ, a sequence np1, . . . , npn of SP -
narrowing pairs is called a Σ-narrowing expansion of np1 into npn upon SP if for
all 1 ≤ i < n, npi+1 is obtained from npi by a single narrowing, unification or Σ-
simplification step (cf. Definition 8.1). The corresponding inference relation is denoted
by ` √SP,Σ.

Inductive Theorem Proving for Design Specifications 93

Definition 10.3. Let Σ be an SP -compatible simplifier and S be a narrowing strategy
(cf. Definition 8.4). Then for all narrowing pairs np,

SΣ(np) =def {〈Σ(g), τ〉 | 〈g, τ〉 ∈ S(np)}.

SΣ is called the Σ-narrowing strategy associated with S.

The question arises whether Lemma 8.6 remains valid for SΣ instead of S. Let us
inspect the proof of that lemma. The crucial step is where Lemma 8.3 is applied in order
to conclude giξ `SP ∅ for ξ with σiξ = τ from 〈gi, σi〉 `

√
SP 〈∅, τ〉, which will now read as

〈gi, σi〉
√
SP,Σ〈∅, τ〉. In fact, Lemma 8.3 does not hold for Σ-narrowing expansions, at least

not in its full generality. However, we use it in the proof of the following lemma, which
justifies the step from 〈gi, σi〉 `

√
SP,Σ〈∅, τ〉 to giξ `SP ∅ under additional assumptions.

Lemma 10.4. Suppose that SP is normal form complete and ground confluent and Σ is
an SP -compatible simplifier. Let 〈g, σ〉 be a narrowing pair and τ : X → NFSIG(X).
Then

〈g, σ〉 ` √SP,Σ〈∅, τ〉 implies gξ `SP ∅ for ξ with σξ = τ.

Proof. By induction on the length of a shortest Σ-narrowing expansion E of 〈g, σ〉 into
〈∅, τ〉. If E does not include simplification steps, then the result follows directly from
Lemma 8.3. Otherwise E can be split into a narrowing expansion E1 of 〈g, σ〉 into a
narrowing pair np1 =def 〈g1, σ1〉, a simplification step E2 from np1 to np2 = 〈Σ(g1), σ1〉
and a Σ-narrowing expansion E3 of np2 into 〈∅, τ〉.

Hence 〈g, σ〉 ` √SPnp1 and np2 `
√
SP,Σ〈∅, τ〉. By the induction hypothesis, Σ(g1)ξ

`SP ∅ for ξ with σ1ξ = τ . Since Σ is SP -compatible, g1 ⇐ Σ(g1) is an inductive SP -
theorem. Since SP is normal form complete and ground confluent, Theorem 5.13 implies
that g1 ⇐ Σ(g1) is reductively valid w.r.t. SP . Hence Σ(g1)ξ `SP ∅ implies g1ξ `SP ∅. By
Lemma 8.3, 〈g, σ〉 ` √SPnp1 implies gφ `SP g1 for φ with σφ = σ1. Since ξ replaces all
variables by normal forms, gφ `SP g1 implies gφξ `SP g1ξ and thus gφξ `SP ∅ because
g1ξ is SP -convergent. Moreover, σφξ = σ1ξ = τ . 2

Lemma 10.4 leads to the Σ-narrowing version of Lemma 8.6:

Lemma 10.5. (Σ-narrowing generates case analyses) Suppose that SP is free-
constructor-based, normal form complete and ground confluent, Σ is an SP -compatible
simplifier and S is a narrowing strategy such that SΣ is narrowing complete. Let g be a
goal, SΣ(〈g, id〉) = {〈g1, σ1〉, . . . , 〈gk, σk〉} and for all 1 ≤ i ≤ k, Xi =def var(dom(σi)σi)
such that (var(g) ∪ dom(σi)) ∩Xi = ∅. Then

c = {∃X1(g1 ∪ EQ(σ1)), . . . , ∃Xk(gk ∪ EQ(σk))} ⇔ g

is an inductive SP -theorem.

Proof. The same as the proof of Lemma 8.6, except that S is replaced by SΣ and thus
we apply Lemma 10.4 instead of Lemma 8.3. 2

Theorem 8.8 must be adapted to Σ-narrowing strategies:

94 P. Padawitz

Theorem 10.6. (SΣ
-controlled rules are sound) Let a goal set hs be obtained

from a goal set gs by a single SΣ-controlled rule step such that the respective assumptions
of Definition 8.7 hold true. If a backward rule is applied, then gs⇐ h ∈ ITh(SP) for all
h ∈ hs. If a forward rule is applied, then hs⇐ g ∈ ITh(SP) for all g ∈ gs.

Proof. In the case of backward goal generation we have to show that for all 1 ≤ i ≤ k,
the clause g ⇐ gi ∪EQ(σi) is an inductive SP -theorem. Since S is a narrowing strategy,
〈g, id〉 ` √SP,Σ〈gi, σi〉. By Lemma 10.4, gσi `SP gi. Let τ ∈ GSub such that SP `cut
giτ ∪ EQ(σi)τ . Hence gσi `SP gi implies SP `cut gσiτ and thus SP `cut gτ because
SP `cut EQ(σi)τ .

The correctness of forward goal generation follows directly from Lemma 10.5. For
(backward as well as forward) goal refutation we have to show that FALSE⇐ g is an in-
ductive SP -theorem. Since for all n ≥ 0 and 〈h, σ〉 ∈ (SΣ)n(〈g, id〉), h 6= ∅, Lemma 8.5(2)
implies that g is not SP -solvable. Hence FALSE⇐ g ∈ ITh(SP). 2

Consequently, we reformulate Theorem 4.2:

Theorem 10.7. (inductive expansions with SΣ
-controlled goal generation

and refutation are sound) Suppose that SP is free-constructor-based, normal form
complete and ground confluent, Σ is an SP -compatible simplifier and S is a narrowing
strategy such that SΣ is narrowing complete.

Extend the inference relation `SP,CS (cf. Definition 4.1) by SΣ-controlled goal gener-
ation and refutation.

(1) Let c = {g1, . . . , gm} ⇐ h be a Gentzen clause and CS = {gs1 ⇐ h1, . . . , gsn ⇐
hn} be a set of Gentzen clauses such that for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,
h ⇐ hj , gsj ⇐ gi ∈ ITh(SP). Then {g1, . . . , gm} `SP,CS {h} implies {c} ∪ CS ⊆
ITh(SP).

(2) Let HS = {g1 ⇐ g : h1, . . . , gn ⇐ g : hn} be a set of guarded clauses such that
{h1, . . . , hn} is g-minimal w.r.t. (TH(AX), GSub) and for all 1 ≤ i, j ≤ n,Xi =def

fresh(gi ⇐ g ∪ hi) and hi = hj implies gi = gj. Let

c = {∃X1(g1 ∪ h1), . . . ,∃Xn(gn ∪ hn)} ⇐ g.

Then {∃X1(g1 ∪ h1), . . . , ∃Xn(gn ∪ hn)} `SP,HS {g} implies {c} ∪HS ⊆ ITh(SP).

Proof. Follows directly from Theorem 3.6(1) and Corollary 3.9 if, at the place where the
proof of Theorem 3.6(1) refers to Theorem 3.4 (deductive resolution and paramodulation
are sound), we also use Theorem 10.6, which implies that the additional rules are sound
as well. 2

Definition 10.8. Let > be a reduction ordering for SP (cf. Definition 5.10) and Σ be
an SP -compatible simplifier. If for all goals g and σ : X → NFSIG, gσ ≥SP Σ(g)σ, then
Σ is >-reductive and the pair (SP,Σ) is strongly terminating.

If (SP,Σ) is strongly terminating, the combination of Lemmata 9.6 and 9.7 can be
generalized from SR- to SΣ

R-expansions (cf. Definitions 9.2 and 10.3):

Lemma 10.9. (completeness of SΣ
R-expansions w.r.t. goal reductions) Suppose

that SP is normal form complete and ground confluent, (SP,Σ) is strongly terminating

Inductive Theorem Proving for Design Specifications 95

and R is a uniform redex selector (cf. Definition 9.2). Then for all goals g and τ : X →
NFSIG,

gτ `SP ∅ implies 〈g, id〉 `SΣ
R 〈∅, ρ〉

for some ρ ≤ τ (cf. Definitions 9.5 and 10.3).

Proof. By Noetherian induction on gτ along the reduction ordering >SP , which exists
by assumption. By Lemmata 9.6 and 9.7, there is an SR-expansion E of 〈g, id〉 into a
narrowing pair 〈∅, σ〉 such that σ ≤ τ . If g = ∅, then the proof is complete with ρ =def

id. Otherwise E can be split into a one-step expansion of 〈g, id〉 into some 〈g1, σ1〉 ∈
SR(〈g, id〉) and an expansion of 〈g1, σ1〉 into 〈∅, σ〉. By Lemma 8.3, gσ1 `SP g1 and
g1ξ `SP ∅ for ξ with σ1ξ = σ. Since σ ≤ τ , there is γ ∈ GSub with σγ = τ . Hence
γ replaces all variables by normal forms and thus g1ξ `SP ∅ implies g1ξγ `SP ∅. Let
φ = ξγ. Then φ ∈ GSub and σ1φ = σ1ξγ = σγ = τ .

Since Σ is SP -compatible, Σ(g1)⇐ g1 is an inductive SP -theorem. Since SP is normal
form complete and ground confluent, Theorem 5.13 implies that Σ(g1)⇐ g1 is reductively
valid w.r.t. SP . Hence g1φ `SP ∅ implies Σ(g1)φ `SP ∅.

Since φ replaces all variables by normal forms, gσ1 `SP g1 implies gσ1φ `SP g1φ. Since
〈g, id〉 ` √SP 〈g1, σ1〉, gσ1φ 6= g1φ. Hence gσ1φ `SP g1φ `SP ∅ implies gσ1φ >SP g1φ
and thus gτ = gσ1φ >SP g1φ ≥SP Σ(g1)φ because Σ is >SP -reductive. Since φ is ground
and replaces all variables by normal forms, Σ(g1)φ `SP ∅ implies

〈Σ(g1, id〉 `S
Σ
R 〈∅, ψ〉

for some ψ ≤ φ by induction hypothesis. Hence by the definition of SR (cf. 9.5),

〈Σ(g1), σ1〉 `S
Σ
R 〈∅, σ1ψ〉

and thus 〈g, id〉 `SΣ
R 〈∅, σ1ψ〉 because 〈g1, σ1〉 ∈ SR(〈g, id〉). Moreover, σ1ψ ≤ σ1φ = τ .

Hence the proof is complete with ρ =def σ1ψ. 2

Given a uniform redex selector R, the following lemma extends our previous complete-
ness result for SR-expansions (Padawitz 1988, Theorem 8.4.9) to SΣ

R-expansions. Since
the only assumptions on Σ are SP -compatibility and >SP -reductiveness, Lemma 10.10
also generalizes our completeness result for optimized narrowing (Padawitz 1988, Theo-
rem 8.9.3) and those for normalizing narrowing (see above), even with “inductive conse-
quences” (cf. Hanus 1994, Sections 2.2 and 2.3).

Lemma 10.10. (uniform redex selectors induce narrowing complete Σ-

narrowing strategies) Suppose that SP is normal form complete and ground con-
fluent, (SP,Σ) is strongly terminating and R is a uniform redex selector. Then SΣ

R is
narrowing complete (cf. Definition 8.4).

Proof. Let g be a goal and τ : X → NFSIG such that 〈g, id〉 ` √SP 〈∅, τ〉. By
Lemma 8.3, gτ is SP -convergent. Hence by Lemma 10.9, 〈g, id〉 `SΣ

R 〈∅, ρ〉 for some
ρ ≤ τ . 2

Lemma 10.10 immediately implies the following corollary of Theorem 10.7:

96 P. Padawitz

Corollary 10.11. (inductive expansions with SΣ
R-controlled goal genera-

tion and refutation are sound) Suppose that SP is free-constructor-based, normal
form complete and ground confluent, (SP,Σ) is strongly terminating and R is a uni-
form redex selector. If the inference relation `SP,CS (cf. Theorem 4.2) is extended by
SΣ
R-controlled goal generation and refutation, then Theorem 10.7 holds true.

Expander (cf. Section 1.1) has a built-in reductive simplifier Σ, which partially eval-
uates equations and inequations and a number of functions and predicates on standard
types such as natural numbers, lists, bags, sets and maps (cf. Padawitz 1994, Section 4).
Higher-order transformations such as β-reduction of λ-expressions and continuation pass-
ing are also performed by Σ. Goals are simplified automatically at the beginning of a
proof and after each deduction step†. Moreover, Expander provides a Solve command
that performs a given number of SΣ

R-controlled goal generation steps where R is either IN
or NEED (cf. Section 9). The combination of strategy-controlled goal generation and au-
tomatic simplification minimizes the number and the complexity of generated subgoals.
Proving a conjecture g ⇐ h where h has only finite solutions amounts to applying Solve
both to g and h and checking the solutions for subsumption (cf. Section 1.1). In other
words, if induction steps are not needed, the proof goes through almost automatically.

More precisely, Solve tries to solve a goal g by starting out from the narrowing pair
〈g, id〉 and performing a sequence of SΣ

R-controlled goal generation steps. Solve stops
after a given number of steps with a set nps of narrowing pairs. If 〈∅, σ〉 ∈ nps, then σ
solves g. Narrowing pairs 〈h, τ〉 ∈ nps such that R(h) = ∅ are unsolvable and are thus
deleted, provided that the specification is free-constructor-based, normal form complete
and ground confluent (cf. Lemma 8.5(2)). Then Solve replaces g by the goal set

gs = {EQ(σ) | 〈∅, σ〉 ∈ nps} ∪ {h ∪ EQ(σ) | 〈h, σ〉 ∈ nps,R(h) 6= ∅}.

Hence the step from g to gs is a sequence of SΣ
R-controlled goal generation and refutation

steps with a weakened applicability condition for goal refutation (cf. Definition 8.7). For
getting closer to the full applicability condition, Solve may be called with an option to
detect and eliminate cycles among the SΣ

R-expansions produced by Solve.

Example 10.12. (greater) If `SP,CS is extended by SΣ
IN -controlled goal generation,

we obtain the following inductive expansion of CS = {Conjecture 1} upon SP = GREATER
(cf. Example 4.3).

initial conclusion:
(1) x>z
initial premise:
(1) x>y,Y>z
atom 1 in conclusion goal 1 replaced with axiom GREATER1
atom 1 in conclusion goal 1 replaced with axiom GREATER2
conclusion:
(1) x=s(x1),z=s(y1),x1>y1
(2) x=s(x1),z=0
atom 3 in conclusion goal 1 replaced with conjecture 1

† Except when a lemma is applied because some lemmas are to establish a specific goal structure—e.g.
for achieving an induction hypothesis—which might be changed by the simplifier.

Inductive Theorem Proving for Design Specifications 97

conclusion:
(1) (x,z)>>(x1,y1)=true,x1>y2,y2>y1,x=s(x1),z=s(y1)
(2) x=s(x1),z=0
term at position 1 1 in conclusion goal 1 replaced with axiom GREATER3
conclusion:
(1) x=s(x1),x1>y2,y2>y1,z=s(y1)
(2) x=s(x1),z=0
premise:
(1) x>y,y>z
atom 1 in premise goal 1 replaced with axiom GREATER1
atom 1 in premise goal 1 replaced with axiom GREATER2
premise:
(1) x=s(x1),y=s(y1),x1>y1,s(y1)>z
(2) x=s(x1),y=0,0>z
atom 3 in premise goal 2 replaced with theorem 2
premise:
(1) x=s(x1),y=s(y1),x1>y1,s(y1)>z
atom 4 in premise goal 1 replaced with axiom GREATER1
atom 4 in premise goal 1 replaced with axiom GREATER2
premise:
(1) z=s(y2),y1>y2,x=s(x1),y=s(y1),x1>y1
(2) z=0,x=s(x1),y=s(y1),x1>y1
conjecture 1 has been proved.

In contrast to the proof given in Example 4.3, the above expansion contains only one
application of a lemma (Theorem 2 of GREATER).

Example 10.13. (division) If `SP,CS is extended by SΣ
IN -controlled goal generation,

we obtain the following inductive expansion of CS = {Conjecture 1} upon SP =
DIVISION (cf. Example 4.4).

initial conclusion:
(1) x=(q*y)+r,r<y
initial premise:
(1) 0<y,x div y=(q,r)
term at position 1 2 1 in conclusion goal 1 replaced with axiom

DIVISION1
term at position 1 2 1 in conclusion goal 2 replaced with axiom

DIVISION2
conclusion:
(1) q=s(x1),((x1*y)+y)+r=x,r<y
(2) q=0,r=x,r<y
atom 2 in conclusion goal 1 replaced with theorem 1
conclusion:
(1) (x1*y)+r=x-y,x>=y,q=s(x1),r<y
(2) q=0,r=x,r<y
atoms 1 4 in conclusion goal 1 replaced with conjecture 1
conclusion:

98 P. Padawitz

(1) {(y,x,q,r)>>(y,x-y,x1,r)=true,0<y,(x-y)div y=(x1,r),y<=x,q=s(x1)}
(2) q=0,r=x,r<y
term at position 1 1 in conclusion goal 1 replaced with axiom DIVISION6
conclusion:
(1) y<=x,0<y,(x-y)div y=(x1,r),q=s(x1)
(2) q=0,r=x,r<y
premise:
(1) 0<y,x div y=(q,r)
term at position 2 1 in premise goal 1 replaced with axiom DIVISION3
term at position 2 1 in premise goal 1 replaced with axiom DIVISION4
premise:
(1) y<=x,0<y,(x-y)div y=(q1,r),s(q1)=q
(2) x<y,0=q,x=r,0<y
term at position 1 1 replaced with equation 3 in premise goal 2
premise:
(1) y<=x,0<y,(x-y)div y=(q1,r),s(q1)=q
(2) r<y,0=q,x=r,0<y
conjecture 1 has been proved.

In contrast to the proof given in Example 4.4, the above expansion contains only one
application of a lemma (Theorem 1 of DIVISION).

Inductive expansions of program correctness conditions, occurring in different applica-
tion areas can be found in Padawitz (1994), Section 7. Even the simple ones given here
reveal the power of simplification and strategy-controlled goal generation. Many lemmas,
in particular those derived from only-if-completions (cf. Definition 5.6), are no longer
needed. Proofs evolve more automatically. By Theorem 10.7, this effect is guaranteed if
the underlying specification is free-constructor-based and canonical. We conclude that
the proof-theoretical benefit from canonicity, which is well known in pure equational
reasoning, is passed on to the higher level of inductive reasoning with Gentzen clauses.

References

Antoy, S., Echahed, R., Hanus, M. (1994). A Needed Narrowing Strategy. Proc. 21st ACM Symp. on
Principles of Programming Languages, 268–279.

Avenhaus, J., Becker, K. (1992). Conditional Rewriting modulo a Built-in Algebra. SEKI Report SR-92-
11, Universität Kaiserslautern.

Bertling, H., Ganzinger, H. (1989). Completion—Time Optimization of Rewrite—Time Goal Solving.
Proc. RTA ’89, Springer LNCS 355, 45–58.

Bouhoula, A., Kounalis, E., Rusinowitch, M. (1992). Automated Mathematical Induction. Report INRIA
Lorraine No. 1636.

Dershowitz, N., Jouannaud, J.-P. (1990). Rewrite Systems. In (J. van Leeuwen, ed.) Handbook of The-
oretical Computer Science, Elsevier, 243–320.

Dershowitz, N., Okada, M., Sivakumar, G. (1988). Confluence of Conditional Rewrite Systems. Proc.
CTRS ’87, Springer LNCS 308, 31–44.

Dershowitz, N., Okada, M., Sivakumar, G. (1988). Canonical Conditional Rewrite Systems, Proc. CADE
’88, Springer LNCS 310, 538–549.

Duffy, D. (1991). Principles of Automated Theorem Proving. New York: Wiley.
Echahed, R. (1988). On Completeness of Narrowing Strategies. Proc. CAAP ’88, Springer LNCS 299,

89–101.
Echahed, R. (1992). Uniform Narrowing Strategies. Proc. 3rd ALP, Springer LNCS 632, 259–275.
Ehrig, H., Mahr, B. (1985). Fundamentals of Algebraic Specification 1. New York: Springer.

Inductive Theorem Proving for Design Specifications 99

Fay, M. (1979). First Order Unification in an Equational Theory. Proc. 4th Workshop on Automated
Deduction, Academic Press, 161–167.

Fribourg, L. (1985). Handling Function Definitions through Innermost Superposition and Rewriting,
Proc. RTA ’85, Springer LNCS 202, 325–344.

Geser, A. (1991). Relative Termination. Ph.D. thesis, Report 91-03, FB Informatik, Universität Ulm.
Goguen, J.A., Thatcher, J.W., Wagner, E.G. (1978). An Initial Algebra Approach to the Specification,

Correctness and Implementation of Abstract Data Types. In (R. Yeh, ed.) Current Trends in Pro-
gramming Methodology 4, Prentice-Hall, 80–149.

Guttag J., Horowitz, E., Musser, D.R. (1976). Abstract Data Types and Software Validation. Report
ISI/RR-76-48, University of Southern California.

Hanus, M. (1994). The Integration of Functions into Logic Programming: From Theory to Practice. J.
Logic Programming, 19 20, 583–628.

Hölldobler, S. (1989). Foundations of Equational Logic Programming. New York: Springer.
Hullot, J.M. (1980). Canonical Forms and Unification. Proc. 5th CADE, Springer LNCS 87, 318–334.
Jouannaud, J.-P., Kirchner, H. (1986). Completion of a Set of Rules Modulo a Set of Equations. SIAM

Journal of Computing 15, 1155–1194.
Jouannaud, J.-P., Kounalis, E. (1986). Automatic Proofs by Induction in Equational Theories without

Constructors. Proc. LICS ’86, 358–366.
Jouannaud, J.-P., Waldmann, B. (1986). Reductive Conditional Term Rewriting Systems. Proc. Conf.

Formal Description of Programming Concepts III, North-Holland, 223–244.
Kaplan, S. (1984). Conditional Rewrite Rules. Theoretical Computer Science, 33, 175–194.
Kaplan, S. (1987). Simplifying Conditional Term Rewriting Systems: Unification, Termination and Con-

fluence. J. Symbolic Computation 4, 295–334.
Kapur, D., Musser, D.R. (1987). Proof by Consistency. Artificial Intelligence, 31, 125–157.
Kounalis, E., Rusinowitch, M. (1990). Mechanizing Inductive Reasoning. EATCS Bulletin, 41, 216–226.
Küchlin, W. (1989). Inductive Completion by Ground Proof Transformation. In (H. Ait-Kaci, M. Nivat,

eds.) Resolution of Equations in Algebraic Structures, Vol. 2, Academic Press, 211–244.
Malcolm, G., Goguen, J.A. (1994). Proving Correctness of Refinement and Implementation. Technical

Monograph PRG-114, Oxford University Computing Lab.
Padawitz, P. (1987). Strategy-Controlled Reduction and Narrowing. Proc. RTA ’87, Springer LNCS 256,

242–255.
Padawitz, P. (1988). Computing in Horn Clause Theories. New York: Springer.
Padawitz, P. (1991). Inductive Expansion: A Calculus for Verifying and Synthesizing Functional and

Logic Programs. J. Automated Reasoning, 7, 27–103.
Padawitz, P. (1991). Reduction and Narrowing for Horn Clause Theories. The Computer J., 34, 42–51.
Padawitz, P. (1992). Deduction and Declarative Programming, Cambridge University Press.
Padawitz, P. (1994). Expander: A System for Testing and Verifying Functional-Logic Programs. Report

No. 522/1994, FB Informatik, Universität Dortmund.
Padawitz, P. (1995). Swinging Data Types: The Dielectic of Actions and Constructors. Report, FB

Informatik, Universität Dortmund.
Reddy, U. (1990). Term Rewriting Induction. Proc. CADE 10, Springer LNCS 449, 162–177.
Reiter, R. (1978). On Closed World Data Bases. Proc. Logic and Data Bases. New York: Plenum.
Réty, P. (1987). Improving Basic Narrowing Techniques. Proc. RTA ’87, Springer LNCS 256, 228–241.
Shapiro, E. (1989). The Family of Concurrent Logic Programming Languages. ACM Computing Surveys

21, 413–510.
Slagle, J.R. (1974). Automated Theorem-Proving for Theories with Simplifiers, Commutativity and

Associativity. Journal ACM 21, 622–642.
Stickel, M. (1985). Automated Deduction by Theory Resolution. J. Automated Reasoning, 1, 333–356.
Wirsing, M. (1990). Algebraic Specification. In (J. van Leeuwen, ed.) Handbook of Theoretical Computer

Science, Elsevier, 675–788.
Zhang, H., Remy, J.-L. (1985). Contextual Rewriting. Proc. RTA ’85, Springer LNCS 202, 46–62.

