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Abstract-We discuss several conditions which are reasonable requirements for functions synthesizing 
either ratio or measure judgements (or both) and determine all synthesizing functions satisfying either 
shorter or longer lists of such assumptions (yielding more general or more specific synthesizing procedures, 
respectively). 

1. INTRODUCTION 

Synthesizing judgements is often an important part of the Analytic Hierarchy Process (AHP) (and 
of other disciplines, e.g. statistical or economic measurement). The typical situation is the following. 
Several, say n, individuals form quantifiable judgements either about a measure of an object (weight, 
length, area, height, volume, importance or other attributes, for instance in the framework of a 
hierarchy) or about a ratio of two such measures (how much heavier, longer, larger, taller, more 
important, preferable, more meritorious etc. one object is than another). After all information is 
taken into account and all efforts at changing each others opinions are exhausted, either a consensus 
has been reached or there are still different judgements which have to be synthesized, either by a 
further systematic procedure bringing consensus among the individuals or by an external decision 
maker who consults the group or by a combination of both. This is the subject with which we deal 
here. Saaty [l], for instance, has used the simple geometric mean as a synthesizing function and 
asked for a motivation of this usage, i.e. for natural, reasonable assumptions which determine this 
synthesizing function or a family of functions which contains the geometric mean. The research 
about which we report here has this objective. We do not intend to include all mathematical details 
but we give reference for those which we omit. 

2. SEPARABILITY AND UNANIMITY CONDITIONS 

It makes sense here to suppose that the numerical judgements xi, x2,. . ,x, given by n individuals 
lie in a continuum (interval) P of positive numbers so that P may contain xi, x2,. . ,x, as well as 
their powers, or reciprocals, and their geometric mean etc. The synthesizing function f will map P” 
into a proper interval J and f(x,,x,, . . . , x,) will be called the result of the synthesis for the 
judgements x1,x2,. . . , x,. Our main problem is to study which conditions must be satisfied by f 
in order to obtain reasonable results. 

Saaty suggested [2], as the first assumption to be considered, the separability condition: 

S(XtrX*,..., X”) = g(xt)“g(x2)~...~g(x,), Vx, ,..., x, in P. 

Here g is a function which maps P onto a proper interval J (this is satisfied, for instance, if g is 
continuous and non-constant) while 0 is a continuous associative and cancellative operation 
mapping J x J into J, i.e. 

and 

(xoy)oz = xo(yoz), V x, y, z in J, (A) 

ifx,oy=x,oy,foranyy, then x1 = x2 
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and 

if xoy, = xoy2, for any x, then y, = y,. (C) 

It is known [3] that these conditions are already enough to guarantee that there exists a continuous 
and strictly monotonic function $, such that 

u a 0 = II/ - ‘WW + $(u)), Vu, u in J, (1) 

where II/-’ denotes the inverse function of Ic/. Putting equation (1) into condition (S), we get 

fb It...*%) = vQ-‘(~cg(x1)1 + ... + $k(xJl), Xl,...,X”EP. (2) 

A further natural requirement is the unanimity condition: 

f(x, . . . ) x) = x, Vx in P, WI 

i.e. if all individuals give the same judgement x, that should also be the synthesized judgement. 
Thus, if conditions (S) and (U) hold, we have by equation (2) and condition (U): 

x = f(x, . . , 4 = Il/-‘W4Ax)lh Vx in P, 

so $(x) = nll/Cg(x)] and equation (2) goes over into 

f-(x l,...,X”) = $-’ ( $6 1) + . . . + 4%) 
n 11 Xl,...,X.EP. (3) 

So we have proved the following. 

Lemma 1 
Let P be an interval of real numbers. A synthesizing function f: P” -+ P is separable (S) (with 

continuous non-constant g and continuous, cancellative and associative O) and has the unanimity 
proper’ty (U) ifs f is of the form (3) with an arbitrary continuous and strictly monotonic 1//, i.e. f is 

a quasi-arithmetic mean. 
The family (3) of functions is important in many parts of mathematics and its applications: these 

are the quasi-arithmetic means. 

3. RECIPROCAL PROPERTY 

In many situations, in particular concerning ratio judgements, it 
addition to conditions (S) and (U), the following reciprocal property: 

is reasonable to assume, in 

f($ ,...1+) = llf(x, ,..., x,), Xl,..., X,EP. 
n 

Indeed, let A and B be the two objects about which the ratio judgements are made (for instance, 
how much heavier A is than B). If we interchange A and B, then reasonably the judgements change 
into their reciprocals (if A is judged to be twice as heavy as B, then B should be judged half as 
heavy as A). The assumption (R) is that in this case also the synthesized judgement turns into its 
reciprocal. 

In order for assumption (R) to make sense, the interval P should contain with every element x its 
reciprocal l/x and, in particular, it has to contain 1 (because it is an interval and contains x and 

l/x). 
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Putting equation (3) into assumption (R), we get 

$(1/x,) + ... + VUX”) 
n 

) = IIIL-f$(xJ + ‘,’ + s(xq, X1,...,X,EP. (4) 

We need here and at some other points in our 
continuous strictly monotonic $ and 6 map the 
intervals I and r, so that 

deliberations a very useful auxiliary result: if the 
same real interval P into (possibly different) real 

IL-( 9(x1) + ... + VW 
n 1 ( = $4 3(x1) + ... + 3(x., 19 x ,,..., XnEP, (9 

n 

then there exist constants a # 0 and b such that 

&x) = ati(x) + b, x E P. (6) 

(See, for example, Ref. [3].) 
We see that equation (4) is the particular case I&X) = $(1/x) of equation (5). So from equation 

(6) we get 

$(1/x) = at++(x) + b. (7) 

Now we use a simple property of l/x, which turns out to be rather important in this case, that it 
is involutory: 1/(1/x) = x. So we get, from equation (7), 

$(x) = ti($--) = a$(!-) + b = a’$@) + ab + b. 

Since $ is strictly monotonic, this is possible only if 

a2 = 1 and ab+ b =O. 

Therefore we have two cases. The first is a = 1, b = 0 so that equation (7) becomes $(1/x) = G(x). 
This is not possible, since I,$ is strictly monotonic. The second case is a = - 1, b arbitrary. So 
equation (7) goes now over into 

W/x) = -Il/tx) + b, XEP. (8) 

We introduce a new function o by 

o(t) = $(e’) - (b/2). (9) 

For this function o, equation (8) becomes 

(4-t) = 4G, (10) 

i.e. o is an odd function. The domain of I+$ was P; from equation (9) we see that the t’s are the 
logarithms of the 2s. The set of all log x, where x is in P, is denoted by log P. So equation (10) is 
now true V t slog P. If, as in our case, P contains with x also l/x, then log P has to contain with 
every t also -t, as it should be. 
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Going back with the aid of equation (9) to $, we have 

Therefore, 

b 
if+(x) = w(logx) + -, 

2 
x E P. 

and, putting this into equation (3), we get 

f(x,,...,x,) = exp 0-l 
[ ( 

o(logx,) + “. + o(logx,) 

n )I> 
X,,...,X,EP. (11) 

Conversely, every function (1 l), where w is an arbitrary odd function on log P, is separable (S) 
and has the unanimity (U) and reciprocal (R) properties. 

We can formulate our results as follows [2]. 

Theorem 1 

Let P be an interval of positive numbers which with every element contains also its reciprocal. A 
synthesizing function f: P” + P is separable (S) (with continuous non-constant g and continuous, 
cancellative and associative o), has the unanimity (U) and the reciprocal (R) properties iff f is of 

the form (ll), where o is an arbitrary, continuous, strictly monotonic and odd function. 
If, in particular, o(x) = x, then equation (11) reduces to 

f(x,,...,x,) = exp ( logx, + ‘.. + logx, 

n ) 
= I=, 

the geometric mean. 

4. HOMOGENEITY CONDITION 

As we can see, our assumptions to date allow many more general synthesizing functions (11) 
than just the geometric mean. Another condition, which makes sense both for ratio and (even more) 
for measure judgements, restricts the permissible synthesizing functions considerably, even without 
assuming the reciprocal property (R), and with (R) gives exactly the geometric mean. 

This is the homogeneity condition: 

f(ux 1,...,ux,) = uf(x1, . . . . x,) 

when u > 0 and x~, uxlr (k = 1,. . , n) are all in P. WV 

For measure judgements condition (H) simply means invariance under change of scale (of units). 
For ratio judgements there are no units of measure left. Here condition (H) means that, if all 
individuals judge a ratio u times as large as another ratio, then the synthesized judgement should 
also be u times as large. 

Putting equation (3) into condition (H), we get 

+-l )(I(UXl) + “’ + 4wJX”) $(x1) + . . + 4%) x,,ux,~P; k= l,..., n. (H’) 
n n 
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Holding u temporarily fixed, we obtain with 

J(x) = $(ux) ( so i+-‘(x) = p(x) 
> 

) (12) 

equation (5) exactly, so by our “auxiliary result” in Section 3 we have equation (6), i.e. 
G(x) = a$(x) + b. Taking equation (12) into account and letting u vary again, we have to recognize 
that now the “constants” a, b may also depend upon u and we thus obtain 

Ic/(ux) = G4W + b(u), u > 0; x, ux E P. (13) 

This equation has been solved (see Ref. [4]). There are just two kinds of strictly monotonic 

solutions of equation (13): 

t+b(x) = alogx + p (14) 

and 

I)(X) = axy + B, (15) 

where a # 0, y # 0 but otherwise a, B, y are arbitrary real constants. The quasi-arithmetic means 
(3) corresponding to these I(/ are exactly the geometric mean 

and the root-mean-power 

f (Xl). . . )X,) = m (16) 

f (x 1, . . , x,) = J(x: + . . . + x$/n, y # 0. (17) 

It is immediate that these are indeed homogeneous. But equation (17) satisfies assumption (R) only 
for x1 = ... = x,. So we have the following [2]. 

Theorem 2 

The general homogeneous quasi-arithmetic means (3), i.e. the general separable (S) synthesizing 

functions satisfying the unanimity and homogeneity conditions (U) and (H) are the geometric mean 
(16) and the root-mean-power (17). If, moreover, the reciprocal property (R) is supposed even for 
a single n-tuple (x1,. . . , xJ, where not all xL are equal, then only the geometric mean satisfies all our 
conditions. 

5. POWER CONDITIONS 

For measure judgements the reciprocity condition is not a particularly natural assumption. But 
it is the particular case p = - 1 of the power condition: 

f(xT,..., xi) = f(X,,...,X,)P. (P&l) 

For other p this may make good sense in synthesizing measure judgments. For instance, if the kth 
individual judges the length of a side of a square to be xlr, she or he will presumably judge the 
area of that square as xi. It is reasonable to suppose that the same thing will hold for the 
synthesized judgement which is the requirement (PJ (if the synthesizing function is the same for 
lengths and areas). A similar assumption about the edge and volume of a cube gives requirement 
(P3). Since dimensional analysis teaches us (see, for example, Ref. [S]) that most laws of science 
consist of (products of) powers of quantities, (P,) makes quite good sense. 

MM 9:3,5-x 
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In what follows we explore the consequences of the power condition (P,) for one or more 
exponents p, with or without the homogeneity condition(H). The situation with condition(H) is quite 
analogous to Theorem 2 since equation (17) does not satisfy, for any y # 0, (xi,. . . , x,) # (x, . . , x), the 
power condition (P,), for any p = - l,O, 1, either. [Note that condition (Pi) is an identity, condition 
(P,) means only f(1,. . , 1) = 1, while we have already taken care of condition (P- i) = assumption 

CR).1 

Proposition 1 

In (the last sentence of) Theorem 2, assumption (R) may be replaced by any condition (P,) with 

p # -1, 0, 1. 

Let us now see what condition (P,) (p # - l,O, 1) does to the quasi-arithmetic means (3) (i.e. to 
separable synthesizing functions with the unanimity condition) without condition (H). Putting 
equation (3) into condition (P,), we get 

V’( VW) + ‘.’ + w3 I[ ( = 1(1-I $(x1)+ ‘.‘+ Ii/(x,) JP 
n n Xl> 

Xl,...,X,EP. 

This is again of the form (5) this time with I&X) = $(xp), so we have 

$(x”) = ati + b, a = 0; p= -l,O,l. (18) 

Here (contrary to the case p = - l), a is hardly restricted at all. It has been proved by AczCl and 
Alsina [6] that equation (18) always has continuous strictly monotonic solutions I(/ except in the cases 

a=lifb=O; a = 1 if p < 0;signa = -signp 

(sign t = 1 if t > 0, sign t = - 1 if t < 0, sign0 = 0) 

and, tf 1 is in P, then the following cases are exceptional too: 

a= -1; a = 1 (no restriction on b or p) and sign log Ial = -sign log IpI. 

In all other cases (18) has continuous strictly monotonic solutions which can be chosen arbitrarily, 
at least between e and ep, as long as they are continuous, strictly monotonic and $(ep) = a*(e) + b. 
Then one extends the solution by repeated use of equation (18). With these we have the complete set 
of solutions of form (3) and condition (P,) for a given p( # - l,O, 1). 

Now [6], we postulate the power property for two different exponents [as in our example with 
squares and cubes we had power conditions (PJ and (PJ]. Notice that 

f(xl,...,x3 =f(x,,...,x,)P, x,EP; k = l,...,n, (Pp) 

implies (with y, = xc) 

f (Y:‘p,. . . , Y.‘9 = f (Y 1,. . . , Y,PP PI,,) 

and also [from conditions (P,) and (Piip) by induction], 

f (XI:. . . ) x;“) = f (x1 ) . . . , X”)P’, k=O +l +2... ,_ ,_ > P,S 

The interval P has to be one of the following (since it should contain with every x also xp and 
xl/P . 

1. 

(0,1),(0,11,C1,~),(l,oo) or (--co,co) for p < 0 only (- 00, co). (19) 
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But our main point is that condition (P,) implies condition (P&, k = 0, + 1, + 2,. . . , therefore 
supposing, in addition to condition (P,), condition (P,) also, where log [p//log 1q( is a rational 
number, does not add much novelty. (Note: we have excluded p = l,O, - 1, but all other negative 
or positive p are permissible.) So we will suppose that 

log IPI 

loti? I41 
is a (finite) irrational number (20) 

and that conditions (P,) and (P,) hold. 
By iteration of conditions (P,) and (P,), as above, and their combination we get 

f(Xf2X’2’, . ) Xpq = f(xl ) . . . ) x,)p2kq2’, k,l=O,+l,k2 ,... . 

Now, it is known (see, for instance, Ref. [7]) that the numbers pZkq2’, k, 1 = 0, &- 1, +2,. . . , lie 
everywhere dense among the non-negative reals tf 

logCP2) - loglp( is irrational 

log (4’) log 141 
7 

which is true in our case [see assumption (20)]. Since f [for instance, in the form (3)] is continuous, 
we have now from conditions (P,) and (P,) and assumption (20) that 

holds for all non-negative 1. We have seen that p or q may (but need not) be negative. If, for instance, 
p < 0 then condition (P_ J = assumption (R) follows from conditions (P,) and (P,) if assumption 
(20) holds. Indeed then condition (PJ has followed V 1 > 0. Choose 1 = -p > 0: 

f(XT’,...) x,‘) = [f(x;‘,..., x;l)-p]-l’P = f(xp )...) x.“)_l’p 

= [f(xl )..., x”)p]-l’p = f(xl )...) x,)-l. 

As a further consequence, in this case (p or q negative), condition (PA) holds for all real A: take 
1 < 0. By conditions (PJ and (P_ i), 

fM,..., x.“) = f[(x;‘)-” )...) (x,1)-A] 

= f(XT’)..., xi’)-” = [f(xl )...) x,)-l]-A 

= f(x,,...,x,)“. 

Notice that for our square- and cube-preserving properties (P2) and (P3), log 2/lag 3 is irrational, 
so condition (PA) follows V1 2 0. 

If we put condition (PJ (A goes through all non-negative reals) into the quasi-arithmetic means 

(3), we get 

i-f 
ticx:, + . . . + $(x3 

n 
$(x1) + . . . + ti(x,) A 9 

n 
x,,xt~P; k = l,..., n. (21) 

By introducing & = exp(tk), k = 1,. . . , n, and 

40) = Ii/V) so ff-‘(u) = log+-l(u) (22) 
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we get, taking logarithms of equation (21) 

4(t1) + ‘.’ + 4(L) 
n 

t,,Lt,ElogP; k = l,..., n, (23) 

which, apart from the notation, is exactly condition (H’). If we choose, among the intervals (19) 
P = (1, co) then log P = (0, a) and even the domain of equation (23) will be a positive interval as 
in condition (H’). So, corresponding to equations (14) and (15) we get 

4(t) = crlog t + /?, i.e. I&X) = alog(logx) + p 

4(t) = atY + 8, i.e. $(x) = a(logx)’ + B. 

Accordingly, for P = (I, co) the only quasi-arithmetic means [i.e. separable synthesizing functions 

with the unanimity condition (Cl)], satisfying condition (PA) for all non-negative E, [or just conditions 

(P,) and (P,) with p > 0, q > 0, logpllog q irrational], are 

f(x 1 ,..., x,) = exp( ” logx,.logx,. ..:logx,) (24) 

and 

f(x i,. . .,x,) = exp {J[(log~,)~ + .f. + (logx#]/n}, y # 0. (25) 

Going over to others among the intervals (19) for P, already for P = [I, a), since f, as given by 
equation (3), is continuous and strictly increasing, the solution (24) will be eliminated and the solution 

(25) restricted to y > 0. Indeed, for equation (24), f (1, x2,. . . ,x,) = exp(yO. logx, . . . log x, = 1) 
is not strictly increasing, say in x2, and for equation (25), with y < 0, f (1, x2,. ,x,) does not 
exist and Iim f (x1, x2,. . . , 

.X,-l 
x,) = 1 is again not strictly monotonic, say in x2. 

Similarly (see Refs [4,6]), for P = (0,l the only separable synthesizing functions with the properties 

(U), (P,) and (P,) (p > 0, q > 0, logpllogq irrational) are 

f(xI,...,x,) = exp[-J(-logx,).(-logx,)...:(-logx,)] (26) 

and 

f(x,,...,x,) = expj-I[(-logx$ + .f. + (-logx,)Y]/n}, ‘/ z 0, (27) 

xi,. . . ,x, E P, while for P = (0, 11, the solution (26) is eliminated and the solution (27) is restricted 
to y > 0. 

Finally, for P = (0, co), we have to fit equation (25) to equation (27) (with y > 0) and we get 
equation (3) with 

A(logx)“+C, x> 1, 

i++(x) = C, x = 1, 

B( -log x)?, x < 1, 

(28) 

where AB < 0, y # 0 but otherwise A, B, C, y are arbitrary constants [4,6]. 
Now, tf p < 0 or q < 0, or both, then condition (Pi) holds for all real i, in particular for 3. = - 1 

which is assumption (R), so $(e’) - C is odd, B = -A and we have 

$(x) = A llogx Iy sign(logx) + C, A # 0, y # 0. 
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. ” L 

Even in this very special case, only if y = 1 do we retrieve I,&) = Ax + C and the geometric 
mean from equation (3): 

f(x l,...,X,) = I=. 

6. WEIGHTED SYNTHESIS AND FURTHER TOPICS 

R. Sarin has asked in connection with Acz&l and Saaty [2], how the results change if in condition 
(S) not all g’s are supposed to be the same function (weighted synthesis). So, in place of condition 
(S) we will now suppose the weighted separability property 

f(Xt,%,..., A) = gt(x1)~g*(x*)~“.~g”(x”), X1,...,X”EP 

(not all judging individuals have the same weight when the judgements are synthesized and these 
different influences are reflected in the different functions g, ,g,, . . . , g,). This problem was solved 
in Ref. [4]. Many of the proofs and results are similar; for instance the geometric mean (16) will 
be replaced by the weighted geometric mean f (x1,. . , x,) = x41 . x42 . . . . x2 (ql + . . . + qn = 1). 

Another generalization, where the judgements are represented not by numbers but by probability 
distributions, has been given in Ref. 183. 

There are many other variations to the theme. For instance if the individual judges the measures 
(length, area or weight etc.) of two objects and also their ratios, then logically the latter should be 
the quotient of the two former measures. We can require that the same should happen with the 
synthesized judgements of the measures and of the ratios, thus connecting the synthesis of measures 
with that of ratios. 

This time we allow for different synthesizing functions. Let the two sets of measures be synthesized 
by f and g, and the ratios by Q. Then our “quotient requirement” is 

(Q) 

Without supposing any separability or other property, just that one of f, g and Q be 
somewhat regular, for instance strictly monotonic at one point in each variable, we will have as 
general solutions of requirement (Q) f(x,, . . . ,x,) = ax;‘xfz.. .x2, g(y,, . . . , y,) = by4,1yq2.. ~2, 

Q(r ,,...,r,) = br11r4” 
a 

. . . r:, where a, b,q,, . . . , qn are arbitrary non-zero constants (see Refs [3,5]). 

Zf, quite naturally, f should be positive, then a > 0 and if the unanimity condition (U) is to hold for 
f then a = 1, q1 + ’ + qn = 1, thus leading this time to an exclusive characterization of the weighted 
geometric mean. 

It is interesting to note that the same equation (Q) comes up in a seemingly different situation. 
Let X~ be the estimation of the kth individual for the present price level, y, for the price level in a 
year from now and rk his/her estimation for the inflation rate. Let f and g be the synthesizing 
function of price judgements in consecutive years and Q that of inflation rate judgements. Again 
it is reasonable to have y, = rkxk, k = 1,. . . , n, and to suppose 

g(rlxtt. r x ..) ” ” ) = Q(rl,. , r.)f (x1,. . , x,). (Q) 

We denote this too by equation (Q) because it is exactly the above equation (with rk = y,/x,, 
k=l , . . . , n). The solutions are also the same. This is also the fundamental equation of dimensional 
analysis (see, for instance, Ref. [S]). 

With respect to the preservation of more complicated relations than in equations (R), (P,) or 
(Q), compare, for instance, Acztl and Saaty [2] (where xp is replaced by an arbitrary function) and 
Aczttl et al. [9] (where the linear transformations XH~X and/or f H Qf in equation (Q)-with 
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g = f-are (partly) replaced by affine ones; this leads to a generalization of dimensional analysis). 
For further details we refer to Acztl and Alsina [lo]. 
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