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Maximizing the Power of Principal-Component Analysis
of Correlated Phenotypes
in Genome-wide Association Studies

Hugues Aschard,1,* Bjarni J. Vilhjálmsson,1,2 Nicolas Greliche,3,4,5 Pierre-Emmanuel Morange,6

David-Alexandre Trégouët,3,4,5 and Peter Kraft1

Many human traits are highly correlated. This correlation can be leveraged to improve the power of genetic association tests to identify

markers associated with one or more of the traits. Principal component analysis (PCA) is a useful tool that has been widely used for the

multivariate analysis of correlated variables. PCA is usually applied as a dimension reductionmethod: the few top principal components

(PCs) explainingmost of total trait variance are tested for association with a predictor of interest, and the remaining components are not

analyzed. In this study we review the theoretical basis of PCA and describe the behavior of PCA when testing for association between a

SNP and correlated traits. We then use simulation to compare the power of various PCA-based strategies when analyzing up to 100 corre-

lated traits.We show that contrary to widespread practice, testing only the top PCs often has low power, whereas combining signal across

all PCs can have greater power. This power gain is primarily due to increased power to detect genetic variants with opposite effects on

positively correlated traits and variants that are exclusively associated with a single trait. Relative to other methods, the combined-PC

approach has close to optimal power in all scenarios considered while offering more flexibility and more robustness to potential con-

founders. Finally, we apply the proposed PCA strategy to the genome-wide association study of five correlated coagulation traits where

we identify two candidate SNPs that were not found by the standard approach.
Introduction

The genetic component of common, complex diseases

such as asthma or type 2 diabetes is often studied via mul-

tiple related endo-phenotypes. The identification of ge-

netic variants that influence these correlated traits may

hold the key to understanding the genetic architecture of

the disease in question. Although many studies analyze

each of these phenotypes separately, the joint analysis of

multivariate phenotypes has recently become popular

because it can increase statistical power to detect genetic

loci.1–4 However, integrating association signals at a single

SNP over multiple correlated dependent variables in a sin-

gle comprehensive framework is not always straightfor-

ward. Simple approaches, such as Fisher’s method applied

to univariate analysis of each phenotype, can inflate the

type I error rate when the traits are correlated. Several

advanced methods that account for the correlation be-

tween phenotypes have been proposed. Some of these

methods rely on assumptions about the phenotypes or

relatedness that can limit their value in practice, and

some methods are computationally intensive and inappli-

cable to large data sets. As genotype and phenotype data

sets continue to grow, both computationally efficiency

and robustness will only become more important.

Currently, three different strategies are commonly used

for detecting genetic associations in correlated pheno-

types:3 regression models, p value correction of univariate
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analysis, and data reduction methods. Regression models

include mixed effects models that model the covariance

structure caused by correlated phenotypes as well as

population structure.1,5 For p value correction methods,

univariate association tests are first performed for each

phenotype individually and then combined in a meta-

analysis while accounting for the observed correlational

structure between the phenotypes.6–8 Finally, data reduc-

tionmethods consist of identifying the linear combination

of a set of variables that is the most highly correlated with

any linear combination of a second set of variables. Two

common data reduction approaches in genetic epidemi-

ology are canonical correlation analysis9 (which is equiva-

lent to a one-way MANOVA when analyzing a single SNP)

and principal component analysis (PCA), where principal

components (PCs) are built to maximize either the pheno-

typic variance or heritability.10

In this study we review the theoretical basis for standard

PCA (that maximize the phenotypic variance) and eval-

uate the performance of different PCA-based strategies

that have been commonly applied in genetic epidemiology

for linkage analysis and genome-wide association studies

(GWASs).11–18 Following the principle of dimension reduc-

tion, most studies test for associations between individual

SNPs and the first few PCs that explain most of the total

phenotypic variance. Downstream from the univariate

analysis of the top PCs, some studies also conducted a

multivariate analysis of these components.12,13 Although
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previous work has demonstrated the utility of PCA for

multivariate GWASs, fundamental questions remain

unanswered. First, there is no clear consensus on how

one chooses a ‘‘low-variance’’ criterion for rejection of

the component from the analysis. Second, it is unclear

whether and how one should combine associations across

PCs and how to interpret such an association. To address

these questions, we compared different PCA-based strate-

gies when analyzing a large number of simulated corre-

lated phenotypes.

Contrary to the current prevalent belief, our results show

that principal components explaining a small amount of

total phenotypic variance can be as important as those ex-

plaining large amount of variance. Interestingly, this phe-

nomenon has been suggested in a different context when

analyzing nongenetic data (e.g., Jolliffe19). In many real-

istic scenarios, these small components can capture a sub-

stantial proportion of the genetic variance. Discarding

these lower-variance PCs can, therefore, severely decrease

power to detect genetic variants associated with one or

more of the traits. In particular, we found that combining

associations across all PCs, including those explaining a

small amount of variance, is a particularly powerful strat-

egy for detecting pleiotropic genetic variants and genetic

variants that are associated with single trait that is highly

correlated with the other traits in the study.

Based on our analysis, we propose the combined PCA

strategy as a powerful, computationally efficient, and

robust method suitable for most scenarios. We compared

this approach to four other methods for analyzing corre-

lated phenotypes: MANOVA, Multiphen,20 MTMM,1 and

TATES.8We found that the combined PC approach showed

power close to optimal in all scenarios we considered while

offering more flexibility and robustness than other

methods. Finally, we confirmed the usefulness of this

approach by analyzing 5 coagulation-related quantitative

traits in 685 subjects from the MARTHA study,21,22 where

we identified two candidate variants that would have

been missed by the standard PCA approach.
Material and Methods

Analysis of Two Phenotypes
For illustration, consider a hypothetical model with two positively

correlated and normally distributed phenotypes, Y1 and Y2 with

mean 0 and variance 1, which both depend on an unknown var-

iable U and a scaled genotype G that are also normally distributed

with mean 0 and variance 1. Let c denote the correlation between

Y1 and Y2 due to U and v1 and v2 denote the proportion of variance

of Y1 and Y2 explained by G, respectively. We assume that the

effects of U and G on Y1 and Y2 are positive and that (cþvmax),

where vmax is the maximum of v1 and v2, can vary within [0,1],

so that the two trait vectors can be expressed as:

y1 ¼ ffiffiffi
c

p � uþ ffiffiffiffiffi
v1

p � g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c � v1Þ

p
� ε1 (Equation 1)

y2 ¼ ffiffiffi
c

p � uþ ffiffiffiffiffi
v2

p � g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c � v2Þ

p
� ε2; (Equation 2)
The Am
where ε1 and ε2 denote independent random noises that are

normally distributed with mean 0 and variance 1. For this

general model, the principal components of the two traits are

pc1 ¼ 1=
ffiffiffi
2

p � ðy1 þ y2Þ and pc2 ¼ 1=
ffiffiffi
2

p � ðy1 � y2Þ, which can

be rewritten as:

pc1 ¼ 1ffiffiffi
2

p �
��

2 � ffiffiffi
c

p � � uþ ð ffiffiffiffiffi
v1

p þ ffiffiffiffiffi
v2

p Þ � g

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c � v1Þ

p
� ε1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c � v2Þ

p
� ε2

� (Equation 3)

pc2 ¼ 1ffiffiffi
2

p �
�
ð ffiffiffiffiffi

v1
p � ffiffiffiffiffi

v2
p Þ � g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c � v1Þ

p
� ε1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c � v2Þ

p
� ε2

�
:

(Equation 4)

The total phenotypic variance explained by pc1 and pc2
and noted by s1 and s2, respectively, can be defined as (see

Appendix A)

s1 ¼ 1þ c þ ffiffiffiffiffiffiffiffiffi
v1v2

p
2

(Equation 5)

s2 ¼ 1� c � ffiffiffiffiffiffiffiffiffi
v1v2

p
2

: (Equation 6)

From this it follows that vpc1 and vpc2, the proportion of variance

of pc1 and pc2 explained by G, respectively, can be expressed as

(see Appendix A)

vpc1 ¼ v1 þ v2 þ 23
ffiffiffiffiffiffiffiffiffi
v1v2

p
2 � ðc þ 1þ ffiffiffiffiffiffiffiffiffi

v1v2
p Þ (Equation 7)

vpc2 ¼ v1 þ v2 � 23
ffiffiffiffiffiffiffiffiffi
v1v2

p
2ð1� c � ffiffiffiffiffiffiffiffiffi

v1v2
p Þ : (Equation 8)

The power of the association test betweenG and Y1, Y2, PC1, and

PC2 can then be compared for different sample size and genetic

effect. The Wald test for association is equal to N3 bv, where N is

the sample size and bv: is the estimated proportion of variance

explained by G. BecauseN3bv : follows a noncentral chi-square dis-

tribution with one degree of freedom (df) and a noncentral param-

eter equal to d ¼ N3v:, the power is23

Power ¼ 1� F
�
c2
1;1�a;0 j1; d

�
(Equation 9)

Here, Fðc2jd; dÞ is the cumulative distribution function for the

noncentral chi-square distribution with d degrees of freedom

and noncentrality parameter d; c2
d;p;d is the inverse of F, i.e., the

quantiles of the noncentral chi-square distribution; and a is the

type I error rate. Because the two PCs are independents, one can

define a joint test of the PCs by summing the 1 df noncentral

chi-square from each PC to form a 2 df noncentral chi-square.

The power for such a test is equal to

Power ¼ 1� F
�
c2
2;1�a;0 j2; d

�
: (Equation 10)

For simplicity, we derived the proportion of variance explained

and the power to detect a genetic association for two positively

correlated traits where the genetic effects on the traits were also

positive (and so in the same direction). Trivially, the same result

is produced when the traits are negatively correlated and the

genetic effects are in opposite direction. The extension to the

situation where the genetic effect is opposite to the correlation is

similarly straightforward.
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Analysis of Five Correlated Phenotypes
To explore the performance of different methods, we simulated

traits under four different models of correlation pattern. For each

of these, we simulated 10,000 sets of correlated traits measured

on 5,000 subjects. For each subject we generated a SNP G with

minor allele frequency of 0.3 and five phenotypes (Y1 to Y5).

The phenotypes were generated as defined in Equation 1 where c

was different for each phenotype so that the average correlation

pattern between the five phenotypes matches the following corre-

lation matrices:

model1 ¼

0BBBBB@
1 0:50 0:31 0:15 0:07

0:50

0:31

0:15

1 0:31 0:15

0:31 1 0:09

0:15 0:09 1

0:15

0:04

0:02

0:07 0:07 0:04 0:02 1

1CCCCCA;

model2 ¼

0BBBBB@
1 0:80 0:63 0:32 0:09

0:80

0:63

0:32

1 0:63 0:32

0:63 1 0:09

0:32 0:09 1

0:09

0:07

0:03

0:09 0:09 0:07 0:03 1

1CCCCCA

model3 ¼

0BBBBB@
1 0:30 0:30 0:30 0:30

0:30

0:30

0:30

1 0:30 0:30

0:30 1 0:30

0:30 0:30 1

0:30

0:30

0:30

0:30 0:30 0:30 0:30 1

1CCCCCA;

model4 ¼

0BBBBB@
1 0:70 0:70 0:70 0:70

0:70

0:70

0:70

1 0:70 0:70

0:70 1 0:70

0:70 0:70 1

0:70

0:70

0:70

0:70 0:70 0:70 0:70 1

1CCCCCA
The proportion of variance explained by the simulated genetic

variant G was drawn from a uniform distribution with minimum

0.001 andmaximum 0.005, independently of the phenotypic cor-

relation. For the pleiotropic effects, K ¼ 2,..,5 phenotypes affected

by the SNP were randomly chosen (with equal probability). We

also simulated situations where the pleiotropic effect of the SNP

reflects the phenotypic correlation pattern; that is, assuming

that the most highly correlated traits are more likely to be associ-

ated with the same genetic variants. To do so, we set the probabil-

ity that the ith phenotype was associated withG to be proportional

to its correlation with other traits. For example, in the presence of

a pleiotropic effect on two phenotypes under model 2, the two

traits Y1 and Y2, correlated at 0.8, had much higher chances to

be selected. Note that for model 3 and model 4, this does not

matter because the phenotypes are equally correlated.
Combined Analysis of Venous Thrombosis-Related

Phenotypes
To demonstrate the applicability of the proposed method, we

analyzed five quantitative intermediate phenotypes for venous

thrombosis (MIM 188050) risk measured in the MARTHA study.

The study sample consists of unrelated European individuals

with venous thromboembolism, consecutively recruited at the

Thrombophilia center of La Timone Hospital (Marseille, France)

between January 1994 andOctober 2005. All individuals were gen-

otyped with the Illumina Human610-Quad and Human660W-

Quad Beadchips. Five coagulation-related phenotypes were

studied: the activated partial thromboplastin time (aPTT), the

standardized Anticoagulant response to Agkistrodon contortrix
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venom (ACVn), and plasma levels of three coagulation factors,

fibrinogen (FIB), factor VIII (FVIII), and von Willebrand factor

(vWF). GWASs have already been conducted for these phenotypes

with either raw genotypes or imputed SNPs from HapMap 2. A

detailed description of the cohort and the phenotypes can be

found in Oudet-Mellakh et al.,21 Antoni et al.,22 and Tang

et al.24 In this study, we imputed the genotyped by using the

1000 Genomes25 2012-02 release with the minimac software.

Only SNPs with imputation quality Rsq> 0.3 and minor allele fre-

quency (MAF) > 0.01 (n ¼ 8,862,493) were used in this study. The

imputed SNPs were tested for association with all of the pheno-

types individually and the derived PCs via a linear regression

where the allele dosages for the imputed SNPs were used. To

achieve this, we employed the mach2qtl software.26 These associ-

ation analyses were conducted in a sample of 685 individuals with

no missing phenotype information and they were adjusted for

age, sex, anticoagulant therapy, smoking, and the first four prin-

cipal components derived from the genome-wide genotypes.
Results

Comparison of Power for the Analysis of Two

Phenotypes

Let us first consider the analysis of two correlated traits, Y1

and Y2 (Equations 1 and 2), where the tested SNP affects

only the first trait, Y1, and has no effect on the second,

Y2. If the genetic effect is small, such that the contribution

of the SNP on the correlation between the two traits is

negligible, then the two PCs (Equations 3 and 4) can be

approximated by

pc1z
1ffiffiffi
2

p �
��

2 � ffiffiffi
c

p � � uþ ð ffiffiffiffiffi
v1

p Þ � g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ð1� cÞ

p
� ε01

�
(Equation 11)

pc2z
1ffiffiffi
2

p �
�
ð ffiffiffiffiffi

v1
p Þ � g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ð1� cÞ

p
� ε02

�
; (Equation 12)

where ε
0
: follow a normal distribution with mean 0 and

variance 1. Under this assumption, the proportion of the

total variance explained by PC1 and PC2 (Equations 5

and 6) become a linear function of the correlation c, i.e.,

s1 ¼ ð1þ cÞ=2 and s2 ¼ ð1� cÞ=2. Hence, s1 is approxi-

mately equal to s2 when c is small but is much larger

than s2 when c increases.

From Equations 11 and 12 we see that PC1 primarily de-

pends on the effect of U, the unmeasured variable repre-

senting the shared effect. Conversely, the effect of U is,

by construction in this example, not captured by PC2,

which depends only on the effect of the SNP on Y1 plus

some residual noise. This noise term scales with the

phenotypic correlation, decreasing dramatically with an

increasing value of c. Therefore, a test of association with

the smaller principal component, PC2, has greater power

than a test with PC1 to detect a genetic variant that affects

a single phenotype when c is different from 0. Interest-

ingly, it can also have greater power than testing for asso-

ciation with Y1, even though the genetic variant does
014



Figure 1. Power to Detect a SNP Associated with a Single Trait
in a Bivariate Analysis
Power to detect the SNP associated with Y1 based on the tests of
PC1, PC2, the combined PCs, and Y1 for different sample size
and genetic effects (A and B), and proportion of phenotypic vari-
ance explained by PC1 and PC2 (C). The power of each of the
four tests is presented as a function of c the correlation between
Y1 and Y2, the sample size N, and v1 and v2, the proportion of
the variance of Y1 and Y2 explained by the SNP, respectively.
not affect the second trait. This is because the ratio of ge-

netic effect over total variance can become greater in PC2

as compared to Y1, thus increasing the signal-to-noise

ratio. Indeed, the difference between Y1 and Y2 can be

viewed as a form of adjustment of Y1 for Y2 (and

conversely). When the correlation between the two traits

is large, a substantial amount of noise (the effect of U) is

removed from Y1 by subtracting Y2, while at the same

time the genetic effect remains constant because the SNP

is associated with Y1 only. Figure 1 presents a comparison

of the power for the test of association between G and
The Am
respectively PC1, PC2, and the combined PCs approach,

against the test of association between G and Y1 when

the SNP is associated with Y1 but not with Y2. In this

case the combined PC test and the test of PC2 have greater

power than the test of Y1 when the correlation is large but

lower power when the correlation is low. This gain in

power tends to be larger for the combined PCs as compared

to PC2 when the effect of G on the trait is large or when the

sample size increases (see Figure 1A). Conversely, the test of

PC2 becomes optimal when sample size or genetic effect is

small and correlation is larger than 0.5 (see Figure 1B).

When the tested SNP affects both traits, one can simi-

larly derive the power for each of the three previous tests

against the test of Y1 and Y2. Figure 2 presents such results

for phenotypes with correlation c equal to 0.1 (Figure 2A),

0.5 (Figures 2A and 2B), and 0.9 (Figure 2C), while

assuming G explains 0.5% of the variance of Y1 and be-

tween 0% and 1% of the variance of Y2. Furthermore, we

considered the directionality of the SNP effects for the sec-

ond trait: the same direction as on the first trait (positive

pleiotropy) and effects in opposite directions on the two

traits (negative pleiotropy). Similarly to the previous sce-

nario, the proportion of the total variance explained by

PC1 increases with c, but conversely PC1 displays most of

the genetic effect if G has similar effects on both of the

traits (i.e., is in same direction). This can be explained by

considering vpc1 and vpc2, the proportion of variance ex-

plained by G on the PCs (Equations 7 and 8), for example,

when v1¼ v2¼ v’, vpc2 is null and vpc1 can be approximated

by v0 � 2=ðc þ 1Þ. Because c is by definition smaller than 1,

the test of PC1 in this specific case will always outperform

the test of each trait independently and the test of PC2.

When the genetic effects are in opposite directions, large

gains in power can be achieved by testing for PC2, whereas

testing for PC1 has almost no power. This is consistent with

the results of Korte et al.,5 where they also observed

increased power to detect genetic variants with pheno-

type-specific effects and negative pleiotropic genetic

effects when accounting for the correlation between the

traits. In the latter case, the effect of G on PC2 can be

approximated by v0 � 2=ð1� cÞ, so that the effect of G

increases exponentially as the phenotype correlation in-

creases. Although the expected power of the combined

PC approach in all these situations is usually lower than

the power of single PCs when assuming a specific direction

of genetic effect on the traits, it offers a good compromise,

allowing for reasonable power without assuming a specific

hypothesis about the genetic effect. A summary of how the

different tests based on PC1, PC2, and the combined test of

the two PCs behave for moderate sample size is shown in

Table 1.

Comparison of Power for the Analysis of Five

Phenotypes

Whenmore than two phenotypes are considered, deriving

the power of the various analysis strategies quickly be-

comes too complex to be comprehensively expressed. To
erican Journal of Human Genetics 94, 662–676, May 1, 2014 665



Figure 2. Power to Detect a SNP Associated with Two Traits in a Bivariate Analysis
Power at 5 3 10�8 significance level to detect the SNP associated with the Y. using the independent tests of Y1, Y2, PC1, and PC2 and
a combined PCs test when analyzing 5,000 individuals. The genetic variant has a fixed effect on the trait Y1. The power of each of
the four tests is presented as a function of the effect on the second trait Y2 for three levels of correlation between Y1 and Y2: 0.1 (A),
0.5 (B), and 0.9 (C).
compare the power of univariate and multivariate tests in

such a setting, we simulated five phenotypes, Y1 to Y5,

under four different correlation scenarios: (1) a gradient

of moderate to low correlations, (2) a gradient of strong

to low correlations, (3) uniform moderate correlations,

and (4) uniform strong correlations (see Material and

Methods). For each scenario we compared the power of

four approaches: the univariate test of the original pheno-

types, the univariate test of each PC, the test of the PC

displaying the largest genetic effect after correcting for

multiple testing, and the combined test of all PCs. We

simulated and studied cases where the genetic variant is

associated with a single trait (see Figure S1 available online)

and cases where the genetic variant has a pleiotropic effect

(see Figure 3).

No single PC analysis approach was found to have

optimal power for all of the scenarios considered. The asso-

ciation pattern between the SNP and the five components

varied greatly across the set of parameters we used. Some-

times the strongest associations were with the PCs explain-

ing most of the variance (e.g., when the genetic variant is

associated with the 5 traits and the correlation between

the traits is smaller than 0.5); sometimes the strongest

associations were with the PCs explaining the smallest

amount of the total variance (e.g., when the genetic

variant is associated with several, but not all, traits and

there is correlation >0.5 among all traits). Hence, in

most situations, the strategy of testing all PCs and picking

the one with the strongest signal was more efficient than

focusing only on the PCs explaining most of the variance.

However, because most PCs showed association signals,

the combined approach was on average the most powerful

except when SNPs had an effect on a single trait that had

correlation lower than 0.5 with the other traits analyzed,

or in the presence of a fully pleiotropic effect (i.e., the

SNP is associated with all 5 traits) where the correlation

between traits is homogeneous.

In these simulations we considered a variety of sce-

narios, where we varied the correlation structure of the
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phenotypes while simulating independently positive

pleiotropic pattern of the tested SNP. When the pleio-

tropic effect reflects the phenotypic correlation (see

Material and Methods), the association patterns (see

Figure S2) were similar to those observed without account-

ing for the correlation among traits (see Figure 3).

Conversely, when we simulated negative pleiotropy (plei-

otropy against the phenotype correlation), we observed

dramatic increases in power for all PC-based approaches

(see Figure S3).

When a Very Large Number of Phenotypes Are

Analyzed

The simulations in the previous section show that when

a relatively small number of phenotypes are analyzed

jointly, the genetic association signal is usually spread

acrossmost or all of the PCs, making the analysis of a single

PC or a subgroup of PCs less powerful as compared to the

combined analysis of all PCs. However, when the number

of phenotypes becomes very large this will not be always

true, because the large increase in the degrees of freedom

can outweigh the benefit in combining many small associ-

ations with individual PCs.

Consider a scenario with a very large number of corre-

lated traits, for example, circulating levels of 100 metabo-

lites. Under such a scenario, when analyzing 2,000

individuals and assuming that the genetic effects are of

the same order of magnitude as in the previous simulations

(i.e., proportion of variance explained between 0.1% and

0.5%), the power of the univariate test of the raw pheno-

types at genome-wide significance level (and before any

correction for the 100 tests conducted) is below 1%.

Depending on the correlation pattern and the level of

pleiotropy, focusing on a subgroup of PCs may increase

power. This is demonstrated in Figure S4, where the power

at 5 3 10�8 significance level is shown for different tests

when analyzing 100 phenotypes simulated via a gradient

of correlation from 0 to 0.9 (extended model 2 from the

previous section, but with the more complex simulation
014



Table 1. Rationale for Testing Genetic Association with PCs in a Bivariate Analysis

Genetic Model PC1 PC2 Combined PCs

bY1 s 0 and bY2 ¼ 0 almost no power, converging
to 0 with increase correlation

most powerful for small sample size
and lowbY1; power increases with
correlation

most powerful for large sample size
and large bY1; power increases with
correlation

bY1 in the same direction as bY2 most powerful when correlation
and bY. are moderate

very low power; power increase
slightly with correlation

most powerful when correlation and
bY. are high

bY2 opposite to bY1 almost no power; minor variation
with increase correlation

very powerful; power increase with
correlation

very powerful; power increase with
correlation

The two positively traits are denoted Y1 and Y2 and and genetic effect of G on Y1 (bY1) and Y2 (bY2).
scheme SC1 described in Appendix B and Figure S5, and

simulating genetic pleiotropic effects independently of

the phenotypic correlation). We constructed two series of

100 tests by combining either the smallest n PCs that

explain the least amount of the total phenotypic variance

(i.e., the smallest eigenvalues) or the largest n PCs that

explain the largest amount of the total phenotypic vari-

ance (i.e., the largest eigenvalues), with n varying from 1

to 100. When the genetic variant affected 5 traits, we

observed a substantial gain in power when combining

the signal from the 10 PCs corresponding to the 10 small-

est eigenvalues as compared to the combined analysis of all

PCs (power was 0.59 and 0.23, respectively). However,

with the same simulation scheme, that same test (based

on the last 10 PCs) was severely underpowered when the

SNPs were associated with 20 traits (power was 0.63 and

0.99, respectively).

As our simulations demonstrate, the optimal strategy

strongly depends on the underlying model. However, a

naive approach that consists of analyzing the PCs jointly

in a few subgroups based on their eigenvalues can signifi-

cantly improve power. For example, in Figure S4 we show

that combining the joint signal from the PCs with the

largest eigenvalues with the joint signal from the remain-

ing PCs (with the smallest eigenvalues) can increase power

in the two scenarios described above. To achieve this, we

propose Fisher’s method. We defined a global multistep

combined PC (mCPC) score as

TK ¼� 2 �
"
log

 
1� F

 XK
i¼1

c2
i jK

!!

þ log

 
1� F

 XN
i¼Kþ1

c2
i jN � K

!!#
:

(Equation 13)

Here, K is the number of top PCs included in the first

group and N is the total number of PCs. The c2
i is the

chi-square association statistic between the SNP and the

ith PC, and Fðc2jdÞ is the cumulative distribution function

of the central chi-square distribution with d degrees of

freedom. Because all PCs are independent, TK follows a

chi-square distribution with 4 degree of freedom under

the null hypothesis of no association with any of the

PCs. Note that this test can easily be extended to more

than two groups.
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Comparison to Other Methods

We compared the power of the combined analysis of all

PCs (CPC) approach against four existing methods: multi-

variate analysis of variance (MANOVA), ordinal regression

of the genotypes against all phenotypes as implemented in

Multiphen,20 multiple trait mixed models (MTMM, see

Appendix C),2,5 and the p value correction method

TATES,8 which combines the p values from standard uni-

variate regression of the phenotype. We did not consider

principal component of heritability, because previous

work found that such methods can be less powerful than

MANOVA.3 Under the scenario described in Figure S2,Mul-

tiphen, MANOVA, MTMM, and CPC perform similarly,

with high gain in power as compared to the univariate

test of each phenotype and TATES (see Figure 4). We also

compared these methods by using 100 simulated pheno-

types under three different generating models: an exten-

sion of the model from Figure S2 (scenario SC1) and two

other models more similar to those used in the TATES

paper.8 Here, the SNPs tested were indirectly associated

with the phenotypes through unmeasured latent variables

driving the phenotypic correlation. We considered both a

small (30) and a very large (1,000) number of latent

variables (scenarios SC2 and SC3, respectively). The details

of the three scenarios are described in Figure S5 and Appen-

dix B, and Figure S6 illustrates the correlation structure and

pleiotropic effects induced in each of the three simulation

schemes. Because we observed inflated false positives for

Multiphen in these settings (see Figure S7), we decided to

exclude it from the 100 phenotype simulations. The

MTMM test was included in these simulations, but we

used the true phenotypic covariance structure instead of

estimating it from the data (see Appendix C). In practice,

estimating the phenotypic covariance structure from the

data, as done in MTMM and other software,27,28 for a large

number of phenotypes (e.g., >10) is computationally

intractable.1

In all of the simulated scenarios, MANOVA was more

powerful than the other methods. However, consistent

with results described above, we observed that the multi-

step combined PC (mCPC) strategy (Equation 13) can

substantially improve power (Figure 5) and outperform

MANOVA in some cases. The optimal number of

groups and number of PCs per group (K in Equation 13)

that will maximize the gain in power depends on the
erican Journal of Human Genetics 94, 662–676, May 1, 2014 667



Figure 3. Power Comparison for the Multivariate Analysis of Five Traits in the Presence of Pleiotropic Effect
Power at 5 3 10�8 significance level for the detection of a genetic variant when analyzing five phenotypes. Between one and five phe-
notypes are simulated as a function of the genetic variant, where its proportion of variance explained was randomly chosen between
0.1% and 0.5%. All genetic effects were positive and the associated phenotypes were randomly selected with equal probability. The
bars represent the power of eight different tests. The univariate tests for each PC are shown in light gray and dark gray after correcting
for the multiple testing, and the univariate test for the most significant PC (tPC) is in blue. The combined test of all five PCs is shown in
black, and the most significant univariate test of all Y. in light green (dark green after correcting for the multiple testing). The power is
shown for four different correlation models and 10,000 simulation replicates with 5,000 individuals.
underlying architecture of the traits. For this purpose, the

level of pleiotropy and the phenotypic structure, i.e., the

phenotypic correlation matrix, are probably key compo-

nents. In the case of two groups, if there is marked pheno-

typic structure, then the mCPC approach is unlikely to

improve power whatever the value of K (see Figure 5C

and Figure S6, right panels). If there is nomarked structure,

then the choice of K would mainly depend on the level of

pleiotropy. For low pleiotropy among the correlated traits,

using a high value for K (i.e., combining the top 80% PCs

and the last 20% PCs) might be more powerful (see

Figure 5A and Figure S6, left panels). Conversely, if most

correlated traits shared genetic effects, then using a low

value for K can be more powerful (Figure 5B and Figure S6,

middle panels). Although defining an optimal strategy

would require a fine study exploring various parameters,

these simulations highlight that the multistep combined

PC method can incorporate investigators’ hypotheses

regarding the specific genetic architecture of the correlated

traits, with limited loss of power when the assumption

does not hold.

We then evaluated the robustness and flexibility of the

four methods for handling several issues that commonly
668 The American Journal of Human Genetics 94, 662–676, May 1, 2
arise in GWASs. We observed that MANOVA, TATES, and

CPC are sensitive to the presence of outliers and can

make the test invalid, whereas Multiphen is not. However,

our simulations showed that the type I error is inflated

only in the presence of a large number of outliers with

values that are an order of magnitude larger than expected

(data not shown). Moreover, deviation from the null hy-

pothesis affects mostly genetic variants with very low fre-

quencies (e.g., MAF < 1% in 1,000 individuals) but have

a small impact on common genetic variants. Contrariwise,

Multiphen suffers from an inflated type I error when the

ratio of number of phenotypes over number of individual

is relatively large (>0.01), e.g., for 50 phenotypes in 1,000

individuals, the lambda value is 1.3 (see Figure S7), whereas

CPC, TATES, and MANOVA do not suffer from this

problem.

We have focused on analyses of unrelated individuals. To

our knowledge, there is no simple extension of MANOVA

or Multiphen to family data. Conversely, for TATES and

CPC, one can easily apply well-established methods such

as mixed models. For illustrative purposes we simulated

10,000 replicates of 200 nuclear families of two parents

and one to five children for a total of 1,000 subjects and
014



Figure 4. Power of Alternative Methods for the Multivariate Analysis of Five Traits
A comparison of the power at 53 10�8 significance level for detecting a genetic variant by five different multiple trait analysis: the com-
bined PCs (CPC, in black); MANOVA (MAN, in red); multitrait mixed model (MTM, in blue); Multiphen (MUL, in orange); and TATES
(TAT, in purple). These tests were applied to five traits where the number of traits with causal genetic effect was varied between one and
five. All genetic effects were positive and associated phenotypes were selected randomly with probability proportional to their level of
correlation with other phenotype. The proportion of variance explained by the causal variant was randomly chosen between 0.1% and
0.5%. The power is shown for four different correlation models and 10,000 simulation replicates with 5,000 individuals.
analyzed 10 phenotypes under the null hypothesis of no

association with the tested genotypes. Although applying

any of the tests described above for unrelated individuals

to family data results in an inflated type I error rate, except

for MTMM, applying a mixed model (as implemented in

the software EMMAX29) to the univariate phenotypes

and to the univariate PCs for TATES and CPC, respectively,

solves this issue (Figure 6A). When generating data under

the alternative (Figure 6B), we observed that CPC applied

in conjunction with a mixed model and MTMM had the

highest power (with MTMM being slightly more powerful)

as compared to applying genomic control correction to the

test displaying inflated type I error rate. Overall, the com-

bined PC approach and TATES offer more flexibility than

do integrated approaches such as MANOVA and Multi-

phen. In particular, it is straightforward to apply alterna-

tive tests for association that capture nonlinear effects,

such as the DC test we recently developed30 or tests of ho-

mogeneity of variance by genotypic classes.31,32 As showed

in Figure S8, when applied to the test of variances, CPC has
The Am
a well-calibrated type I error rate under the null whereas

combining signal across univariate phenotypes does not.

GWAS of Coagulation-Related Phenotypes

To illustrate the importance of including principal compo-

nents that explain a small proportion of total phenotypic

variance in the analysis, we conducted a genome-wide

scan of 5 coagulation-related phenotypes in 685 individ-

uals from theMARTHA study, namely fibrinogen (FIB), fac-

tor VIII (FVIII), von Willebrand factor (vWF), the activated

partial thromboplastin time (aPTT), and the standardized

anticoagulant response to Agkistrod on contortrix venom

(ACV). All these phenotypes reflect global coagulation ac-

tivity and display moderate to strong correlation. The cor-

relation matrix between these traits (Table S1) was very

similar to that simulated in model 2, with a gradient of

absolute value correlation varying between 0.75 (FVIII

and vWF) to 0.013 (FIB and aPTT). The five principal com-

ponents extracted from the standardized phenotypes

explained 46.22, 18.86, 18.32, 12.48, and 4.11 percent of
erican Journal of Human Genetics 94, 662–676, May 1, 2014 669



Figure 5. Power Comparison for the Multivariate Analysis of 100 Traits
Power at 5 3 10�8 significance level for seven different tests when analyzing 100 phenotypes across 10,000 replicates. Plots were simu-
lated under schemes SC1 (A), SC2 (B), and SC3 (C) (described in Appendix B and Figure S5). The top, middle, and bottom rows show the
power for low, moderate, and high level of pleiotropy with sample sizes of 3,000, 2,000, and 1,000, respectively. The red curve corre-
sponds to the test combining signals from the n PCs associated with the largest eigenvalues, the dark blue curve corresponds to the
test combining signals on the 101-n PCs associated with the smallest eigenvalues, and the black curve corresponds to the combined
test of latter two tests by the Fisher’s method, with n varying from 1 to 100. The dashed lines correspond to the test of all PCs combined
(gray), MANOVA (red), multitrait mixed model (MTMM, blue), and TATES (purple).
the total phenotypic variance, respectively. The individual

trait loadings for each of the five PCs are presented in

Table S2.

All tests we applied showed correct distribution of

p values (Table S3). The results from the univariate analysis

of each original trait and the univariate analysis of each PC

(adjusted for multiple hypothesis testing by Bonferroni

correction) compared to the multivariate analysis of the
670 The American Journal of Human Genetics 94, 662–676, May 1, 2
PCs were consistent with the conclusions drawn from

the simulation study. All of the five loci that were found

to be genome-wide significant (p < 5 3 10�8) in a single-

trait analysis were also significant in the combined PC

analysis (Table 2). Conversely, focusing for example on

the top two PCs explaining more than 55% of the variance

as done in Avery et al.13 would have identified only one of

these five SNPs. The combined PCs analysis furthermore
014



Figure 6. Multivariate Analysis of Family
Data
Comparison of five multivariate tests for
the analysis of 10 phenotypes in 200 nu-
clear families including two parents and
one to five children for a total of 1,000 sub-
jects. Pairwise phenotypic correlations
follow a gradient from 0 to 0.8 (extended
model 2 from Figure 3).
(A) QQplots and lambda values under the
null hypothesis of no association between
the tested SNP and any of the ten pheno-
types.
(B) Power under the alternative, when
the SNP is associated with three pheno-
types chosen randomly, and proportion
of phenotypic variance explained by the
SNP varying in [0, 0.025]. We compared

MANOVA (red), MultiPhen (orange), TATES (purple), CPC (combined PCs analysis, black), and MTMM (multitrait mixed model,
blue). Under the null, all tests, except MTMM, show inflated type I error rate when the family structure is not accounted for. Applying
a mixed model to the univariate phenotype or univariate PC analysis for TATES and CPC, respectively (dashed lines), solve this issue.
Under the alternative, we applied a genomic control (GC) correction to all tests showing type I error inflation. Power was derived at
a significance level of 5 3 10�3.
identified two variants, one on chromosome 18q21.2

located between two genes, DCC (MIM 120470) and the

RPS8P3 pseudo-gene (p ¼ 1.7 3 10�8). This SNP was sug-

gestive genome significant based on the univariate analysis

of FVIII (p ¼ 1.7 3 10�7 and beta coefficient of the coded

allele [allele T against C] of 1.8) and slightly associated

with vWF (p ¼ 0.035 and beta coefficient of 0.89). The

second locus found in the combined PCs analysis was

just below the genome-wide significant level (p ¼ 5.8 3

10�8). It is located on chr10p11.22 lying between the inter-

esting genes ITGB1 (MIM 135630) and NRP1 (MIM

602069). This SNP had a marginal effect on FVIII and

vWF (the beta coefficients of the coded allele [allele A

against G] were 0.502 and 0.297, respectively) that was

not suggestive of genome-wide association (p value of

6.6 3 10�7 and 0.0073, respectively).

Several patterns of association observed in the simula-

tion study were also observed in the empirical data. First,

the genetic signal at the most associated loci was spread

out across the PCs with association pattern changing

across loci; thus, focusing only on the univariate signal

from the top PCs was suboptimal. Applying the combined

PCs approach on the top two or three PCs was underpow-

ered for the same reason (data not shown). When the SNP

was associated to a single trait that was moderately

correlated to the others, there was no gain in using

PCA-based approaches (e.g., SNPs rs6025, rs710446, and

rs191945075 in Table 2); however, when the affected trait

had correlation with another trait above 0.5, the combined

PCs had the highest power (e.g., SNPs rs576123,

rs183013917, and rs76854392 in Table 2). Indeed, we

noted that association signals at the additional loci identi-

fied by the combined PCs analysis were driven by signal

from the last PC, which explained 4% of the total pheno-

typic variance. These signals involve nonpleiotropic

effects, or at least unbalance genetic effect on FVIII and

vWF, the most correlated traits. This confirms first that
The Am
PCA of multiple traits can improve detection of both ge-

netic variants harboring pleiotropic effects and those

affecting a single trait; and second that PCs explaining a

low amount of variance can be as important as those ex-

plaining a large amount.
Discussion

Principal component analysis is a common tool that has

been widely used for the combined analysis of correlated

phenotypes in genetic linkage and association studies. In

this study we show that PC-based analyses that focus on

the few components explaining most of the phenotypic

variance, as done in many studies, is generally suboptimal.

By deriving the power for PC analysis in a simple case of

two phenotypes and by conducting simulations for more

complex situations, we show that a genetic association

signal may in practice be spread across many or all of the

principal components. Under many realistic scenarios,

important genetic signals, e.g., trait-specific or negative

pleiotropic genetic effects (e.g., positive correlation and

opposite genetic effects), are captured by the PCs explain-

ing the least amount of the total phenotypic variance. We

demonstrated that combining the signal from all PCs can,

therefore, be a more efficient strategy than the standard

PCA approach. Although focusing on only a few PCs is un-

likely to improve statistical power when the total number

of phenotypes analyzed jointly is small (e.g., <10), this is

not necessarily the case when analyzing a very large num-

ber of phenotypes. When considering amore diverse range

of underlying models, involving multiple latent variables

and various patterns of genetic effects, we found that

increase in power can be achieved by applying a naive

multistep approach, where signal on PCs are merged into

subgroups based on their eigenvalues and the association

signal across all groups tested jointly by the Fisher’s
erican Journal of Human Genetics 94, 662–676, May 1, 2014 671
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method. This strategy may be worth exploring more

deeply in the future.

We compared the power of the combined PC (CPC)

approach against four existing methods: MANOVA; an

ordinal logistic regression with the genetic variant as the

outcome and the phenotypes as predictors (Multiphen);

a multitrait linear mixed model (MTMM); and the p value

correction method TATES. Overall, CPC showed power

close to the optimal in all of the scenarios considered

while offering more flexibility and robustness than other

methods. In particular, it can account for population and

family structure when applied together with amixed linear

model, which enables applications to family data whatever

the number of traits in a reasonable computation time,

whereas MTMM, for example, would be computationally

intractable for more than 5–10 traits.1 It can also be applied

in conjunction with other univariate tests, e.g., nonpara-

metric tests, or tests of heterogeneity of variance by pheno-

typic classes, an approach now commonly applied in

genomic data.32 Comparatively, MANOVA was the most

powerful approach when a large number of phenotypes

was analyzed (e.g., >50). The performance of Multiphen

was similar to CPC and MANOVA when a small number

of phenotypes was analyzed, but it had an inflated type I

error when the total number of phenotypes analyzed was

large as compared to the number of subjects. However, to

our knowledge, no statistical method has been developed

to account for complex population or family structure in

MANOVA and Multiphen; these methods are therefore

not applicable to family data. The MTMM approach offers

amore global framework than CPC to studymultiple corre-

lated phenotypes, accounting for population structure and

providing additional estimates including the genetic and

environmental variance of each phenotype. However,

this increased complexity comes at a dramatic cost in

computation time so that the approach can be applied to

only a limited number of traits. Although TATES offers sub-

stantial flexibility—it can both handle structured data and

be applied to various statistical tests—this method was

dramatically underpowered as compared to the other

approaches in most scenarios we considered.

In summary, we believe that the combined PC approach

is an attractive approach because it retains relatively good

power across a wide range of alternatives while preserving

computational efficiency. Moreover, as shown in Figure 5,

we can improve the power of CPC by incorporating prior

knowledge about the underlying architecture of the multi-

variate phenotypes, but not for the other approaches.

Finally, we note that performing a meta-analysis across

multiple studies of a multiphenotypes test, including

CPC, is more complex than conducting a meta-analysis

of a univariate test. Simple approaches such as combining

p values across studies by the Fisher’s method are possible,

but more efficient strategies might be developed. We are

actively pursuing this goal.

We simulated a wide range of trait correlation and pleio-

tropic patterns, but no simulation study can be exhaustive.
014



It is possible that analyses based on specific mechanistic

hypotheses may be more powerful when the mechanistic

hypotheses hold. But such methods often lose power

when the hypothesized mechanism does not hold. For

example, the recently proposed TATES statistic was shown

to outperform MANOVA in a range of scenarios when the

genetic effect of a SNP was constant across multiple traits

(e.g., v1 ¼ v2 in Equations 1 and 2).8 When we compared

the performance of tests in situations where the genetic

effects varied across traits, TATES had notably less power

than other approaches, including the CPC strategy (Figures

4 and 5). Although there exist situations where some tests

may have more power, we believe the combined PC

approach is an attractive approach because it retains rela-

tively good power across a wide range of alternatives.

This makes the combined PC approach particularly

appealing when the underlying mechanism is unknown.

The genetic variants identified in the MARTHA study at

genome-wide significance level are mostly known variants.

The association between ABO (MIM 110300) and FVIII and

vWF has been known for decades;33,34 the two variants

associated to aPTT (rs710446 in KNG1 [MIM 612358] and

rs1801020 in F12 [MIM 610619]) have been reported pre-

viously;24 and the two loci associated with ACVn, LRP4

(MIM 604270) and F5 (MIM 612309), have already been

described by Oudot et al.21 Two additional variants were

identified by the combined PCs approach at genome-

wide or nearly genome-wide significance level: the SNP

rs183013917 (which is mainly associated with FVIII) and

the SNP rs76854392 near NRP1 (which is associated with

both FVIII and vWF). Although these are potential candi-

dates, especially NRP1 because of previous studies showing

association with angiogenesis (e.g., Vander Kooi et al.35),

they deserve further replication before being confirmed.

A number of studies have used principal component

analysis for the multivariate analysis of correlated pheno-

types. Most of them followed the standard strategy that

consists of reducing the dimension of the outcome data

by focusing on the few components that explain the

most variability in the outcomes and removing those

explaining a low amount of total variance. In this work,

we show that contrary to this widespread practice, testing

the top PCs only can be dramatically underpowered

because PCs explaining a low amount of the total

phenotypic variance can harbor a substantial part of the

total genetic association. We also demonstrate that PCA-

based strategies achieve a moderate gain in power only

in the presence of positive pleiotropy, but have great

potential to detect negative pleiotropy or genetic variants

that are associated with a single trait highly correlated to

others.
Appendix A

The proportion of the total variance explained by PC1 and

PC2, respectively s1 and s2, is defined as
The Am
s1 ¼ varðPC1Þ
varðY1Þ þ varðY2Þ

¼ varðPC1Þ
2

¼
�
4 � c
2

þ ð ffiffiffiffiffi
v1

p þ ffiffiffiffiffi
v2

p Þ2
2

þ ð1� c � v1Þ
2

þ ð1� c � v2Þ
2

!,
2

¼
�4 � c þ v1 þ v2 þ 2 � ffiffiffiffiffiffiffiffiffi

v1v2
p þ 1� c � v1 þ 1� c � v2

2

�	
2

¼
�2þ 2 � c þ 2 � ffiffiffiffiffiffiffiffiffi

v1v2
p

2

�	
2

¼ ð1þ c þ ffiffiffiffiffiffiffiffiffi
v1v2

p Þ
2
s2 ¼ 1� s1

¼ ð1� c � ffiffiffiffiffiffiffiffiffi
v1v2

p Þ
2:
The proportion of variance of PC1 and PC2 explained by

G, respectively vpc1 and vpc2, can be expressed as the ratio

of the genetic effect of G on the variance of PC1 and PC2,

that we denoted t1 and t2, respectively, divided by the total

variance of PC1 and PC2, which are equal to s1 and s2,

respectively

vpc1 ¼ t1
varðPC1Þ

¼

� ffiffiffiffiffi
v1

p þ ffiffiffiffiffi
v2

pffiffiffi
2

p
�2

ð1þ c þ ffiffiffiffiffiffiffiffiffi
v1v2

p Þ

¼ v1 þ v2 þ 2 � ffiffiffiffiffiffiffiffiffi
v1v2

p
2 � ð1þ c þ ffiffiffiffiffiffiffiffiffi

v1v2
p Þ

vpc2 ¼ t2
varðPC2Þ

¼

� ffiffiffiffiffi
v1

p � ffiffiffiffiffi
v2

pffiffiffi
2

p
�2

ð1� c � ffiffiffiffiffiffiffiffiffi
v1v2

p Þ

¼ v1 þ v2 � 2 � ffiffiffiffiffiffiffiffiffi
v1v2

p
2ð1� c � ffiffiffiffiffiffiffiffiffi

v1v2
p Þ :

Appendix B

When simulating 100 phenotypes, we considered three

different simulation schemes (SC1, SC2, and SC3), which

are illustrated in Figure S5. In model SC1 the correlation

between phenotypes is a result of a limited number (30)

of independent latent variables, each affecting 40 pheno-

types on average and explaining altogether 30% of the

total phenotypic variance. The magnitude of the genetic

effects on the phenotypes was generated independently

from the latent variables, but the associated phenotypes

were selected while accounting for the pairwise pheno-

typic correlation. In model SC2, the phenotypic correla-

tion was generated in similar fashion as in model SC1,

i.e., using the same latent variables, but the genetic variant
erican Journal of Human Genetics 94, 662–676, May 1, 2014 673



was associated with some of these latent variables but not

directly to the phenotypes. In model SC3, we considered a

more complexmodel involving a thousand latent variables

together explaining 90% of the total phenotypic variance,

subgroups of these latent variables affecting cluster of phe-

notypes. As for model SC2, the genetic variant was associ-

ated with some of the latent variables.

More specifically, in model SC1, the nphe phenotypes

were generated as follows: y ¼ ffiffiffi
c

p
3ðbt3uÞ þ ffiffiffi

g
p

3gþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� g� cÞp
3ε, where y is a vector of phenotypic values

for a given subject, g is a SNP, g is the vector of proportion

of variance explained by that SNP on the nphe phenotypes,

u is a vector of realization of nu independent latent vari-

ables U ¼ ðU1;.Unu
Þ normally distributed with mean

0 and variance 1, b is a matrix of (positive) weights with

nu rows and nphe columns that defines the contribution

of each variable Ui to the phenotypes (these weights are

defined so that for each phenotype j,
Pnu

i¼1b
2
ij ¼ 1), c is a

vector of nphe weights that defined the proportion of vari-

ance explained by each linear combination bt
i3ui, and ε,

the residual variance, is a vector of nphe independent vari-

ables, normally distributed with mean 0 and variance 1. In

models SC2 and SC3, the nphe phenotypes were generated

as follows: y ¼ ffiffiffi
c

p
3ðbt3uÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� cÞp

3ε. A subsample of

the ui were generated as a function of a SNP G such that

ui ¼
ffiffiffiffi
di

p
3gþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� diÞ

p
3ei, where di is the effect of SNP

on the latent variable Ui, and ei, the residual, is normally

distributed with mean 0 and variance 1.

The parameters c and b and g of the three models were

defined empirically to obtain a similar distribution of pair-

wise phenotypic correlation and a similar distribution of

proportion of variance explained by the PCs. Because the

threemodels were very different, it was difficult to generate

a similar range of genetic effects on the phenotypes. How-

ever, this was of secondary importance because the aim of

this experiment was not to compare the models but to

compare the power of different methods for analyzing

correlated traits under various scenarios. Regardless, with

these constraints, the genetic effects simulated (either

directly on the phenotypes or on the latent variables)

were explaining a very small proportion of the total

phenotypic variance (<0.05%). For example, in model

SC1, the SNP was associated with 10 traits and the variance

that it explained for each phenotype was drawn from a

uniform distribution with minimum 0.1% and maximum

0.5%, so that the total phenotypic variance explained was

on average 0.025%. In model SC2, the SNP had a similar

effect size on 3 latent variables, so that the average contri-

bution of the SNP was 0.007%.
Appendix C

For Nphe phenotypes and Nind individuals, a common

modeling for multiple traits mixed model is as follows:

Y ¼ bXT þGþ E, where G ¼ VG5K and E ¼ VE5I, Y is

a column vector of Nphe phenotypes, X is a Nind3Nphe by
674 The American Journal of Human Genetics 94, 662–676, May 1, 2
Nphe matrix defines as INphe
5g where g is a vector of geno-

types for a given genetic variant and b is aNphe vector of its

effect sizes; G is a Nind3Nphe by Nind3Nphe matrix of ge-

netic effects and E is a Nind3Nphe by Nind3Nphe matrix of

residual errors; K is a Nind by Nind relatedness matrix and

I is the Nind by Nind identity matrix; and VG is a Nphe by

Nphe matrix of genetic variance and VE is a Nphe by Nphe

matrix of environmental variance.

Although the standard MTMM test includes estimating

all of the variance components for G and E from the

data, we decided to use the true parameters because esti-

mating variance components for a large set of correlated

traits is computationally intensive. The variance compo-

nent parameters used exclude the effect of the tested

SNP, which leads to a better calibrated statistic and

improved power over the approximate LRT approach

used by MTMM.1 We derived generalized least square esti-

mate for b for each simulated SNP X as follows:

bb ¼ XtV�1Y

XtV�1X
; where V ¼ Gþ E:

We obtained the p value by using an F-test, where the re-

sidual sum of squares for the null model, RSS0 ¼ YtV�1Y,

and the alternative model, RSS1 ¼ ðY�XbbÞtV�1ðY�XbbÞ,
assuming the genotypes and phenotypes have mean zero

and variance one.

Although multivariate mixed models is feasible for a

small number of traits (e.g., Nphe < 10), it becomes compu-

tationally intensive for more traits, because it requires

estimating a large number of dependent covariance

parameters.1,5

For our simulations with unrelated individuals, we

assumed that pairs of different individuals were zero (i.e.,

K ¼ I) and we do not separate genetic and environmental

variance. Under this assumption, deriving V�1 can be

simplified to V�1 ¼ ðVGþE5IÞ�1 ¼ V�1
GþE5I. Because

VGþE is aNphe byNphe matrix, it can very easily be inverted,

even when analyzing hundreds of traits. Furthermore, the

simple form of V�1 allows the derivation of bb, RSS0, and
RSS1 through linear algebra, which avoids saving V�1, a

practical and necessary advantage for 100 traits and

1,000 individuals, because such matrix would require

more than 500 Gb of memory.
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Supplemental Data include eight figures and three tables and can

be found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2014.03.016.
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The URLs for data presented herein are as follows:

CRAN – Package MultiPhen, http://cran.us.r-project.org/web/

packages/MultiPhen/index.html

CTG Lab software (including TATES), http://ctglab.nl/software/?/

software

Hugues Aschard software, http://www.hsph.harvard.edu/hugues-

aschard/software/

International HapMap Project, http://hapmap.ncbi.nlm.nih.gov/

Mach2qtl, https://helix.nih.gov/Applications/mach2qtl.html

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

UCSC Human Genome Browser, http://genome.ucsc.edu/cgi-bin/
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