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Abstract

We embed second class constrained systems by a formalism that combines concepts of the BFFT method and th
gauge formalism. As a result, we obtain a gauge-invariant system where the introduction of the Wess–Zumino (WZ
essential. The initial phase-space variables are gauging with the introduction of the WZ field, a procedure that rese
Stückelberg field-shifting formalism. In some cases, it is possible to eliminate the WZ field and, therefore, obtain an i
system written only as a function of the original phase-space variables. We apply this formalism to important physical
the reduced-SU(2) Skyrme model and the two-dimensional chiral bosons field theory. In these systems, the gauge-i
Hamiltonians are derived in a very simple way when compared with other usual formalisms.
 2003 Published by Elsevier B.V.
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1. Introduction

It is well known that first class theories or gauge theories, due to the presence of symmetries, describe i
general way the physical properties of constrained dynamical systems. These symmetries, in quantum fie
can be used to deal with important questions as renormalisability and unitarity. Almost all known funda
interactions are described by first class theories.

The designation “first class” belongs to the Dirac’s conventional formalism [1] where constrained syste
classified as first class theories and second class ones. First class constraints are considered to be
symmetry generators while the second class constraints are the reducers of the physical degrees of
Consequently, in principle, there are no symmetries present in the dynamics of the second class systems

It is possible to convert second class systems into first class ones. The gauge-invariant systems mus
the same physical properties of the original second class models. Usually, there are two different approac
is the traditional formalism proposed by Faddeev and Shatashvili [2] and improved by Batalin and Tyutin
In this approach, WZ variables are added to the original system, equal in number to the number of seco
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constraints. All the second class constraints and the second class Hamiltonian are changed in order to sat
class algebra. The second approach is the unfixing gauge formalism which has an opposite concept of t
formalism. It was proposed by Mitra and Rajaraman [6] and improved by Vytheeswaran [7]. In this form
half of the second class constraints are considered to be the gauge-symmetry generators while the rema
are regarded to be the gauge-fixing terms. The second class Hamiltonian must be modified in order to
first class algebra with the constraints initially chosen to be the gauge-symmetry generators. This approa
interesting property that does not extend the phase-space with extra variables.

However, in the chiral bosons field theory [8–10] there is only one constraint. Due to this property, it
possible to apply the unfixing gauge formalism in this system because this constraint satisfies a seco
algebra. Motivated by this difficulty, we propose a new scheme of first class conversion formalism that co
concepts of the BFFT method and the unfixing gauge formalism. Initially, we have proposed in Ref. [11]
first class conversion formalism which the gauge-invariant Hamiltonian must be directly obtained in orde
invariant by gauge-symmetry transformations. Now, in this Letter the WZ fields are introduced with the ob
to construct a gauge-invariant generator and a gauge-invariant phase-space variables. Any function of t
class variables will be invariant by gauge transformation. This procedure resembles the Stückelberg field
formalism [12–14] and, as we will see, simplifies, considerably, the algebraic calculations. As many im
constrained systems have only two second class constraints, then, in principle, we describe the formal
for systems with two second class constraints without any loss of generality. It is clear that we are free to
the second class constraint that will be selected to construct the gauge-invariant generator. The other sec
constraint will be discarded. As an important result, we obtain a gauge-invariant version of the chiral boso
theory extended with the WZ field. In some cases, it is possible to eliminate the WZ field and to derive a
invariant system written only in terms of the original phase-space variables, a result that recovers the mai
the unfixing gauge formalism.

In order to clarify the exposition of the subject, this Letter is organized as follows: in Section 2, we p
the formalism in detail. In Section 3, we apply this formalism to the collective coordinates expansion
SU(2) Skyrme model [15,16] and the two-dimensional chiral bosons field theory. These two physical s
are important non-trivial examples of the second class constrained systems. The Skyrme model is a n
effective field theory which describes hadrons physics. In the chiral bosons field theory, the introduction of
auxiliary field is essential to derive a gauge-invariant version. In Section 4, we make our concluding remar

2. The description of the formalism

Consider a system in which the dynamics is governed by the LagrangianL(qi , q̇i) being i = 1, . . . ,N . The
canonical Hamiltonian is obtained by performing the Legendre transformation,Hc = pi q̇i − L. Through the
iterative Dirac’s procedure in which states that the constraints have no time evolution, we determine th
the two second class constraints written as

(1)Ta(qi,pi) ≈ 0 with a = 1,2.

The formalism begins by constructing the symmetry generator as

(2)T̃ = Ta + Tθ ,

where nowTa is the second class constraint chosen to forge the symmetry generator andTθ is a function of the WZ
variables(θ,πθ). Further,T̃ must satisfy a first class Abelian algebra

(3)
{
T̃ , T̃

} = 0.

All first class conversion formalisms, in principle, have some ambiguities [3–5,7] and in our formalism
to the arbitrariness of the algebraic form ofTθ , this situation is not different. However, we are free to mak
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ry
convenient choice forTθ in order to simplify the possible algebraic calculations or to exploit some new phy
properties of the system.

Representing the original phase-space variables as

(4)F = (qi,pi),

thus our strategy is to construct a gauge-invariant functionÃ from the second class functionA by gauging the
original phase-space variables. Denoting the first class variables by

(5)F̃ = (
q̃i, p̃i

)
,

then we have the variational condition

(6)δF̃ = {
F̃ , T̃

} = 0,

whereT̃ is the symmetry generator defined in Eq. (2). Any function ofF̃ will be gauge-invariant since [17]

(7)
{
Ã

(
F̃

)
, T̃

} = {
F̃ , T̃

} ∂Ã
∂F̃

= 0,

where

(8)
{
F̃ , T̃

} ∂Ã
∂F̃

≡ {
q̃i , T̃

} ∂Ã
∂q̃i

+ {
p̃i , T̃

} ∂Ã

∂p̃i

.

Consequently, we can obtain a gauge-invariant function from the replacement of

(9)A(F) → A
(
F̃

) = Ã
(
F̃

)
.

The gauge-invariant phase-space variablesF̃ are built by adding an arbitrary functionG(F, θ) to the original
phase-space variables, namely

(10)F̃ = F +G(F, θ),

with the following boundary condition

(11)G(F, θ = 0) = 0.

Expanding the arbitrary functionG(F, θ) in powers ofθ

(12)G(F, θ) = G1(F )θ1 +G2(F )θ2 + · · · +Gn(F)θn =
∞∑
n=1

Gn(F)θn,

and imposing the variational condition, Eq. (6), the corrections termsGn(F) and, consequently, the arbitra
functionG(F, θ) can be completely determined. The general equation forGn(F) is

(13)δF̃ = δF +
∞∑
n=1

(
δGnθn + nGnθn−1δθ

) = 0,

where

(14)δF = ε
{
F, T̃

} = ε{F,Ta}, δG = ε
{
G, T̃

} = ε{G,Ta}, δθ = ε
{
θ, T̃

} = ε{θ,Tθ }.
Then, for the linear correction term (n = 1), we have

(15)δF +G1δθ = 0, G1 = −δF/δθ.
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For the quadratic correction term (n = 2), we get

(16)δG1 + 2G2δθ = 0, G2 = −1

2
δG1/δθ.

Forn � 2, the general relation is

(17)δGn + (n + 1)Gn+1δθ = 0, G(n+1) = − 1

(n+ 1)
δGn/δθ.

Note that, in our formalism, the recursion relations (15), (16) and (17) presuppose that the transformatioδθ

must be linear, i.e., it is independent ofθ , since powers ofθ are being compared. Using again the relations (
(16) and (17) we obtain the series

(18)F̃ = F − θ

δθ
δF + 1

2!
θ2

(δθ)2
δδF − 1

3!
θ3

(δθ)3
δδδF + · · · .

The expression (18) can be elegantly written in terms of a projection operator onF

(19)F̃ = e− θ
δθ

δ : F,

or

(20)F̃ = e−θ ξ̂ : F,

where the operation̂ξF is defined aŝξF ≡ {F,Ta }
{θ,Tθ } .

In order to eliminate the WZ auxiliary field we must find a representation for the WZ variable written
in terms of the original phase space variablesF , i.e., θ = f (F ). The algebraic form of this function is obtaine
imposing that it has the same infinitesimal gauge transformation displayed byθ , namely

(21)δθ = δf (F ).

Thus, it is possible to derive a gauge-invariant Hamiltonian,H̃ , written only as a function of the original pha
space variablesF satisfying the first class algebra

(22)
{
H̃ , Ta

} = 0,

whereTa is the second class constraint initially chosen to forge the first class constraint that now becom
gauge-symmetry generator.

3. Applications of the formalism

3.1. The reduced-SU(2) Skyrme model

The Skyrme model describes baryons and their interactions through soliton solutions of the non-linea
model-type Lagrangian given by

(23)L =
∫

d3x

[
f 2
π

4
Tr

(
∂µU∂uU+) + 1

32e2 Tr
[
U+∂µU,U+∂νU

]2
]
,

wherefπ is the pion decay constant,e is a dimensionless parameter andU is a SU(2) matrix. Performing the
collective semi-classical expansion [16] just substitutingU(r, t) by U(r, t) = A(t)U0(r)A

+(t) in Eq. (23), being
A a SU(2) matrix, we obtain

(24)L = −M + λTr
[
∂0A∂0A

−1],
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whereM is the soliton mass andλ is the moment of inertia [16]. The SU(2) matrix A can be written as
A = a0 + ia · τ , whereτi are the Pauli matrices, and satisfies the spherical constraint relation

(25)T1 = aiai − 1 ≈ 0, i = 0,1,2,3.

Then, the Lagrangian (24) can be read as a function ofai as

(26)L = −M + 2λȧi ȧi .

Calculating the canonical momenta

(27)πi = ∂L

∂ȧi
= 4λȧi,

and using the Legendre transformation, the canonical Hamiltonian is computed as

(28)Hc = πiȧi −L = M + 2λȧiȧi = M + 1

8λ

3∑
i=0

πiπi.

A typical polynomial wave function, 1
N(l)

(a1 + ia2)
l = |polynomial〉, is an eigenvector of the Hamiltonian (28

This wave function is also eigenvector of the spin and isospin operators, written in [16] asJk = 1
2(a0πk − akπ0 −

εklmalπm) andIk = 1
2(akπ0 − a0πk − εklmalπm).

From the temporal stability condition of the spherical constraint, Eq. (25), we get the secondary constra

(29)T2 = aiπi ≈ 0.

We observe that no further constraints are generated via this iterative procedure.T1 andT2 are the second clas
constraints which the matrix elements of their Poisson brackets read as

(30)∆αβ = {Tα,Tβ} = −2εαβaiai, α,β = 1,2,

whereεαβ is the antisymmetric tensor normalized asε12 = −ε12 = −1.
In order to obtain a gauge-invariant SU(2) Skyrme model, the first step is to construct the extended genera

symmetry, which we choose as

(31)T̃ = T1 + πθ = aiai − 1+ πθ .

The infinitesimal gauge transformations generated by the symmetry generatorT̃ are

δai = ε
{
ai, T̃

} = ε{ai, T1} = 0, δπi = ε
{
πi, T̃

} = ε{πi, T1} = −2εai,

(32)δθ = ε
{
θ, T̃

} = ε{θ,πθ } = ε,

whereε is an infinitesimal parameter. From the functional form of the second class Hamiltonian, Eq. (2
see that the momentumπi is the only original phase-space variable that is necessary to shift in order to ob
gauge-invariant Hamiltonian. Then, the second step of the formalism is to construct the invariant momentu
read as

(33)π̃i = πi +Gi(ai,πi, θ) = πi +G1
i θ +G2

i θ
2 + · · · +Gn

i θ
n.

From the invariance conditionδπ̃i = 0 given in Eq. (13) and using the infinitesimal gauge transformations (32
can compute all the correction termsGn given in Eq. (33). For the linear correction term in order ofθ , Eq. (15),
we get

(34)δπi +G1
i δθ = 0, −2εai + εG1

i = 0, G1
i = 2ai.
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For the quadratic term, we obtainG2
i = 0, sinceδG1

i = {G1
i , T̃ } = 0. Due to this, all correction termsGn

i with
n � 2 are null. Therefore, the gauge-invariant momentum is

(35)π̃i = πi + 2aiθ,

where by using Eq. (32), it is easy to show that,δπ̃i = 0. The gauge-invariant Hamiltonian can be obtained
very simple way as

(36)H̃ = 1

8λ
π̃iπ̃i = 1

8λ
πiπi + 1

2λ
aiπiθ + 1

2λ
aiaiθ

2.

This Hamiltonian, due to the relation in Eq. (7), satisfies the gauge-invariance property

(37)
{
H̃ , T̃

} = 0.

In the gauge-invariant Hamiltonian, expressed in Eq. (36), if we fix the Wess–Zumino variable equal to ze
the unitary gauge, we recover the initial second class Skyrme model.

From the infinitesimal transformationδθ = ε, Eq. (32), we can choose a representation forθ as

(38)θ = f (ai,πi) = −aiπi

2a2
,

since δf = ε. Substituting the relation above in the Eq. (35), we get the invariant momentum written only in
of the original phase-space variables, read as

(39)π̃i = πi − ai
ajπj

a2
.

Consequently, from Eq. (36) we obtain the gauge-invariant Hamiltonian written only in terms of the original
space variables, given by

(40)H̃ = M + 1

8λ

[
πiπi − (aiπi)

2

a2

]
= M + 1

8λ
πiM

ijπj ,

being the phase space metricMij defined by

(41)Mij = δij − aiaj

a2
.

The Hamiltonian (40) is invariant under the infinitesimal gauge transformations, Eq. (32), and due to t
original second class constraintT1, Eq. (25), becomes the gauge symmetry generator.

Here, we can observe the auxiliary tool characteristic of the WZ variableθ because, at first, the WZ variab
is introduced in the second class variables with the purpose to enforce the symmetries. Next, it is replac
adequate representation leading to reveal the hidden symmetry present in the original phase-space variab

From the first class Hamiltonian, Eq. (40), the gauge-invariant Skyrmion Lagrangian should be of th

L̃ ∼ ȧi(M
ij )

−1
ȧj . Due to the fact that the matrixM, Eq. (41), is singular, then, in principle, it is not possible

obtain the first class Skyrmion Lagrangian written only in terms of the original phase-space variables. F
details see Ref. [18].

Now, let us consider the Poisson brackets of the first class variablesãi = ai andπ̃j = πj − aj
aiπi

a2 . After some
algebraic calculations, we have

(42)
{
ãi , ãj

} = 0,
{
ãi , π̃j

} = δij − ãi ãj

ã2
,

{
π̃i , π̃j

} = 1

ã2

(
ãj π̃i − ãi π̃j

)
.

This result is the same obtained when we calculate the Dirac brackets between the original second class
ai andπj . This situation also occurs in the BFFT quantization of O(3) non-linear sigma model [14] where th
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result is described by using the following scheme

(43)
{
Ã, B̃

} = {A,B}
D(A→Ã,B→B̃)

.

Then, this result possibly indicates the equivalence between our formalism and the BFFT method.
The quantum equivalence of our first class system and the initial second class Skyrme model can be

using the Dirac’s first class procedure. The physical wave functions must be annihilated by the first class
constraint, which reads as

(44)T1|ψ〉phys= 0.

The physical states that satisfy (44) are

(45)|ψ〉phys= 1

V
δ(aiai − 1)|polynomial〉,

whereV is the normalization factor and|polynomial〉 = 1
N(l)

(a1 + ia2)
l . The corresponding quantum Hamiltoni

is

(46)H̃ = M + 1

8λ

[
πiπi − (aiπi)

2

ajaj

]
.

The spectrum of the theory is determined by taking the scalar product of the invariant Hamiltonianphys〈ψ|H̃ |ψ〉phys
given by

(47)phys〈ψ|H̃ |ψ〉phys= 〈polynomial| 1

V 2

∫
dai δ(aiai − 1)H̃ δ(aiai − 1)|polynomial〉.

Integrating overai , we obtain

phys〈ψ|H̃ |ψ〉phys= 〈polynomial|M + 1

8λ

[
πiπi − (aiπi)

2]|polynomial〉

(48)= 〈polynomial|M + 1

8λ
[pipi]|polynomial〉,

wherepi ≡ (δij − aiaj )πj . As we can observe, the invariant Hamiltonian in Eq. (48) presents ordering prob
and we solve this problem adopting the Weyl ordering prescription [19] where we construct the symm
expression forpi as

(49)[pi]sym= 1

2

[
(δij − aiaj )πj + πj (δij − aiaj )

] = −i

(
∂i − aiaj ∂j − 5

2
ai

)
,

where we have replacedπi by −i∂/∂i . Substituting expression (49) in (48), we obtain

〈polynomial|[pipi ]sym|polynomial〉
= 〈polynomial|M + 1

8λ

[
∂j ∂j +

(
OpOp+ 2Op+ 5

4

)]
|polynomial〉

(50)= M + 1

8λ

[
l(l + 2)+ 5

4

]
,

where the operatorOp is defined asOp≡ ai∂i . Note that the eigenvalues of the operatorOp are defined by the
following equation:Op|polynomial〉 = l|polynomial〉. In Eq. (50), the regularization of delta function squared
δ2(aiai − 1) is performed by using the delta relation, 2πδ(0) = limk→0

∫
dx eik·x = ∫

dx = L. Then, we use the
parameterL as the normalization factor. It is important to point out that the energy levels, formula (50),
same obtained in a constrained second class treatment of the SU(2) Skyrme model [20]. Thus, this result indicat
that the field-shifting gauge-invariant formalism produces a correct result when compared with the original
class system.
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3.2. Chiral bosons field theory

Chiral bosons field theory has received considerable attention. In spite of the apparent simplicity, this mo
be relevant to the comprehension of superstrings,W gravities, and general two-dimensional field theories in
light cone.

The two-dimensional Floreanini–Jackiw (FJ) chiral boson model has the dynamics governed by the fo
Lagrangian density [9]

(51)L= φ̇φ′ − φ′2,

where dots and primes represent derivatives with respect to time and space coordinates, respectively. Th
constraint is

(52)T (φ,π) = π − φ′,

and the canonical Hamiltonian is

(53)Hc = φ′2.

The additional constraint called a secondary constraint can be generated by the Dirac’s iterative pr
However, in the chiral boson field theory, the primary constraintT itself becomes a second class constraint wh
satisfies the following Poisson bracket relation

(54)
{
T (x), T (y)

} = −2δ′(x − y).

Thus, in order to obtain a gauge-invariant chiral boson field theory, the first step is to construct a gauge-i
generatorT̃ from the second class constraintT , which we choose as

(55)T̃ = π − φ′ + θ,

where the WZ auxiliary field satisfies a non-canonical Poisson bracket relation

(56)
{
θ(x), θ(y)

} = 2δ′(x − y).

Combining Eqs. (54) and (56), we have the first class Poisson bracket

(57)
{
T̃ (x), T̃ (y)

} = 0.

The gauge infinitesimal transformations generated byT̃ are

(58)δφ(x) = ε
{
φ(x), T̃ (y)

} = εδ(x − y), δθ(x) = ε
{
θ(x), T̃ (y)

} = 2εδ′(x − y).

The first class variable is built by adding an arbitrary functionG in the fieldφ′

(59)φ̃′ = φ′ +G(φ,πφ, θ) = φ′ +G1θ +G2θ2 + · · · .
Following the prescription of our formalism, the correction termsGn are obtained by imposing the variation
conditionδφ̃′ = 0. Then, using the variational condition and the relations (58), the linear correction term is ob
as

(60)δφ′ +G1δθ = 0, εδ′(x − y)+ 2εδ′(x − y)G1 = 0, G1 = −1

2
.

As the first correction term is a number, all correction termsGn, for n � 2, are null. Therefore, the gauge-invaria
field is

(61)φ̃′ = φ′ − 1
θ,
2
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where it is easy to show that, using Eq. (58),δφ̃′ = 0. The gauge-invariant Hamiltonian density can be obtaine
a very simple way as

(62)H̃ = (
φ̃
)′2 =

(
φ′ − 1

2
θ

)2

= φ′2 − φ′θ + 1

4
θ2,

where due to the property, Eq. (7), satisfies a first class algebra

(63)
{
H̃, T̃

} = 0,

with T̃ = π − φ′ + θ .
The gauge-invariant Hamiltonian, Eq. (62), is the same obtained by Amorim and Barcelos in [21] via

formalism1 with the advantage that we have used few algebraic steps. Then, this result also indica
equivalence between our field-shifting gauge-invariant formalism and the BFFT first class conversion meth

We can obtain the corresponding Lagrangian density by means of the constrained path integral forma
the result is the same obtained in Ref. [21]. It is opportune to comment that in the chiral bosons model, a
not possible to choose an adequate representation for the WZ field in terms of the original phase space
It occurs due to the singular property of the FJ chiral bosons model, whose constraint, Eq. (52), satisfies
class algebra, given in Eq. (54). Thus, it is necessary, in principle, to add the WZ variable in the derivatio
first class algebra, Eq. (57).

4. Conclusions

In this Letter, we have proposed a first class conversion formalism that combines concepts of the BFFT
the unfixing gauge formalism and the Stückelberg field-shifting scheme. From a second class constraine
with two second class constraints, we choose one constraint to forge, with the aid of the WZ auxiliary varia
gauge-symmetry generator. From a projection operator, Eq. (19), we construct first class variables. Cons
any function of these first class variables will be gauge-invariant functions. This procedure, as we have o
in the Skyrme model and in the chiral bosons field theory, certainly leads to considerable simplification
derivation of the first class functions. In some cases, it is possible to obtain a first class Hamiltonian writt
as a function of the original variables, an important result that recovers the original concept of the unfixing
formalism. It is clear that a procedure that verifies if the resulting first class theory reproduces the same e
of motion or the spectrum (at a quantum level) of the initial second class model must be evaluated at th
the application of the formalism. Two subjects can be investigated as complementary studies to be deve
future papers. The first is the extension of our gauge-invariant conversion formalism for constrained syste
more than two second class constraints. The second is the possibility that the symmetry generator and the
Hamiltonian satisfy now a non-Abelian algebra.

Acknowledgements

The author would like to thank A.G. Simão for critical reading, and C. Neves and W. Oliveira for val
discussions. This work is supported in part by FAPEMIG, Brazilian Research Agency.

1 Here, it is appropriate to comment that chiral boson field theory is an example which the BFFT scheme does not necessarily inv
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