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Abstract

Within the heavy baryon chiral perturbation theory approach, we have studied the leading logarithm 
behavior of the nucleon mass up to four-loop order exactly and we present some results up to six-
loop order as well as an all-order conjecture. The same methods allow to calculate the main logarithm 
multiplying the terms with fractional powers of the quark mass. We calculate thus the coefficients of 
m2n+1 log(n−1)(μ2/m2) and m2n+2 logn(μ2/m2), with m the lowest-order pion mass. A side result is 
the leading divergence for a general heavy baryon loop integral.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The calculation of high order terms in low-energy effective field theories (EFTs) is a diffi-
cult task. Nowadays, most interesting observables have been calculated at the second order of 
the expansion, and the difficulty of these calculations shows little hope for any further expan-
sion. The main problem which restricts the potential of EFTs is their non-renormalizability. The 
non-renormalizability does not bring any problem, in principle, for the calculation by means of 
counting schemes for EFTs, first introduced in [1]. However, the rapidly increasing number of 
low-energy coupling constants (LECs), makes very high order applications practically of little 
use in general.
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Nevertheless, there are contributions of the higher order terms which are free from higher 
order LECs. In particular this is true for the leading logarithmical (LLog) contributions. LLogs 
are not in general dominant for a generic observable. However, for some observables the LLog 
contribution is dominant. Examples of such observables are the generalized parton distributions 
at small-x [2,3] and certain ππ scattering lengths [4]. In addition, the LLog terms are of great 
theoretical interest because they allow us to judge the behavior of a whole series of corrections in 
EFTs. We therefore consider the calculation of LLog terms in EFTs as an interesting and useful 
task.

In renormalizable field theories the LLog terms can be calculated to all orders using the renor-
malization group (RG) and (simple) one-loop calculations of the beta functions. In EFTs, as e.g. 
chiral perturbation theory (ChPT), they can also be calculated using one-loop calculations as was 
suggested already in [1], and proven in [5]. In contrast to renormalizable theories, in EFTs the 
LLog terms cannot be obtained simultaneously for all orders, and every order of the perturbative 
expansion requires an additional calculation. However, the evaluation of LLog terms is consid-
erably simpler than a full calculation. As an example, the full two-loop leading logarithms in 
bosonic ChPT were known long before the full results [6].

Within bosonic EFTs the LLogs have been studied extensively. It has been shown that for 
EFTs with massless particles the LLog behavior is described by a closed set of equations with 
known kernels, which were elaborated in [7–10]. Although, the analytical solution of these equa-
tions is not known, one can generate numerically the first few hundreds of coefficients rather fast, 
and use the approximate numerical solution in applications. An example is the exploration of the 
“chiral inflation” of the pion radius within ChPT [11]. Taking into account the mass of the fields 
allows for non-zero tadpole diagrams, which leads to a rapidly increasing number of equations 
with the chiral order since one has to consider one-loop diagrams with an ever increasing number 
of external legs. Therefore, one needs to incorporate new processes at every new order. As a re-
sult, the difficulty of the calculation grows extremely fast with the chiral order. By automatizing 
the procedure for a large number of processes the LLogs are known up to seven loops for some 
quantities [12–15].

The main goal of this paper is to generalize the methods used for bosonic EFTs with masses 
to the nucleon case. As mentioned earlier, it is not only interesting from the theoretical side, 
but also necessary for the evaluation of nucleon parton distributions at x ∼ mπ/MN [3,16]. In 
the paper we present the extension of the RG method of [5] to nucleon–pion ChPT. With its 
help, we calculate the LLog coefficients for the chiral expansion of the nucleon mass in the 
heavy-baryon formulation of ChPT. The main results are presented in Sections 6.3 and 6.4. An 
earlier application of LLogs in the nucleon sector was the calculation of the two-loop LLog 
contribution to the axial nucleon coupling constant gA [17].

The paper is organized as follows: In Section 2 we introduce the concept of renormalization 
group order (RGO). This is needed since in the nucleon sector chiral counting and loop counting 
are not identical. Section 3 shows how the RGO concept works in the meson sector and quotes 
some known results. Section 4 introduces the heavy baryon ChPT Lagrangian in its two most 
common variants and the different meson parametrizations we have used as a check on our result. 
Section 5 shows how the RGO can be used to prove the calculation of the leading logarithms 
using only one-loop diagrams also in the nucleon sector. This is then used to calculate the LLogs 
for the nucleon mass in Section 6. Some technicalities are discussed in Sections 6.1 and 6.2. 
We then calculate the LLogs for the nucleon mass as well as the odd-power next-to-leading 
logarithms (NLLogs) in Section 6.3 up to four respectively five loops. The observed regularity 
in the leading logarithm allows to also calculate the five loop result with a mild assumption. 



702 J. Bijnens, A.A. Vladimirov / Nuclear Physics B 891 (2015) 700–719
The LLogs, then essentially known to five loops, show a remarkable regularity when rewritten 
in the physical pion mass. We conjecture that this regularity holds to all orders and in that case 
using the known results for the pion LLogs we have a result for the nucleon mass LLogs up to 
7 loops. This is described in Section 6.4. A short numerical discussion of our results is given in 
Section 6.5. We summarize our conclusions in Section 7. The LLogs for a general heavy baryon 
one-loop integral are discussed in Appendix A.

2. Renormalization group and order

2.1. Renormalization group operator

In this section we present a short, hopefully self-contained, introduction to the renormalization 
group approach in EFTs. Our main goal is to present the method of obtaining the dependence 
of observables on the renormalization or subtraction scale (μ). The material is presented in a 
form transparent for the application at higher orders. More extensive discussions can be found in 
[5,12,18]. In particular, what we call LLogs is the contribution with the highest power of logμ

at a given order of the expansion.
To start with, we remind the reader that the Lagrangian of an EFT is the most general lo-

cal Lagrangian satisfying given symmetry properties with a given set of degrees of freedom or 
fields. Such a Lagrangian contains an infinite number of terms. In the absence of additional re-
strictions, every independent operator is multiplied by an unknown coupling constant, usually 
called low-energy constant (LEC).

It is convenient to multiply every operator by the counting parameter h̄ to the power which 
reflects the minimal order of the perturbative expansion the operator contributes to. In this way, 
the constant h̄ resembles the coupling constant in a renormalizable field theory as a way to keep 
track of (loop) orders in the expansion. Therefore, an EFT Lagrangian takes the form

LEFT
bare =

∞∑
n=0

h̄nL(n)
bare. (1)

The Lagrangian L(n) we call the Lagrangian of nth h̄-order1 and its LECs are consequently called 
LECs of nth h̄-order. Let us, following [12], denote LECs of nth h̄-order as c(n)

i , where the index 
i enumerates independent operators. In this way, the nth h̄-order Lagrangian reads

L(n)
bare =

∑
i

c
(n)
(bare)iO

(n)
i . (2)

For some low-energy EFTs, like mesonic ChPT, the h̄-ordering of operators is in one-to-one 
correspondence with the chiral ordering. However, the definition (1) is more general. It can be 
applied to any EFT, and, even, to renormalizable theories, some examples can be found in [5,18]. 
We should mention that there is no unique definition of the h̄-ordering for a theory. The only 
constraint is that the h̄-order of an operator should increase with increasing perturbative order. 
The choice made is for EFTs often referred to as the choice of power counting.

The bare Lagrangian is now split into a part with renormalized couplings c(n)
i , which depend 

on μ, and the counterterms. The renormalization scale independence of the Lagrangian leads to 
the set of RG equations for the LECs c(n)

i . These equations are of the form

1 The Lagrangian which contains the propagator of fields, must be included in the zeroth h̄-order.
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μ2 d

dμ2
c
(n)
i

(
μ2) = β

(n)
i

({
c
(m)
j

(
μ2)}), (3)

where the beta-function is a polynomial in the LECs and we have indicated explicitly the 
μ-dependence. An important point, used later, is that the right-hand side of (3) contains only 
combinations of LECs with total h̄-order strictly less then n.

The general formal solution of the system of equations (3) is

c
(n)
i

(
μ2) = R̂

(
μ

μ0

)
c
(n)
i

(
μ2

0

) = exp

(
log

(
μ2

μ2
0

)
Ĥ

)
c
(n)
i

(
μ2

0

)
. (4)

This defines also R̂. The operator Ĥ is defined as

Ĥ =
∫

dρ2
∑
n,i

β
(n)
i

({
c
(m)
j

(
ρ2)}) δ

δc
(n)
i (ρ2)

. (5)

The derivative in (5) is defined by

δ

δc
(n)
i (ρ2)

c
(m)
j

(
μ2) = δij δ

mnδ
(
ρ2 − μ2) (6)

such that

Ĥ c
(n)
i

(
μ2) = β

(n)
i

({
c
(m)
j

(
μ2)}). (7)

With the help of Ĥ or R̂, one can obtain the coefficients of the LLog for any observable, without 
actual calculation of loop diagrams, if the beta-functions are already known. We will demonstrate 
this explicitly in the next sections.

2.2. Renormalization group order

The crucial property of the operator Ĥ is that the repetitive action of Ĥ nullifies any given 
LEC (or products of LECs). This is the direct consequence of two features of h̄-counting. The 
first one is that the lowest order couplings, with h̄-order equal to zero, have zero beta-function, 
and therefore Ĥ c

(0)
i = 0. The second one is that the β-function of LEC c(n)

i , as defined in (3), 
contains only products of couplings with total h̄-order lower then n. Thus, every application of 
the operator Ĥ onto a product of LECs lowers the total h̄-order of that product, until it becomes 
zero.

For future convenience, we introduce the concept of renormalization group order (RGO). 
A product Pc of LECs has RGO g if

Ĥ gPc �= 0 and Ĥ g+1Pc = 0. (8)

For a generic2 quantity with a tree level contribution of h̄-order n, the RGO is the same as the 
maximum loop order that can appear when calculating that quantity to h̄n.

In the bosonic EFTs treated in the earlier works, e.g. [7,12–14], there is a one-to-one cor-
respondence between h̄-order and RGO, namely g = n. Therefore, the notion of RGO is un-
necessary and was not used in these works. However, such a relation does not hold in general, 

2 We will use this term below to indicate that there are exceptions where the beta-functions are zero “accidentally.” An 
example of this is the constant Lr in three-flavor bosonic ChPT. This does not invalidate our later use of the RGO.
7
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i.e. LECs of different h̄-order can have the same RGO. For example, in the nucleon ChPT, the 
h̄-counting as is related to RGO as g = [n/2], where [x] indicates the integer part of x (see 
detailed discussion in Section 5). In such a case the use of the RGO concept is convenient.

It is natural to split the beta-function into terms with the same RGO. For the beta-function of 
a coupling constant c(n)

i with RGO g we can write

β
(n)
i =

g−1∑
p=0

β
(n,p)
i (c). (9)

Here g = n or [n/2] for the two cases mentioned above. One can show that the part of the 
beta function with the highest RGO, β(n,g−1)

i , contains only contributions from one-loop. The 

next part, β(n,g−2)
i , contains contributions from one and two-loop diagrams and so on. Thus, the 

expression for the operator Ĥ can be ordered by RGO as

Ĥ =
∞∑

p=1

Ĥp. (10)

Ĥp contains the beta-functions β(n,g−p) of the coupling constants c(n)
i of RGO g. As a conse-

quence, acting with Ĥp on an expression reduces its RGO by p.

3. LLog in mesonic ChPT

In mesonic ChPT the choice of h̄-counting versus chiral counting relates both as h̄n ∼
O(p2n+2). The lowest order Lagrangian is of the second chiral order and reads3

L(0)
π = F 2

4
tr
[
uμuμ + χ+

]
, (11)

where we use the standard notation

uμ = i
(
u†∂μu − u∂μu†), χ+ = u†χu† + uχ†u = m2(u2 + u† 2). (12)

Here and throughout the text, F is the bare pion decay constant and m is the bare pion mass, 
m2 = 2Bm̂ in the notation of [19]. u contains the meson fields, a few examples of possible 
parametrizations are given in (25)–(27). The next order Lagrangian L(1) is of fourth chiral order. 
The absence of odd chiral order Lagrangians is guaranteed by Lorentz invariance.

In mesonic ChPT, the generic RGO of an LEC c(n) is equal to n. The one-to-one correspon-
dence between generic RGO and the h̄-order is the result of the absence of odd-chiral-order 
Lagrangians. Any product of LECs is also in one-to-one correspondence with its generic RGO, 
which is equal to the sum of the LECs’ h̄-orders. That, in turn, results in the simple ordering of 
beta-functions: the beta-function β(n,n−l) contains only l-loop beta functions.

As an example of using the operator Ĥ of (5) to obtain the LLog, we look at the phys-
ical pion mass. In order to obtain the physical pion mass one should solve the equation 
m2

π − m2 + Σπ(m2
π , m2) = 0, where Σπ(p2, m2) is a series of perturbative corrections to the 

pion propagator. The expression for Σπ has the general form

3 We write here only the terms relevant for the mass and neglect external fields.



J. Bijnens, A.A. Vladimirov / Nuclear Physics B 891 (2015) 700–719 705
Σπ

(
p2 = m2

π ,m2) = m2
∞∑

n=1

(
m2

(4πF)2

)n

Σ(n)
π

(
μ2

m2
, c

(
μ2)), (13)

where Σ(n)
π is a dimensionless expression of maximum h̄-order n. The first argument of Σ(n)

π

appears only as the argument of logarithms. We have suppressed the arguments p2/m2. Note, 
that p2/m2 can also enter the arguments of logarithms, moreover there can be logarithms of more 
complicated expressions of it. Such logarithms are not RG logarithms, and cannot in general be 
obtained by any procedure based on RG.

The expression for Σπ is renormalization scale independent.4 Moreover, it is renormalization 
scale invariant at every chiral order independently:[

μ2 ∂

∂μ2
+

∑
i,n

β
(n)
i

∂

∂c
(n)
i (μ2)

]
Σ(n)

π

(
μ2

m2
, c

(
μ2))

=
[
μ2 ∂

∂μ2
+ Ĥ

]
Σ(n)

π

(
μ2

m2
, c

(
μ2)) = 0. (14)

Therefore, we again have as solution, similar to (4),

Σ(n)
π

(
μ2

m2
, c

(
μ2)) = R̂

(
μ2

μ2
0

)
Σ(n)

π

(
μ2

0

m2
, c

(
μ2

0

))
. (15)

Choosing μ2
0 = m2, one neglects all the RG logarithms in Σ(n)

π on the right-hand-side. Thus, all 
RG logarithms are collected in the action of the operator R̂.

The expression for Σ(n)
π has the following form

Σ(n)
π =

∑
i

{
c
(n)
i

}
V

(n)
i + terms with lower RGO, (16)

where {c(n)
i }V (n)

i form the tree contribution to Σ(n). The symbol {c(n)
i }V (n)

i denotes here the 

products of c(m)
j with the highest possible RGO for the product. The V (n)

i depend on p2/m2. 

The highest power of the RG logarithm logμ2 in the expression (15) accompanies the highest 
power of Ĥ , in R̂ = exp(log(μ2/μ0)Ĥ ), which gives a non-zero result acting on Σ(n). Since 
every action of Ĥ reduces the RGO of expression, the coefficient of the LLog is

Σ(n)
π

(
μ2

m2
, c

(
μ2)) = 1

n! logn

(
μ2

m2

)
Ĥ n

1

∑
i

c
(n)
i V

(n)
i +O(NLLog), (17)

where NLLog is the acronym for the next-to-leading logarithms, and hence O(NLLog) denotes 
the part of expression without LLog.

Therefore, constructing the higher chiral order Lagrangians, and calculating the one-loop 
beta-functions of their LECs, one can obtain the LL coefficients without actual calculation of 
multi-loop diagrams. Moreover, the result is independent on the details of the higher order La-
grangians, as long as they are sufficiently general for the process at hand [12]. Practically it is 

4 We use here a scheme where all one-particle irreducible diagrams are made finite, otherwise one should apply the 
argument to a well defined Green function of external currents.
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convenient to use a non-minimal Lagrangian generated “on-the-fly” by the counterterms to one-
loop diagrams only. This was the approach used in [12–15] for the mesonic theory for several 
processes.

The solution of the pole equation gives us the expression for the physical pion mass to LLog 
accuracy. It is known up to sixth power of logarithms [14] and reads

m2
phys = m2

(
1 − 1

2
L + 17

8
L2 − 103

24
L3 + 24 367

1152
L4

− 8821

144
L5 + 1 922 964 667

6 220 800
L6 + · · ·

)
, (18)

where

L = m2

(4πF)2
log

(
μ2

m2

)
. (19)

4. Heavy baryon Lagrangian

The nucleon–meson ChPT in the naive form has the problem of the large nucleon mass M . 
There are several ways of dealing with the presence of this large scale, each with advantages 
and disadvantages. In this article, we use the heavy baryon approach to meson–nucleon ChPT 
since in this approach all scales that explicitly appear are soft and there are no divergences nor 
μ-dependence associated directly with the scale M .

For the LLog calculation, we have to determine the Lagrangians of zero RGO. For the pion–
nucleon system, these are Lagrangians of the first and the second chiral orders. The first chiral 
order Lagrangian, neglecting terms with external fields, reads

L(0)
Nπ = N̄

(
ivμDμ + gASμuμ

)
N, (20)

where Sμ is a spin vector. We use the standard notation for the field combinations (see also the 
definitions in (12)):

Dμ = ∂μ + Γμ, u2 = U, Γμ = 1

2

(
u†∂μu + u∂μu†). (21)

The second order Lagrangian is sensitive to redefinitions of the nucleon field. The most stan-
dard form of the second chiral order heavy baryon Lagrangian reads [20,21]

L(1)
πN = N̄v

[
(v · D)2 − D · D − igA{S · D,v · u}

2M
+ c1tr(χ+) +

(
c2 − g2

A

8M

)
(v · u)2

+ c3u · u +
(

c4 + 1

4M

)
iεμνρσ uμuνvρSσ

]
Nv. (22)

A different but equivalent version of the second order chiral Lagrangian is given in [22], and it 
reads

L(1)
Nπ = 1

M
N̄

[
−1

2

(
DμDμ + igA

{
SμDμ,vνu

ν
}) + A1Tr

(
uμuμ

) + A2Tr
((

vμuμ
)2)

+ A3Tr(χ+) + A5iε
μνρσ vμSνuρuσ

]
N. (23)

The relation between the LECs Ai and ci is the following
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Fig. 1. An example of diagrams which contribute to the renormalization of the nucleon mass at the same chiral order 
(here, the fifth chiral order), but which have different RGO. The left diagram has zero RGO, while the right diagram has 
RGO equal to one. Therefore, the left diagram does not contribute to the LLogs. The number in the box indicates the 
chiral order of the vertex. Thick arrowed lines indicate nucleon propagators, thin lines indicate pion propagators.

A1 = Mc3

2
+ g2

A

16
, A2 = Mc2

2
− g2

A

8
,

A3 = Mc1, A5 = Mc4 + 1 − g2
A

4
. (24)

Although the S-matrix elements are independent of the parametrization of the nucleon field, 
the contributions of individual diagrams, and expressions for the beta-functions are dependent 
on the field parametrization. Therefore, the comparison of results for calculations performed in 
different parameterizations is a very strong check of a calculation. The calculations presented in 
the next sections have been done in both parametrizations of the nucleon field. Additionally for 
further cross-checks, we used different parameterizations of the pion field u. We have used

u = exp

(
i
πaτa

2F

)
, (25)

u =
√

1 − �π2

4F 2
+ i

πaτa

2F
, (26)

and

u =
√

Y√
2

+ i
πaτa

F

√
1

2Y
with Y = 1 +

√
1 − �π2

F 2
. (27)

5. LLog in nucleon–meson ChPT: general comments

The consideration of the LLog behavior of nucleon–meson systems is similar to meson sys-
tems, but with some additional features. The main additional feature of meson–nucleon systems 
is the presence of operators with odd number of derivatives. Therefore, the relation between 
h̄-order and chiral order is h̄n ∼O(pn+1) for the single-nucleon sector of the ChPT Lagrangian, 
and h̄n ∼ O(pn+2) for the meson sector of EFT Lagrangian. At the same time, every loop in-
creases the chiral order by at least two. Therefore, the RGO is not in one-to-one correspondence 
with h̄-order. An LEC of nth h̄-order c(n) has generically an RGO [n

2 ]. This has important con-
sequences in the RG and LLog structure of the theory.

The first consequence is the contribution of diagrams with different RGO to the same chiral 
order. Indeed, a loop diagram with several vertices of even chiral order (i.e. odd h̄ order) has an 
RGO less then a diagram with the same chiral order but with fewer even-chiral-order vertices. 
An example of diagrams with the same chiral order but different RGO is shown in Fig. 1. Using 
the relation between chiral order and RGO, one can see that every two even-chiral-order vertices 
reduce the RGO of a diagram by one, from the possible maximum. For example: for any diagram 
with two even-chiral-order vertices with certain RGOs, there exists diagrams of the same chiral 
order and of the same topology, but with these two vertices replaced by odd-chiral-order vertices, 
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one with a chiral order one lower and one chiral-order one higher. The lower chiral order has the 
same generic RGO as the even vertex but the higher chiral order vertex has generic RGO one 
higher. The latter diagram has thus a higher RGO. We conclude that at a given chiral order the 
highest RGO contribution is given by the diagrams with zero or one vertex of even chiral order.

The second consequence is the ambiguity of the definition of a leading logarithm. The natural 
definition of LLogs, the logarithm of a maximum power of logμ2 at a given chiral order, does 
not always coincides with the RG definition for the same observable. In Section 6 we will show 
that in the chiral expansion of the physical nucleon mass, the LLog terms of odd chiral order are 
actually of NLLog origin when seen from an RGO perspective.

6. Nucleon mass at LLog accuracy

6.1. Propagator at LLog accuracy

The physical mass of the nucleon is given by the position of the pole in the Dyson propagator. 
In the heavy baryon approach the inverse Dyson propagator reads (we remind the reader that 
superscripts n refer to the h̄-order of quantities, and that the meson and meson–nucleon sectors 
of the action have different chiral counting)

S−1 = (rv) +
∞∑

n=1

Σ(n)
(
(r · v), r2), (28)

where rμ = pμ −Mvμ, p is the momentum of the nucleon, and vμ is the reference four velocity 
of the heavy nucleon. There are some intricacies of defining the propagator and renormalization 
of the nucleon wave function in heavy baryon theory, see e.g. [22,23]. However for the determi-
nation of the nucleon mass the straightforward usage of (28) is sufficient.

The expressions for Σ(n) are the result of the calculation of one-particle irreducible diagrams 
with a nucleon line at the (n + 1)th chiral order. The maximum power of the logarithm logμ2

which can appear in Σ(n) is [n
2 ].

The derivation of the LLog coefficient is the same as the derivation of expression (17). We 
collect all the RG-logarithms by the action of the normalization point rescaling operator R̂, again 
suppressing the other arguments of Σ(n),

Σ(n)

(
μ2

m2
, c

(
μ2)) = R̂

(
μ2

μ2
0

)
Σ(n)

(
μ2

0

m2
, c

(
μ2

0

))
. (29)

The highest RGO in Σ(n) has the tree diagram with only a c(n)
i vertex, therefore, the LLog 

coefficient is given by

LLog coef. =
([

n

2

]
!
)−1

Ĥ
[n/2]
1

∑
i

c
(n)
i V

(n)
i , (30)

where V (n)
i are expression for the c(n)

i -vertices.
It is also interesting to look at the NLLog contribution. The NLLog coefficient comes from the 

([n/2] − 1) term of the exponent series in (29). There are several different parts of Σ(n) which 
survive after the action by Ĥ [n/2]−1. These are the terms with RGO [n

2 ] and [n−2
2 ]. While the 

first are given by tree diagrams, the second are given by one-loop diagrams:
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Σ(n)

(
μ2

m2
, c

(
μ2)) =

∑
i

c
(n)
i

(
μ2)V (n)

i +
∑

1-loop diag.

W

(
μ2

m2
, c(k)

(
μ2)) + · · · , (31)

where the Vi are the expressions for the tree level diagrams and W indicates the expressions for 
the one-loop diagrams at a fixed renormalization scale. The dots represents the contributions with 
lower RGO. We note that W contains only one-loop diagrams with RGO equal to [n−2

2 ], but not 
all possible one-loop diagrams. The NLLog coefficient is given by

NLLog coef. = 1

([n/2] − 1)! Ĥ
[n/2]−1
1

∑
i

c
(n)
i V

(n)
i

+ 1

([n/2] − 1)!

[[n/2]−1∑
k=0

Ĥ k
1 Ĥ2Ĥ

[n/2]−1−k

1

]∑
i

c
(n)
i V

(n)
i

+ 1

([n/2] − 1)! Ĥ
[n/2]−1
1

∑
1-loop diag.

W

(
μ2

0

m2
, c(k)

)
, (32)

where Ĥ2 contains two-loop beta-functions in addition to one-loop beta-functions.
The expressions given by the different terms on the right-hand-side in (32) have significantly 

different properties. The first term of (32) gives the contribution to NLLogs with LECs from 
the next-to-leading chiral Lagrangian. These terms are LLog terms of ([n/2] − 1)-loop diagrams 
with insertion of higher order vertices. The second line of (32) gives the “true” NLLog contribu-
tion with LECs of the lowest order Lagrangian only. These are the NLLog terms of [n/2]-loop 
diagrams. The third line represents the non-analytical contribution of [n/2]-loop diagrams to the 
NLLog coefficient. We should mention that the part of NLLog coefficient given by the second 
line is renormalization-scheme-dependent, while the parts given by the first and the third lines 
are scheme-independent.

If the quantity has no tree-order contribution, the only non-zero part of (32) is the last line. 
In this case the NLLog can be calculated from one-loop diagrams only. An example of such 
behavior are the non-analytic in quark mass terms. These terms result only from the loops and 
therefore, their contribution to NLLog can be calculated with one-loop diagrams only. The meth-
ods of [12] can also be used to prove this. The absence of the tree level contribution allows the 
NLLog to be determined from the set of equations relating the different loop-order contributions.

6.2. Pole equation at LLog accuracy

In this section we discuss the properties of the solution of the pole equation at LLog accu-
racy. From the previous discussion it follows that it is also valid for the NLLog multiplied by a 
nonanalytic power of the quark mass.

The position of the pole in the propagator (28) is a Lorentz invariant quantity, when evaluated 
to all orders in the expansion. Therefore, one can choose5 rμ or pμ such that r2 = (r · v)2. Then, 
ω = (r · v) gives the difference between the physical mass and the bare mass, (r · v) = δM =
Mphys − M . In this regime we can expand the expression for Σ(n) in powers of δM

Σ(n−1)(δM) =
n∑

k=0

σk,n−kδMkmn−k, (33)

5 If one chooses vμ = (1, 0, 0, 0) this corresponds to �r = �p = 0.
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where the coefficients σ (i,j) contain logarithms. The coefficients σk,n−k have mass-dimension 
(1 − n).

The solution of the pole equation S−1 = 0, (28), can be found perturbatively in m

δM =
∞∑

n=2

anm
n (34)

where again the ai contain logarithms. Inserting the expansions (34) and (33) into the Dyson 
propagator (28), and considering the pole equation for every power of m independently, we 
obtain a system of equations for the coefficients an,

an +
∑

{i},j�n−2

ai1ai2 . . . aij σ
j,n−∑

i = 0, (35)

where summation runs over all possible sets of indices including empty set and permutations.
Let us consider the system of equations (35) in the LLog regime. We recall that the power 

of the LLog is [n
2 ] for Σ(n). However, the coefficients an have different logarithm counting. 

The reason is the presence of terms non-analytical in quark masses. The Lagrangian of ChPT 
is necessarily analytical in the quark masses, i.e. it contains only even powers of m. The terms 
non-analytic in quark masses appear only through loop-integrals, and, therefore, they cannot
appear in the expression (30) or in the first two lines of the expression (32). In this way, the 
number of logarithms in front of the pion mass in the odd power is suppressed by one (at least). 
Summarizing, we obtain the following LLog counting for the coefficients a and σ

an ∼ log[(n−2)/2](μ), σ s,t ∼
{

log[(s+t−1)/2](μ) t ∈ even

log[(s+t−3)/2](μ) t ∈ odd.
(36)

Using the counting (36), we neglect the NLLog terms in the equations (35) and obtain the 
system of equations in the LLog regime:

an + σ 0,n +
n−2∑

k=2,4,...

akσ
1,n−k = 0, n ∈ even, (37)

an + σ 0,n + an−1σ
1,1 +

n−2∑
k=3,5,...

akσ
1,n−k = 0, n ∈ odd. (38)

This is a system of linear equations. The important result is that the even-n coefficients allow 
LLog evaluation only, because they involve only the LLog coefficient of analytical in quark mass 
terms. At the same time, the odd coefficients involve the terms non-analytical in quark masses. 
These coefficients are really NLLog. However, they can be obtained from a one-loop calculation 
as well, because they follow from the third line of (32).

One can see that the system (37)–(38) involves only the coefficients σ 0,n and σ 1,n, which 
are the coefficients of the zeroth and the first powers of (r · v) in the propagator diagrams. It 
is a reflection of the fact that according to (36) the quantity (r · v)2 = δM2 is of NLLog order. 
Therefore, the powers of ω can be eliminated from the equation S−1 = 0. The solution can be 
presented in the simple form

δM = −Σ(0)

1 + Σ ′(0)
+O(NLLog), (39)

where Σ(r · v) = ∑
Σ(n)(r · v) and Σ ′ is its derivative with respect to (r · v).
n
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Table 1
The coefficients ki defined in (40) of the LLog expansion of the nucleon mass.

k2 −4c1M

k3 − 3
2 g2

A

k4
3
4 (g2

A
+ (c2 + 4c3 − 4c1)M) − 3c1M

k5
3g2

A
8 (3 − 16g2

A
)

k6 − 3
4 (g2

A
+ (c2 + 4c3 − 4c1)M) + 3

2 c1M

k7 g2
A

(−18g4
A

+ 35g2
A

4 − 443
64 )

k8
27
8 (g2

A
+ (c2 + 4c3 − 4c1)M) − 9

2 c1M

k9
g2
A
3 (−116g6

A
+ 2537g4

A
20 − 3569g2

A
24 + 55 609

1280 )

k10 − 257
32 (g2

A
+ (c2 + 4c3 − 4c1)M) + 257

32 c1M

k11
g2
A
2 (−95g8

A
+ 5 187 407g6

A
20 160 − 449 039g4

A
945 + 16 733 923g2

A
60 480 − 298 785 521

1 935 360 )

6.3. Expression for the physical mass

We have performed the calculation of the nucleon mass up to the fourth power of RG loga-
rithms. We present the results in the form:

Mphys = M + k2
m2

M
+ k3

πm3

(4πF)2
+ k4

m4

(4πF)2M
log

(
μ2

m2

)

+ k5
πm5

(4πF)4
log

(
μ2

m2

)
+ · · ·

= M + m2

M

∞∑
n=1

k2nL
n−1 + πm

m2

(4πF)2

∞∑
n=1

k2n+1L
n−1, (40)

where L is defined in (19). The coefficients up to k11 are presented in Table 1. This corresponds 
to the four-loop calculation of LLog and five-loop calculation for the terms non-analytical in 
quark masses.

The presented results have been obtained via the different parametrizations of the Lagrangians 
(see Section 4), which gives a very strong check of calculation. Additionally, the coefficients up 
to k6 agree with known results. The one-loop coefficients k3,4 are well known, see e.g. [21]. The 
two-loop coefficient k5 was first derived in [24]. The two-loop coefficients k6 and k5 are known 
from the full two-loop calculation for the nucleon mass performed in the EOMS scheme [25].

The generation of the higher order Lagrangians and the evaluation of one-loop beta-functions 
has been done automatically using the computer algebra system FORM [26]. The algorithm we 
used is similar to that used and described in [12,13]. The main integral needed for evaluation 
of beta-functions is presented in Appendix A. Although the calculation involves only one-loop 
diagrams, it is very demanding in machine time and memory. The most demanding factor is 
the length of the expression for the high order effective vertices and the number of diagrams to 
compute. These quantities grow rapidly with chiral order. For example, in order to calculate the 
k10 coefficient one needs to evaluate nearly 104 one-loop diagrams.

The calculation of the even coefficients k can be significantly simplified by using the conjec-
tures discussed below in Section 6.4. So, by neglecting higher powers of gA during the evaluation 
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of the diagrams, we could also evaluate the five-loop coefficient k12. Adding the further conjec-
ture about the relation with the LLog in the pion mass, we can obtain the six and seven-loop 
coefficients k14 and k16. However, these coefficients are the result of conjectures and, therefore, 
are presented in Table 3, separately from the results of the full calculation.

6.4. Properties of the result and conjectures

The straightforward calculation, limited by the available computer power, gives us the co-
efficients k1, . . . , k11 presented in Table 1. Considering the presented coefficients a number of 
regularities show up immediately. Some of the regularities we can explain easily, while some of 
them we cannot.

The first observation is that only even powers of gA show up. This can be easily under-
stood. The meson Lagrangian and the nucleon Lagrangian are invariant under the transformation 
u ↔ u† and gA ↔ −gA. As a consequence only terms even in gA can appear in the nucleon 
mass. This explains the pattern occurring in the odd coefficients k2n+1.

The second observation is that the coefficients k2n contains a very particular combination of 
LECs. The pattern appearing in k2n is not well understood yet. Let us consider it in detail.

As shown in Section 5, one can have at most one insertion of the order p2 Lagrangian. The 
expression for k2n are thus at most linear in c1, c2, c3 and the other terms in L(1)

πN . The coupling 
constant c4 or A5 cannot enter the nucleon mass at LLog since it produces an εμναβ . However, 
we found no simple argument why gA only appears up to order g2

A.
For the powers of gA, there are two sources for factors of gA in the loop diagrams, namely 

from the vertices L(0) (20) and from the vertices L(1) (22)–(23). While the number of vertices 
from L(1) is restricted to one, the number of vertices from L(0) is naturally unrestricted. More-
over, the expression for Σ contains all allowed powers of gA. These powers cancels within 
the solution (39). We have checked that if one introduces new LECs for the terms proportional 
to gA in L(1) (say coefficients B1,2 in front of the first two terms in (23)) the coefficients k2n

would contain higher powers of gA. These induced higher powers are proportional to (B1 − B2)

and disappear when B1 = B2. Since these operators appear in L(1) as the compensation of the 
non-relativistic nucleon reference frame, we conclude that absence of higher powers of gA in 
coefficients k2n is a consequence of Lorentz invariance.

Supposing that the cancellation of the higher powers of gA takes place at all orders, one can 
neglect these powers during the computation of diagrams. This procedure significantly reduces 
the demands for computer time and allows us to calculate the coefficient k12, which is presented 
in Table 3.

Considering Eq. (37) one can see that the coefficients k2n consist from the terms proportional 
to exactly the first power of σ 0,k where k is even. We remind that σ 0,even are the result of dia-
grams with even chiral order and hence proportional to a single vertex from L(1) (which is also 
checked by explicit calculation with coefficients B1,2). Therefore, the term g2

A which appears in 
the coefficients k2n resulted solely from L(1). In its own turn, it implies that there is no contribu-
tion from the diagrams with vertices proportional to gA only from L(0). All such vertices have an 
odd number of pions. Absence of such vertices implies that diagrams with more than two odd-
number-of-pion vertices do not contribute to the LLog coefficient of nucleon mass. Undoubtedly 
such a structure is a consequence of the additional subtractions of infrared (heavy mass) singu-
larities into renormalization counterterms within heavy baryon theory, but we have not been able 
to prove this.



J. Bijnens, A.A. Vladimirov / Nuclear Physics B 891 (2015) 700–719 713
Table 2
The coefficients r of LLog expansion of the nucleon mass using the physical 
pion mass as defined in (42).

r2 −4c1M

r3 − 3
2 g2

A

r4
3
4 (g2

A
+ (c2 + 4c3 − 4c1)M) − 5c1M

r5 −6g4
A

r6 5c1M

r7
g2
A
4 (−8 + 5g2

A
− 72g4

A
)

r8
25
3 c1M

r9
g2
A
3 (−116g6

A
+ 647g4

A
20 − 457g2

A
12 + 17

40 )

r10
725
36 c1M

r11
g2
A
2 (−95g8

A
+ 1 679 567g6

A
20 160 − 451 799g4

A
3780 + 320 557g2

A
15 120 − 896 467

60 480 )

Considering the first six coefficients k2n one can observe that they have the pattern

k2n = bn

(−3c1M

n − 1
+ 3

4

(
g2

A + (c2 + 4c3 − 4c1)M
))

, (41)

where bn are some rational numbers. The coefficients bn can be obtained from the calculation of 
the physical pion mass as we demonstrate below.

The nucleon mass LLog coefficient in terms of the physical pion mass mphys has the form

Mphys = M + m2
phys

M

∞∑
n=1

r2nL
n−1
π + πmphys

m2
phys

(4πF)2

∞∑
n=1

r2n+1L
n−1
π , (42)

where

Lπ = m2
phys

(4πF)2
log

(
μ2

m2
phys

)
.

The coefficients rn of this expansion are presented in Table 2.
One can see that the non-analytical in quark mass terms rodd do not simplify in this form of 

expansion, while the expressions for the coefficient reven are significantly simplified. Moreover 
the combination of the LECs proportional to bn in (41) completely disappears from the higher 
order terms. We conclude that the coefficients bn are the coefficients of the LLog expansion of 
m4 in the terms of physical pion mass. Thus, assuming that the pattern (41) holds for all orders 
we conjecture the LLog part of the expression for the nucleon bare mass via the physical masses6

at all orders to be

M = Mphys + 3

4
m4

phys

log(
μ2

m2
phys

)

(4πF)2

(
g2

A

Mphys
− 4c1 + c2 + 4c3

)

− 3c1

(4πF)2

μ2∫
m2

phys

m4
phys

(
μ′) dμ′ 2

μ′ 2
. (43)

6 This expression should be understood as not rewriting the term k2m2/M in the physical pion mass and the integral 
over μ2 should be done after applying (18) to m4 (μ′).
phys
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Table 3
The coefficients ki and ri defined in (40) and (42), that are obtained by using the 
conjectures described in Section 6.4.

k12
* 115

3 (g2
A

+ (c2 + 4c3 − 4c1)M) − 92
3 c1M

k14
** − 186 515

1536 (g2
A

+ (c2 + 4c3 − 4c1)M) + 186 515
2304 c1M

k16
** 153 149 887

259 200 (g2
A

+ (c2 + 4c3 − 4c1)M) − 153 149 887
453 600 c1M

r12
* 175

4 c1M

r14
** 4 153 903

24 300 c1M

* The coefficients k12 and r12 have been calculated within the simplified 
scheme by neglecting higher powers in gA .
** The coefficients k14,16 and r14 are the result suggested by the expression 
(43). r16 would require the knowledge of the L7 term in the expression for the 
pion mass.

The expression for the physical pion mass is known up to 6-loop order, Eq. (18), therefore, we 
can guess two more LLog coefficients for the physical nucleon mass. These are presented in
Table 3 and indicated by the double-star marks.

6.5. Numerical results

As mentioned in the introduction, the LLog are not necessarily dominant. They do however 
give an indication of the size of corrections to be expected. We use here one set of inputs to show 
an example. The input we use uses the ci as determined in [21] and reasonable values for the 
other quantities. The actual values we use are:

M = 938 MeV, c1 = −0.87 GeV−1, c2 = 3.34 GeV−1, μ = 0.77 GeV,

F = 92.4 MeV, c3 = −5.25 GeV−1, gA = 1.25. (44)

We plot in Fig. 2 the total correction Mphys − M of (40) by loop order. We have included the 
results up to the k12 term since we do not have the odd powers higher than five loops. As can be 
seen there is a reasonable convergence for the range given.

Fig. 2. The contribution of the terms in mass correction of (40) with the terms included up to a given loop-order.
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Fig. 3. The absolute value of the contribution of the individual terms (∼ kn) in (40) at m = 138 MeV. Open symbols are 
the odd orders. Filled symbols are the even orders.

To see the convergence better, we have plotted in Fig. 3 the absolute value of the individual 
terms containing ki of (40) for m = 138 MeV. Note the excellent convergence.

7. Conclusions

In this paper we have presented the application of the renormalization group method for 
nucleon–pion chiral perturbation theory. The theoretical basis of the method was developed in 
[5]. The method has been applied before only for bosonic theories, see [7,10,12–15]. In partic-
ular, we have calculated the physical mass of the nucleon within the heavy baryon formulation 
in the LLog approximation (analytical and non-analytical in quark mass terms) up to five-loop 
order. The results of the calculation are presented in (40), (42) and Tables 1, 2.

The theories with fermions (or more precisely, the theories involving Lagrangians of odd chi-
ral order) have a more involved structure of RG equations. In contrast to the bosonic theories, 
where all one-loop beta functions contribute to LLog coefficients, in theories with fermions some 
one-loop beta functions do not contribute to the LLog coefficients. For resolving the RG hier-
archy, we have introduced the concept of renormalization group order (RGO), see Section 2.2. 
Using the RGO allows us to extract the diagrams which contribute to the LLog approximation 
(or any other order of RG logarithms).

The calculation of the necessary one-loop beta-functions has been performed symbolically 
with the help of the FORM computer symbolic computation system. The results of our calcula-
tion agree with known one- and two-loop results, see e.g. [25]. The calculations were performed 
in several different parametrizations of the nucleon and pion fields with the same result, provid-
ing a very strong check for the computational algorithm. The analytical part of the computation, 
namely the expression for a basis one-loop-integral in the heavy baryon theory, is presented in 
Appendix A.

The obtained LLog coefficients show a number of regularities. Some of which can be easily 
understood, while the rest is more involved. The most intriguing regularity is the absence of 
higher powers of axial coupling constant gA in the LLog coefficients k2n (see (40) and Table 1). 
Moreover, the pattern of the LLog coefficients allows us to guess the all-order expression for the 
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LLog contribution to the nucleon mass in terms of physical pion mass (43). Although the latter is 
only a conjecture, we consider it as an exact result, most likely a consequence of the subtraction 
of heavy-mass-singularities within heavy baryon theory and Lorentz invariance.

We also showed some numerical results in Section 6.5.
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Appendix A. Loop integrals

The most resource demanding part of LLog evaluation is the calculation of the one-loop 
diagrams with generally a large number of external fields. Also at high chiral orders the loop-
integrals involves a large number of open indices. In general in heavy baryon theory one faces 
loop-integrals of the very general form∫

ddk

(2π)d

kμ1 . . . kμn

(kv + ω1) . . . (kv + ωNN−1)((k + p1)2 − m2
π ) . . . ((k + pNπ+1)2 − m2

π )
, (45)

where NN is the number of vertices with nucleon, and Nπ is the number of pure pionic vertices 
involved in the diagram.

The first step of evaluation of such loop-integrals is the joining of propagators of the same type 
into a single propagator with the help of Feynman variables, xi for the nucleon propagators, yi

for the meson propagators. The subsequent shift of integration momentum allows one to remove 
the momenta pi from the denominators (leaving them in the “mass”). The cost is a significant 
growth of the numerator, which is, however, a purely algebraic problem. The resulting sum inte-
grals consist of simpler base integrals, the expressions for which we present below. Finally, the 
integrals over the Feynman parameters are done.

A.1. The base mesonic integral

The diagrams with a single or none nucleon vertex contain base integrals of the form

Iμ...μn
p =

∫
ddk

(2π)d

kμ1 . . . kμn

(k2 − m2)p
, (46)

where m2 is a difficult combination of pi , Feynman parameters and pion masses. The expression 
under the integral contains no intrinsic vectors, the result is thus proportional to metric tensors 
only. Therefore, the integral is zero for odd n. For even n it is completely symmetric in all the 
indices μi and reads

Iμ...ν
p = i(−1)

n
2 +p

(4π)
d
2

Γ (p − n
2 − d

2 )

2
n
2 Γ (p)

gμ1...μn
s

(
m2) n

2 −p+ d
2 , (47)

where gμ...ν
s is the totally symmetric combination of metric tensors. In our calculation we will 

need only the pole part of integral I , it reads
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Iμ...ν
p = i

ε(4π)
d
2

g
μ...ν
s (m2)2+ n

2 −p

2
n
2 Γ (p)(2 + n

2 − p)! +O
(
ε0), (48)

where we have used that d = 4 − 2ε. This agrees with the expression in [12].

A.2. The base integral with nucleon propagators

The most general integral combines into the base integral of the form

Iμ...ν
r,p =

∫
ddk

(2π)d

kμ . . . kν

(kv + ω)r(k2 − m2)p
, (49)

where ω = ∑
i ωixi (with xi Feynman parameters), and m2 is a combination of pi , Feynman 

parameters yi and pion mass. Using the pseudo-Feynman parameter z, we rewrite the integral as

Iμ...ν
r,p = 2r Γ (r + p)

Γ (r)Γ (p)

∫
ddk

(2π)d

∞∫
0

dz
zr−1kμ . . . kν

(k2 − m2 + 2zkv + 2ωz)r+p
, (50)

where z has mass dimension 1.
Performing the shift of the variable

kμ → kμ − zvμ, (51)

we represent the integral Ir,p as a sum of (mesonic) base integrals which can be evaluated with 
(47). The resulting integral over z is of the form

Ĩ = 2r Γ (r + p)

Γ (r)Γ (p)

∞∫
0

dz

∫
ddk

(2π)d

zr+l−1kμ1 . . . kμn

(k2 − m2 − z2 + 2ωz)r+p

= i(−1)
n
2 −r−p

(4π)
d
2

g
μ...ν
s Γ (r + p − n

2 − d
2 )

2
n
2 −rΓ (r)Γ (p)

∞∫
0

dz zl+r−1(m2 + z2 − 2ωz
) n

2 + d
2 −r−p

, (52)

where l ≥ 0 follows from (51).
The parameters p, r, n, l are all integers and satisfy p, r ≥ 1; n, l ≥ 0. We introduce the special 

notation for the overall mass dimension of the integral:

A = n + l + 4 − r − 2p ∈ Z.

In this notation the integral (52) reads

Ĩ = i(−1)
A−l−r

2

(4π)
d
2

g
μ...ν
s Γ ( r+l−A

2 + ε)

2
n
2 −rΓ (r)Γ (p)

∞∫
0

dz zl+r−1(m2 + z2 − 2ωz
)A−l−r

2 −ε
. (53)

We have two sources for the ε-pole, namely, the Γ -function and the integral over the pseudo-
Feynman parameter z. Since l+r > 0, the only divergence in the z integral takes place at z → ∞. 
We distinguish three cases:

(i) A < 0 the pseudo-Feynman integral is convergent. Since r > 1 and l ≥ 0, we have that 
r + k − A ≥ 1. There is no pole in ε.
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(ii) A ≥ 0 the pseudo-Feynman integral is divergent, and r + l−A ≥ 1, such that the Γ -function 
has no pole.

(iii) A ≥ 0 the pseudo-Feynman integral is divergent, but with r + l − A ≤ 0 such that the 
Γ -function also has a pole.

The important point is that all divergent cases are for non-negative A. Expanding around m = 0, 
and taking the integral for every term we obtain

Ĩ = i(−1)
3A−l−r

2 −4ε

(4π)
d
2

g
μ...ν
s 2A+r− n

2 −2ε

Γ (r)Γ (p)

×
∞∑

j=0

(
−m2

4

)j ωA−2j−2εΓ (2j − A + 2ε)Γ (A+l+r
2 − j − ε)

j ! . (54)

The gamma-functions cannot have poles simultaneously, due to l ≥ 1. We have two series of 
poles

0 ≤ j ≤ A

2
, and j ≥ A + l + r

2
. (55)

The second series of poles appears at z = 0. Therefore, these poles are artifacts of the small-mass 
expansion. The first series represents the UV-poles we want. Expanding the integral around these 
poles, we obtain

Ĩ = i(−1)
A−l−r

2

ε(4π)
d
2

g
μ...ν
s 2A+r− n

2 −1

Γ (r)Γ (p)

A/2∑
j=0

(
−m2

4

)j ωA−2jΓ (A+l+r
2 − j)

j !(A − 2j)! . (56)

We note that this also implies that A ≥ 0, and it is also the dimension of the initial integral Ir,p. 
The argument of the last gamma-function is always integer because n is even.

A.3. Non-analytical in quark mass part

As shown in Section 6, we could also consider the terms non-analytical in the quark mass. 
They can be obtained from (53). The integral over z can be done exactly with the help of Jacobi 
polynomials and then expanded in ω. Or it can be done in the following way. Expanding the 
integrand of (53) in ω we obtain

Ĩ =
∞∑

j=0

i(−1)
A−l−r

2 +j

(4π)
d
2

ωjg
μ...ν
s Γ ( r+l−A

2 + ε)

2
n
2 −r−jΓ (r)Γ (p)

Γ (A−l−r
2 − ε + 1)

j !Γ (A−l−r
2 − j − ε + 1)

×
∞∫

0

dz zl+r+j−1(m2 + z2)A−l−r
2 −ε−j

. (57)

The integral over z can be reduced to an Euler integral of the second kind. After simplifications 
the result reads

Ĩ = i(−1)
A−l−r

2

(4π)
d
2

2r− n
2 −1g

μ...ν
s

Γ (r)Γ (p)

∞∑
j=0

(2ω)jmA−j−2ε
Γ (

j+l+r
2 )Γ (

j−A
2 + ε)

j ! , (58)

which is equivalent to (54). Here we have three interesting cases:
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1. j ≤ A (only for A ≥ 0), and j − A even: the expression contains an ε pole, and is analytical 
in the quark mass. The ε-pole coefficient coincides with the one calculated before, (56).

2. j > A, and j − A even: the expression is finite, and analytical in quark mass. It is of no 
interest for this work.

3. j −A odd: the expression is finite, but non-analytical in quark mass. The leading term of the 
ε-expansion reads

i(−1)
n
2 −r−p

(4π)
d
2

2r− n
2 −1g

μ...ν
s

Γ (r)Γ (p)
J

(l+r)
n+l+4−r−2p(ω), (59)

where

J
(s)
A (ω) =

∞∑
j=0 (j+A odd)

(2ω)jmA−j
Γ (

j+s
2 )Γ (

j−A
2 )

j ! .

The expressions for A = 2a (even) and A = 2a + 1 (odd) are:

J s
2a = 2(−1)a

√
π

Γ ( 1+s
2 )

( 1
2 )a

ω

m

(
m2)a

2F1

(
1 + s

2
,

1

2
− a; 3

2
; ω2

m2

)
,

J s
2a+1 = 2(−1)a+1√π

Γ ( s
2 )

( 3
2 )a

m
(
m2)a

2F1

(
s

2
,−1

2
− a; 1

2
; ω2

m2

)
.
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