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Abstract

It is known, though not commonly, that one can describe fermions using a second order in deriva-
tives Lagrangian instead of the first order Dirac one. In this description the propagator is scalar, and the 
complexity is shifted to the vertex, which contains a derivative operator. In this paper we rewrite the La-
grangian of the fermionic sector of the Standard Model in such second order form. The new Lagrangian 
is extremely compact, and is obtained from the usual first order Lagrangian by integrating out all primed 
(or dotted) 2-component spinors. It thus contains just half of the 2-component spinors that appear in the 
usual Lagrangian, which suggests a new perspective on unification. We sketch a natural in this framework 
SU(2) × SU(4) ⊂ SO(9) unified theory.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Different views suggest different kinds of modifications which might be made and hence are 
not equivalent in the hypotheses one generates from them in one’s attempt to understand what 
is not yet understood.

[Richard Feynman, Nobel Lecture]

It is well known that physical theories can be described by first as well as second deriva-
tive Lagrangians. A useful analogy here is between the Hamiltonian and Lagrangian mechanics. 
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The Hamiltonian formulation gives first order evolution equations, but contains twice more inde-
pendent variables than the second order Lagrangian framework. Integrating out the momentum 
variables one arrives at the second order formulation. Thus, which formulation to use is always 
a matter of convenience.

Often, however, a theory is first written (discovered) in one of the two available formulations, 
and this predetermines what is used by the physics community. This point is well illustrated by 
the first and second order formulations of General Relativity. Physicists use the second order 
metric formulation as the one in which GR was originally proposed. However, some aspects of 
the theory become more transparent in the first order formalism. For example, in the first order 
formulation the Lagrangian of GR is polynomial (cubic) in the fields [1], which is not at all the 
case in its second order version. Availability of a simple polynomial Lagrangian, even though 
containing more fields, is sometimes important, as in the case of the proof of the GR uniqueness 
in [1]. Another slightly less familiar example is the first order formalism for QCD [2]. Thus, 
one can rewrite the Yang–Mills Lagrangian in the BF form, plus a term quadratic in the B-field. 
Again, the first order Lagrangian is cubic in the fields, and some properties of the theory are 
much easier to see in this formulation.

The two examples show that integrating out fields and passing to the second order formulation 
typically leads to having vertices of higher valency. Thus, the trade-off is a smaller number of 
fields and thus simpler propagators vs. more involved propagators but simple (e.g. only cubic) 
interaction vertices. So, apart from historical reasons, the other justification for using the second 
order formulations in the case of gravity and YM theories is the fact that it is often convenient 
to work with a smaller number of fields. Indeed, in doing perturbative Feynman diagram com-
putations it is convenient to have only one type of lines, even if this necessitates introduction of 
higher valent vertices.

The subject of this paper is the fermionic Lagrangian of the Standard Model. In its usual 
form, this is a version of the first order Dirac Lagrangian. The above discussion suggests that 
there is also an associated second order formulation that can be obtained by integrating out the 
“momenta” fields of the first order formalism. And indeed, such a second order formulation exists 
and has been studied by many authors. The list of references that we are aware of is [3–13], plus 
a few more works listed in [8]. Our approach uses 2-component spinors and is thus closest to that 
in [7]. As far as we are aware, the second order formalism has only been studied for the case of 
simple models (like QED), and the potentially more interesting case of the full SM has not been 
considered. One aim of this paper is to fill this gap.

When the Dirac Lagrangian is written in terms of 2-component spinors one realizes that 
the “momenta” canonically conjugate to, say, unprimed spinors, are the primed spinors. These 
spinors are anti-commuting variables treated in the path integral as independent (from the un-
primed spinors), and thus one can integrate out the primed spinors, arriving at the second order 
Lagrangian for unprimed 2-component spinors. As is common to all second order Lagrangians, 
the propagator becomes very simple, being essentially that for scalars. The complexity of the first 
order formalism that to a large extent resided in the propagator (kμγ μ − m)−1 gets now shifted 
to the vertex, which in the second order formalism contains a derivative operator. There is also 
now a new quartic vertex, absent in the first order formulation. Thus, one obtains a formalism 
for fermions with Feynman rules very similar to those in QCD, with the familiar (∂A)A2 and A4

vertices.
Because the propagator of the second order formulation is a multiple of the identity matrix, 

the algebra of γ -matrices that one has to do in computing Feynman diagrams is much simpler 
than is the case in the usual formalism. The second order formalism is also very ideally suited 
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for computations using the spinor helicity methods, see also [7] for an emphasis of this point. 
Thus, as in the case of QCD, it is the second-order formalism that is more efficient for practical 
calculations.

The reason why we don’t learn about fermions directly in their more computationally superior 
second order version is that, unlike the case of QCD, there is a price to pay for going to the second 
order formulation. Thus, having integrated out the primed spinors, which in the Dirac Lagrangian 
are Hermitian conjugates of the unprimed, we have lost manifest unitarity. The theory is still 
unitary, but showing this now requires more work, as this is no longer true diagram by diagram, 
as for the case of a Hermitian Lagrangian. We will give more comments on the unitarity below.

At the time of writing this paper the theoretical physics community is excited about a new 
approach [14] to N = 4 SYM theory that makes the Yangian symmetry manifest, at the expense 
of concealing locality and unitarity. Thus, the advocated here computationally more superior 
approach to the Standard Model that parts with the manifest unitarity may now be more psy-
chologically acceptable than it would have been the case before. Our own main reasons to be 
interested in the second order Standard Model is that it is described by a very compact La-
grangian containing a (twice) smaller number of fermion fields, and thus points in the unusual 
direction in terms of Grand Unification, see more on this below.

Parting with this motivational discussion, our main result is an extremely simple second or-
der Lagrangian for the fermionic sector of the SM. It is worth exhibiting the simplicity of this 
Lagrangian already in the Introduction. It reads

Lferm = − 2

ρ
DQ̄iDQi − 2

ρ
DL̄iDLi − ρ

(
�Q̄

)i
Qi − ρ

(
�L̄

)i
Li . (1)

This should be compared to (13). The notations are as follows:

Qi =
(

ui

di

)
, Li =

(
νi

ei

)
,

(
�Q̄

)i :=
(
�

ij
u ūj ,�

ij
d d̄j

)
,

(
�L̄

)i :=
(
�ij

ν ν̄j ,�
ij
e ēj

)
, (2)

all fermionic fields ui , di , νi , ei , ūi , d̄i , ν̄i , ēi are 2-component unprimed spinors, with ui , di , 
ūi , d̄i needed to describe quarks, and νi , ei , ν̄i , ēi describing leptons. The strong SU(3) indices 
are suppressed, as are the fermionic ones. �ij

u,d,ν,e are Hermitian 3 × 3 mass matrices with i, j =
1, 2, 3 being the generation index. As we explain in more details below, the doublets Qi, Li are 
SU(2) invariant ones constructed by absorbing the Higgs field into the fermions. The covariant 
derivatives D contain appropriate for each field gauge field, and in the case of Qi, Li contain 
SU(2) invariant W±, Z fields constructed from the SU(2) gauge field and the Higgs. Note that 
the right-handed fermions that are uncharged under the weak SU(2) got combined into doublets. 
We have also added the right-handed neutrinos as well as the corresponding mass matrix to 
account for the neutrino oscillations. This Lagrangian does not contain the Majorana mass terms 
for the right-handed neutrinos that would be necessary to achieve the seesaw mechanism. We 
give the corresponding expression in the main text as it is somewhat less elegant.

The Higgs field φ enters the second order Lagrangian only via the combination ρ2 := |φ|2. 
The other 3 components of the Higgs doublet have been absorbed into the fields Qi, Li, W±, Z to 
make them SU(2) gauge-invariant objects. The idea to use gauge-invariant field combinations is 
not new, in the context of spontaneous symmetry breaking it has been considered in the literature 
several times, see [15–18]. We found that the second order formalism naturally leads to this 
gauge invariant formulation.
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One of its most interesting features of (1) is that the Higgs field enters the new Lagrangian 
non-polynomially, here as a factor of 1/ρ in front of the kinetic term. In the main text we shall 
also give another version of the same Lagrangian where we absorb a factor of 1/

√
ρ into each 

fermionic field to render the kinetic terms canonical. This keeps the non-polynomial character of 
the Lagrangian, but now the Higgs enters via a contribution to the covariant derivatives, as well 
as in the mass terms.

Due to its non-polynomiality the Lagrangian (1) is not manifestly renormalizable, unlike 
its first order version that is just a φ4 theory and the renormalizability is evident. The non-
polynomiality of the second order Lagrangian in the Higgs field is in a striking resemblance
to what one encounters in General Relativity. What is also similar with gravity is the fact that 
the non-polynomiality disappears if one passes to the first order formulation. We do not know 
whether all these similarities are just superficial or there is something deep, but they seem to be 
worth pointing out. We will further comment on the gravitational analogies in the last section.

The Lagrangian (1), together with the bosonic part that is given in terms of SU(2) invariant 
fields in the main text, can be used as the starting point for computations of the SM scattering 
amplitudes. We would like to emphasize that this results in a set of rules that are more computa-
tionally efficient than the usual first-order rules, and are completely equivalent.

The computation would proceed in two steps. In the first step one would compute correlation 
functions of all the fields, and in the second the field expansion into modes would be used to 
extract the scattering amplitudes. It is in this last step where the reality conditions for the free 
fermionic fields need to be added to the story, but these cause no difficulties. It would be inter-
esting to develop this method of computing the amplitudes further, and possibly even implement 
it numerically, as it leads to computational advantages as compared to the rules based on the 
first order SM Lagrangian. This alternative method of computing the SM scattering amplitudes 
is another result of the present work.

Further, we found it hard to resist to think along the Grand Unification lines, and try to com-
bine the terms in (1) into an even more compact expression. Given that the quark and leptons enter 
the Lagrangian so similarly, it is natural to think of the leptons as the fourth color of quarks, as is 
done in the Pati–Salam GUT [19]. Then the 4 terms in (1) combine into two, which we can write 
as

Lferm = − 2

ρ
DS̄iDSi − ρ(�S̄)iSi, (3)

where Si, S̄i are doublets with an additional index whose first 3 values enumerate the color and 
the fourth corresponds to leptons. The would be SU(4) symmetry is broken by the mass matrix 
(with a complicated structure, see below) in the last term. It is notable that in this second order 
formulation all fermions of the SM got combined into an 8-dimensional 2-component spinor 
multiplet Si , plus a multiplet that transforms under a complex conjugate representation of the 
unbroken gauge group U(1) × SU(3).

A related point that is worth emphasizing at the outset is as follows. As we already mentioned, 
the procedure of integrating out the primed spinors from the Dirac Lagrangian naturally necessi-
tates introduction of weak SU(2)-invariant fermionic doublets, in which fermions are dressed by 
the components of the Higgs field to give gauge-invariant objects. These Higgs-dressed fermionic 
fields transform non-trivially only under the unbroken SM gauge group U(1) × SU(3). Impor-
tantly, all fermions transform in a real representation. Thus, the SU(2)-invariant fermion config-
urations assemble into the already mentioned 8-dimensional set Si and a complex conjugate set 
S̄i . Together, this forms a 16-dimensional real representation of the group U(1) × SU(3). This 
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is in contrast to what happens in the original first-order version of the SM, where the fermions 
transform in a complex representation of the group U(1) × SU(2) × SU(3). The fact that we now 
have to account for a real, not complex fermionic representation allows for more possibilities as 
far as the grand unification is concerned. In particular, as we shall see, it is possible to put all the 
16 fermions in (3) into a single 16-dimensional representation of SO(9), or into two fermionic 
representations of SO(8).

Finally, for readers that are not to be convinced by any beautiful rewritings of the Lagrangian, 
we give a computational complexity argument that favors our formulation to the usual first order 
one. Let us consider (for simplicity tree level) scattering amplitude in which a single fermion 
is scattered by n photons. In terms of Feynman graphs, all diagrams where a fermionic line is 
connected to n external photon lines should be considered. In the usual formalism there are only 
the 3-valent vertices, in our formalism one also needs to consider the possibility of having the 
4-valent ones. However, these vertices can be taken care of at the step when one adds contribu-
tions of individual Feynman diagrams, i.e. considers the different ways that the external photon 
momenta can be attached to the fermionic line. At that step one groups the 4-valent vertex dia-
grams as contributions to the 3-valent vertex ones, see [8] for more details. So, the increase in 
the number of diagrams does not lead to an increase in the computational complexity, provided 
one properly groups the 4-valent diagrams with the relevant 3-valents ones.

Let us now compare the computation of each individual diagram in the second and first order 
formalisms. We keep the external momenta of n photons fixed and need to compute the amplitude 
as a function of these momenta. For definiteness, let us project the external photon lines on some 
polarizations, so that there are no free spacetime indices. We also assume that the fermionic 
momenta are fixed, and the fermionic lines are projected on some fixed external polarizations. 
The way this computation is carried out numerically in the usual formalism is as follows. One 
takes a product of n 4 × 4 matrices coming from the vertices, as well as n − 1 4 × 4 matrices 
coming from the propagators. The operation of multiplication of two 4 × 4 matrices is worth of 
27 operations (counting each multiplication and addition as a separate operation). Thus, overall, 
there are (27)2n−2 operations to perform to compute the product of all the γ -matrices. Then there 
is finally the operation of projection on the external fermionic polarizations to be taken, which is 
32 more operations. Overall, we get an order of 214n operations for this computation. In contrast, 
in the second order formalism, one is multiplying 2 × 2 matrices, and moreover just n − 1 of 
them, as the propagator is an identity in the field space. This results in (24)n−1 operations, which 
is order of 24n. The result is that the second order computation is 210n times quicker than the usual 
one. Of course, there are more sophisticated methods of computing the scattering amplitudes than 
just computing and adding the contribution of all the diagrams. However, even for these other 
methods the simplification in the Feynman rules may be a bonus.

Overall, we hope to have convinced the reader that the second order formalism is a more 
computationally efficient way of treating fermions than the usual Dirac formulation. Thus, the 
second order formulation may be of particular relevance for the case of the Standard Model 
fermions, where one does have to perform extensive numerical investigations of various process 
occurring at LHC. Our paper may therefore be useful at least as giving this computationally more 
superior formulation.

The organization of this paper is as follows. We start in Section 2 by a quick reminder of 
how the usual Weyl, Majorana and Dirac actions look like in 2-component spinor notations. This 
fixes our conventions and notations. In this section we also carry the exercise of integrating out 
the primed spinor fields for the Dirac Lagrangian, thus arriving at the Lagrangian of second 
order QED. Section 3 reviews the fermionic sector of the SM in terms of 2-component spinors. 
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Section 4 is the main one where we obtain the second order Lagrangian (1). We also analyze the 
case with the Majorana mass term here. In Section 5 we write the bosonic sector Lagrangian in 
terms of the same gauge-invariant variables that we were led to introduce in the fermionic sector. 
The material here has appeared in the literature before, and we give it for completeness. Section 6
describes some simplest interaction vertices that follow from our Lagrangian, to get a better feel 
of how the second order perturbation theory works. We discuss unification in Section 7 and finish 
with a discussion.

2. Preliminaries: second order QED

We start by considering a much simpler setup of Quantum Electrodynamics (QED). To es-
tablish our conventions, and to prepare for integration over the primed spinors, let us write the 
familiar fermionic Lagrangians in terms of 2-component spinors. We follow the 2-component 
spinor conventions of [20].

2.1. Single massless Weyl fermion

The Lagrangian for a single massless Weyl fermion reads:

LWeyl = −i
√

2(λ†)A′θμ A′A∂μλA ≡ −i
√

2λ†∂λ. (4)

Here λA is a 2-component spinor, λ†
A is its Hermitian conjugate and θA′A

μ is the soldering form

θA
μA′θνA

A′ = ημν, (5)

where ημν = diag(−1, 1, 1, 1). We have also introduced the notation ∂AA′ := θμ∂AA′
μ and written 

the Lagrangian in an index-free way. Our index-free convention is that the unprimed fermions 
are always contracted as λχ ≡ λAχA, while the primed fermions are contracted in the opposite 
way λ†χ† ≡ (λ†)A′(χ†)A

′
. The factor of 

√
2 is introduced for convenience, and the minus in 

front of the kinetic term is convention dependent. With our conventions it is needed to get the 
positive-definite Hamiltonian. The Lagrangian is Hermitian, modulo a surface term.

2.2. Majorana mass term

When fermions are Grassmann valued we can have the Majorana mass term. Thus, consider

LMajorana = −i
√

2λ†∂λ − (m/2)λλ − (m/2)λ†λ†, (6)

where we have used the index-free notation, and m is the parameter with dimensions of mass, 
later to be identified with the physical mass. Note that we need to add both terms in order for the 
Lagrangian to be Hermitian.

2.3. Dirac fermions

Dirac fermions are obtained by taking two massive Weyl fermions of equal mass. The sys-
tem is then invariant under SO(2) rotations mixing the fermions. Since SO(2) ∼ U(1), complex 
linear combinations of fermions can be introduced and the Lagrangian rewritten in an explicitly 
U(1)-invariant way. This symmetry can be made local by introducing a U(1) gauge field and 
converting the usual derivative to the covariant one. Thus, we define
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Dμξ = (∂μ − ieAμ)ξ, Dμχ = (∂μ + ieAμ)χ, (7)

where Aμ is the electromagnetic potential and e is the electron charge. Note that, since the 
fields ξ , χ are charged in the opposite way, the expressions for the covariant derivatives on these 
fields differ by a sign in front of Aμ. The gauge transformation rules are: for the fermions ξ →
eiφξ , χ → e−iφχ , and for the electromagnetic potential Aμ → Aμ − (1/e)∂μϕ. The Lagrangian 
becomes

LDirac = −i
√

2ξ†Dξ − i
√

2χ†Dχ − mχξ − mξ†χ†, (8)

where as before D := θμDμ.

2.4. Chiral Dirac theory

At the level of the path integral we can integrate out the fermionic fields ξ†, χ† and obtain a 
chiral Lagrangian involving only unprimed spinors. From field equations for the primed spinors 
we get:

ξ† = − i
√

2

m
Dχ, χ† = − i

√
2

m
Dξ. (9)

Substituting this into the Lagrangian (8) we get:

Lchiral = − 2

m
DχDξ − mχξ. (10)

As the final step, the kinetic term here can be put into the canonical form by doing the rescaling

ξ → √
mξ, χ → √

mχ. (11)

The new spinor fields have mass dimension one, and the Lagrangian takes the following simple 
form

Lchiral = −2DχDξ − m2χξ ≡ −2DA′AχADA′BξB − m2χAξA, (12)

where we reintroduced the spinor indices to make everything explicit. Our aim is to write the SM 
fermionic sector in a similar fashion.

3. Preliminaries: SM Lagrangian via 2-component spinors

We follow [21], with some differences in conventions.

3.1. Standard Model fermions

The SM fermions can be put together in the following table
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2-component fermions SU(3) SU(2) Y T3 Q = T3 + Y

Qi =
(

ui

di

)
triplet
triplet

doublet
1/6
1/6

1/2
−1/2

2/3
−1/3

ūi triplet singlet −2/3 0 −2/3
d̄i triplet singlet 1/3 0 1/3

Li =
(

νi

ei

)
singlet
singlet

doublet
−1/2
−1/2

1/2
−1/2

0
−1

ēi singlet singlet 1 0 1
ν̄i singlet singlet 0 0 0

All fermionic fields here are unprimed 2-component spinors. Thus, ūi is not the Hermitian 
conjugate of ui , with the latter being denoted by u†

i . The first 4 fermionic fields are the ones 
needed to describe quarks, the last 4 are those for describing leptons. Note that the last line 
is not a part of the Standard Model, but is now believed to be needed to account for neutrino 
masses. Also note that the strong SU(3) triplet fields are actually a collection of 3 different 
two-component spinors. Thus, e.g. ui has two types of indices suppressed: the usual spinor index, 
as well as the strong SU(3) index. With no index suppression this field would be denoted by uα

iA, 
where A = 1, 2 is the usual spinor index, and α = 1, 2, 3 is the index on which SU(3) acts. The 
only index that is indicated explicitly is that enumerating the generations i = 1, 2, 3. It is an 
instructive exercise to count the number of 2-component fermionic fields in the above table. We 
have 4 × 3 = 12 for the quark sector and 4 for the lepton sector. Thus, we need 16 2-component 
spinors for each generation of the Standard Model.

3.2. Higgs field

This is the field that plays the central role in the Standard Model. It is a complex field of U(1)

charge Y = 1/2. It is also a weak SU(2) doublet, i.e. it can be written as a column

Higgs SU(3) SU(2) Y T3 Q = T3 + Y

φ =
(

φ+
φ0

)
singlet doublet

1/2
1/2

1/2
−1/2

1
0

Note that being an SU(2) doublet, it is really a collection of 2 complex fields φ+ (the plus 
denotes the fact that the electric charge Q = +1) and φ0 (with Q = 0). Alternatively, it is a 
collection of 4 real fields. We shall denote the weak SU(2) index by a, b, . . . = 1, 2. Thus we can 
write the Higgs field as φa , with φ1 = φ+ and φ2 = φ0.

3.3. Fermionic sector of the Standard Model

Using index-free notations, the Lagrangian for the fermionic sector of the Standard Model 
reads:

Lferm = −i
√

2Q†iDQi − i
√

2ū†iDūi − i
√

2d̄†iDd̄i − i
√

2L†iDLi − i
√

2ē†iDēi

− i
√

2ν̄†iDν̄i + Y
ij
u φT εQiūj − Y

ij
d φ†Qid̄j + Y ij

ν φT εLiν̄j − Y
ij
e φ†Liēj

− (Y †
u )ij ū

†
i Q

†
j εφ

∗ − (Y
†
d )ij d̄

†
i Q

†
jφ − (Y †

ν )ij ν̄
†
i L

†
j εφ

∗ − (Y †
e )ij ē

†
i L

†
jφ

− 1
M

ij
ν̄ ν̄i ν̄j − 1

(M
†
ν̄ )ij ν̄

†
i ν̄

†
j . (13)
2 2
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Here as before DAA′ ≡ θμAA′
Dμ, where Dμ is an appropriate for each field covariant derivative. 

The quantities Y ij are arbitrary complex 3 × 3 mass matrices. All fermions are Grassmann-
valued.

We have given a formulation of the SM with the right-handed neutrinos added in. To get the 
usual SM one just has to erase all the terms containing the ν̄ field. Equivalently, it is obtained by 
setting to zero the mass matrices Y ij

ν , Mij
ν .

Only the SU(2) index structure in the above Lagrangian needs clarifications, all other sup-
pressed indices are self-explanatory. Our SU(2) index conventions are as follows. As we have 
already mentioned, the Higgs field is considered to be an object φa with a single SU(2) index 
in the lower position. Its transpose is then an object (φT )a . The complex conjugate field (φ∗)a
still carries a lower position index, while the Hermitian conjugate is (φ†)a . Similarly, the quark 
doublet Qa has a lower index position. Its Hermitian conjugate is an object (Q†)a . The quantity 
ε ≡ εa

b is the matrix

εa
b =

(
0 1

−1 0

)
. (14)

Then the object φT εQ ≡ (φT )aεa
bQa is invariant under the action of SL(2, C) via Q →

gQ, φ → gφ since gT εg = ε. In particular, φT εQ is SU(2) invariant. It is then clear that all the 
terms in the second line of (13) are SU(2) invariant. The U(1) invariance is also easily checked 
by noting the Y -charges of the objects. The third line in (13) is then the Hermitian conjugate of 
the second. The last line is the Majorana mass terms for the right-handed neutrinos. It is also 
worth noting that the position of the generation indices (upper or lower) does not matter, as all 
these indices are explicitly indicated. We put them wherever convenient so as not to clatter the 
formulas.

4. Second order formulation of the Standard Model

We now carry out the procedure of integrating out the primed 2-component spinors from the 
significantly more involved SM Lagrangian.

4.1. Quark sector

We start with the quark sector as there is no Majorana mass term in this case. The equations 
of motion for the unprimed spinors are:

Q
†
i : i

√
2DQi = − (εφ∗) ū

†
j (Y

†
u )ji − φ d̄

†
j (Y

†
d )ji

ū
†
i : i

√
2Dūi = −(Y

†
u )ijQ

†
j (εφ∗)

d̄
†
i : i

√
2Dd̄i = −(Y

†
d )ijQ

†
j φ

(15)

We now notice that some structure is making itself explicit in the equations of motion. Thus, 
let us combine the components of the Higgs field into the following 2 × 2 matrix:

ρ�† := (
εφ∗, φ

) ≡
(

(φ0)∗ φ+
−φ− φ0

)
. (16)

Under the weak SU(2) the matrix �† transforms as:

�† 	→ ��†, (17)
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while the field ρ remains invariant. It is clear that ρ2 is just the modulus squared of the Higgs 
field.

To make the above equations look more transparent, we define the new quark singlets as linear 
combinations of the old ones:

ūi → (Y †
u )ij ūj , d̄i → (Y

†
d )ij d̄j . (18)

It is clear that this is designed to eliminate the mass matrices from the last pair of equations. Note 
that this is a constant reparameterization of the fields, so it does not lead to any change in the 
derivative operators. We further combine the new quark singlets into a row

Q̄i := (
ūi , d̄i

)
(19)

In terms of the new quark singlets the equations of motion become:

Q
†
i : i

√
2DQi = −ρ �†

(
Q̄†�

)
i

Q̄
†
i : i

√
2DQ̄i = −ρ Q

†
i �

† (20)

Here we introduced new Hermitian mass matrices

�
ij
q := Y ik

q (Y †
q )kj , (21)

as well as a new column(
Q̄†�

)i ≡
(

ū
†
j�

ji
u

d̄
†
j �

ji
d

)
. (22)

While introducing the new doublet Q̄i has made the equations look more symmetric, there is 
no complete symmetry. Indeed, the doublet Qi transforms under the weak SU(2), and so does 
the Higgs matrix �†, while Q̄i does not transform. This suggests that we define a new set of 
SU(2)-invariant quark variables �Qi

�Qi := Qinv
i . (23)

This is a Higgs-field dependent SU(2) gauge rotation of the original quark doublet. As such, it 
can be pulled through the derivative as long as one takes into account that the gauge field also 
transforms. As we will work out in details below, the new gauge field will be an SU(2)-invariant 
object. Keeping in mind this change in the derivative operator we can write the field equations 
as:

Q
†
i : i

√
2DQi = −ρ

(
Q̄†�

)
i

Q̄
†
i : i

√
2DQ̄i = −ρ Q

†
i

(24)

We have dropped the superscript inv from the Qi to avoid clattering of the notations. We see that 
the equations become much simpler than in terms of the original fields.

We now substitute the primed spinors obtained from the above field equations into the La-
grangian (13) and obtain the following second-order Lagrangian:

Lquarks = − 2

ρ
DQ̄iDQi − ρ

(
�Q̄

)i
Qi, (25)

where we have introduced a new row(
�Q̄

)i :=
(
�

ij
u ūj ,�

ij
d̄j

)
, (26)
d
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which is the Hermitian conjugate of (22)
(
�Q̄

)† = Q̄†�. The calculation that leads to (25)
simplifies significantly by noting that half of the kinetic terms cancels the mass terms for the 
primed spinors, while the other half survives. Then the kinetic term in (25) is easily obtained 
from the kinetic term Q†iDQi by substituting the expression for Q†i . The mass term in (25) is 
easily obtained by combining the mass terms for the unprimed spinors in (13), and taking into 
account the definitions (18), (23) of the new fermionic variables. The derivative operator acting 
on Qi in (25) takes into account the field redefinition (23).

The Lagrangian (25) is much simpler than the terms in (13) from which it was obtained, 
containing just half the terms from the quark sector. However, it is clearly non-polynomial in 
the Higgs scalar field ρ, because of the presence of 1/ρ in the kinetic term. This is exactly the 
same phenomenon as one sees in (10). In the case of Dirac theory we have rescaled the fermionic 
fields to give them mass dimension one, and brought the kinetic term into the canonical form. 
This suggests that we should do the same in (25). However, ρ is now a dynamical field. Absorbing 
it into the fermion fields thus changes the derivative operators acting on both Q̄i, Qi . Denoting 
the new Higgs-containing derivative operators by the curly D we finally write:

L(2)
quarks = −2DQ̄iDQi − ρ2 (

�Q̄
)i

Qi (27)

where 1/
√

ρ was absorbed into each spinor field. The new covariant derivative D contains non-
polynomial Higgs-quarks interactions as well as the physical SU(2)-frozen gauge fields when 
acting on the unbarred doublet. Expanding (27) around the Higgs VEV ρ → v + ρ one gets the 
free massive quarks with masses being multiples of the eigenvalues of the Hermitian mass ma-
trices �ij

q , together with quark interactions with the gauge fields as well as the Higgs. We will 
spell out the simplest interactions below. It is clear that interaction vertices with the Higgs can 
be of arbitrarily high valency (due to non-polynomiality in ρ).

The field equations (24) for the new fermionic fields of mass dimension one read

i
√

2DQi = −ρ
(
Q̄†�

)
i
, i

√
2DQ̄i = −ρ Q

†
i . (28)

These are now to be interpreted as the reality conditions, whose linearized versions are to be 
imposed on the external lines.

4.2. Leptonic sector without the Majorana mass terms

Let us first set all the Majorana mass terms to zero. In this case the analysis is exactly the 
same as in the previous subsection. Thus, introducing the new barred fermion fields

ν̄i → (Y †
ν )ij ν̄j , ēi → (Y †

e )ij ēj , (29)

we put the new fields together in a row

L̄i := (ν̄i , ēi ) , (30)

and define another row(
�L̄

)i :=
(
�ij

ν ν̄j ,�
ij
e ēj

)
, (31)

where �l = YlY
†
l are the Hermitian mass matrices. We also define the physical SU(2)-invariant 

unbarred leptonic doublet Linv
i = �Li . Writing everything in terms of these quantities we get the 

following Lagrangian
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Lleptons = −i
√

2L†iDLi − i
√

2
(
DL̄i

)(
L̄†�

)
i
− ρ

(
�L̄

)i
Li − ρ L†i

(
L̄†�

)
i
. (32)

The resulting equations for the primed spinors are

L
†
i : i

√
2DLi = −ρ

(
L̄†�

)
i

ν̄
†
i : i

√
2DL̄i = −ρ L

†
i

(33)

Substituting the resulting primed spinors into the Lagrangian we get

Lleptons = − 2

ρ
DL̄iDLi − ρ

(
�L̄

)i
Li . (34)

One can now rescale the lepton fields to give them mass dimension one and convert the kinetic 
terms into a standard form. One obtains a Lagrangian as in (27). The sum of (34) and (25) is the 
Lagrangian quoted in the Introduction.

4.3. Majorana mass terms

We now reinstate the Majorana mass terms. This leads to a more complicated analysis and not 
so simple final result. Performing the same redefinitions of the fermionic variables as was done 
above, we can write the original Lagrangian in terms of the new spinor fields:

Lleptons = −i
√

2L†iDLi − i
√

2
(
DL̄i

)(
L̄†�

)
i
− ρ

(
�L̄

)i
Li − ρ L†i

(
L̄†�

)
i

− 1

2
(Y †

ν )ik(Y †
ν )jlM

ij
ν̄ ν̄k ν̄l − 1

2
Y ki

ν Y lj
ν (M

†
ν̄ )ij ν̄

†
k ν̄

†
l . (35)

The structure of the last two terms suggests the following redefinition of the right-handed neu-
trino mass matrix

(Y †
ν )ik(Y †

ν )jlM
ij
ν̄ → Mkl

ν̄ . (36)

The new mass matrix is still symmetric. The Lagrangian becomes

Lleptons = −i
√

2L†iDLi − i
√

2
(
DL̄i

)(
L̄†�

)
i
− ρ

(
�L̄

)i
Li − ρ L†i

(
L̄†�

)
i

− 1

2
M

ij
ν̄ ν̄i ν̄j − 1

2
(M

†
ν̄ )ij ν̄

†
i ν̄

†
j . (37)

The resulting equations of motion for the primed spinors are as follows

L
†
i : i

√
2DLi = −ρ

(
L̄†�

)
i

ν̄
†
i : i

√
2Dν̄i = −ρ ν†i − ν̄†j (M

†
ν̄ )jk(�

−1)ki

ē
†
i : i

√
2Dēi = −ρ e

†
i

(38)

We can now solve for the barred primed spinors using the first equation. From this we in partic-
ular get ν̄†, which can be substituted into the second equation. The last pair is then solved for L†

fermions.
After the solutions are substituted into the Lagrangian, simplifications result. Thus, it is easy 

to note that the first and the last terms in the first line of (37) cancel each other in view of the first 
equation in (38). Indeed, we can combine these two terms as

Lleptons ⊃ L
†
i

(
−i

√
2DLi − ρ

(
L̄†�

) )
. (39)
i
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It is clear that this combination gives zero on the first equation in (38). To eliminate the remaining 
primed spinors we again need just the first field equation that gives us L̄†. Overall, this gives:

L(2)
leptons = − 2

ρ
DL̄iDLi − ρ

(
�L̄

)i
Li

− 1

2
M

ij
ν̄ ν̄i ν̄j + 1

ρ2
(�−1

ν M
†
ν̄ �−1

ν )ij (DLi)
ν(DLj )

ν, (40)

where (DLi)
ν stands for the first ν-component of the doublet DLi .

This is a complicated Lagrangian. To understand what is going on here it is useful to return 
to the second field equation in (38). Substituting the solution for ν̄†

i from the first equation one 
gets:

i
√

2

(
Dν̄i − 1

ρ
(�−1

ν M
†
ν̄ �−1

ν )ij (DLj )
ν

)
= −ρ ν†i . (41)

If one expands all terms in this equation around the Higgs VEV 〈ρ〉 = v, the terms linear in the 
fields are

i
√

2 ∂

(
ν̄i − 1

v
(�−1

ν M
†
ν̄ �−1

ν )ij νj

)
= −v ν†i . (42)

This equation suggests that we should introduce a new barred neutrino field

ν̄new
i := ν̄i − 1

v
(�−1

ν M
†
ν̄ �−1

ν )ij ν
j , (43)

as it is this field that satisfies reality conditions similar to those for all other 2-component 
fermions present. One should then rewrite the linearization of the Lagrangian (40), as well as 
the interaction vertices in terms of ν̄new

i , and proceed with the usual perturbation theory calcula-
tions. It is clear that the result is complicated, as it relies on the field redefinition (43) that in turn 
relies on the Higgs assuming its VEV. Thus, it seems that no elegant second order Lagrangian is 
possible when the Majorana mass terms are present. Of course, one can still work with the La-
grangian that is not elegant, but then one may as well work with the usual first order Lagrangian 
(13) where the Majorana mass terms are not more unnatural than any other terms present.

Thus, if just for a moment one takes the viewpoint that the second order Lagrangian is more 
fundamental than the usual first order one, one seems to be led to the conclusion that the simple 
Lagrangian (1) is all one has. This Lagrangian explains neutrino oscillations by giving the neu-
trinos masses, but does not by itself explain why these masses are so small as compared to the 
other ones. Without the Majorana mass terms there is also not enough room to explain other SM 
mysteries. Indeed, with the Majorana mass terms the lepton number is no longer conserved, and 
this plays an important role in many beyond the SM scenarios. In particular, the Majorana mass 
terms are of importance in the νMSM explanation [22] of the baryon asymmetry of the Universe.

One way out of this could be to add to the Lagrangian (1) terms that are natural from the 
second order point of view, but spoil the renormalizability of the theory. This can provide new 
couplings which can then in turn be useful for the beyond the Standard Model scenarios. We will 
not attempt any of this in the present paper, and continue to explore the second order Lagrangian 
without the Majorana terms.
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5. Bosonic sector in terms of gauge-invariant variables

In this section we rewrite the bosonic sector of the Standard Model in terms of the same 
gauge-invariant fields that were used in our fermionic Lagrangian. The idea that this is possible 
and, in fact, gives a much more clear perspective on the “symmetry breaking” mechanism is 
not new, as far as we know was first used in [15] in the context of the Hamiltonian formulation 
and more recently in [16–18]. Our analysis here basically repeats [17] with minor differences 
in conventions. We give it here for completeness, as well as to be able to spell out some simple 
interaction vertices that follow from our formalism in the next section.

5.1. Higgs sector

We denote the gauge fields associated to the Standard Model group SU(2) ×U(1)1 by Bμ and 
Yμ respectively and their coupling constants by g2, g1.

We first repeat the construction of an SU(2) element out of the Higgs field. This is the same 
construction that already appeared in the previous sections. We start with the Higgs field that is 
an SU(2) doublet with the Y -charge of 1/2. The covariant derivative of the Higgs reads

Dμφ = ∂μφ + ig2Bμφ + ig1

2
Yμφ, (44)

where Bμ = T aBa
μ and T a = (1/2)σ a , where σa are the usual Pauli matrices. The SU(2)

connection Bμ transforms as Bμ → �†Bμ� + (1/ig2)�
†(∂μ�), and the U(1) connection as 

Yμ → Yμ + (1/g1)∂μξ .
We now parametrize this doublet as

φ ≡ ρχ, ρ ∈R
+, χ ∈ C

2 with |χ |2 = 1. (45)

Using the spinor metric ε, we can construct

� ≡
(

(εχ)T

χ†

)
∈ SU(2). (46)

This SU(2)-valued object transforms under the Standard Model gauge group as follows:

U(1) : � 	→ eiξT 3
�, (47)

SU(2) : � 	→ ��†. (48)

We can then define a covariant derivative operator such that Dμ� transforms covariantly. This 
derivative operator is given by:

Dμ� := ∂μ� − ig2�Bμ + ig1YμT 3� =
(

(εDμχ)T

(Dμχ)†

)
, (49)

where to obtain the last expression we have used εBμ = BT
μ εT which can be checked to hold for 

all 3 generators T a .
We can now use the object �, as well as its covariant derivative (49) to rewrite the Higgs 

kinetic term |Dμφ|2 as

1 We omit the SU(3) part as it does not affect the discussion that follows.
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|Dμφ|2 = (
∂μρ

)2 + ρ2|Dμχ |2 = (
∂μρ

)2 + ρ2

2
Tr |Dμ�|2, (50)

where we have defined

|φ|2 = ρ2. (51)

Now let us recall the construction of SU(2)-invariant doublets. In (23) we have defined 
Qnew

i so that Qi = �†Qnew
i . We then rewrote the Lagrangian in terms of Qnew

i and the gauge-
transformed SU(2) connection

Wμ := �Bμ�† + 1

ig2
�∂μ�† = �Bμ�† − 1

ig2
∂μ��†. (52)

This connection is SU(2)-invariant. It however transforms under the U(1) transformations

Wμ 	→ eiξT3Wμe−iξT3 − 1

g2

(
∂μξ

)
T3. (53)

We can recognize in the SU(2)-invariant connection Wμ a part of the quantity Dμ�. Indeed, 
we have

i(Dμ�)�† = g2Wμ − g1YμT 3. (54)

Therefore we have

Tr |Dμ�|2 = 1

2

(
g2

2

(
W 1

μW 1 μ + W 2
μW 2 μ

)
+

(
g2W

3
μ − g1Yμ

)2
)

, (55)

where we decomposed Wμ = Wa
μT a . These are the mass terms for the W, Z bosons obtained 

from the kinetic term for the Higgs. Usually one obtains them by choosing a VEV for the Higgs 
and breaking the symmetry. Here we instead defined SU(2) invariant connection Wμ, which 
appears in the covariant derivative acting on the SU(2) invariant doublets. The kinetic term for 
the Higgs then gives the mass terms for Wμ without any symmetry breaking.

We can now define the usual linear combinations

W±
μ := 1√

2

(
W 1

μ ∓ iW 2
μ

)
, Zμ := g2W

3
μ − g1Yμ√
g2

1 + g2
2

, (56)

where the normalization is a convention chosen for later convenience. By construction these 
fields are invariant under SU(2) and transform under U(1) as

W±
μ 	→ e±iξ(x)W±

μ , Zμ 	→ Zμ. (57)

These three gauge fields are identified with the physical SU(2) bosons which one can measure 
in an experiment. We can further define the Weinberg angle θW so that

Zμ := cos(θW )W 3
μ − sin(θW )Yμ. (58)

From this equation one can deduce (we will further motivate this choice later on) that the photon 
gauge field will be given by:

Aμ := sin(θW )W 3
μ + cos(θW )Yμ. (59)

Notice that the field redefinition from W 3
μ, Yμ to Zμ, Aμ is an SO(2) transformation. All in all, 
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the Higgs sector Lagrangian can be rewritten in terms of physical quantities as follows:

LHiggs = −|Dμφ|2 − V
(
|φ|2

)
= − (

∂μρ
)2 − (g2ρ)2

2

(
W+W− + 1

2 cos2(θW )
ZμZμ

)
− V (ρ2). (60)

It is worth emphasizing once again that to extract the mass terms for the W, Z bosons no sym-
metry breaking was needed. The Higgs sector was merely reformulated in terms of the physical 
SU(2)-invariant degrees of freedom of the theory. More details on this reparametrization of the 
Higgs field can be found in [17].

5.2. Yang–Mills sector

We now perform the same change of variables in the Yang–Mills sector. One starts with the 
following Lagrangian:

LYM = −1

8
Tr

(
BμνB

μν
) − 1

4
YμνY

μν, (61)

where the curvature tensors are defined according to (95). Since the field redefinition (52) is a 
gauge transformation, we can immediately write

LYM = −1

8
Tr

(
WμνW

μν
) − 1

4
YμνY

μν. (62)

It is now convenient to define the following curvature combinations:

W±
μν := 1√

2

(
W 1

μν ∓ iW 2
μν

)
≡ DμW±

ν − DνW
±
μ , (63)

where the covariant derivatives are

DμW±
ν ≡

(
∂μ ± ig2W

3
μ

)
W±

ν . (64)

We then have:

Tr
(
WμνW

μν
) = 2W 3

μνW
3 μν + 4W+

μνW
− μν. (65)

Recall now that the W 3, Y connections can be expressed in terms of the physical Z, A con-
nections as(

W 3

Y

)
=

(
cos(θW ) sin(θW )

− sin(θW ) cos(θW )

)(
Z

A

)
. (66)

Hence,

DμW±
ν ≡ (

∂μ ± ieAμ ± ig2 cos(θW )Zμ

)
W±

ν , (67)

where the electric charge e is given by

e := g2 sin(θW ) = g1 cos(θW ). (68)

Another expression that we need is

W 3 = cos(θW )Zμν + sin(θW )Fμν + ig2
(
W+W− − W−W+)

, (69)
μν μ ν μ ν
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where Fμν and Zμν are the curvature tensors of the photon and Z boson. This gives the following 
final expression for the Yang–Mills sector Lagrangian:

LYM = −1

4
FμνF

μν − 1

4
ZμνZ

μν − 1

2
W+

μνW
− μν

+ g2
2

2
W+

μ W−
ν

(
W+ μW− ν − W− μW+ ν

)
− ie

(
Fμν + cot(θW )Zμν

)
W+ μW− ν. (70)

6. Interactions

In the previous section we have discussed what the Higgs and Yang–Mills sector Lagrangians 
become when written in terms of the SU(2) invariant variables. We have seen that the components 
W±

μ , Zμ of the SU(2) invariant connection Wμ are massive fields, with the mass determined by 
the VEV of the scalar field ρ. We have also expressed the gauge sector Lagrangian in terms 
of the physical fields W±

μ , Zμ, Aμ. We can now put all this to use and discuss how physical 
SU(2) invariant gauge fields interact with the physical SU(2) invariant fermions. The interaction 
vertices are different in the second order formulation. We only consider the quark sector, as 
leptons are analogous.

6.1. Weak interactions

We first consider Higgsless interactions arising when the Higgs is taken to sit on its VEV 
ρ = ν. We take the Lagrangian in the form (27), where the Higgs field is absorbed into the 
fermionic fields. Since we assume here that Higgs is a constant, the covariant derivative D con-
tains just the weak and electromagnetic connections. We have:

DμQi =
(

∂μ + ig2Wμ + ig1

6
Yμ

)
Qi, DμQ̄i = (

∂μ + ig1QYμ

)
Q̄i, (71)

where Q is the matrix of electric charges, which is in this case

QQ̄i ≡
( −2/3 0

0 1/3

)(
ūi

d̄i

)
. (72)

Note that the gauge fields appearing here are the gauge-invariant ones, i.e. the ones in which the 
pure gauge part of the Higgs field was absorbed.

Another remark is that the kinetic term contains the product DμQ̄iDμQi , where the covariant 
derivatives acting on Q̄i, Qi contain a different set of gauge fields. Thus, the usage of the same 
symbol Dμ to denote the covariant derivative is only justified if one always keeps in mind the 
representation of the gauge group under which the corresponding fermionic field transforms. 
It is clear that Q̄i, Qi transform under two different representations. Moreover, the application 
of Dμ to e.g. Qi maps this field into a different representation, namely the complex conjugate 
representation to the one describing Q̄i , as is clear from e.g. the reality conditions (28). Keeping 
this in mind one can integrate in terms such as DμQ̄iDμQi by parts without any inconsistencies.

We now rewrite everything in terms of the physical gauge-invariant fields. We have:

ig2Wμ + ig1
Yμ = ig2√

(
0 W+

μ

W− 0

)
+ ieQAμ + ie

Zμ

(
1
T 3 − s2

WQ
)

, (73)

6 2 μ sWcW 2
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where, as before, e := g1 cos(θW ) and sW ≡ sin(θW ), cW ≡ cos(θW ). For the barred quarks we 
have:

ig1QYμ = ieQAμ − ieQtWZμ, (74)

where tW ≡ tan(θW ). Note that the electric charges of the unbarred quarks are opposite of those 
of the barred ones. Thus, the quark fields interact with the electromagnetic field in the usual way.

Let us now consider the interactions with the W -bosons. The relevant part of the Lagrangian 
(27) becomes

−i
√

2g2

(
Kij (∂A

A′ ūiA)W+A′BdjB + (K†)ij (∂A
A′ d̄iA)W−A′BujB

)
, (75)

where we reinstated the suppressed before spinor indices for clarity. The unitary matrix Kij is the 
Cabibbo–Kobayashi–Maskawa matrix that enters when the mass terms are diagonalized. Terms 
in (75) give the interactions responsible for the β-decay, as well as for the mixing between the 
generations, thus making the more massive generations unstable. What is interesting is that in 
the second order formalism there is a derivative present in the interaction vertex. Of course, this 
can be seen to be the standard vertex with no derivative present if one uses the “reality condition” 
(28) to express the derivative of the barred spinors in terms of the Hermitian conjugates of the 
unbarred. However, there is no need to introduce the primed spinors, and one can work with the 
Feynman rules that follow directly from (75).

The second order formalism also introduces new vertices quadratic in the gauge field. Indeed, 
we see that such vertices are present for both A and Z fields (but not for W±). However, be-
cause the second order Lagrangian was obtained by a procedure of integrating out the primed 
2-component spinors one is certain that the end results for the correlation functions of the un-
primed fields are correctly reproduced.

6.2. Interactions with the Higgs

A much more interesting story is with the Higgs field interactions, which are rather unusual 
in the second order formalism. Thus, we now consider fluctuations around the Higgs VEV ρ =
ν + h(x).

Polynomial interactions with the bosons are the usual ones and can be read off from (60). 
The self-interactions of the Higgs are also as usual. Here we are specifically concerned with the 
fermionic sector that exhibits non-polynomiality in the Higgs. Let us again consider only the 
quark sector; for leptons everything is analogous.

We recall that in the form of the Lagrangian (27) the covariant derivative was defined so that:

1√
ρ

D ↔ D 1√
ρ

. (76)

Therefore:

D = D + 1

2
∂ lnρ. (77)

This logarithmic non-polynomiality suggests that we should parametrize the Higgs field in a 
different way:

ρ ≡ νeφ(x). (78)

This shifts the non-polynomiality from the covariant derivative to the mass terms, schematically
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ρ2(�Q̄)Q → m2e2φ(x)Q̄Q, (79)

where m is the quark mass. At the same time, the covariant derivative is now simple:

DQ ≡
(

D + 1

2
∂φ(x)

)
Q. (80)

The exponential non-polynomiality also enters into the Higgs with gauge fields interaction 
vertices, as well as in the kinetic term for the Higgs that now becomes:

(∂μρ)2 = ν2(∂μφ)2e2φ. (81)

We do not know which of these equivalent non-polynomial forms is better suited for practical 
calculations. At the same time, in practice one is only interested in terms involving just a few 
external Higgs lines. For calculations of this type it should matter little which parameterization
of the Higgs field is used. We will further return to the non-polynomiality issues in the last 
section.

7. Unification

In this section we discuss the unification in the second order formalism. The new feature here 
is that the fermions are now Higgs-dressed, and therefore invariant with respect to the action of 
the weak SU(2). The 16 fermions of one SM generation belong to two groups, transforming in 
complex conjugate representations of the unbroken gauge group U(1) ×SU(3). Thus, overall, all 
16 fermions form a real representation of U(1) × SU(3). So, the GUT models can be found by 
searching for GUT groups containing U(1) ×SU(3), so that some appropriate real representation 
transforms correctly with respect to the embedded U(1) × SU(3). The fact that one can now use 
real representations allows for more possibilities as compared to the usual story, where one looks 
for an embedding of U(1) × SU(2) × SU(3) and a complex representation.

7.1. SU(2) × SU(4) unification

The simplest possibility is a Pati–Salam-like unification. Consider the second order La-
grangian in the form (1). Here the quarks’ kinetic term contains a sum over the 3 color indices. 
Spelling this out we have the following kinetic term:

− 2

ρ
(DQ̄i)r (DQi)

r − 2

ρ
(DQ̄i)g(DQi)

g − 2

ρ
(DQ̄i)b(DQi)

b − 2

ρ
DL̄iDLi, (82)

where r, g, b are the 3 colors and (DQi)
∗ denotes the projection of a triplet on a particular color

index. This form of the kinetic term cries for the interpretation of leptons as the fourth color of 
quarks. This suggests that we put all of the SM fermions into two multiplets:

Si :=
(

ur
i u

g
i ub

i νi

dr
i d

g
i db

i ei

)
, S̄i :=

⎛
⎜⎜⎝

ūr
i d̄r

i

ū
g
i d̄

g
i

ūb
i d̄b

i

ν̄i ēi

⎞
⎟⎟⎠ . (83)

We can then rewrite the Lagrangian in terms of Si, S̄i , using appropriate covariant derivatives for 
each field. However, what seems to spoil this picture is the different electric charges of the quarks 
and leptons. The same problem arises in the usual Pati–Salam treatment, where it is solved by 
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using a non-trivial embedding of the SM gauge group into a larger group, see e.g. [23] for a nice 
exposition.

Thus, to understand what is happening with the electric charges, we need to understand how 
the SM symmetry group sits inside some larger gauge group. Note that the symmetry group that is 
unbroken in the Lagrangian (1) is U(1) ×SU(3). The weak SU(2) no longer acts on our fermions, 
as they are all SU(2)-invariant objects. However, there is a leftover from this gauge group in the 
form of the massive gauge field (also SU(2)-invariant) that acts on doublets Qi, Li and does not 
act on Q̄i, L̄i . So, the group SU(2) is broken, but the fact that the fermions come as doublets 
tells us that it was there. Similarly, now that we put in (83) leptons on the same footing as the 
quarks, it appears that there is an SU(4) behind this construction. So, we take SU(2) × SU(4) as 
the GUT gauge group that acts on multiplets Si, S̄i , and look for an embedding of U(1) × SU(3)

into it. The sought embedding is given by

U(1) × SU(3) � {α,h} →
{(

α3 0
0 α−3

)
,

(
αh 0
0 α−3

)}
∈ SU(2) × SU(4). (84)

Let us check how this works out for the charges. According to this prescription the U(1) acts on 
the up quarks as ui → α1+3ui , which corresponds to the correct electric charge of 4/6 = 2/3. 
Similarly, for the down quarks we have di → α1−3di , which gives the correct electric charge 
of −2/6 = −1/3. For the neutrino we have νi → α3−3νi , which gives zero electric charge, and 
for the electrons ei → α−3−3ei , which gives the electric charge −1. This gives all the correct 
quantum numbers of the unbarred fermions. For the barred ones it is clear that we simply have 
to use the Hermitian conjugate representation of SU(2) × SU(4) (but not of the Lorentz group, 
because the barred fermions are still unprimed 2-component spinors).

We can now write the kinetic terms for all the fermions in a very compact form

− 2

ρ
DS̄iDSi. (85)

Here D is the relevant covariant derivative for each multiplet. The SU(3) and U(1) connections 
are present in both DSi and DS̄i in a symmetric way, with the Hermitian conjugate connections 
appearing in DS̄i . However, the massive SU(2) gauge field appears asymmetrically in that DS̄i

is diagonal in the isospin indices, while DSi is not. As we have already seen in the previous 
section, only DSi contains the W± gauge fields, while both DS̄i and DSi contain the Z field, 
albeit in an asymmetric way. This different coupling of the massive gauge fields to S̄i , Si is what 
causes the theory to be left-right asymmetric.

Let us now discuss the mass terms. These can again be written in terms of S̄i , Si as

−ρ S̄i�
ijSj . (86)

The mass matrices �ij appearing here are complicated objects. Each of them is an 8 × 8 block 
matrix that consists of 4 different entries �ij

u , �ij
d , �ij

ν , �ij
e . It thus breaks SU(2) symmetry 

completely, while the SU(4) is broken down to U(1) × SU(3).
Overall, the sum of two terms (85), (86) gives the Lagrangian (3) quoted in the Introduction. 

We note that the unification described here is different from the Pati–Salam model, as no second 
SU(2) has been used. This seems natural in the second order formalism in which the weak SU(2)

has been frozen from the beginning by using the gauge invariant variables. There is then no sense 
in introducing an independent copy of SU(2) that would act on the right-handed doublets, as in 
our framework these doublets simply transform under the Hermitian conjugate representation of 
SU(2) × SU(4).
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7.2. SO(9) unification

Let us note that SU(2) × SU(4) ∼ SO(3) × SO(6) ⊂ SO(9). The group SO(9) has a single 
real 16-dimensional fermionic representation. It is thus natural to expect that all our fermions can 
fit there. This is indeed the case. However, describing the embedding requires some Lie algebra 
machinery, and explaining this would take us too far from the main theme of this article. So, we 
refrain from doing it here.

7.3. Comparison with SO(10) unification

It is known that all left-handed fermions of the SM can be put into a single 16-dimensional 
complex irreducible representation of SO(10), see e.g. [24], Section 97. So, our unprimed 
fermions S̄i , Si can be combined into a single multiplet of SO(10). This SO(10) is obtained 
from the already encountered SU(2) × SU(4) by adding another SU(2) that mixes S̄i and Si . 
Putting these groups together we have SU(2) × SU(2) × SU(4) ∼ SO(4) × SO(6) ⊂ SO(10). 
The Lagrangian one obtains is of the same schematic form (3), now with a single 16-dimensional 
fermionic multiplet F i .

The main difference between the SO(10) unification and the SO(9) scheme that we described 
is that in our case a real representation is used instead of a complex one. This is possible because 
we do not have to embed also the weak SU(2) inside the GUT group, as this is frozen in the 
Lagrangian where all the fields are dressed by the Higgs field. The difference of dimensions 
dim(SO(10)) − dim(SO(9)) = 45 − 36 = 9, and so the SO(9) scheme introduces much fewer 
unobserved gauge field components. It may be interesting to explore all this in more details, but 
we leave this to future work.

8. Discussion

In this paper we have rewritten the SM Lagrangian in a chiral form. The new Lagrangian 
involves only unprimed 2-component spinors and was obtained from the usual first order La-
grangian by integrating out the primed spinors. It is second order in derivatives. In the process, 
we were led to combine the SU(2) singlets into doublets, as well as to define SU(2)-invariant 
combinations from the fermion doublets and the Higgs. Similarly, the angular part of the Higgs 
field was absorbed into the gauge fields to produce SU(2)-invariant massive gauge fields. The 
bosonic part of this story is not new and has been explored by several authors. It appears that 
such a treatment of the full fermionic sector of the Standard Model is new.

While the procedure of integrating out the primed spinors leads naturally to the introduction of 
the Higgs-dressed unprimed fermions, this dressing can also be done at the level of the first-order 
Lagrangian. So, if the reader is uncomfortable with the second-order formulation because of 
its non-manifest unitarity, there is still a lesson to be learned from this work: the procedure of 
dressing up the fermion doublets with the Higgs field decreases the complexity of the Lagrangian, 
and suggests new insights about the unification. We further comment on the unification aspects 
below.

The obtained second-order Lagrangian is quite compact, see (1) and can be used as the starting 
point for concrete computations of SM scattering amplitudes. As we already emphasized in the 
Introduction, it is likely to be worth converting the arising computation rules into a computer 
code, as the second order formalism leads to faster performance than the one based on the first 
order Lagrangian.
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The second-order formulation is not manifestly unitary. However, perturbative unitarity can 
still be established order by order in perturbation theory. This will be spelled out elsewhere. 
But the fact that the theory is still unitary should not come as surprise: we have obtained the 
second-order formulation by doing legitimate at the level of the path integral manipulation with 
the Lagrangian of the theory. It is thus guaranteed that the same perturbation theory results, and 
the unitarity still holds. It is of course an interesting and non-trivial exercise to verify this directly, 
but this is not the subject of the present work.

An interesting aspect of the new Lagrangian (1) is that the Higgs field ρ2 = |φ|2 enters it 
non-polynomially. The analogy between the Higgs field (ρ in our notation) and the conformal 
factor of the metric was already emphasized in [17]. Our rewrite of the SM Lagrangian strength-
ens this interpretation. Indeed, consider a conformal transformation gμν → ρ2gμν . Under such 
a conformal rescaling the spinor metric εAB transforms as εAB → ρεAB, εAB → ρ−1εAB . The 
Dirac operator changes as ∇AA′χB → ∇AA′χB − (∂BA′ logρ)χA, see e.g. [25], formula (5.6.15). 
Then, if we define the transformation rule for the spinors to be SA → ρ−1SA, similarly for S̄A, 
the quantity εABDAA′SB transforms homogeneously εABDAA′SB → ρ−2εABDAA′SB , with the 
covariant derivative remaining unchanged. This implies that under such a transformation

√
g DS̄DS → 1

ρ

√
g DS̄DS, (87)

where we have taken into account that 
√

g → ρ4√g, and there is an extra factor of 1/ρ coming 
from the contraction of the primed spinor indices. Similarly,

√
g S̄S → ρ

√
g S̄S. (88)

Thus, we see that, as already observed in [17] for the bosonic sector, the Higgs field ρ enters the 
fermionic Lagrangian (1) as the conformal factor of a transformation gμν → ρ2gμν .

Finally, we believe that one of the most interesting outcomes of this work is the realization that 
the procedure of dressing the fermion doublets with the Higgs field leads to so many simplifica-
tions in the structure of the Lagrangian. As we already said, this can already be done at the level 
of the first order Dirac Lagrangian. This procedure exactly parallels what is known to be possible 
in the bosonic sector, and clearly exhibits the structure of the interactions of the fermions with 
the massive gauge bosons. We are not aware of any previous work containing such treatment of 
the SM fermions.

The introduction of the Higgs-dressed fermions freezes the week SU(2), and leaves just the 
group U(1) × SU(3) as the unbroken SM gauge group. This suggests that one should seek to 
embed just this gauge group inside the GUT group. Moreover, the fermions now form a real 
representation of U(1) × SU(3), which suggests that real representations of GUT can be con-
sidered. As an example we have briefly described the Pati–Salam-like SU(2) × SU(4) theory, as 
well as a more advanced SO(9) GUT that puts all one generation fermions into a single spinor 
representation. It would be interesting to explore this GUT model in more details.
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Appendix A. Curvature and covariant derivative conventions

In this paper we dealing exclusively with unitary groups so that the inverse of a group object 
is its Hermitian conjugate. Let Aμ := As

μT s be a connection gauge field. T s (s = 1, . . . , dim(G)) 
are the generators of the Lie group, which we take to be Hermitian, that satisfy:[

T s, T r
] = if srtT t (89)

A vector φ in the fundamental representation transforms as:

φ 	→ φ� ≡ �φ, (90)

where

� ≡ exp
(
iqξ s(x)T s

)
, ξ s(x) ∈ R (91)

and q stands for the charge of the field while ξ s(x) are coordinates that parametrize the transfor-
mation.

The covariant derivative is constructed as follows

Dμφ := (
∂μ + igqAμ

)
φ. (92)

If we require that this transforms covariantly under the gauge transformations

Dμφ 	→ �Dμφ (93)

we deduce the transformation rule for the connection:

Aμ 	→ A�
μ ≡ �†Aμ� + 1

igq
�† (

∂μ�
)
, � ∈ G (94)

where g denotes the coupling constant of the group. The field strength tensor or Yang–Mills 
curvature tensor is defined as:

Fμν := ∂μAν − ∂νAμ + igq
[
Aμ,Aν

]
(95)

It transforms in the adjoint representation of the Lie group:

Fμν 	→ F�
μν ≡ �†Fμν�. (96)
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